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Weakly nonlinear transient waves on a shear
current: ring waves and skewed Langmuir rolls
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We investigate the weakly nonlinear dynamics of transient gravity waves at infinite
depth under the influence of a shear current varying linearly with depth. The shear
field makes this problem three-dimensional and rotational in nature, but an analytical
solution is permitted via integration of the Euler equations. Although similar problems
were investigated in the 1960s and 70s for special cases of resonance, this is to our
knowledge the first general wave interaction (mode coupling) solution derived to
second order with a shear current present. Wave interactions are integrable in a
spectral convolution to yield the second-order dynamics of initial value problems. To
second order, irrotational wave dynamics interacts with the background vorticity field
in a way that creates new vortex structures. A notable example is the large parallel
vortices which drive Langmuir circulation as oblique plane waves interact with an
ocean current. We also investigate the effect on wave pairs which are misaligned
with the shear current to find that similar, but skewed, vortex structures are generated
in every case except when the mean wave direction is precisely perpendicular to the
direction of the current. This is in contrast to a conjecture by Leibovich (Annu. Rev.
Fluid Mech., vol. 15, 1983, pp. 391–427). Similar nonlinear wave–shear interactions
are found to also generate near-field vortex structures in the Cauchy–Poisson problem
with an initial surface elevation. These interactions create further groups of dispersive
ring waves in addition to those present in linear theory. The second-order solution is
derived in a general manner which accommodates any initial condition through mode
coupling over a continuous wave spectrum. It is therefore applicable to a range of
problems including special cases of resonance. As a by-product of the general theory,
a simple expression for the Stokes drift due to a monochromatic wave propagating at
oblique angle with a current of uniform vorticity is derived, for the first time to our
knowledge.

Key words: shear waves, surface gravity waves

1. Introduction

Ring waves are a canonical wave pattern studied scientifically for two centuries
pioneered by Cauchy (1816) and Poisson (1818). Even in the simplest situation,

† Email address for correspondence: andreas.h.akselsen@ntnu.no
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Weakly nonlinear transient waves on a shear current 115

however – deep water gravity waves – the effect of weakly nonlinear wave steepness
on these patterns has not been previously studied, and we find herein that they are
profound and non-trivial. The addition of a shear current, as recently studied to first
order (Ellingsen 2014a), makes the behaviour even richer.

Traditionally, the analysis of a deterministic field of waves have been separated into
two categories – ray theory and mode coupling theory dealing with wave interactions
in Fourier space (Wehausen & Laitone 1960; Whitham 1974). This text is concerned
with the latter category.

Within mode coupling theory an extensive family of methods exists for problems
where the wave distribution is narrowly centred around some specific wave vector.
Many of these narrow band approximation methods revolve around the application
of multiple scale analysis. An example is the nonlinear Schrödinger equation, which
can be obtained for the evolution of narrow banded wave packets (Stewartson &
Stuart 1971). Developed from the same principle, but with a different approach,
is the equation derived by Zakharov (1968) during the same period. A number of
years later this equation gained broader recognition through a more extensive paper by
Crawford et al. (1981). Multiple scale analysis can also be applied in systems oriented
about the dispersive wave packets to yield equations of Korteweg–de Vries (KdV)
type. This type of method has been used to study the far field of ring waves (Johnson
1990; Khusnutdinova & Zhang 2016a,b). Models such as those just mentioned have
proven adept at predicting phenomena such as the formation of rogue waves (Kharif
& Pelinovsky 2003) and are suitable for investigating wave packet stability in the
presence of shear (Thomas, Kharif & Manna 2012; Francius & Kharif 2017). The
fundamental reason for the diverse wave phenomena occurring in the presence of
vorticity is the change in dispersion properties due to the interaction between waves
and current; see e.g. Ellingsen (2014a) and the classic review by Peregrine (1976).

The present paper revolves around mode coupling techniques for weakly nonlinear
boundary value problems. A formalism is used similar to that presented by Phillips
(1960) and Longuet-Higgins & Phillips (1962a) for selective wave components, and by
Hasselmann (1962, 1963), Benney (1962) and Holliday (1977) for spectra. Resonance
and energy transfer between modes are the main foci in these references.

With the inclusion of a shear field new mechanisms for instability arise. Notable
situations of wave–shear resonance include boundary layer transitions (Benney & Lin
1960; Benney 1961, 1964) and wind-driven mixing phenomena in the upper ocean
layer (Craik 1970; Craik & Leibovich 1976). Other interesting resonance effects
involve resonant triads in the presence of strongly sheared flows, possible because the
shear distorts the otherwise monotonic shape of the dispersion curve (Craik 1968).
The viscous regions of critical layers appear to be a vital mechanism for energy
transfer in this case. Interactions between surface and ‘vorticity waves’ in stratified
flows is another notable example of resonance (Drivas & Wunsch 2016). Much
useful insight into mode interaction phenomena in surface waves is gathered in the
monographs by West (1981) and Craik (1986). Recent studies have demonstrated that
striking and non-trivial phenomena occur in three-dimensional wave–shear current
systems also for linear waves (Ellingsen 2014a,b).

Zakharov & Shrira (1990) provides a foundation for solving the full three-
dimensional sheared Cauchy problem. Their focus is spectral evolution of ocean
waves. It is shown that, in addition to the kinematic evolution attributable to resonant
four-wave interactions (Hasselmann 1962), a scattering process takes place from
the resonant interaction of difference harmonics with the shear current via critical
layers. The formalism applied allows for treatment of an arbitrary but weak shear
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current through use of perturbation techniques for both current and nonlinearities.
Shrira (1993) has since proven convergence of current perturbation series in the
linearised system whenever the characteristic perturbation ratio U′′(z)/ωk is less than
unity.

It is from a similar vantage point that we shall conduct our present study, for a
strong, albeit linear shear current. In the sense that the current vorticity may be of
the order of the wave’s intrinsic frequency. As opposed to the aforementioned authors,
mainly active the 60s and 70s, we aim for a full spectral solution of the sheared
Cauchy boundary value problem to second order in wave steepness. Compared to
boundary value problems, it is particularly the way in which the initial conditions are
related to wave–shear interaction kinematics that furnishes this Cauchy problem with
new features. Although endeavours such as these quickly become overwhelming in
terms of complexity (three-dimensionally perturbed systems where potential theory is
inapplicable) they are today more feasible through the available software for symbolic
mathematics.

A further motivation for our work is its relevance to climate research. Langmuir
circulation, or its sibling, Langmuir turbulence, occurring in the presence of a
spectrum of waves, is found to be the chief mechanism by which waves contribute
to mixing of warm and cold water in the upper oceans. Existing ocean models
account for this effect poorly or not at all (D’Asaro et al. 2014; Li et al. 2017),
something that is believed to be a key reason for systematic mispredictions in fully
coupled climate models (Belcher et al. 2012). The classical theories of Langmuir
circulation originating from wave–current interactions have dealt exclusively with the
situation where waves and currents are aligned with each other (Leibovich 1983). In
the oceans, the situation is often that waves (driven by wind) and currents make an
oblique angle with each other. Simple parameterisations of this situation have recently
been implemented in operational ocean models (Li et al. 2017), but these rely on
only two practically unvalidated and mutually dependent large-eddy simulation studies
(Van Roekel et al. 2012; McWilliams et al. 2014). Understanding the fundamental
mechanism is therefore of the essence, and our work contributes the first steps in
this direction, studying one of the two ways in which Langmuir turbulence might be
created.

We use our theory to second order to generalise the theory of Craik (1970)
(developed further by Craik & Leibovich (1976)) of a mechanism for Langmuir
circulation, to more general and realistic situations. In particular, we show that
Langmuir rolls can be formed by second-order wave–shear current interactions
also when waves and current are not aligned but meet at oblique angles. In his
famous review Leibovich (1983) remarked ‘No work has yet been done using the
(Craik–Leibovich) theories when us is not parallel to the horizontally averaged current
U. Heuristic considerations. . . suggest that instability could occur whenever us ·U & 0,
although there is no longer any reason to believe that rolls would be favoured’. (us
is the Stokes drift velocity). A large-eddy simulation by Van Roekel et al. (2012),
however, indicates that Langmuir-like structures should occur in such a misaligned
situation. We demonstrate here that the Craik–Leibovich ‘direct drive’ mechanism
(called ‘CL1’ by Faller & Caponi (1978)) will create (distorted) roll structures not
only for oblique wave–current incidence angles, but for all angles except us · U = 0.
(Note, however, that the mechanism ‘CL2’, if present, will have a stabilising effect
when us · U < 0 (Leibovich 1983); a stability analysis of such a situation is outside
the scope of this study, but would be an important topic for the future).

The text is structured as follows: the problem is stated in § 2 and its perturbation
series solution constructed in § 3 for prescribable initial conditions. Evaluating the
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solution integrals, explicit flow field and surface elevation expressions are derived to
second order in § 4, where we also discuss solution properties with regard to critical
layers and dispersive and advective resonance. Expressions for approximating fluid
particle trajectories are derived in § 5, were we also present second-order expressions
for particle trajectories in the presence of a uniform shear current for monochromatic
waves. Numerical examples include obliquely interacting wave trains, both parallel and
misaligned to the current, as well as two-dimensional particle trajectories and three-
dimensional flow fields for the shared Cauchy–Poisson initial value problem. These
are found in § 6, followed by a summary in § 7. Bulky expressions of the internal flow
field are relegated to appendices A–B. In appendix C the method of stationary phase
(in two dimensions) is applied for an asymptotic approximation the present problem.

2. Statement of the problem
We examine flow consisting of a strong unidirectional shear current, aligned with

the x-axis, perturbed by waves of moderate but finite steepness. The Euler equations
with accompanying free surface boundary conditions for this velocity field U(z)ex +
û(x, y, z, t) are

D̂tû+U′ŵex + ∇̂p̂=−(û · ∇̂)û− gez

∇̂ · û= 0

}
; z 6 ζ̂ , (2.1a)

D̂tζ̂ + û · ∇̂ζ̂ = ŵ
p̂ = 0

}
; z= ζ̂ , (2.1b)

ŵ= 0; z→−∞. (2.1c)

Hatted symbols refer to real space (as opposed to Fourier space) and density has
been absorbed into the pressure p̂. Here, ζ̂ is the surface elevation, D̂t = ∂t +U(z)∂x

and ∇̂ = (∂x, ∂y, ∂z). The problem (2.1) has been considered in a similar fashion by
Zakharov & Shrira (1990) and Shrira (1993), to whom we refer for further details.
Pressure and the horizontal velocities can be eliminated from the Euler equations to
yield a Rayleigh (inviscid Orr–Sommerfeld) equation on the form

D̂t∇̂2ŵ−U′′∂xŵ= R̂Ra; R̂Ra = ∂z∇̂h · [(û · ∇̂)ûh] − ∇̂2
h[(û · ∇̂)ŵ], (2.2a,b)

with ∇̂h = (∂x, ∂y) and ûh = (û, v̂).
The surface boundary conditions are highly implicit as they are defined upon the

same free surface which they describe. A common way of expressing these boundary
conditions explicitly is by Taylor expanding them down to the reference plane z= 0.
To further reveal the nature of these boundary conditions one may integrate the z-
momentum equation, take the horizontal Laplacian and use (2.1b) and (2.2) to derive

D̂2
t (∂zŵ)− D̂t(U′∂zŵ)− g∇̂

2
hŵ = g∇̂

2
h[(L̂− 1)(ŵ−U∂xζ̂ )− L̂(ûh · ∇̂hζ̂ )]

+ D̂t{∇̂2
h[ζ̂ L̂1(D̂tŵ− û · ∇̂ŵ)] − ∇̂h · (û · ∇̂)ûh}, (2.3)

where L̂ = 1 + ζ̂ ∂z + 1/2ζ̂ 2∂2
z + · · · and L̂1 = 1 + 1/2ζ̂ ∂z + 1/6ζ̂ 2∂2

z + · · · . A
perturbation solution is admissible from the above system, both for dealing with
nonlinearities and the shear current (Zakharov & Shrira 1990; Shrira 1993). We will
here adopt the Stokes perturbation for nonlinearities but will for the current instead
consider and arbitrarily strong (zeroth order) linear profile with a uniform shear
strength S;

U(z)= Sz. (2.4)
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118 A. H. Akselsen and S. Å. Ellingsen

3. Constructing the solution
The standard approach for solving the above nonlinear system is to seek for each

physical perturbation quantity ψ̂ a Stokes perturbation solution ψ̂ =∑∞n=0ψ̂
(n), where

higher-order components sequentially correct for increasing orders of nonlinearity. Our
problem is then reduced to a cascade of linearised problems for each perturbation
order. Each linearised problem has the same repeating structure; only the known lower-
order interaction terms (right-hand, inhomogeneous terms) differ, rapidly increasing in
complexity at higher orders.

We proceed by taking the Fourier transform in the horizontal plane of the first-order
perturbation components

ψ (1) =Fkψ̂
(1), (3.1)

k = (kx, ky). All higher-order components generated by the system are then given in
physical space by nested inverse transforms

ψ̂ (2) =F−1
k1
F−1

k2
ψ (2), ψ̂ (3) =F−1

k1
F−1

k2
F−1

k3
ψ (3), etc . . . , (3.2a,b)

that is, convolutions of the lower-order harmonics. In Fourier space, the key operators
become

D̂t→Dt = ∂t + ikxU(z), ∇̂→∇= (ikx, iky, ∂z), ∇̂2→∇2 = ∂2
z − k2, (3.3a−c)

where k is the sum of the convolution wave vectors k1, k2 etc. at each order and
k = |k|. We will in what follows restrict ourselves to solving the above system to
second order in ε and so k= k1+ k2 whenever working with second-order expressions.
From here on we suppress the perturbation order superscript (n) and drop the wave
vectors in the argument lists.

Solving the Rayleigh equation (2.2), now in Fourier space, yields

w(z, t) = A(t) ekz + Ã(t) e−kz +
∫

dz′C(z′) e−ikxSz′t sinh k(z− z′)+wcross(z, t) , (3.4)

where wcross(z, t) is the particular solution generated by cross-terms of oblique rota-
tional wave interactions. The integration coefficients A(t) , Ã(t) and C(z) are
determined from the bottom and surface boundary conditions and from the initial
condition, respectively. Making sure that we evaluate the integrals in forms that
vanish as z→−∞ we set Ã(t) ≡ 0 in what follows.

An initial background velocity field can be contained in the integration coefficient
C(z) . This field is then passively advected by the background shear flow via the
kernel exp (−ikxSzt). Such fields are usually not considered in analyses of, say, ocean
waves, which have no particular origin in time. One may then work without advected
velocity fields so that all frequencies are decoupled from the depth z. Evaluating time
derivatives or integrals is then simple. Ignoring advected fields in a Cauchy problem,
as Ellingsen (2014a) incorrectly argued is necessary, implies that wave-generated
vorticity is present at t= 0. In the present work we shall at second order instead use
advective background vorticity to cancel that which is generated by the wave–shear
interactions at t= 0 and thus generate an initial state which is irrotational (except for
the vorticity S in shear current). As we shall see later, this provides critical layers and
advective resonances with an origin in time which also resolves ambiguity concerning
integration paths around critical points.
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Weakly nonlinear transient waves on a shear current 119

With this choice we can absorb C(z) into the particular solution wcross as a lower
integration limit and write

wcross(z, t) = 1
k

∫ z

−∞
dz′
∫ t

0
dt′RRa

(
z′, t′

)
e−ikxSz′(t−t′) sinh k(z− z′). (3.5)

An integration constant will appear also in the horizontal velocity components. These
are chosen in a similar manner (see appendix A.) We proceed by integrating out the
pressure from the z-momentum equation of (2.1a) and find

p(z, t) =−1
k

(
Dt − iS

kx

k

)
A(t)ekz + pcross(z, t), (3.6)

where pcross at second order is given in (A 8).
Equivalent to (2.3), the original boundary conditions (2.1b), Taylor expanded down

to the reference plane z= 0, yields

∂2
t ζ − iS

kx

k
∂tζ + gkζ =Rζ , (3.7)

A(t)= ∂tζ −Rkin, (3.8)

upon inserting (3.6). Here, Rζ = kRdyn + (∂t − iSkx/k)Rkin, Rdyn and Rkin containing
the lower-order interaction terms of the Taylor expanded dynamic and kinematic
boundary conditions, respectively. They are presented to second order in appendix A.
The solution of (3.7) is

ζ (t) =
∑
σ=±

[
ζfree,σe−iωσ t + ζbound,σ (t)

]
, (3.9)

where ζfree,± is independent of time,

ζbound,±(t) =±
∫ t

dt′
iRζ (t′)
ω+ −ω− eiω±(t′−t) (3.10)

and ω± =Ω±(k). Eigenfrequencies of the homogeneous part of (3.7) are

Ω±(k) =−S
2

kx

k
±
√(

S
2

kx

k

)2

+ gk. (3.11)

The homogeneous components ζfree,±e−iω±t of (3.9) are in what follows termed ‘free
waves’ as they propagate according to the dispersion relation (3.11). We are free to
choose their amplitudes ζfree,± such that initial surface conditions are satisfied. The
modes of the particular solution ζbound,± are in the following termed ‘bound modes’.
Their frequency does not obey the dispersion relation as they arise as a nonlinear
correction to the lower-order solution.

We mentioned that the method of Taylor expanding the boundary conditions down
to a reference plane, although common, does place restrictions on the wave spectrum
width and can lead to convergence issues when short waves ride atop relatively longer
ones (Holliday 1977; Rainey 2018). Our interest lies mainly in narrow spectra and so
we are content with the above procedure. Boundary techniques suited for wider spectra
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can be constructed at the expense of increased complexity (for potential flows see
Zakharov (1968), Watson & West (1975), West (1981), Dommermuth & Yue (1987)).

The final stage of laying out a solution is to impose on the flow some prescribed
physical initial surface elevation ζ̂IC(r) and its time derivative ˙̂ζIC(r) . A solution in
the form of a Stokes perturbation series must match these conditions at t= 0. Initial
conditions apply to the sum of Stokes terms, but does not determine the initial value
of each term individually, and exactly how these conditions are satisfied becomes a
matter of choice. We make the assumption that higher-order terms can be made not
to contribute to ζ̂ and ∂tζ̂ at t = 0, whence the initial conditions become (briefly
reintroducing the (n) order notation)

ζ̂ (1)(r, 0) = ζ̂IC(r) and ∂tζ̂
(1)(r, t) |t=0 = ˙̂ζIC(r) (3.12a,b)

which combine with (3.9) to yield

ζ
(1)
free,± =∓

ω∓ζIC − i ζ̇IC

ω+ −ω− . (3.13)

Here, ζIC(k) and ζ̇IC(k) are the Fourier transforms of ζ̂IC(r) and ˙̂ζIC(r), respectively.
The bound modes from the higher-order terms alters the initial state of our solution,
but we can choose higher-order free modes to compensate for this. Imposing ζ (n)(t) =
∂tζ

(n)(t) = 0 at t= 0 for all nonlinear orders, we find from (3.13) that

ζ
(n)
free,± = ±

(ω∓ − i∂t)ζ
(n)
bound(t)

ω+ −ω−

∣∣∣∣∣
t=0

(3.14)

for n > 1, where ζ (n)bound = ζ (n)bound,+ + ζ (n)bound,−. Taking the time derivative of (3.10) one
readily finds that ζbound obeys ∂tζ

(n)
bound= iω+ζ

(n)
bound,+− iω−ζ

(n)
bound,− at t= 0 so that (3.14)

yields
ζ
(n)
free,± =−ζ (n)bound,±

∣∣
t=0 (3.15a)

for n > 1. Thus, by matching single wave interaction harmonics at t = 0 with free
harmonics of equal amplitude and opposite phase, we ensure that initial conditions on
the surface elevation remain unaffected by the introduction of higher-order corrections.

In § 6.1 we shall also consider oblique interactions of two monochromatic waves.
Here we do then not require any particular initial state but instead impose

ζ
(n)
free,± = 0. (3.15b)

4. Second-order solution
Consider first the linear solution. RRa=Rζ = 0 in the first-order components so that

all particular solution terms drop out of (3.4) and (3.9), leaving only the homogeneous
components (Ellingsen 2016):

u(1)h (z, t) =
∑
σ=±

A(1)σ

(
i

k
k
+ S

k⊥
k

ky

k
ei ω̄σ t − 1

i ω̄σ

)
ekz−iωσ t (4.1a)

w(1)(z, t) =
∑
σ=±

A(1)σ ekz−iωσ t (4.1b)
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p(1)(z, t) =
∑
σ=±

i A(1)σ
1
k

(
ω̄σ + S

kx

k

)
ekz−iωσ t (4.1c)

ζ (1)(t) =
∑
σ=±

ζ (1)σ e−iωσ t; (4.1d)

A(1)± = −i ζ (1)± ω±, (4.1e)

where k⊥ = (−ky, kx) and the Doppler shifted frequency ω̄± = ω± − kxSz, originating
from the Dt operator. As usual a dependence on k is understood.

Integration coefficients appearing in the horizontal velocities have in the above
equation been made to yield an irrotational initial state, as per the discussion in the
previous section. This part of the velocities is identified by the ∝ exp(i ω̄±t) kernel
and constitutes an advection process. A surface initially at rest (ζ̇IC = 0) will then
produce a flow field which is initially quiescent apart from the background current Sz.
At the critical depths z=ω±/(kxS) the flow field perturbation becomes proportional to

lim
ω̄→0

ei ω̄t − 1
iω̄

= t, (4.2)

rather than becoming a diverging singularity as it would without the advective term.
One should however keep in mind that in many practical situations, including shear-
layer flow in the upper oceans or river delta plume flow, the depths at which such first-
order critical layers reside will typically lie far beneath the shear penetration depth
above which the uniform current model is meaningful. This is not necessarily true
for the higher-order harmonics.

Including advective terms in the solution (4.1) increases the complexity significantly,
yet, away from critical layers, their contribution at first order is only moderate
undulations. Neglecting advective terms causes at first order merely a small deviation
from the irrotational initial state. We therefore proceed without the first-order advective
terms exp(iω̄±t) in what follows, accepting this slight initial fluid motion beneath
the surface. It is, as will be shown, in dealing with the second- and higher-order
harmonics that imposing initial irrotationality can be crucial; such states give advective
resonances (§ 4.2) an origin in time.

We now turn to the second-order quantities. RRa, the right-hand side the Rayleigh
equation (2.2), consists at second order only of interactions between freely dispersing
waves. Two frequency branches are present in the first-order components at every
wave vector. The time dependency of RRa will at second order then be made up of
four frequency branch combinations to be summed together. Keeping this in mind, we
let ω represent any of the four different frequencies Ωσ1(k1)+Ωσ2(k2) with σ1,2 =±,
and write

R(z, t) = R̃Ra(z) e−iωt, (4.3)

remembering to sum all four branch combinations in the end. Using partial fractions,
R̃Ra can be written

R̃Ra(z)= A(1)1 A(1)2
(k1 × k2)z

k1k2

2∑
i=1

3∑
j=1

aij

(ξi − z)j
ekΣ z. (4.4)

We have here introduced the shorthand notations kΣ = k1+ k2 and (k1× k2)z= k1xk2y−
k1yk2x, and the critical depths

ξ1 = ω1

k1xS
, ξ2 = ω2

k2xS
, ξ3 = ω

kxS
. (4.5a−c)
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Here, kΣ should not be confused with the modulus of the second-order wave
vector, k = |k1 + k2|. Note that ξ1 and ξ2 will, for parameters typical for the ocean
(S ∼ 0.01 s−1, phase speed ∼ m s−1), be of order hundreds of metres, where the
uniform shear model is unlikely to be representative. The parameter ξ3 can, on the
other hand, take on values much closer to the surface in the form of difference
harmonics. Assuming ξ1 6= ξ2 (see (B 1d) for the case ξ1= ξ2), the coefficients in (4.4)
read

ai1 = (−1)i
[

k1k2 − k1 · k2 − kΣ
ξ1 − ξ2

(k1 × k2)z

k1k2
tan θm

]
tan θi, (4.6a)

ai2 = (−1)i
1
ki

[
k1k2 − k1 · k2 − ki

ξ1 − ξ2

(k1 × k2)z

k1k2
tan θm

]
tan θi, (4.6b)

ai3 = (−1)i
km

ki
tan θi. (4.6c)

Here i, m ∈ {1, 2} so that i 6= m, and tan θi = kiy/kix. Inserting this into (3.5) we first
obtain

wcross(z, t)= 1
k

e−iωt
∫ z

−∞
dz′

eiω̄′t − 1
iω̄′

R̃Ra
(
z′
)

sinh k(z− z′), (4.7)

ω̄′ =ω− ikxSz′ = kxS(ξ3 − z′). Once more applying partial fractions we find

R̃Ra(z)
ξ3 − z

= A1A2
(k1 × k2)z

k1k2

3∑
i,j=1

bij

(ξi − z)j
ekΣ z, (4.8)

with

bij =
3∑

m=j

−aim

(ξi − ξ3)m−j+1
, i= 1, 2; b31 =−b11 − b21; b32 = b33 = 0. (4.9a−c)

The integral in (4.7) can now be expressed in terms of the scaled exponential integral
function

Ẽj(µ) = eµ µj−1
∫ ∞
µ

dτ
e−τ

τ j
(4.10)

whose integration path is not allowed to cross the negative real axis. We get

wcross(z, t) = i
2k

A(1)1 A(1)2

kxS
(k1 × k2)z

k1k2

3∑
i,j=1

∑
σ=±

σ
bij

(ξi − z)j−1

× {Ẽj [ktσ (ξi − z)] e−ikxSzt − Ẽj [kσ (ξi − z)] e−iωt
}

ekΣ z, (4.11)

with k± = kΣ ± k and kt± = k± − ikxSt. Here, the time-dependent term ∼exp(−iωt) is
related to dispersion of the surface waves. Time dependency is here decoupled from
depth and easy to handle. The other time-dependent term, ∼exp(−ikxSzt), originates
from the advected background vorticity, i.e. the lower limit in the time integral (3.5).
With it comes the effect that the shear’s advection of vorticity waves increases with
depth, generating the depth–frequency coupling.

Finally, we seek to evaluate the surface elevation from (3.10). Integrating dispersive
(wave induced) terms in time is trivial as these are not coupled with depth, whereas
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the advective terms are more involved. We proceed by once more inserting the
definition (4.10) and perform partial integration on the outer integral. One of the
partial integration kernels will then turn out as the an exponential integral of negative
order, which can be evaluated explicitly,

Ẽ−j(µ) = eµ

µj+1

∫ ∞
µ

dτ τ je−τ =
j∑

l=0

j!
l!µ

l−j−1, j= 0, 1, 2 . . . . (4.12)

Each term of the sum now generates new exponential integrals. We present the
solution in terms of its wave dispersive and advective parts,

ζbound =
∑
σ=±

(ζbound,disp,σ + ζbound,adv,σ ), (4.13)

in order to distinguish the physical behaviour of the two fundamentally different
modes of vorticity transport. Explicitly,

ζbound,disp,± =± R̃ζ ,dispe−iωt

(ω+ −ω−)(ω± −ω), (4.14)

and

ζbound,adv,± = ∓ 1
ω+ −ω−

1
k

A1A2

kxS
(k1 × k2)z

k1k2

3∑
i,j=1

bij

ξ
j−1
i

[
Ẽj(kt+ξi)+ Ẽ1(kt+ξ±)

+
j−1∑
l=0

( j− 1)!
l!

kt+ξiẼj−l(kt+ξ±)+ lẼj−l+1(kt+ξ±)− kt+ξ±Ẽj(kt+ξi)

[kt+(ξ± − ξi)] j−l

]
.

(4.15)

These expressions, sequentially inserted into (4.13), (3.15) and (3.9), give the full
second-order surface elevation; R̃ζ ,disp and the remaining parts of the velocity field
are presented in appendix A.

We note that Ẽj(µ) has a singularity at the origin and a branch cut discontinuity
along the negative real axis, physically representing a critical layer. A ‘rule for going
around the singularity’, which imposes a history to critical layers, is thus required
for when the arguments of Ẽj are real negative (Lin 1955; Benney 1961; Zakharov
& Shrira 1990). Physically, this treatment affect the presence of Reynolds stresses in
the solution. We here require that we should not cross the branch cut as we go from
t = 0 to t > 0. This is essentially equivalent to replacing kΣ with kΣ − ikxSε where
ε→ 0+, and to the rule of the singularity applied by Zakharov & Shrira (1990), Shrira
(1993). (Viscous analysis, such as that provided by Benney (1961, 1964), is required
for a fully physical treatment of critical layers. Craik (1968, 1971) has shown that
the viscous region of these critical layers give significant contributions in the energy
transfer between resonant triads.)

The final stage in obtaining a second-order solution is evaluating convolution
integrals of the form (3.2). The discrete convolution domains considered in § 6.3
constitute, for the resolution presented, large arrays of data. In order to split the
computation into parallel chunks and avoid the full four-dimensional array storage
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we substitute k1 and k2 with k= k1 + k2 and k′ = k1 − k2. Written by way of Fourier
integrals,

F−1
k1
F−1

k2
ψ =

∫
dk
(2π)2

{∫
dk′

16π2
ψ
[

1
2(k+ k′), 1

2(k− k′)
]}

eik·r (4.16)

and we evaluate the inner integral sequentially while also taking advantage of the
symmetries

Ω±(−k) = −Ω∓(k) (4.17a)
ψ±1±2(k1, k2) = ψ±2±1(k2, k1) =

[
ψ∓1∓2(−k1,−k2)

]∗
. (4.17b)

Sign subscripts here indicate the frequency branches of the two interacting waves
and an asterisk denotes the complex conjugate. A real solution in physical space is
assumed in (4.17b). Bear in mind that all second-order perturbation quantities are to
be summed over the four frequency branch combinations.

4.1. Dispersive resonance
It is worthwhile to identify and label the two main types of resonance possible in our
system.

A pole appears from the denominator of (4.14) if ω = ω+ or ω = ω−. This
denominator is the dispersion relation with ω replacing ω± and a pole thus signifies
the state wherein the bound harmonic and free surface waves travel at the same
(phase) speed. Energy exchange is then possible, causing dispersion resonance
(Hasselmann 1962). Note that the singularity due to the poles in (4.14) is cancelled
by the free wave (3.15a) in the full solution (3.9) resulting in linear growth in the
manner (4.2),

lim
ω→ω±

ζdisp(t) =± R̃ζ ,disp

ω+ −ω−

(
e−iω+t − e−iω−t

ω+ −ω− + it e−iω±t

)
. (4.18)

Dispersive resonance occurs by way of self-interactions at odd orders in monochro-
matic wave trains, and manifests as frequency perturbations (Fenton 1985). Phillips
(1960) and Longuet-Higgins & Phillips (1962b) show that similar frequency
perturbations result due to resonance between separate wave trains, and Benney
(1962) showed it in the case of discrete wave spectra.

Gravity wave dispersion resonance is possible only at third order and above in
irrotational flows (Phillips 1960; Kadomtsev & Karpman 1971), yet it is important
to remember that dispersion resonance is possible at second order if the flow
is three-dimensional and strongly sheared. Craik (1968) found such resonance
to be remarkably powerful. To illustrate sheared triad resonance we visualise in
figure 1 Ω-surfaces in k-space; surface intersection, and thus resonance, is possible
if the shear-induced curve stretching disrupts the otherwise monotone curvature
sufficiently. The shear strength (shear Froude number), the branch combination and
the angle of the fixed wave vector k1 are the only parameters in these figures. A
simple study of graph topography reveals that resonance for the weakest shear strength
takes place as an interaction of two ‘plus’ or two ‘minus’ branches (figure 1a), at
|S| = 2

√
gk1. This minimal shear triad is between two waves which are orthogonal

to the shear and a third wave of large wavelength and high phase speed. (Note that
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FIGURE 1. (Colour online) Two dispersion relation curve branches in k-space are shown
in each image, the origin of one surface shifted to a point k1 atop the other. The shifted
surface thus shows ω = Ω±(k1) + Ω+(k) for k1 fixed. Triad resonance occurs if, for
any angle of k1, there exists an intersection cut between the two surfaces; along such
a cut k3 there exists pairs k1, k2 satisfying Ω±(k3) =Ω±(k1) +Ω+(k2) . (a) ++ branch
combination, S=−3.0

√
gk1, angle k1: π/2. (b) −+ branch combination, S=−3.75

√
gk1,

angle k1: π.

such minima are sensitive to the scaling; Craik (1968), studying a special case, finds
a minimum to occur at an intermediate angle as he scales with

√
gk1x as opposed

to
√

gk1.) Opposing branch resonance (figure 1b) first occurs at |S| ≈ 3.47
√

gk1 and
involves a triad where k1 is near an angle π/6 to the current. Resonance at k1-angels
lower than this appears with only slight increased shear strength; figure 1(b) shows a
case of slightly stronger shear with k1 parallel to the shear current.

4.2. Advective resonance
A different type of resonance is possible from within the flow field. Where the
dispersion resonance originates from a wave–wave interaction at the surface, advective
resonance comes about when energy is transferred to the wave field from the
background shear current U(z). It occurs where the phase velocity of a wave matches
the shear advection velocity in the x-direction. This mode of resonance is seen
repeatedly in the velocity field expressions, e.g. (4.7), in the form of factors such
as (4.2) resulting in terms diverging linearly with time. It is further auspicious to
distinguish between two types of advective resonant behaviour. One appears in the
form of critical layers at all depths z= ξi where ωi= ki,xSz. Vertical velocities remain
continuous across the critical layers (due to the sinh in (4.7)), although the vertical
velocity pertaining to the dispersive wave seen alone has a kink (discontinuous
z-derivative) here. The advective wave serves to cancel this kink initially so that the
net vertical velocity is smooth across the critical layer but evolves into a kink as
t →∞. Horizontal velocities, presented in appendix A, will grow like uh ∼ t e−iωt

in a diverging manner near the critical layer and evolve towards a discontinuous
singularity as t→∞. The number of critical layers increases with the solution order.
Just above or below a critical layer the flow remains periodic and bounded.

Another type of advective resonance occurs when kx and ω each tends to zero
independently. The resonance ω̄→ 0 then occurs globally. This type of resonance has
been famously proposed to act as a key mechanism for the phenomenon of Langmuir
circulation, in turn, a vital mechanism for boundary layer mixing and the location
and structure of the thermocline in oceans and lakes (Leibovich 1983; Craik 1986).
We will return to this phenomenon later in § 6.1. In the confines of the initial value
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problem there is, for moderate times, no ambiguity near a global advective resonance
– in fact, this was the main motivation for demanding irrotational initial condition.
There is therefore no need for excluding the parts of the interaction spectrum where
kx = k1x + k2x is small, as done by Zakharov & Shrira (1990).

Note that all the terms associated with nonlinear advective resonance contain the
factor (k1 × k2)z, and so are artefacts of oblique wave interactions. The same is true
for the appearance of all exponential integrals.

Our scope is restricted to currents of linear depth dependence, hence we have
excluded the possibility of a final type of resonance, which is due to the curvature of
U(z) (Drazin & Reid 2004). Such resonances are possible in free surface flows even
when there are no inflection points. One may refer to Shrira (1993) who derived
a perturbation series solution for linearised wave fields atop arbitrary, weak shear
currents to any prescribed accuracy. Instabilities related to critical layers are found.
Drivas & Wunsch (2016) provide, with their study of a bilinear shear current of
finite penetration depth, a related example of three-dimensional triad instability which
is related to the current profile ‘kink’. Carpenter et al. (2011) provide a review for
two-dimensional homogeneous and density stratified shear flows.

5. Fluid particle trajectories
As is well known, the second-order Stokes expansion of a steady periodic wave

creates a net mass transport in the direction of propagation, referred to as Stokes
drift. From a Lagrangian perspective, the trajectories of individual fluid particles are
not closed but is slightly shifted for each cycle. Naturally a similar phenomenon will
be present in the presence of a transient wave such as may be created by an initial
disturbance.

Surprisingly to us, the literature on fluid particle trajectories and Stokes drift in the
presence of a uniform shear current has been found to be scarce; Kishida & Sobey
(1988) provide expressions for monochromatic two-dimensional flow, but we are not
aware of any literature for monochromatic waves propagating at oblique angles with
a sheared current, nor of any reliable expressions for particle trajectories in sheared
flow. The following theory has therefore been kept rather general, allowing for both
monochromatic waves and discrete and continuous wave spectra.

We define a fluid particle trajectory x̂p(t) = (x̂p(t) , ŷp(t) , ẑp(t) ) as the parametric
position of an imaginary particle whose velocity always coincides with the velocity
field at the immediate trajectory position. Precisely,

dx̂p

dt
= û
(
x̂p(t) , t

)
, (5.1)

where the initial particle position is close to a point x0= (x0, y0, z0) at t= 0. Assume
that xp revolves around an orbit centre point x̂s which slides in the horizontal plane
with a constant velocity υ̂s. Taylor expanding û about x̂s generates, in index notation,

ûi
(
x̂p(t) , t

) ≈ (ûi)s + (x̂p − x̂s)(∇̂ûi)
T
s + 1

2(x̂p − x̂s)(∇̂∇̂ûi)s(x̂p − x̂s)
T + · · · , (5.2)

where s-suffixes indicate evaluation at x = x̂s. Inserting (5.2) into (5.1) makes x̂p
a Stokes series expansion with increasing number of nested convolutions in the
form of (3.2). We use the sliding orbit x̂s to remove linear time dependencies in x̂p
(from current advection and Stokes drift) from the right-hand side of (5.2), denying x̂p
higher polynomials in time in the subsequent orders. Consequently, also x̂s takes the
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form of a Stokes expansion. The procedure is analogous to the well-known frequency
perturbation of the Poincaré–Lindstedt method. At zeroth order, equation (5.2) then
yields

x(0)p (t) = x(0)s (t) = x0 + Sz0ext, (5.3)

as expected.
Evaluation of the perturbation velocity field along the sliding orbit x̂s is equivalent

to a Galilean transformation and generates a Doppler shift

û
(
x̂s(t) , t

) = ûs(t) → us(t) = u(t) eik·υ̂st (5.4)

in Fourier space. x0 is here the independent variable of the corresponding inverse
Fourier transform. A cascade of ordinary differential equations,

dxp,i

dt
− Szpδi,1 = us,i

+ [iωsxp,i + (xp − xs)(∇us,i)
T + 1

2(xp − xs)(∇∇us,i)(xp − xs)
T+], (5.5)

results for the subsequent orders. (Only interaction terms of the appropriate combined
order enter among the inhomogeneous interaction terms in the square brackets on the
right-hand side.) The first bracket term, where

ωs =ω− k · υ̂s, (5.6)

originates from incorporating the Stokes drift into particle orbit position and becomes
active at third order.

Non-zero contributions to the sliding orbit velocity υs are found at even orders
where the time dependency in self-interacting waves cancel. Physically, this signifies
the phenomenon of Stokes drift. Such contributions appear as finite terms when
working with monochromatic waves or discrete wave spectra. In a continuous wave
spectrum υ̂s→ 0 at all non-zero orders. Instead, Stokes drift then manifests as poles
whose limits generate linear time dependency in the manner of (4.2).

To first order, equation (5.5) yields

x(1)p =
i
ω(0)s

(
u(1)s +

i
ω(0)s

Sw(1)
s ex

)
, (5.7)

with ω(0)s = ω − kxSz0. Summation over the two frequency branches of the first-order
wave field is implied; x(1)p contains only terms which are periodic in time and so
υ(1)s = 0.

A simple study of (5.7) reveals that the second term serves to make the first-order
trajectories elliptical as a result of the linearly differing current advection above and
below the orbit centre. We remark that this simple mechanism is not present in the
solution presented by Hsu (2013). Likewise, Stokes drift does not appear to be present
in Umeyama, Shintani & Watanabe (2011). We further note that our particle trajectory
approximation contains critical layers, even in the two-dimensional (2-D) case where
the velocity field itself is overall smooth. This is because particle oscillation ceases
if the advection causes the wave crest to remain stationary relative to the particle
orbit. Elliptical shear stretching thus increases near critical layers and our trajectory
approximation ceases to be valid if the trajectory orbit and the critical layer are too
close.
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The spectral expressions for the second-order trajectory are similar to (5.7) in
appearance but decidedly bulkier, and we do not quote them explicitly. Instead,
because they seem absent in the present literature, we quote to second order our result
for velocity field and fluid particle position in a monochromatic wave propagating
at an oblique angle to a current of uniform vorticity at finite depth. This has been
calculated with the above procedure for validation purposes. Introducing dimensionless
parameters

ε = ηk; k̃= k
k
; S̃= β kx

k
S
ω̄
; S̃0 = β0

kx

k
S
ω(0)s

; Ã= k2A
ω(0)s

(5.8a−e)

and the orthogonal wave vector k⊥= (−ky, kx)
T, the velocity field of a monochromatic

wave with wave vector k and frequency ω reads

ûh = Szex + εA(1)√
1− β2

(
k̃+ k̃⊥

ky

kx
S̃
)

cos(r · k−ωt)

+ ε2

1− β2

{
A(2)

[
k̃(1+ β2)+ k̃⊥

ky

kx
S̃
]
− k̃⊥

4
k
ω̄

(
A(1)
)2 ky

kx
S̃2

}
cos 2(k · r−ωt) (5.9a)

ŵ= εA(1)
β√

1− β2
sin(k · r−ωt)+ ε2A(2)

2β
1− β2

sin 2(k · r−ωt) (5.9b)

to second order, with

A(1) = ω
k

√
1− β2

β

∣∣∣∣
z=0

, A(2) = ω
k

1− β2

4β4

[
3
(

1− β2 + S̃
)
+ S̃2

] ∣∣∣∣
z=0

, (5.10a,b)

which agrees with the field quoted by Hsu et al. (2016) in two dimensions. This
generates the fluid particle trajectories

r̂p = r0 + Sz0ext− εÃ(1)

k
k̃√

1− β2
0

(1+ S̃0) sin(k · r0 −ωst)

− ε
2

2k
k̃

1− β2
0

[
Ã(2)(1+ β2

0 + S̃0)− 1
2
(Ã(1))

2

(
1− β2

0 + S̃0 + S̃0
2

2

)]
sin 2(k · r0 −ωst)

+ ε
2

2k
1

1− β2
0
(Ã(1))

2
[

k̃(1+ β2
0 + S̃0)+ 2k̃⊥

ky

kx
S̃0(1+ S̃0)

]
ω(0)s t (5.11a)

ẑp = z0 + εÃ(1)

k
β0√

1− β2
0

cos(k · r0 −ωst)

+ ε
2

k
1

1− β2
0

[
Ã(2) − 1

4
(Ã(1))

2
S̃0

]
cos 2(k · r0 −ωst) (5.11b)

to second order. Here, β = tanh k(z + d) and β0 = tanh k(z0 + d) are the bathymetry
parameters for a depth d; at infinite depth we first insert (5.10) and then take the limit
β, β0→ 1, noting that (1−β2|z=0)/(1−β2

0 )→ exp 2kz0. The last expression in (5.11a)
adheres to the Stokes drift and is non-periodic. Following the described procedure
we put x(2)s equal to this expression when proceeding to third order, removing
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the quadratic time dependency otherwise appearing there. Again, our Stokes drift
expression contains several shear-dependent terms not reported in Hsu (2013). It
has been verified numerically that the code used to compute the results of § 6.2
reproduces the above result at infinite depth when perturbing the bound frequency
with an imaginary component iε in the manner

r̂(2)p ∼ lim
ε→0+

(
e−i(ωs−iε)t

ωs − iε
+ iε
(ωs − iε)2

)
ωs=0−−→ lim

ε→0+

e−εt − 1
iε

=−it. (5.12)

The term which is time independent is a sagaciously chosen integration constant which
appears when evaluating (5.5); it appropriately balances the singularity while vanishing
from ωs = 0.

Finally, we remark that a uniform current can easily be incorporated into these
results by linearly shifting the frame of reference in the manner

Û(x, t) = û(x−U0t, t) +U0, (5.13a)

X̂p(t) = x̂p(t) +U0t, (5.13b)

where Û and X̂p are now the velocity field and fluid particle trajectory in the presence
of a uniform current with velocity U0, respectively; choosing U0=Sd in (5.9b)–(5.11b)
implies zero current velocity at the bottom surface. The effect of uniform currents on
the particle trajectory was investigated by Constantin & Strauss (2010).

6. Numerical examples
6.1. Generalised Langmuir vortices from obliquely incident wave trains

The resonance of (4.7) as ω = 0 and kx = 0 was first proposed as a mechanism
for Langmuir-type vortices in a model by Benney & Lin (1960), later investigated
numerically by Antar & Collins (1975). The presence of these large rollers can
sometimes be observed in the form of parallel ‘windrows’ forming in the wind
direction on oceans and lakes due to the gathering of seaweed and flotsam in the
downwelling regions they create.

Presently we consider an inviscid model proposed by Craik (1970) in which we
consider a pair of plane waves whose wave vectors are oblique to, and symmetrical
about, the x-axis; a train moving in the direction kL+ = (kLx, kLy)

T and another in the
direction kL− = (kLx, −kLy)

T. The set-up is sketched in figure 2. Remember that we
work in a frame of reference moving with the water surface. In the laboratory frame
this would most likely represent waves propagating along with the surface flow, e.g. if
the model should mimic a surface current created by the wind.

Such a case is represented with the first-order spectrum

ζ (1)± (k)= 2ηπ2
∑
σ=±

δ(k∓ kLσ ), (6.1)

δ being the Dirac delta function and η the wave amplitude. The second-order (bound)
waves are then of the form

ζ̂ (2) =
∑

σ1,σ2=±

∫
dk1dk2

(2π)4
ζ (1)σ1

(k1) ζ
(1)
σ2
(k2) [· · · ]ei(k·r−ωt)

= η2

4

∑
σ1,σ2,σ

′
1,σ
′
2=±
[· · ·] ei(k·r−ωt)

∣∣∣∣k1=σ1kLσ ′1
k2=σ2kLσ ′2

. (6.2)
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x

y

z

FIGURE 2. (Colour online) Geometry of the classic set-up originally considered by
Craik (1970): two monochromatic waves (wave vectors illustrated with arrows) propagate
symmetrically about the background shear flow. Langmuir vortices are created beneath the
surface.

Type Distinction Signs Description

A k2 = k1
±1 =±2 Self-interaction;
±′1 =±′2 a 1-D/2-D phenomenon

B k2 =−k1
±1 =∓2 Self-cancellation;
±′1 =±′2 a constant (zero) contribution.

C k2 = (k1x,−k1y)
T ±1 =±2 Oblique wave interaction;
±′1 =∓′2 oscillatory and uniform in y.

D k2 = (−k1x, k1y)
T ±1 =∓2 Oblique wave interaction;
±′1 =∓′2 non-oscillatory and uniform in x.

TABLE 1. Four distinct types of interactions between two waves k1, k2 of equal
wavelength.

The sum runs over sixteen sign combinations. Half of these are duplicates where the
wave indices are swapped, leaving eight distinct kernels. These in turn form pairs of
complex conjugates, leaving four physically distinct types of two-wave interactions, as
listed in table 1.

Types A and B do not entail any three-dimensional interaction and the oblique
interaction term wcross, given in (4.11), disappears from (3.4) as (k1 × k2)z ≡ 0 in
these cases. Type C is a wave interaction propagating in the x-direction with frequency
2ω+(k0) . Our main interest lies in type D, whose particular interaction can set up
vortical ‘roll’ structures parallel to the x-axis, a candidate mechanism for Langmuir
circulation. For type D, ω and kx are both zero, activating the resonance in (4.7) at all
depths – the flow field solution component wcross taking on a constant acceleration in
inviscid theory. Figure 3 shows the flow field from interaction type D in the yz-plane.
Streamline plots of the velocity field for the special case presented in appendix B are
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FIGURE 3. (Colour online) Langmuir vortex cells (wave interaction type D). Blue,
stippled: streamlines from streamfunction (B 4b) from Craik (1970). Black, solid:
streamlines numerically computed from velocity field presented in appendix B. Flow state
in given reference.

here presented along with contours of the streamfunction solution (B 4b) presented by
Craik (1970). We mention here that the solution presented in said reference contains
an error which is rectified in appendix B.

With the more general solution one can investigate this kind of set-up further. In
figures 4–6 we rotate the direction of the shear current relative to the propagation
direction of the wave pair. New dynamics is now observed. As time progresses the
vortices evolve towards a similar profile as in the symmetric case but then slowly
begin to skew in the direction of the shear flow until a steady vortex shape is reached.
The rate of skewing of the vortex increases with the angle to the shear direction,
but the evolution is insensitive to whether the k-vectors point along or against the
shear flow direction. This is shown in figures 4–5. Some periodic wave motion is
initially prominent near the surface in these figures. At larger times this motion is
hidden by the increasing vortex intensity. The dimensionless time is T = t

√
g/L where

L = π/(2kLy) is the symmetric vortex width. Vortex structures are here aligned with
k= k1 + k2. (Interaction type D loses spatial dependence in x in a coordinate system
aligned with k.) All rolls will however uniformly drift sideways with time in the
direction of the current.

Finally, figure 6, where the angle between k1 + k2 and the x-axis is 0.1◦ and T =
100, demonstrates how the general solution converges towards Craik’s symmetric case
solution.

The non-swirling interactions (types A–C) contribute with a limited periodic
disturbance to the vortex motion, which initially dominates the second-order motion of
figure 4–6 but is then overwhelmed by the vortex motion whose period is considerably
longer. In the symmetric case (figure 3), this periodic motion is in time completely
wiped out by the unbounded vortex motion. The driving force for the Langmuir
circulation reduces as the angle between shear and mean wave direction approaches
90◦. At the same time the skewing mechanism intensifies. No Langmuir vortices are
generated if the mean wave direction is perpendicular to the direction of the current.
This is not dissimilar to the findings of Van Roekel et al. (2012) who performed
large eddy simulations of the Craik–Leibovich equations with misaligned Stokes drift
and wind forcing; their results show diminishing Langmuir turbulence as the angle
between Stokes drift and Langmuir cell alignment is made to increase.
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FIGURE 4. (Colour online) Slowly developing skewed Langmuir-like vortical structures
due to a wave pair propagating, on average, at 45◦ relative to the shear current.
Streamlines are shown in the plane orthogonal to the vortex rolls illustrated with a dashed
line in the inset in (a), where also the wave pair and current directions are indicated. (See
movieFile1 and movieFile2 available at https://doi.org/10.1017/jfm.2018.960.)

6.2. Fluid particle trajectory beneath a localised disturbance in two dimensions
As we proceed towards spectral computations we start by considering a two-
dimensional Cauchy problem. This is similar to the problem studied by Abou-Dina
(2001) for cases of varying bathymetry. Two-dimensionality means that all wave
vectors are parallel such that no oblique interaction between waves and shear can
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FIGURE 5. (Colour online) Same as figure 4, but the angle between k and shear current
is now −135◦.

take place; (k1 × k2)z ≡ 0. As a result, all the rotational cross-terms and advective
terms disappear. We look at this problem including fluid particle trajectories.

Figure 7 shows the surface elevation and particle trajectories to second order. The
initial surface elevation is here a Gaussian profile at rest,

ζ̂IC = ηe−π2x2/b2
ζIC = (ηb/

√
π)e−b2k2

x/(2π)2 ˙̂
ζIC = ζ̇IC = 0, (6.3a−c)
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FIGURE 6. (Colour online) Angle 0.1◦ between shear current and k, T = 100. Dashed
lines: contours of the streamfunction (B 4b) for angle 0◦ from Craik (1970).

First order
Second order

FIGURE 7. (Colour online) Two-dimensional Cauchy–Poisson problem – Gaussian initial
elevation profile with ‘steepness’ H = 0.2. Blue, dashed/open: first-order solution; black,
solid/filled: second-order solution. (a) FrS = 0; (b) FrS = 0.5 Surface elevation is plotted
at T = 0 and T = 6.0, together with particle positions within this time interval. Increasing
opacity indicates the evolution in time. (See movieFile3 and movieFile4.)

and the surface pressure is uniform. Here b is the Gaussian distribution width
parameter. A respective dimensionless steepness, time and shear Froude number

H = η/b, T = t
√

g/b, FrS = S
√

b/g, (6.4a−c)

has here been introduced. Initial conditions have been chosen uniform in the
y-direction, although no significant complexity is added by letting the waves disperse
at an angle to the shear current beyond the fact that also the vorticity field will
be perturbed in this case (Ellingsen 2016). The procedure of perturbing the bound
frequency, described in and around (5.12), is employed to avoid pole singularities
appearing with self-interacting wave components at second order. As opposed to the
linear solution, this shifts the second-order orbits of the particle trajectories as the
main wave bulk flushes past. This is the transient manifestation of the phenomenon
of Stokes drift in the Cauchy–Poisson problem.

The Stokes drift mechanism is most perceptible in the trajectories nearest to the
surface and closest to the origin of the ring wave. This is because the immediate
Stokes drift is proportional to the immediate wave steepness squared, which is greatest
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in the early stages, near the centre of the figure. The drift follows the wave direction
so that net mass transport due to Stokes drift is away from the region of the initial
Gaussian bell. In the two-dimensional infinite depth case the effect of the shear is
inferred form (5.11a) to generate a factor

× ω

ω− Skxz0

(
1+ 1

2
S

ω− Skxz0

)
(6.5)

to the Stokes drift compared to non-sheared flow. At the surface the factor is simply
1 + S/2ω below which the drift reduces exponentially. Assuming no dominating
critical layer in the surface region we therefore conjecture/surmise that S > 0 serves
to strengthen the Stokes drift transport away from the centre towards the positive
x-direction, conversely in the negative x-direction if S< 0.

6.3. A three-dimensional ring wave
Similar to the previous example, let the initial perturbation be a Gaussian at rest, but
now in three dimensions,

ζ̂IC = ηe−π2r2/b2
ζIC = (ηb2/π)e−b2k2/(2π)2 ˙̂

ζIC = ζ̇IC = 0. (6.6a−c)

Figures 8 and 9 show the surface elevation at a specific point in time for moderate
and strong shear, respectively. Panels (a)–(d) in each of the figures show the four wave
components that make up the second-order waves. Below that, panels (e)–(g) show
the net first, second and combined surface elevation. These figures are computed with
inverse fast Fourier transforms.

Figures 8(a) and 9(a), show the profile of the second-order bound dispersion wave
ζ̂
(2)
bound,disp, computed from the convolution of (4.14). This is the harmonic which

appears as a second-order correction for nonlinear convection and boundary condition
terms. Its dispersive rate is bound by two interacting first-order waves to give a phase
velocity cp = (k/k)(ω/k) where ω=Ω±1(k1) +Ω±2(k2) and k= k1 + k2.

Advective waves are presented in figures 8(b) and 9(b). These are not directly
artefacts of surface wave dynamics but of the internal flow field and its initial state.
The advective waves constitute a passively advected background flow whose purpose
is to cancel the wave-induced internal rotational motion at T = 0. The intensity
of these waves is centred around where the wave–shear rotational interaction was
initially greatest. Because this field is advected with the shear current, and our frame
of reference follows the surface, these waves remain in the vicinity of the initial
centre. Advective waves do however diminish in amplitude with time as this wave
field is smeared out and transported away by the shear current below the surface.
Note also that the magnitude of the advective waves is small compared to that of the
dispersive ones and does not affect the net surface elevation visibly.

Free wave dispersion (see (3.9) and (3.15a)) is shown in panels (c,d) in figures 8
and 9. These waves are again not directly related to the nonlinear interactions but
manifest as corrections to the first-order modes and abide by the linear dispersion
relation. Their function is to cancel whatever contribution the two bound waves
impose on the surface at T = 0 to ensure that our solution is in accordance with the
prescribed initial state.

To second order, the ring wave problem is seen to exhibit five distinct ‘chunks’
of dispersion as there are five dominant group velocities present. One is the
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FIGURE 8. (Colour online) Second-order surface elevation components of Cauchy problem,
computed from (4.16) with fast Fourier transformation (FFT) – Gaussian initial profile.
Parameters: FrS= 1.0, T = 10, H= 0.2. Domain length: 8b. (a) ζ̂ (2)bound,disp/η; (b) ζ̂ (2)bound,adv/η;
(c) ζ̂ (2)free,disp/η; (d) ζ̂ (2)free,adv/η; (e) ζ̂ (1)/η; ( f ) ζ̂ (2)/η; (g) (ζ̂ (1) + ζ̂ (2))/η.

first-order free dispersion. Another pertains to the second-order bound dispersion,
whose frequency and wave vector are roughly twice those of the free first-order
harmonic. A third group is the free second-order dispersive wave. This consists of
the same wavelength as the bound dispersive wave (in precise antiphase at T = 0),
but disperses more slowly. Finally there are two advective-type waves, one remaining
fairly stationary with respect to the surface and one dispersing freely. These have
small amplitude compared to the other groups. The free dispersive wave quickly
dominates among the second-order waves because it decays more slowly with time
than its bound counterpart. This is apparent from the asymptotic analysis given in
appendix C; comparing the bound dispersive asymptotic expression (C 11) with the
free wave asymptotics (combining (4.16) and (C 9)) one sees that the former vanishes
as t−2 while the latter does so as t−1. As these waves are initially of the same order
of magnitude we can expect the free waves to dominate among the second-order
waves in the far field.
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FIGURE 9. (Colour online) Second-order surface elevation components of Cauchy problem,
computed from (4.16) with fast Fourier transformation (FFT) – Gaussian initial profile.
Parameters: FrS= 2.5, T = 10, H= 0.2. Domain length: 8b. (a) ζ̂ (2)bound,disp/η; (b) ζ̂ (2)bound,adv/η;
(c) ζ̂ (2)free,disp/η; (d) ζ̂ (2)free,adv/η; (e) ζ̂ (1)/η; ( f ) ζ̂ (2)/η; (g) (ζ̂ (1) + ζ̂ (2))/η.

We remark that the second-order effects we have studied constitute a significant
correction to the first-order ring wave when reasonable steepness of the initial
perturbation is assumed. The concept of wave steepness is however not directly
translatable to the initial spectrum of the initial value problem as steepness is
intended as a measure of the perturbation magnitudes; velocities are initially zero in
the present problem and the surface elevation decays rapidly. Rather, the kinematic
history of the solution ought to be considered. In the two depicted cases of figures 8
and 9 the maximal steepness observed it physical space is approximately 0.25, 0.17,
0.13 and 0.10 at the times T = 2.5, 5.0, 7.5 and 10, respectively. We therefore
conclude that the presented problems are appropriately within the weakly nonlinear
regime and note that second-order effects are then highly conspicuous in the full
solution (panels g of said figures).

In order to clearly visualise the interaction of shear and second-order wave modes,
the shear strengths here presented are strong, far greater than what one would expect
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FIGURE 10. (Colour online) Streamlines showing the motion beneath the surface of a
ring wave on a shear current. (Only streamlines originating at points in the plane x= 0
are shown.) Only the second-order homogeneous wave motion is shown (originating from
the A(2)-terms first appearing in (3.4)). This, together with the motion from oblique
interactions shown in figure 11, comprises the net second-order motion. Surfaces show
the net second-order elevation (ζ̂ (1)+ ζ̂ (2))/b. Initial parameters are FrS= 1.0 and H= 0.2,
as in figure 8.

from ocean wind-generated shear currents, but feasible in other types of flows such as
river shallows, discharge plumes and surface jets. (Dimensionally, wavelengths of the
order ∼10 m will have shear strength S∼ FrS s−1. The vorticity of the tidal current in
the Columbia River mouth has been reported at around 0.4 s−1 in the top 5 m of the
water column (Dong & Kirby 2012).) Weaker shear results in even weaker advective
waves while dispersive waves remain of the same order of magnitude, though closer
to being cylindrically symmetric. The image of the net wave, with grouped dispersion
of bound and free first- and second-order waves, remains the same.

Finally, we will consider the velocity fields below the ring wave surface. For
visualisation we use streamline plots where each streamline starts from x = 0 in the
yz-plane. Above these are drawn the net surface elevation to second order. Similar
to the surface waves, we split the internal velocity field into two groups based on
our physical interpretation of the solution of the Rayleigh equation (3.4). Figure 10
shows the homogeneous part of the velocity field, involving the eigenfunction A(2)(t)
in our solution. This motion, characterised by a purely exponential decay in z, is
analogous to the first-order solution with the time dependency closely related to the
free surface and the dispersion it engenders. The remaining second-order contribution
to the velocity field, shown in figure 11, is derived from the cross-term wcross – the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

96
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.960


Weakly nonlinear transient waves on a shear current 139

T = 0.5 T = 1.0

T = 1.5 T = 2.0

0.15
0.10
0.05

0
-0.05
-0.10
-0.15
-0.20
-0.25
-0.30

-1.5-1.0-0.5 0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0 0.5 1.0 1.5

z/
b

0.05

0

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30
-1.5-1.0-0.5 0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0 0.5 1.0 1.5

0.05

0

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30
-1.5-1.0-0.5 0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0 0.5 1.0 1.5

z/
b

x/b y/b

0.05

0

-0.05

-0.10

-0.15

-0.20

-0.25

-0.30
-1.5-1.0-0.5 0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0 0.5 1.0 1.5

x/b y/b

FIGURE 11. (Colour online) Motion from second-order oblique wave interaction
(originating from the wcross-terms first appearing in (3.4)) showing a swirling contribution
to the motion beneath the surface of a ring wave on a shear current. This, together
with the homogeneous motion of figure 10, comprises the net second-order motion. Initial
parameters and surfaces are as in figure 10.

particular solution of the second-order Rayleigh equation. These kinematics arise
from oblique nonlinear wave interactions and their interaction with the shear.

The plots are seen to exhibit swirling motion and a helix twisting of the streamlines
in a manner reminiscent to that seen in the Langmuir circulation examples. This
swirling motion is particular for the near field as dispersion separates wavelengths in
the far field, leaving only self-interactions, parallel in nature. The sub-surface motion
exemplifies how the second-order interactions between surface waves of any shape
and a sub-surface shear currents may create some amount of vortical or swirling
motions. The indication could be that such motions contribute to mixing in the
upper oceans in the same way that long regular structures known as conventional
Langmuir vortices do (Belcher et al. 2012), even if the particular conditions for
Langmuir circulation are absent. Whether and under what conditions this is important
in realistic scenarios, however, is an open question.

7. Summary
A mode coupling solution to second order in Stokes perturbation has been

constructed for the Cauchy–Poisson boundary value problem in the presence of a
uniform vorticity field. The solution captures the oblique wave–shear flow resonance
mechanism that sets up large accelerating vortex motion close to the surface, one of
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the mechanisms that create the rolls that cause Langmuir circulation. It also allows for
similar asymmetric cases to be investigated; a shear current acting upon a wave field
at an oblique angle to the mean wave direction is seen to gradually skew and rotate
the structure of the vortex cells until a steady state is reached, and affect inviscid
flow acceleration. The rate of vortex acceleration diminishes as the misalignment
between current and mean wave direction increases, but does not depend notably on
whether the waves follow the current or oppose it.

In a full Cauchy–Poisson boundary value problem four types of second-order
surface waves are identified, distinct in their dispersive properties. Their physical
interpretation has been given as follows: (i) Second-order harmonics that account for
nonlinearities from convection and from surface boundary conditions. (ii) An initial
velocity field that initially cancels the added second-order harmonics in the internal
flow. This initial velocity field is then advected with the shear current. (iii & iv)
Additional first-order harmonics that cancel the alteration that the two aforementioned
waves make on the initial surface. These types of waves will with time disperse in
distinguishable groups. The free waves decay slower than the bound dispersive waves
and will therefore dominate the second-order far field.

The second-order internal flow consists of additional linear-type motion and motion
from oblique nonlinear wave interactions. The latter, combined with action from the
shear, serves to curve the streamlines of the internal near field of a ring wave in a
spiralling manner.
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Appendix A. Components of the second-order solution

The Euler equations (2.1a) can be manipulated to yield explicit expressions for the
leading-order horizontal velocity components

D̂t(∇̂
2
hûh + ∇̂h∂zŵ)=U′∂y∇̂h × ŵ− ∇̂h × ∇̂h × (û · ∇̂)ûh. (A 1)

In Fourier space, ∇̂h× → ik⊥· with k⊥ = (−ky, kx). The solution of (A 1) contains
an integration coefficient representing horizontal motion present at t = 0. Similar to
the first-order components (4.1), we impose an initially irrotational horizontal velocity
field, leaving only the irrotational term iAk/k initially active. The continuity equation,
which dictates k · uh = 0, is upheld in this configuration. As seen at first order, this
choice removes the horizontal singularities associated with critical layers from our
initial value problem and replaces them with levels of unbounded velocity growth.

Integrals of the advective wcross term are in the below evaluated by inserting the
exponential integral definition (4.10) and then applying partial integration on the outer
integral. We also take advantage of the recurrence property jẼj+1(µ) = 1 − µẼj(µ)
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(Abramowitz & Stegun 1964). The result is

uh =
(

i
k
k

A(t) + S
k⊥
k

ky

k

∫ t

0
dt′ A

(
t′
)

eikxSz(t′−t)

)
ekz

+ i
k⊥
k

{
k⊥
k
· [(u · ∇)uh]

∣∣∣
t=0

}
eiω̄t − 1
ω̄

e−iωt

− 1
2k

A(1)1 A(1)2

Skx

(k1 × k2)z

k1k2

3∑
i,j=1

∑
σ=±

σbij

(ξi − z)j−1

{
k
k

G1ijσ + ky

k
k⊥
k

G2ijσ

}
ekΣ z−iωt,

(A 2)

with

G1ij± =
(

j− 1
k(ξi − z)

∓ 1
){

Ẽj
[
kt±(ξi − z)

]
eiω̄t − Ẽj

[
k±(ξi − z)

]}
+ kt±

k
Ẽj−1

[
kt±(ξi − z)

]
eiω̄t − k±

k
Ẽj−1

[
k±(ξi − z)

]
(A 3)

G2ij± = S
eiω̄t − 1
ω̄

Ẽj
[
k±(ξi − z)

]
+ eiω̄t

kx(ξi − z)

×
{ j−2∑

l=0

( j− 1)!
l!

 Ẽj
[
kt±(ξi − z)

]− 1
j− l− 1

[−kt±(ξi − z)] j−l−1
−

Ẽj
[
k±(ξi − z)

]− 1
j− l− 1

[−k±(ξi − z)] j−l−1


+ Ẽj

[
kt±(ξi − z)

]+ ln
[
kt±(ξi − z)

]− Ẽj
[
k±(ξi − z)

]− ln
[
k±(ξi − z)

]}
. (A 4)

Horizontal convection terms (in Fourier space) read

[(u · ∇)uh] = i
2

A(1)1 A(1)2

(
k

k1k2 − k1 · k2

k1k2
+

2∑
i,j=1

cij

(ξi − z)j

)
ekΣ z−iωt, (A 5)

with

ci1 = tan θi

ki

[
ki⊥

k1k2 − k1 · k2

k1k2
+ (−1)i

(k1 × k2)z

k1k2

(
km + tan θm

km

k1⊥ − k2⊥
ξ1 − ξ2

)]
, (A 6)

ci2 = tan θi

ki

ki⊥
ki
, (A 7)

where i 6=m and tan θi = kiy/kix.
Pressure is obtained by evaluating the z-momentum equation directly to find

pcross(z, t)= pdisp(z) e−iωt + padv(z, t), (A 8)
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with

pdisp = −1
2

A(1)1 A(1)2

(
k1k2 − k1 · k2

k1k2

− (k1 × k2)z

k1k2

{
k2

k1

k1y

k1x
Ẽ1 [kΣ(ξ1 − z)]− k1

k2

k2y

k2x
Ẽ1 [kΣ(ξ2 − z)]

}
+ 1

k3

(k1 × k2)z

k1k2

3∑
i,j=1

∑
σ=±

bij

(ξi − z)j−1

{
[k(ξ3 − z)− σ1]Ẽj [kσ (ξi − z)]

+
[

k(ξi − ξ3)+ ( j− 1)
k

kΣ

]
Ẽj [kΣ(ξi − z)]− k

kΣ

})
ekΣ z, (A 9)

padv = 1
2k3

A(1)1 A(1)2
(k1 × k2)z

k1k2

3∑
i,j=1

∑
σ=±

bij

(ξi − z)j−1

×
{[

k(ξi − z)− σ1+ ( j− 1)
k

ktσ

]
Ẽj [ktσ (ξi − z)]− k

ktσ

}
ekΣ z−ikxSzt. (A 10)

As for the second-order boundary conditions, the Taylor expanded free surface
dynamic and kinematic boundary conditions in (3.7) respectively read

Rdyn = pcross + 1
2(ζ1∂zp2 + ζ2∂zp1), (A 11a)

Rkin = wcross + 1
2

[
ζ1∂zw2 + ζ2∂zw1 − (u1 · ∇2)ζ2 − (u2 · ∇1)ζ1 − ikxSζ1ζ2

]
, (A 11b)

evaluated at z= 0. Here, ψi=ψ (1)(ki) . The dispersive component of R̃ζ ,disp, appearing
in (4.14), is

R̃ζ ,disp = −1
2
ζ
(1)
1 ζ

(1)
2

(
ω+ S

kx

k

)[
k1ω1 + k2ω2 + k1 · k2

(
ω1

k1
+ ω2

k2

)
+ Skx + S(k1 × k2)z

(
k1y

k2
1
− k2y

k2
2

)]
− 1

2
A(1)1 A(1)2 k

(
ω1

ω2
+ ω2

ω1

)
+ kpdisp

∣∣∣
z=0

− kξ3 + 1
2k2

A(1)1 A(1)2
(k1 × k2)z

k1k2

3∑
i,j=1

∑
σ=±

σ
bij

ξ
j−1
i

Ẽj(kσ ξi). (A 12)

Finally, the A-coefficient of the second-order free modes, governed by (3.8), is
found to be

A(t) =
∑
σ=±

Afree,σe−iωσ t + Adispe−iωt + Aadv(t) , (A 13)

where

Afree,± = −iω±ζfree,±, (A 14a)

Adisp = −iωζbound,disp

∣∣∣
t=0

+ i
2
ζ
(1)
1 ζ

(1)
2

[
k1ω1 + k2ω2 + k1 · k2

(
ω1

k1
+ ω2

k2

)
+ Skx + S(k1 × k2)z

(
k1y

k2
1
−k2y

k2
2

)]
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+ i
2k

A1A2

kxS
(k1 × k2)z

k1k2

3∑
i,j=1

∑
σ=±

σ
bij

ξ
j−1
i

Ẽj(kσ ξi), (A 14b)

Aadv = −
∑
σ=±

[
iωσ ζbound,adv,σ + i

2k
A1A2

kxS
(k1 × k2)z

k1k2

3∑
i,j=1

σ
bij

ξ
j−1
i

Ẽj(ktσ ξi)

]
(A 14c)

and its advective integral is∫
dtA(t) eikxSzt =

∑
σ=±

1
ωσ − kxSz

(
iAfree,σe−iωσ t +ωσ ζbound,adv,σ

)
eikxSzt

+ iAdisp
e−iω̄t

ω̄
− z

2k
A(1)1 A(1)2 eikxSzt

(ω+ − kxSz)(ω− − kxSz)
(k1 × k2)z

k1k2

3∑
i,j=1

∑
σ=±

bij

ξ
j−1
i

[
Ẽj(kt+ξi)

+ ktσ z
(

1+ σgk
(kxSz)2

− σ1
kz

) j−1∑
l=0

( j− 1)!
l!

Ẽj−l(ktσ z)− Ẽj(ktσ ξi)

[−ktσ (ξi − z)] j−l

]
, (A 15)

where ζfree,±, ζbound,disp and ζbound,adv,± are given in (3.15) and (4.14)–(4.15). The
dispersion relation yielding (3.11) has also been applied in the simplification.

Appendix B. Special cases
Special wave interaction of symmetry were encountered in the two-wave example

of § 6.1, where two monochromatic wave trains, propagating at equal but oppositely
directed angles to the current, gave rise to the four types of second-order interaction
listed in table 1.

Interaction between parallel wave vectors, designated type A, have in common that
(k1 × k2)z ≡ 0, removing all expressions containing exponential integral functions or
bij-coefficients.

Equal but directly opposing wave vectors (type B) generate infinite wavelength
interactions whose amplitude must be zero – such interactions may be ignored.

In the case of k1x = k2x and k1y = −k2y, where also ω1 = ω2 (type C), a solution
is obtained by letting j-indices run form 2 to 4, letting i = 1 only and replacing
bi,j-coefficients with ai,j−1. The a-coefficients, equation (4.6c), also change under the
present circumstance (since ξ1 = ξ2) to

a11 = −
(

k1y

k1x
− k2y

k2x

)
(k1k2 − k1 · k2), (B 1a)

a12 = −
(

k1y

k1x

1
k1
− k2y

k2x

1
k2

)
(k1k2 − k1 · k2)− k1y

k1x

k2y

k2x
kΣ
(k1 × k2)z

k1k2
, (B 1b)

a13 = −k1y

k1x

k2

k1
+ k2y

k2x

k1

k2
− 2

k1y

k1x

k2y

k2x

(k1 × k2)z

k1k2
, (B 1c)

a21 = a22 = a23 = 0. (B 1d)

Finally, and most important in regard to the discussions of this paper, are
interactions of the type k1x =−k2x and k1y = k2y, where also ω1 =−ω2 (type D). This
is a standing wave with ω ≡ 0. With this resonance active the vertical cross-velocity
becomes

wcross =− t
2k

A(1)1 A(1)2
(k1 × k2)z

k1k2

3∑
j=1

∑
σ=±

σ
a1j

(ξ1 − z)j−1
Ẽj [kσ (ξ1 − z)] ekΣ z, (B 2)
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where aij are here the coefficients in (B 1d) for the special case ξ1 = ξ2. As for the
surface elevation, this can be expressed by setting ζbound,adv = 0 and replacing the ij
summation in R̃ζ ,disp with

∑3
j=1 (a1,j/ξ

j−1
1 )
(
Ẽj[k+ξ1] − Ẽj[kΣξ1]

)
. We further have A=∑

σ=± Afree,σe−iωσ t−wcross(0, t) /k. [(u ·∇)u] vanishes under the present conditions and

u = −S
∫

dt w(t) =−St
2

w (B 3a)

v = −{[(u · ∇)v] + 2ik1yp} t= · · · . (B 3b)

Because this interaction is two-dimensional we can express its streamfunction in the
yz-plane with iwcross/ky. As noted by Craik (1970), the velocity in the yz-directions
increases linearly with time while it increases quadratically in the x-direction.

As a comment, we point out the error in the reference Craik (1970) relevant for the
comparison presented here. It originates from a sign error in two of the exponents
in (3.11) of said reference and is easily confirmed by inserting the solution. The
consequences of this error are apparent only for strong shear currents and has little
bearing on the findings of that paper. For completeness, we here quote the correct
expression for ‘f (z)’ in equation (3.12) of Craik (1970):

f̃ (z) = k2
1x − k2

1y

ξ1 − z
+
∑
σ=±

(
1
2 k3

1 − σ2k2
1xk1y

)
Ẽ1[kσ (ξ1 − z)], (B 4a)

f (z) = f̃ (z) ekΣ z − f̃ (0) ekz, (B 4b)

streamlines given by f (z) cos(ky) = const. We have here used the notation and
coordinates of the present paper (with the z-axis pointing upwards).

Appendix C. Stationary phase approximation in two dimensions
The method of stationary phase is a powerful technique for approximating

the asymptotic far field of wave integrals. Although commonplace in use with
one-dimensional wave integrals, the method’s extension to the present problem
warrants a brief summary. A more comprehensive mathematical derivation is given
by Wong (2001).

In integral form, the problem of inverse transformation consists of evaluating

ψ̂(r, t) =
∫

dk
(2π)2

ψ(k) eiφ(k) t (C 1)

for large values of t. The kernel φ varies slowly in the neighbourhood of a stationary
point k0 – a point satisfying

(∇kφ)k=k0 = 0 (C 2)

– and this is where the asymptotic leading-order integral contribution resides.
Assuming det(∇k∇k φ)k=k0 6= 0 and ψ̂ to be smooth near the stationary point, we
expand φ in a Taylor series around the stationary point and substituting k′ = k − k0
and write

ψ̂(r, t) ∼ ψ(k0)

(2π)2
eiφ0t

∫
dk′ exp

(
it
2

k′T(∇k∇k φ)0k′
)
, t→∞, (C 3)
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where ∇k∇k being the Hessian operator and subscript 0 means evaluation is
performed at k= k0. The integral can now be decomposed with a linear substitution
which transforms the integral to the form

∫
d~ e−~2

x−~2
y :

(
~x
~y

)
= i

√
it√

2∂2
kx
φ0

(
∂2

kx
φ0 ∂kx∂kyφ0

0 det(∇k∇k φ0)

)(
k′x
k′y

)
. (C 4)

The new variables ~x and ~y can now be evaluated separately. Our transformation
rotates the two integration paths, which in (C 3) run from −∞< (k′x, k′y) <∞, either
an angle ±π/4 or an angle ±3π/4 in the complex plane, depending on the signs
of the second derivatives of φ at the stationary point. Evaluation yields

√
π in the

former case and −√π in the latter. The double integral thus evaluates to ±π and the
approximation

ψ̂(r, t) ∼ iψ(k0) eiφ(k0)t

2πt
√

det(∇k∇k φ)k=k0

; φ ∈R, t→∞, (C 5)

results. The expression changes sign if the stationary point is a local maximum,
though we find that stationary points in our problem are saddle points.

In terms of the initial value problem of this paper we will have a phase function

φ±(k)= k · r/t−ω±(k), (C 6)

r= (x, y). Consider large times and also large |r| so that r/t remains bounded. Two
frequencies ω± = Ω±(k) exist for each wavelength and so there are two stationary
wave vectors k0±. From the stationary phase definition (C 2) we have

∇kΩ±(k)
∣∣

k=k0±
= r/t (C 7)

which tells us that the dominating wave is the wave whose presence, travelling with
the group velocity, will have reached the point r at time t. In order to establish
the relationship between the two critical wave vectors k0+ and k0− we use the
calculus result ∇kf (−k)

∣∣
k=k0
= −∇k f (k)

∣∣
k=−k0

together with (4.17a) to find that the
complimentary of (C 7) is k0− =−k0+. It also follows that φ+(k0+) =−φ−(k0−) .

Inserting the asymptotic approximation (C 5) for the two stationary phases, we find,
after considering (4.17), that

det
[
∇k∇kΩ+(k0+)

]= det
[
∇k∇kΩ−(k0−)

]
< 0, (C 8)

is a requirement for ψ̂ to be real, i.e. the critical point is a saddle point (in φ), as
is the case for the present problem. For the first-order surface elevation, the result is
then

ζ̂ (1)(r, t) ∼
Re
{
ζ
(1)
+ (k0+) ei(k0+·r−Ω+(k0+) t)

}
πt
√−det (∇k∇kΩ+(k0+))

. (C 9)
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Second-order frequency derivatives are found to be

∂2
kx
Ω± = 1

2k2

3k̃xk̃2
yS± k̃2

y
2gk+ S2(1− 4k̃2

x)√
4gk+ S2k̃2

x

∓ k̃2
x

(2gk+ S2k̃2
y)

2

(4gk+ S2k̃2
x)

3/2

,
∂kx∂kyΩ± =

k̃y

2k2

S(1− 3k̃2
x)∓ 2k̃x

gk+ S2(1− 2k̃2
x)√

4gk+ S2k̃2
x

± k̃x
(−2gk+ S2k̃2

x)(2gk+ S2k̃2
y)

(4gk+ S2k̃2
x)

3/2

)
,

∂2
ky
Ω± = 1

2k2

k̃xS(1− 3k̃2
y)± k̃2

x

2gk− S2(1− 4k̃2
y)√

4gk+ S2k̃2
x

∓ k̃2
y
(2gk− S2k̃2

x)
2

(4gk+ S2k̃2
x)

3/2

,



(C 10)

with k̃= k/k.
Next we look at asymptotic expressions for the higher-order components. The

Fourier kernels are decoupled in the nth-order purely bound mode; ei(k·r−ωt) =∏n
m=1 ei(km·r−ωmt), and so the asymptote formula (C 5) may be applied recursively.

Then, to second order, using (4.17),

ζ̂
(2)
bound,disp(r, t) ∼

Re
{
ζ
(2)
bound,disp,++(t= 0; k0+, k0+) e2i(k0+·r−Ω+(k0+) t)

}
2π2t2

{−det
[
∇k∇kΩ+(k0+)

]} . (C 11)

Sign subscripts in ζ indicate the frequency branch of the interacting free waves. For
self-interaction of a single branch the dispersive mode equation (4.14) simplifies to

ζ
(2)
bound,disp,++(t= 0; k0, k0) = k0

(
ζ (1)+ (k0+)

)2
2
(
ω0+ + S

2
k0x

k0

)2

−ω2
0+

2ω2
0+ +ω0+S

k0x

k0
− gk0

. (C 12)

We see that the asymptotic approximation contains only self-interaction terms of the
same value of k. This is expected because wave components of different wavelengths
will with time disperse across the physical plane, allowing a far point in r to be
approximately represented by a single wave vector. The approximation fails at points
of resonance where the integrand is no longer smooth.

The method of stationary phase is less powerful for the free waves, where it can
be used to evaluate the outer integral in form of (4.16), but where one still has to
compute a convolution integral at t = 0. This is because the free mode amplitudes
are chosen to suit higher-order terms to the initial conditions. This is a near-field
correction.

A decisive advantage with the method of stationary phase over FFT computation,
apart from possible improvements in computational efficiency, is that it is founded
in a continuous spectrum and so does not impose periodicities around the computed
domain. In contrast, solutions computed with a discrete Fourier transform will be
confined in a periodic domain where domain size requirements can be large if one
is to avoid the influence of reflective boundaries. This effect can be seen in figure 12
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First order Free advectiveFree, dispersiveBound, dispersive

(a)

(b)
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(÷ 10-3) (÷ 10-4)
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FIGURE 12. (Colour online) Comparison of stationary phase approximation (a) to solution
obtained with discrete FFT in a restricted domain (b). FrS= 1.0, T = 15, H= 0.2. Domain
length: 20b/3.

where we compare the stationary phase approximation to solutions computed with a
full FFT in a tight domain. The approximation is seen to be good at this moderately
large time T = 15, and it improves with increasing time. A Newton–Raphson method
was here used for finding the stationary phases from (C 2). The stationary phase of
the same problem without shear, k0± :=±gt2r/(4r3), was used as an initial condition
for the root search. Convergence for this problem was found to be quick, but could,
if the shear was strong enough, diverge close to the abscissa in the far shear-assisted
direction.
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