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We look at conventional methods for removing endogeneity bias in regression models,

including the linear model and the probit model. It is known that the usual Heckman two-

step procedure should not be used in the probit model: from a theoretical perspective, it is

unsatisfactory, and likelihood methods are superior. However, serious numerical problems

occur when standard software packages try to maximize the biprobit likelihood function,

even if the number of covariates is small. We draw conclusions for statistical practice.

Finally, we prove the conditions under which parameters in the model are identifiable. The

conditions for identification are delicate; we believe these results are new.

1 Introduction

Suppose a linear regression model describes responses to treatment and to covariates. If
subjects self-select into treatment, the process being dependent on the error term in the
model, endogeneity bias is likely. Similarly, we may have a linear model that is to be es-
timated on sample data; if subjects self-select into the sample, endogeneity becomes an
issue.

Heckman (1978, 1979) suggested a simple and ingenious two-step method for taking
care of endogeneity, which works under the conditions described in those papers. This
method is widely used. Some researchers have applied the method to probit response mod-
els. However, the extension is unsatisfactory. The nonlinearity in the probit model is an
essential difficulty for the two-step correction, which will often make bias worse. It is well-
known that likelihood techniques are to be preferred—although, as we show here, the
numerics are delicate.

In the balance of this article, we define models for (1) self-selection into treatment or
control and (2) self-selection into the sample, with simulation results to delineate the sta-
tistical issues. In the simulations, the models are correct. Thus, anomalies in the behavior of
estimators are not to be explained by specification error. Numerical issues are explored. We
explain the motivation for the two-step estimator and draw conclusions for statistical
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practice. We derive the conditions under which parameters in the models are identifi-
able; we believe these results are new. The literature on models for self-selection is
huge, and so is the literature on probits; we conclude with a brief review of a few salient
papers.

To define the models and estimation procedures, consider n subjects, indexed by
i5 1; . . . ; n. Subjects are assumed to be independent and identically distributed. For each
subject, there are two manifest variables Xi, Zi and two latent variables Ui, Vi. Assume that
(Ui, Vi) are bivariate normal, with mean 0, variance 1, and correlation q. Assume further
that (Xi, Zi) is independent of (Ui, Vi), that is, the manifest variables are exogenous. For ease
of exposition, we take (Xi, Zi) as bivariate normal, although that is not essential. Until
further notice, we set the means to 0, the variances to 1, the correlation between Xi

and Zi to 0.40, and sample size n to 1000.

2 A Probit Response Model with an Endogenous Regressor

There are two equations in the model. The first is the selection equation:

Ci 5 1 if a1 bXi 1Ui > 0; else Ci 5 0: ð1Þ

In application, Ci 5 1 means that subject i self-selects into treatment. The second equation
defines the subject’s response to treatment:

Yi 5 1 if c1 dZi 1 eCi 1Vi > 0; else Yi 5 0: ð2Þ

Notice that Yi is binary rather than continuous. The data are the observed values of Xi, Zi,Ci,
Yi. For example, the treatment variable Ci may indicate whether subject i graduated from
college; the response Yi, whether i has a full-time job.

Endogeneity bias is likely in (2). Indeed, Ci is endogenous due to the correlation q be-
tween the latent variables Ui and Vi. A two-step correction for endogeneity is sometimes
used (although it should not be):

Step 1. Estimate the probit model (1) by likelihood techniques.

Step 2. To estimate (2), fit the expanded probit model

PðYi 5 1jXi; Zi;CiÞ5Uðc1 dZi 1 eCi 1 fMiÞ ð3Þ

to the data, where

Mi 5Ci
/ða1 bXiÞ
Uða1 bXiÞ

2ð12CiÞ
/ða1 bXiÞ

12Uða1 bXiÞ
: ð4Þ

Here, U is the standard normal distribution function with density u 5 U#. In application,
a and b in (4) would be unknown. These parameters are replaced by maximum likelihood
estimates (MLEs) obtained from Step 1. The motivation for Mi is explained in Section 6
below. Identifiability is discussed in Section 7: according to Proposition 1, parameters are
identifiable unless b 5 d 5 0.

The operating characteristics of the two-step correction were determined in a simulation
study which draws 500 independent samples of size n 5 1000. Each sample was con-
structed as described above. We set a 5 0.50, b 5 1, and q 5 0.60. These choices create
an environment favorable to correction.
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Endogeneity is moderately strong: q 5 0.60. So there should be some advantage to
removing endogeneity bias. The dummy variable Ci is 1 with probability about 0.64,
so it has appreciable variance. Furthermore, half the variance on the right hand side of
(1) can be explained: var(bXi) 5 var(Ui). The correlation between the regressors is only
0.40: making that correlation higher exposes the correction to well-known instabilities.

The sample is large: n5 1000. Regressors are exogenous by construction. Subjects are
independent and identically distributed. Somewhat arbitrarily, we set the true value of c in
the response equation (2) to 21, whereas d 5 0.75 and e 5 0.50. As it turned out, these
choices were favorable too.

Table 1 summarizes results for three kinds of estimates:

1. raw (ignoring endogeneity);

2. the two-step correction; and

3. full maximum likelihood.

For each kind of estimate and each parameter, the table reports the mean of the estimates
across the 500 repetitions. Subtracting the true value of the parameter measures the bias in
the estimator. Similarly, the standard deviation (SD) across the repetitions, also shown in
the table, measures the likely size of the random error.

The ‘‘raw estimates’’ in Table 1 are obtained by fitting the probit model

PðYi 5 1jXi; Zi;CiÞ5Uðc1 dZi 1 eCiÞ

to the data, simply ignoring endogeneity. Bias is quite noticeable.
The two-step estimates are obtained via (3–4), with â and b̂ obtained by fitting (1). We

focus on d and e, as the parameters in equation (2) that may be given causal interpretations.
Without correction, d̂ averages about 0.72, with correction 0.83 (see Table 1). Correction
doubles the bias. Without correction, ê averages 1.33, with correction 0.54. Correction
helps a great deal, but some bias remains.

With the two-step correction, the SD of ê is about 0.21. Thus, random error in the es-
timates is appreciable, even with n 5 1000. On the other hand, the standard error (SE)

Table 1 Simulation results

c d e q

True values
21.0000 0.7500 0.5000 0.6000

Raw estimates
Mean 21.5901 0.7234 1.3285
SD 0.1184 0.0587 0.1276

Two-step
Mean 21.1118 0.8265 0.5432
SD 0.1581 0.0622 0.2081

MLE
Mean 20.9964 0.7542 0.4964 0.6025
SD 0.161 0.0546 0.1899 0.0900

Notes. Correcting endogeneity bias when the response is binary probit. There are 500 repetitions. The sample size

is 1000. The correlation between latents is q 5 0.60. The parameters in the selection equation (1) are set at a 5

0.50 and b5 1. The parameters in the response equation (2) are set at c5 –1, d5 0.75, and e5 0.50. The response

equation includes the endogenous dummy Ci defined by (1). The correlation between the exogenous regressors is

0.40. MLE computed by VGAM 0.7-6.
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across the 500 repetitions is 0:21
� ffiffiffiffiffiffiffiffi

500
p

5 0:01. The bias in ê cannot be explained in terms
of random error in the simulation: increasing the number of repetitions will not make any
appreciable change in the estimated biases.

Heckman (1978) also suggested the possibility of fitting the full model—equations (1)
and (2)—by maximum likelihood. The full model is a ‘‘bivariate probit’’ or ‘‘biprobit’’
model. Results are shown in the last two lines of Table 1. The MLE is essentially unbiased.
The MLE is better than the two-step correction, although random error remains a concern.

We turn to some variations on the setup described in Table 1. The simulations reported
there generated new versions of the regressors on each repetition. Freezing the regressors
makes almost no difference in the results: SDs would be smaller in the third decimal place.

The results in Table 1 depend on q, the correlation between the latent variables in the
selection equation and the response equation. If q is increased from 0.60 to 0.80, say,
the performance of the two-step correction is substantially degraded. Likewise, increasing
the correlation between the exogenous regressors degrades the performance.

When q 5 0.80 and the correlation between the regressors is 0.60, the bias in the two-
step correction (3–4) for d̂ is about 0.15; for ê, about 0.20. Figure 1 plots the bias in ê
against q, with the correlation between regressors set at 0.40 or 0.60, other parameters
being fixed at their values for Table 1. The wiggles in the graph reflect variance in the
Monte Carlo (there are ‘‘only’’ 500 replicates). The MLE is less sensitive to increasing
correlations (data not shown).

Results are also sensitive to the distribution of the exogenous regressors. As the variance
in the regressors goes down, bias goes up—in the two-step estimates and in the MLE.
Furthermore, numerical issues become acute. There is some explanation: dividing the
SD of X by 10, say, is equivalent to dividing b by 10 in equation (1); similarly for Z
and d in equation (2). For small values of b and d, parameters are barely identifiable.

Figure 2 plots the bias in ê against the common SD of X and Z, which is set to values
ranging from 0.1 to 1.0 (other parameters are set as in Table 1). The light line represents the
MLE. Some of the ‘‘bias’’ in the MLE is indeed small-sample bias—when the SD is 0.1,
a sample with n5 1000 is a small sample. Some of the bias, however, reflects a tendency of
likelihood maximizers to quit before finding the global maximum.
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Fig. 1 The two-step correction. Graph of bias in ê against q, the correlation between the latents. The
light lower line sets the correlation between regressors to 0.40, and the heavy upper line sets the
correlation to 0.60. Other parameters as for Table 1. Below 0.35, the lines crisscross.
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The heavy line represents the two-step correction. (With an SD of 0.1, data for the two-
step correction are not shown, because there are huge outliers; even the median bias is quite
changeable from one set of 500 repetitions to another, but 0.2 may be a representative
figure.) Curiously, the two-step correction is better than the MLE when the SD of the ex-
ogenous regressors is set to 0.2 or to 0.3. This is probably due to numerical issues in max-
imizing the likelihood functions.

We believe the bias in the two-step correction (Figs 1 and 2) reflects the operating char-
acteristics of the estimator, rather than operating characteristics of the software. Beyond
1.0, the bias in the MLE seems to be negligible. Beyond 1.5, the bias in the two-step es-
timator for e is minimal, but d continues to be a little problematic.

As noted above, changing the scale of X is equivalent to changing b. Similarly, changing
the scale of Z is equivalent to changing d (see equations (1) and (2)). Thus, in Fig. 2, we
could leave the SDs at 1 and run through a series of (b, d) pairs:

ð0:1� b0; 0:1� d0Þ; ð0:2� b0; 0:2� dÞ; . . . ;

where b0 5 1 and d0 5 0.75 were the initial choices for Table 1.
The number of regressors should also be considered. With a sample size of 1000, practi-

tioners would often use a substantial number of covariates. Increasing the number of
regressors is likely to have a negative impact on performance.

3 A Probit Model with Endogenous Sample Selection

Consider next the situation where a probit model is fitted to a sample, but subjects self-
select into the sample by an endogenous process. The selection equation is

Ci 5 1 if a1 bXi 1Ui > 0; else Ci 5 0: ð5Þ

(Selection means, into the sample.) The response equation is

Yi 5 1 if c1 dZi 1Vi > 0; else Yi 5 0: ð6Þ
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Fig. 2 Graph of bias in ê against the common SD of the regressors X and Z. Other parameters as for
Table 1. The light line represents the MLE, as computed by VGAM 0.7-6. The heavy line represents
the two-step correction.
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Equation (6) is the equation of primary interest; however, Yi and Zi are observed only when
Ci 5 1. Thus, the data are the observed values of (Xi, Ci) for all i, as well as (Zi, Yi) when
Ci 5 1. When Ci 5 0, however, Zi and Yi remain unobserved. Notice that Yi is binary rather
than continuous. Notice too that Ci is omitted from (6); indeed, when (6) can be observed,
Ci [ 1.

Fitting (6) to the observed data raises the question of endogeneity bias. Sample subjects
have relatively high values of Ui; hence, high values of Vi. (This assumes q > 0.) Again,
there is a proposed solution that involves two steps.

Step 1. Estimate the probit model (5) by likelihood techniques.

Step 2. Fit the expanded probit model

PðYi 5 1jXi; ZiÞ5Uðc1 dZi 1 fMiÞ ð7Þ

to the data on subjects i with Ci 5 1. This time,

Mi 5
/ða1 bXiÞ
Uða1 bXiÞ

: ð8Þ

Parameters in (8) are replaced by the estimates from Step 1. As before, this two-step cor-
rection doubles the bias in d̂ (see Table 2). TheMLE removes most of the bias. However, as
for Table 1, the bias in the MLE depends on the SD of the regressors. Bias will be notice-
able if the SDs are below 0.2. Some of this is small-sample bias in the MLE, and some
reflects difficulties in numerical maximization.

Increasing the sample size from 1000 to 5000 in the simulations barely changes the
averages, but reduces the SDs by a factor of about

ffiffiffi
5

p
, as might be expected. This comment

applies both to Tables 1 and 2 (data not shown), but not to the MLE results in Table 2.
Increasing n would have made the STATA code prohibitively slow to run.

Table 2 Simulation results

c d q

True values
21.0000 0.7500 0.6000

Raw estimates
Mean 20.7936 0.7299
SD 0.0620 0.0681

Two-step
Mean 21.0751 0.8160
SD 0.1151 0.0766

MLE
Mean 20.9997 0.7518 0.5946
SD 0.0757 0.0658 0.1590

Notes. Correcting endogeneity bias in sample selection when the response is binary probit. There are 500

repetitions. The sample size is 1000. The correlation between latents is q5 0.60. The parameters in the selection

equation (5) are set at a5 0.50 and b5 1. The parameters in the response equation (6) are set at c521, and d5

0.75. Response data are observed only when Ci 5 1, as determined by the selection equation. This will occur for

about 64% of the subjects. The correlation between the exogenous regressors is 0.40. MLE computed using

Stata 9.2.
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Many applications of Heckman’s method feature a continuous response variable rather
than a binary variable. Here, the two-step correction is on firmer ground, and parallel sim-
ulations (data not shown) indicate that the correction removes most of the endogeneity bias
when the parameters are set as in Tables 1 and 2. However, residual bias is large when the
SD of the regressors is set to 0.1 and the sample size is ‘‘only’’ 1000; the issues resolve
when n 5 10, 000. The problem with n 5 1000 is created by (1) large random errors in b̂,
coupled with (2) poorly conditioned design matrices. In more complicated situations, there
may be additional problems.

4 Numerical Issues

Exploratory computations were done in several versions of Matlab, R, and Stata. In the
end, to avoid confusion and chance capitalization, we redid the computations in a more
unified way, with R 2.7 for the raw estimates, the two-step correction; VGAM 0.7-6 for the
MLE in (1–2); and Stata 9.2 for the MLE in (5–6). Why do we focus on the behavior of R
and Stata? R is widely used in the statistical community, and Stata is almost the lingua
franca of quantitative social scientists.

Let b0 and d0 be the default values of b and d, namely, 1 and 0.75. As b and d decrease
from the defaults, VGAM in R handled the maximization less and less well (Fig. 2). We
believe VGAM had problems computing the Hessian, even for the base case in Table 1: its
internally generated SEs were too small by a factor of about 2, for ĉ; ê; q̂.

By way of counterpoint, Stata did somewhat better when we used it to redo the MLE in
(1–2). However, if we multiply the default b0 and d0 by 0.3 or 0.4, bias in Stata becomes
noticeable. If we multiply by 0.1 or 0.2, many runs fail to converge, and the runs that
do converge produce aberrant estimates, particularly for a multiplier of 0.1. For multipliers
of 0.2 to 0.4, the bias in ê is upwards in R but downwards in Stata. In Table 2, Stata did
well. However, if we scale b0 and d0 by 0.1 or 0.2, Stata has problems. In defense of R
and Stata, we can say that they produce abundant warning messages when they get into
difficulties.

In multidimensional problems, even the best numerical analysis routines find spurious
maxima for the likelihood function. Our models present three kinds of problems: (1) flat
spots on the log likelihood surface, (2) ill-conditioned maxima, where the eigenvalues of
the Hessian are radically different in size, and (3) ill-conditioned saddle points with one
small positive eigenvalue and several large negative eigenvalues. The maximizers in
VGAM and Stata simply give up before finding anything like the maximum of the likeli-
hood surface. This is a major source of the biases reported above.

The model defined by (1–2) is a harder challenge for maximum likelihood than (5–6),
due to the extra parameter e. Our computations suggest that most of the difficulty lies in the
joint estimation of three parameters, c, e, q. Indeed, we can fix a, b, d at the default values
for Table 1 and maximize the likelihood over the remaining three parameters c, e, q.
VGAM and Stata still have convergence issues. The problems are the same as with six
parameters. For example, we found a troublesome sample where the Hessian of the log
likelihood had eigenvalues 4.7, 21253.6, 22636.9. (We parameterize the correlation be-
tween the latents by log(11 q)2 log(12 q) rather than q, since that is how binom2.rho in
VGAM does things.)

One of us has an improved likelihoodmaximizer called GENOUD (Sekhon andMebane
1998). GENOUD seems to do much better at the maximization, and its internally generated
SEs are reasonably good. Results for GENOUD and Stata not reported here and are avail-
able from the authors.
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5 Implications for Practice

There are two main conclusions from the simulations and the analytic results.

1. Under ordinary circumstances, the two-step correction should not be used in probit
response models. In some cases, the correction will reduce bias, but in many other
cases, the correction will increase bias.

2. If the bivariate probit model is used, special care should be taken with the numerics.
Conventional likelihood maximization algorithms produce estimates that are far
away from the MLE. Even if the MLE has good operating characteristics, the
‘‘MLE’’ found by the software package may not. Results from VGAM 0.7-6 should
be treated with caution. Results from Stata 9.2 may be questionable for various com-
binations of parameters.

The models analyzed here are very simple, with one covariate in each of (1–2) and (5–6). In
real examples, the number of covariates may be quite large, and numerical behavior will be
correspondingly more problematic.

Of course, there is a question more salient than the numerics: what is it that justifies
probit models and the like as descriptions of behavior? For additional discussion, see
Freedman (2005), which has further cites to the literature on this point.

6 Motivating the Estimator

Consider (1–2). We can represent Vi as qUi 1
ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
Wi, where Wi is an N(0, 1) random

variable, independent of Ui. Then

E
n
Vi

���Xi 5 x;Ci 5 1
o
5E

n
qUi 1

ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
Wi

���Ui >2a2bxi

o
5 qEfUijUi >2a2bxig
5 q

1

Uða1 bxiÞ

Z N

2a2bxi

x/ðxÞdx

5 q
/ða1 bxiÞ
Uða1 bxiÞ

ð9Þ

because PfUi > 2 a 2 bxig 5 PfUi < a 1 bxig 5 U(a 1 bxi). Likewise,

E

�
Vi

����Xi 5 x;Ci 5 0

�
52q

/ða1 bxiÞ
12Uða1 bxiÞ

: ð10Þ

In (2), therefore, EfVi 2 qMi j Xi, Cig 5 0. If (2) were a linear regression equation, then
OLS estimates would be unbiased, the coefficient ofMi being nearly q. (These remarks take
a and b as known, with the variance of the error term in the linear regression normalized to
1.) However, (2) is not a linear regression equation: (2) is a probit model. That is the source
of the problem.

7 Identifiability

Identifiability means that parameters are determined by the joint distribution of the observ-
ables; parameters that are not identifiable cannot be estimated. In the model defined by (1–
2), the parameters are a, b, c, d, e and the correlation q between the latents; the observables
are Xi, Zi, Ci, and Yi. In the model defined by (5–6), the parameters are a, b, c, d and the
correlation q between the latents; observables are Xi;Ci; Z̃i; Ỹi, where Z̃i 5 Zi and Ỹi 5 Yi
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when Ci 5 1, whereas Z̃i 5 Ỹi 5M when Ci 5 0. Here, M is just a special symbol that
denotes ‘‘missing.’’

Results are summarized as Propositions 1 and 2. The statements involve the sign of d,
which is 11 if d > 0, 0 if d 5 0, and 21 if d < 0. Since subjects are independent and
identically distributed, only i 5 1 need be considered. The variables (X1, Z1) are taken
as bivariate normal, with a correlation strictly between 21 and 11. This assumption is
discussed below.

Proposition 1. Consider the model defined by (1–2). The parameters a and b in (1) are
identifiable, and the sign of d in (2) is identifiable. If b 6¼ 0, the parameters c, d, e, q in (2)
are identifiable. If b5 0 but d 6¼ 0, the parameters c, d, e, q are still identifiable. However, if
b 5 d 5 0, the remaining parameters c, e, q are not identifiable.

Proposition 2. Consider the model defined by (5–6). The parameters a and b in (5) are
identifiable, and the sign of d in (6) is identifiable. If b 6¼ 0, the parameters c, d, q in (6) are
identifiable. If b5 0 but d 6¼ 0, the parameters c, d, q are still identifiable. However, if b5
d 5 0, the remaining parameters c, q are not identifiable.

Proof of Proposition 1. Clearly, the joint distribution of C1 and X1 determines a and b, so
wemay consider these as given. The distributions of X1 and Z1 are determined (this is not so
helpful). We can take the conditional distribution of Y1 given X1 5 x and Z1 5 z as known.
In other words, suppose (U, V) are bivariate normal with mean 0, variance 1, and corre-
lation q.

The joint distribution of the observables determines a, b, and two functions w0, w1 of
x, z:

w0ðx; zÞ5Pða1 bx1U < 0 and c1 dz1V > 0Þ;

w1ðx; zÞ5Pða1 bx1U > 0 and c1 dz1 e1V > 0Þ: ð11Þ

There is no additional information about the parameters.
Fix x at any convenient value, and consider z > 0. Then z/w0ðx; zÞ is strictly decreas-

ing, constant, or strictly increasing, according as d < 0, d 5 0, or d > 0. The sign of d is
therefore determined. The rest of proof, alas, consists of a series of cases.

The case b 6¼ 0 and d > 0: Let u 5 2a 2 bx, v 5 2z, n 5 U, and f 5 (V 1 c)/d. Then
(n, f) are bivariate normal, with unknown correlation q. We know n has mean 0 and
variance 1. The mean and variance of f are unknown, being c/d and 1/d2, respectively.
But

Pðn< u and f> vÞ ð12Þ

is known for all (u, v). Does this determine q, c, d? Plainly so, because (12) determines
the joint distribution of n, f. We can then compute q, d5 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðfÞ

p
, and c 5 dE(f).

Finally, w1 in (11) determines e. This completes the argument for the case b 6¼ 0 and
d > 0.

The case b 6¼ 0 and d < 0 is the same, except that d521
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

varðfÞ
p

.
The case b 6¼ 0 and d 5 0: Here, we know

PðU < u and c1V > 0Þ for all u: ð13Þ
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Let u / N: the marginal distribution of V determines c. Furthermore, from (13), we can
compute P(V > 2 c j U 5 u) for all u. Given U 5 u, we know that V is distributed as
qu1

ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
W, where W is N(0, 1). If q 5 ± 1, then

PðV >2cjU5 uÞ5 1 if qu>2c

5 0 if qu<2c

If 21 < q < 1, then

PfV >2cjU5 ug5P

(
W >2

c1 quffiffiffiffiffiffiffiffiffiffiffi
12q2

p
)
5U

 
c1 quffiffiffiffiffiffiffiffiffiffiffi
12q2

p
!
: ð14Þ

So we can determine whether q5 ± 1, and if so, which sign is right. Suppose21 < q < 1.
Then (14) determines

�
c1 qu

�. ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
. Differentiate with respect u to see that (14)

determines q
. ffiffiffiffiffiffiffiffiffiffiffi

12q2
p

. This is a 121 function of q. Thus, q can be determined, and then
c; finally, e is obtained from w1 in (11). This completes the argument for the case b 6¼ 0 and
d 5 0.

The case b5 0 and d > 0: As above, letW be independent of U and N(0, 1); represent V
as qU1

ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
W. Let G 5 fU < 2ag. From w0 and a, we compute

P
n
V >2c2dz

���Go5P
n
qU1

ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
W >2c2dz

���Go
5P

(
q
d
U1

ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
d

W1
c

d
>2zjG

)
:

ð15Þ

Write Ua for U conditioned so that U <2a. The right hand side of (15), as a function of z,
determines the distribution function of the sum of three terms: two independent random
variables, Ua and

ffiffiffiffiffiffiffiffiffiffiffi
12q2

p
W
.
d, where W is standard normal, plus the constant c/d. This

distribution is therefore known, although it depends on the three unknowns, c, d, q.
WriteK for the log Laplace transform ofUa. This is a known function. Now compute the

log Laplace transform of the distribution in (15). This is

t/K
�q
d
t
�
1

12q2

d2
t2 1

c

d
t: ð16Þ

Again, this function is known, although c, d, and q are unknown. Consider the expansion of
(16) as a power series near 0, of the form j1t 1 j2t

2/2! 1 j3t
3/3! 1 � � �. The j’s are the

‘‘cumulants’’ or ‘‘semi-invariants’’ of the distribution in (15). These are known quantities
because the function in (16) is known: j1 is the mean of the distribution given by (15),
whereas j2 is the variance, and j3 is the central third moment.

Of course,K#(0)5 E(Ua)52u(2a)/U(2a). Thus, j152u(2a)/U(2a)1 c/d, which
determines c/d. Next,K$(0)5 var(Ua), so j25 (q/d)2var(Ua)1 (12 q2)/d2 is determined.
Finally, j35K###(0) is the third central moment ofUa. SinceUa has a skewed distribution,
K###(0) 6¼ 0. We can compute (q/d)3 from j3, and then q/d. Next, we get 1/d

2 from j2, and
then 1/d. (We are looking at the case d > 0.) Finally, c comes from j1. Thus, c, d, q are
determined, and e comes from w1 in (11). This completes the argument for the case b 5 0
and d > 0.

The case b 5 0 and d < 0 follows by the same argument.
The case b 5 d 5 0: The three remaining parameters, c, e, and q, are not identifiable.
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For simplicity, take a 5 0, although this is not essential. Suppose

PðU < 0 and V >2cÞ5 a ð17Þ

is given, with 0 < a < 1/2. Likewise,

PðU > 0 and V >2c2eÞ5 b ð18Þ

is given, with 0 < b < 1/2. The joint distribution of the observables contains no further
information about the remaining parameters c, e, q. Choose any particular q with 21
< q < 1. Choose c so that (17) holds and e so that (18) holds. The upshot: there are in-
finitely many c, e, q triplets yielding the same joint distribution for the observables. This
completes the argument for the case b 5 d 5 0, and so for Proposition 1.

Proof of Proposition 2. Here, we know the joint distribution of (X1, C1), which deter-
mines a, b. We also know the joint distribution of (X1, Z1, Y1) given C1 5 1; we do
not know this joint distribution given C1 5 0. As in (11), suppose (U, V) are bivariate
normal with mean 0, variance 1 and correlation q. The joint distributions of the observables
determine a, b and the function

w1ðx; zÞ5Pða1 bx1U > 0 and c1 dz1V > 0Þ: ð19Þ

There is no other information in the system; in particular, we do not know the analog of w0.
Most of the argument is the same as before, or even a little easier. We consider in detail only
one case.

The case b5 d5 0: The two remaining parameters, c, q are not identifiable. Again, take
a 5 0. Fix any a with 0 < a < 1/2. Suppose

PðU > 0 and V >2cÞ5 a ð20Þ

is given. There is no other information to be had about c, q. Fix any q with 21 < q < 1
and solve (20) for c. There are infinitely many c, q pairs giving the same joint
distribution for the observables when b 5 d 5 0. This completes our discussion of
Proposition 2.

Remarks

1. The random variable Ua was defined in the course of proving Proposition 1. If de-
sired, the moments of Ua can be obtained explicitly in terms of u and U, using re-
peated integration by parts.

2. The Laplace transform of Ua is easily obtained by completing the square, and

t/
1ffiffiffiffiffiffi
2p

p exp

�
1

2
t2
	
Uð2a2tÞ
Uð2aÞ : ð21Þ

The third derivative of the log-Laplace transform can be computed from (21), but it is
painful.
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3. The argument for the case b5 0 and d > 0 in Proposition 1 is somewhat intricate, but
it actually covers all values of b, whether zero or non-zero. The argument shows that
for any particular real a, the values of c, d, q are determined by the number P(a1U <
0) and the function

z/Pða1U < 0 and c1 dz1V > 0Þ:

4. Likewise, the argument for the case b 6¼ 0 and d5 0 proves more. If we know P(U <
u) and P(U < u and c 1 V > 0) for all real u, that determines c and q.

5. In (17), for example, if a5 1/2, then q521; but c can be anywhere in the range [0,
N).

6. The propositions can easily be extended to cover vector-valued exogenous variables.

7. Our proof of the propositions really does depend on the assumption of an imperfect
correlation between Xi and Zi. We hope to consider elsewhere the case where Zi[ Xi.
The assumption of normality is not material; it is enough if the joint distributions
have full support, although positive densities are probably easier to think about.

8. The assumption of bivariate normality for the latent variables is critical. If this is
wrong, estimates are likely to be inconsistent.

9. Suppose (U, V) are bivariate normal with correlation q, and 21 < q < 1. Then

q/PðU > 0 and V > 0Þ

is strictly monotone. This is Slepian’s theorem: see Tong (1980). If the means are 0 and the
variances are 1, numerical calculations suggest this function is convex on (21, 0) and
concave on (0, 1).

8 Some Relevant Literature

Cumulants are discussed by Rao (1973, 101). The ratio u/U in (8) is usually called the
‘‘inverse Mills ratio,’’ in reference to Mills (1926)—although Mills tabulates [1 2

U(x)]/u(x) for x > 0. Heckman (1978, 1979) proposes the use of Mi to correct for endo-
geneity and selection bias in the linear case, with a very clear explanation of the issues. He
also describes potential use of the MLE. Meng and Schmidt (1985) discuss cases where the
bivariate probit MLE is fragile. Rivers and Vuong (1988) propose an interesting alternative
to the Heckman estimator. Their estimator (perhaps confusingly) is also called a two-step
procedure. It seems most relevant when the endogenous variable is continuous; ours is
binary.

For other estimation strategies and discussion, see Angrist (2001). Bhattacharya,
Goldman, and McCaffrey (2006) discuss several ‘‘two-step’’ algorithms, including a pop-
ular Instrumental-Variables Least Squares regression estimator that turns out to be incon-
sistent; they do not seem to consider the particular two-step estimator of concern in our
paper. Muthen (1979) discusses identifiability in a model with latent causal variables. The
VGAM manual (Yee 2007) notes difficulties in computing standard errors. According to
Stata (2005), its maximum likelihood routine ‘‘provides consistent, asymptotically effi-
cient estimates for all the parameters in [the] models.’’
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Van de Ven and Van Praag (1981) found little difference between the MLE and the two-
step correction; the difference doubtless depends on the model under consideration. Insta-
bilities in the two-step correction are described byWinship and Mare (1992), Copas and Li
(1997), and Briggs (2004), among others. For additional citations, see Dunning and Freed-
man (2007). Ono (2007) uses the two-step correction with probit response in a study of the
Japanese labor market; X and Z are multidimensional. The sample size is 10,000, but only
300 subjects select into the treatment condition. Bushway, Johnson, and Slocum (2007)
describe many overenthusiastic applications of the two-step correction in the criminology
literature: binary response variables are among the least of the sins.

We do not suggest that finding the true maximum of the likelihood function guarantees
the goodness of the estimator, because there are situations where the MLE performs rather
badly. Freedman (2007) has a brief review of the literature on this topic. However, we
would suggest that spurious maxima are apt to perform even less well, particularly with
the sort of models considered here.
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