
Robotica (2022), 40, pp. 4031–4055
doi:10.1017/S0263574722000741

RESEARCH ARTICLE

Newton–Euler modeling and Hamiltonians for robot
control in the geometric algebra
Eduardo Bayro-Corrochano∗ , Jesus Medrano-Hermosillo , Guillermo Osuna-González and
Ulises Uriostegui-Legorreta

Centro de Investigaciones y Estudios Avanzados, CINVESTAV, Department of Electrical Engineering and Computer Science,
Campus Guadalajara, 1145 Del Bosque Ave., El Bajío, 45019, Zapopan, México
∗Corresponding author. E-mail: eduardo.bayro@cinvestav.mx

Received: 19 July 2019; Revised: 4 May 2022; Accepted: 9 May 2022; First published online: 22 July 2022

Keywords: Newton–Euler modeling, motor algebra G+
3,0,1, dynamic model, Hamiltonians, nonlinear control, SE(3) PD

control, sliding mode control, localized control, robot arms, tracking

Abstract
The principal objective of the paper is to show the importance of the Hamiltonian in control theory. Instead of
using the Lagrangian formulation of electromechanical or robotic systems, our work is focused on robot dynamics
by its Hamiltonian. Using the iterative Newton–Euler, we generate the local Hamiltonians and the derivative of
the moments at each joint of the robot manipulator. Thus, we can apply decentralized controllers at each joint. We
compare and discuss the efficiency of the controllers. We show that the performance of the sliding modes controller
is more robust than that of the PD or Bang–Bang controllers.

1. Introduction
Electromechanical and robotic systems are most currently used in Euler-Lagrange equations. In this for-
malism, canonical coordinates such as position and velocity are used to develop control. Historically, the
Hamiltonian approach has its roots in analytical mechanics and starts from the principle of least action,
and proceeds, via the Euler-Lagrange equations and the Legrende transform, towards the Hamiltonian
equations of motion. On the other hand, the network approach stems from electrical engineering and
constitutes a cornerstone of mathematical systems theory. While most of the analysis of physical systems
has been performed within the Lagrangian and Hamiltonian framework, the network point of view is
prevailing in the modeling and simulation of (complex) physical engineering systems. Several authors
approached the formulation of Hamiltonians for the control of mechanical systems in the phase space
using matrix algebra and tensor calculus [1–5].

A first attempt to model electromechanical and robot systems using Hamiltonian equations was just
for 2 degree of freedom (DOF) [3, 6]. For a geometric approach, Hestenes [7] and Abou El Dahab [8]
and Pappas [9] for the formulation of Hamiltonian mechanics used the geometric algebra framework
and show the extension of the invariant formulation for rigid-body mechanics and in Hestenes [10] to a
phase space formulation for systems of linked rigid bodies. In the article [11], we present in detail the
screw theory, moments and wrenches for Newton–Euler dynamic modeling, and control and quadratic
programming-based tracking of robots. The geometric constraints for the quadratic programming are
designed using the conformal geometric algebra framework. This paper has a tutorial value for self-study
on the Newton–Euler dynamic modeling.

The interest in design stabilization and follow-up controllers for Hamiltonian systems has grown
in recent years. Many researchers use passivity as a tool, see Romero et al. [12], Yaghmeaei and
Yazdanpanah [13], and Reyes-Baez et al. [14]. The idea to use a structure is to take advantage of its

C© The Author(s), 2022. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741
https://orcid.org/0000-0002-4738-3593
https://orcid.org/0000-0002-5152-220X
https://doi.org/10.1017/S0263574722000741

4032 Eduardo Bayro-Corrochano et al.

properties and be able to guarantee better results, as in the case of robotics, see, for example, Kelly
et al. [15] or in general Euler–Lagrange systems in Ortega et al. [16].

In the last decades, researchers presented different approaches to solve the problem for systems with
port-Hamiltonian structures. Fujimoto et al. [17] proposed to design an error system employing canon-
ical transformations generalized to convert the problem to one on stabilization. However, same as the
interconnection and injection of damping (IDA-PBC) (Ortega et al. [18]), the method requires the solu-
tion of a partial differential equation (PDE) to perform these transformations. Moreover, it is not an easy
task to design a follow-up controller that preserves the port-controlled Hamiltonian structure (PCH) in
the closed loop. This is because for the energy function to transform, it must be variant in time, which
implies that the passivity property is not fulfilled in general and requires a stabilization technique for
Hamiltonian systems through time-variants controllers (Fujimoto and Sugie [19]).

Following the results of Fujimoto et al. [17], Mulero-Martinez [20] presented a strategy of control
for robot manipulators represented by the port-Hamiltonian structure utilizing canonical transforma-
tions and control based on passivity, proposing a new modification methodology of energy through the
introduction of nonhomogeneous virtual fields which allow obtaining standard laws of control for robot
manipulators such as the PD controller with gravity compensation (PD+) or the PD controller with
pre-compensation (PD with feed-forward).

In Dirksz and Scherpen [21], an adaptive control is combined with canonical transformations to
build control, which is then applied to port systems Hamiltonians. A follow-up control that preserves
closed-loop PCH structure is shown by Donaire et al. [22], where global asymptotic stability is verified
in the error system whose equilibrium point is the origin. To improve robustness in control, the law of
control is extended with the addition of the integral action to cancel constants disturbances exploiting
the procedure proposed by Donaire and Junco [23]. In a different approach, Romero et al. [12] combined
a passivity-based controller with a new observer of immersion and invariance.

Our paper deals with the modeling and control of robotic manipulators, where the robot dynamics
are described by employing Hamiltonian mechanics. This way leads to different physical descriptive
quantities used in control design. In this paper, the model-oriented Lyapunov-based control is consid-
ered. It is introduced in the novel formulation using Hamiltonian mechanics and compared with the use
of a conventional controller. The theoretical results, generally applicable to usual articulated industrial
robotic manipulators, are demonstrated on a planar 2 DOF robot arm and a spherical pendulum of 4
DOF.

The contribution of this work consists of the following: we compute the Hamiltonians, dynamics,
and applied controllers using screw theory in motor algebra. By using the recursive Newton–Euler
dynamics, we can compute the Hamiltonians for each joint. There is no paper in the literature where
the authors show that they can compute Hamiltonians at each joint for more than 2 DOF. Thanks to
the screw theory, it is possible to compute recursively the Hamiltonian and the dynamics for each
joint for robot manipulators of n DOF. As a result, we can apply local controllers to each joint. In
the experimental analysis, using simulations, we compute via the Newton–Euler dynamics and the
Hamiltonians for a planar 2 DOF robot arm and for a spherical pendulum of 4 DOF. We apply and com-
pare four controllers: Bang–Bang, PD, basic sliding modes, and integral sliding modes together with
super-twisting. We show that the sliding-mode-based controllers diminish chattering and reject matched
perturbations.

The organization of this paper is as follows: Section 2 gives a brief introduction to motor algebra.
Section 3 explains the concepts of screw lines, twists, and momenta and the Lie bracket and co-bracket.
Section 4 presents the Lagrangian and Hamiltonian formalisms. In Section 5, we explain the dynamics
of n-robot links and their local Hamiltonian mechanics on phase space using the geometric algebra
framework. In Section 5, we explain the dynamic of n robot links. In Section 6 using screw theory, the
iterative Newton–Euler algorithm is introduced to compute locally at each joint the dynamic and its
Hamiltonian. Section 7 is devoted to the experimental part comparing the controllers: Bang–Bang, PD,
and sliding modes, which are formulated in the phase space. Section 8 presents the conclusion.

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4033

2. Motor algebra
For a gentle introduction to geometric algebra see ref. [24]. The word motor is an abbreviation of
“moment and vector.” Clifford introduced motors with the name bi-quaternions [25]. Motors are iso-
morph to dual quaternions with the necessary condition I2 = 0, by dual quaternions ε2 = 0. They can be
found in the special 4D even subalgebra of G3,0,1. This even subalgebra is denoted by G+

3,0,1 and is only
spanned via a bivector basis, as follows:

1︸︷︷︸
scalar

, e2e3, e3e1, e1e2, e4e1, e4e2, e4e3︸ ︷︷ ︸
6 bivectors

, I︸︷︷︸
unit pseudoscalar

. (1)

This kind of basis allows us to represent spinors, which are composed of scalar and bivector terms.
A motor represents a special kind of rotor. Because a Euclidean transformation includes both rotation
and translation, we will show below that a motor involves both rotation and translation transformations.
But first, we must show the relationship between motors and screw motion theory.

Note also that the dual of a scalar is the pseudoscalar I and that the duals of the first three basis
bivectors are the following three bivectors (e2e3)∗ = e2e3I = e4e1.

2.1. Motors, rotors, and translators in G+
3,0,1

Since a rigid motion consists of the rotation and translation transformations, it should be possible to
split a motor multiplicatively in terms of these two transformations, which we will call a rotor and a
translator. The equation of a rotor in its Euler representation for a rotation with an angle θ is given by

R = a0 + a1e2e3 + a2e3e1 + a3e1e2 = a0 + a = e

θ

2
n = cos

(
θ

2

)
+ sin

(
θ

2

)
n, (2)

where n is the unit 3D bivector of the rotation axis spanned by the bivector basis e2e3, e3e1, e1e2, and ac,
as ∈R. A 3D translation in motor algebra is defined by Tc = 1 + I

tc

2
and called a translator. If we apply

a translator from the left to rotor R, and then apply the translator’s reversion from the right, we get a
modified rotor,

Rs = TcR̃Tc = cos

(
θ

2

)
+ sin

(
θ

2

)
(n + Im) = cos

(
θ

2

)
+ sin

(
θ

2

)
l. (3)

Since a motor is applied from the left and conjugated from the right, we should use the half of ts in
the spinor expression of TS when we define the motor in its Euler representation

M = TsRs = e
(θ+d)

2 l = cos

(
θ

2
+ I

d

2

)
+ sin

(
θ

2
+ I

d

2

)
l. (4)

2.2. Properties of motors
A general motor can be expressed as

Mα = αM, (5)

where α ∈R and M is a unit motor, as explained in the previous sections. In this section, we will employ
unit motors. The norm of a motor M is defined as follows:

|M| = MM̃ = TsRsR̃s̃Ts = 1, (6)

where M̃ is the conjugate motor and 1 is the identity of the motor multiplication.
Now we can show that the combination of two rigid motions can be expressed using two consecutive

motors. The resultant motor describes the overall displacement, namely,

Mc = MaMb = (Rsa + IR′
sa)(Rsb + IR′

sb) = Rsc + IR′
sc . (7)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4034 Eduardo Bayro-Corrochano et al.

3. Screws, twists, and momenta
The dynamic motor equation is given by

Ṁ = 1

2
sM. (8)

Assuming that the screw motion of the body is constant through time, the dynamic motor Eq. (8) can
be integrated to give

M(t) = e
−

s
2 M(0) = e

−
ω + I

[
ṫ + t

2
xω
]

2 M(0) = e
−
ω + Iv

2 M(0). (9)

This represents a motor that rotates with a constant-frequency rotation in the right-hand sense and
has a constant linear velocity as well.

Having described finite motion in terms of motors to represent the Lie group of rigid motion SE(3),
the logical question of infinitesimal motions or the velocities arises. These are described by elements of
the Lie algebra se(3). There are two most useful interpretations to describe the relation between SE(3)
and se(3), one as the tangent vectors to the identity element or another as the set of left-invariant vector
fields on the group.

3.1. Twists
From Eq. (9), one can derive the spatial velocity or twist s as follows:

s = 2ṀM̃ = 2(ṪR + TṘ)R̃T̃ = (ω + I ṫ
)= (ω + Iv) , (10)

where the angular-velocity bivector ω is the dual of the linear-velocity bivector v.

3.2. Momenta and wrenches
The affine transformation via the matrix N of the twist s yields the momentum which written using 6 × 1
vectors reads

℘ = j + Ip = N(s) ≡ Ns =
[

j
p

]
=
[

I m[c]x

m[c]T
x mI

] [
ω

v

]
≡
[

Iω + m[c]xv
m[c]T

x ω + mv

]
, (11)

where I is the pseudoscalar, I is the inertia, m is the mass, and I is the 3×3 identity matrix. Note that
inertia matrix N acts as a dualizing matrix.

The kinetic energy of the body is given by an inner product of the momentum co-twist and the
twist

EK = 1

2
℘ · s = 1

2
N(s) · s = 1

2
(j · w + p · v) (12)

≡ 1

2
(Ns)T · s = 1

2
sTNs.

The time derivative of a twist s is the bivector acceleration ṡ

ṡ = ds
dt

= ω̇ + Iv̇ ≡
⎡⎢⎣ dω

dt
dv
dt

⎤⎥⎦=
[

ω̇

v̇

]
(13)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4035

and for N time invariant, the time derivative of a momentum ℘ is the wrench w, namely
w = τ + I f

= ℘̇ = d
dt

j + I
d
dt

p = d
dt

(I(ω) + mc∧v) + I
d
dt

(mω∧c + mv)

= N(ṡ) = N
(

ds
dt

)
= N(ω̇ + Iv̇), (14)

where τ and f stand for the bivectors torque and force, respectively. This equation of the wrench written
using 6 × 1 vectors reads

w =
[

τ

f

]
= N

⎛⎜⎜⎝
⎡⎢⎢⎣

dω

dt
dv
dt

⎤⎥⎥⎦
⎞⎟⎟⎠=
[

I m[c]x

m[c]T
x mI

] [
ω̇

v̇

]
=
[

Iω̇ + m[t]×v̇
m[t]T

×ω̇ + mIv̇

]
. (15)

The inner product between the wrench and the twist is a scalar

w · s = τ · ω + f · v ≡ N(ṡ) · s = 1

2
ṡTN s. (16)

The significance of the wrench is that it can be used to represent the momentum of a rigid body, and
similarly, they can describe the action of a wrench on a rigid body, that is, a torque/force bivector.

Finally, the group action on the twist and wrenches using motors are given by

s′ = MsM̃, (17)

w′ = MwM̃.

3.3. Lie bracket
Consider the twist sj attached to a j-joint of a moving rigid body; as a function of the time, the equation
of an infinitesimal motion in terms of an instantaneous velocity twist si is given by

sj(t) = M(t)sj(0)M̃(t) = e
t
2 sisj(0)e− t

2 si , (18)

where si = ωi + Ivi and sj = ωj + Ivj. Differentiating and setting t = 0, we get the action of si on sj,
namely

d
dt

sj(t) =
(

d
dt

e
t
2 sisj(0)e− t

2 si

)
|t=0 =

(
1

2
sie

t
2 sisj(0)e− t

2 si − 1

2
e

t
2 sisj(0)e− t

2 sisi

)
|t=0

= 1

2

(
sisj − sjsi

)= [si, sj] (19)

where [si, sj] is known as the Lie bracket of si and sj. Since this result does not depend on where the
measurement time begins, in general for two instantaneous twists si and sj we can write

d
dt

sj(t) = [si, sj] = [(ωi + Ivi), (ωj + Ivj)] ≡
[

ωi × ωj

vi × wj + wi × vj

]
. (20)

3.4. Lie co-bracket
In general for instantaneous twist si and wrench wj, we can write

d
dt

wj(t) = {si, wj} = {(ωi + Ivi), (τ j + If j)} ≡
[

wi × τ j + vi × fj

ωi × fj

]
. (21)

Note that a co-bracket can be expressed in terms of a Lie bracket as follows, since a wrench is wj =
N(sj) then

{si, wj} = N([si, sj]). (22)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4036 Eduardo Bayro-Corrochano et al.

4. Lagrangian and Hamiltonian formalisms
Hamiltonian mechanics was first formulated by William Rowan Hamilton in 1833, starting from
Lagrangian mechanics, a previous reformulation of classical mechanics introduced by Joseph Louis
Lagrange in 1788.

The Euler–Lagrange equation of an electromechanical or robot systems is given by [26]

M(θ)q̈ + C(q, q̇) + G(q) = τ , (23)

where M(θ), C(q, q̇), G(q), and τ stand for the inertia matrix, Coriolis matrix, the gravity, and the torque,
respectively.

The Lagrange’s equation for electromechanical or robot systems is given by

d∂θ̇L(θ , θ̇)

dt
− ∂θL(θ , θ̇) = τ , (24)

where L is the Lagrangian of the system that is computed as the difference between the kinetic and
potential energies as follows:

L(θ , θ̇) = K(θ , θ̇) − V(θ). (25)

The generalized momentum is defined as

p = ∂θ̇L(θ , θ̇). (26)

The Hamiltonian of canonical coordinates i is given by

H = H(q, p, t) =
∑

i

q̇ipi − L(q, q̇, t), (27)

The partial derivation with respect to pi gives the first Hamilton equation
∂H(q, p, t)

∂pi

= q̇i. (28)

To compute the second equation, it is necessary to take the partial derivation of Eq. (27) with respect
to qi:

∂H (q, p, t)

∂qi

= −∂L (q, q̇, t)

∂qi

. (29)

Using the Legendre’s transformation, the Hamiltonian of canonical coordinates of Eq. (27) is
transformed to the Hamiltonian in the phase space

H(θ , p) = p · θ̇ − L(θ , θ̇). (30)

Taking the derivative of Eq. (30), we get

∂θH(θ , p) = ∂θ

(
p · θ − L(θ , θ̇)

)= −∂θL(θ , θ̇), (31)

henceforth

∂θH(θ , p) = −∂θL(θ , θ̇). (32)

Using Eqs. (24, 26, 30), we obtain

ṗ − ∂θL(θ , θ̇) = τ . (33)

Now taking Eqs. (24, 32, 33), the derivative of the momentum reads

ṗ = τ − ∂θH(θ , p). (34)

Similarly,

∂pH(θ , p) = ∂p

(
p · θ̇ − L(θ , θ̇)

)= θ̇ , (35)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4037

so

θ̇ = ∂pH(θ , p). (36)

Eqs. (34, 36) are known as the Hamilton’s equations.
In an autonomous system, it is possible to represent the Hamiltonian and the Lagrangian equations

as follows:

L(θ , θ̇) = K(θ , θ̇) − V(θ), (37)

H(θ , p) = K(θ , p) + V(θ), (38)

From Eqs. (34, 38), one obtains

ṗ = τ − ∂θH(θ , p) = τ − ∂θK(θ , p) − ∂θV(θ) = −τ − ∂θK(θ , p) − G(θ). (39)

So considering Eq. (26) and the Euler–Lagrange Eq. (23), one can derive

p = ∂θ̇L = I(θ)θ̇ , (40)

where the velocity θ̇ is transformed affine to the momentum via the inertia matrix I(θ), thus the
velocity is

θ̇ = I(θ)−1p. (41)

The kinetic energy in terms of coordinates reads

K(θ , θ̇) = 1

2
θ̇ TI(θ)θ̇ , (42)

so using Eq. (40), it can be written in terms of the moment

K(θ , p) = 1

2
pTI(θ)−1p. (43)

5. Dynamics of n robot links
In this section, first the Newton–Euler algorithm for the computing of dynamics is explained. Next, we
show the iterative computing of the local Hamiltonian and the derivative of the momenta.

5.1. Newton–Euler recursive algorithm for dynamics
Selig [27] formulated an iterative algorithm using screw theory but in terms of vectors and matrices. In
this work, the Newton–Euler for n links robots is easily formulated as an iterative algorithm using screw
theory in the motor algebra framework G+

3,0,1.
Let us show the equations for N = 5, first, we write the equation of motion for each link, and then we

can conveniently group them.

w5 + R5 + G5 = N5(ṡ5) + {s5, N5(s5)}, (44)

w4 + R4 + G4 − w5 − R5 = N4(ṡ4) + {s4, N4(s4},
w3 + R3 + G3 − w4 − R4 = N3(ṡ3) + {s3, N3(s3)},
w2 + R2 + G2 − w3 − R3 = N2(ṡ2) + {s2, N2(s2)},
w1 + R1 + G1 − w2 − R2 = N1(ṡ1) + {s1, N1(s1)},

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4038 Eduardo Bayro-Corrochano et al.

These equations can be rearranged as we did with the two-link robot, namely

w5 + R5 = N5(ṡ5) + {s5, N5(s5)} − G5, (45)
w4 + R4 = N4(ṡ4) + N5(ṡ5) + {s4, N4(s4)} + {s5, N5(s5)} − G5 − G4,

...

w1 + R1 =
5∑

j=i

[
Nj(ṡj) + {sj, Nj(sj)} − Gj

]
, (46)

where the velocity screw or twist sj at the {1, 2, . . . , 5}-link is computed as follows:

s1 = θ̇1L1, s2 = θ̇2L2 + θ̇1L1, · · · , s5 =
5∑

k=1

θ̇kLk. (47)

The accelerations at each link are computed taking the time derivative of the velocities si

ṡ1 = θ̈1L1 + θ̇1L̇1, ṡ2 = θ̈1L1 + θ̇1L̇1 + θ̈2L2 + θ̇2L̇2, · · · ,

ṡ5 =
5∑

k=1

[
θ̈kLk +

k−1∑
l=1

θ̇lθ̇k [Ll, Lk]

]
. (48)

The momentum is computed as follows:

Pj = Nj(sj). (49)

According to Eq. (46), a i-wrench is computed as follows:

wi =
5∑

j=i

[
Nj(ṡj) · Li + {sj, Nj(sj)} · Li − Gj · Li

]− Ri. (50)

Pairing each Eq. (46) with its respective screw line Li to get rid of the reaction wrenches, we get the
five joint torques as follows:

τi =
5∑

j=i

[
Nj(ṡj) · Li + {sj, Nj(sj)} · Li − Gj · Li

]
. (51)

Since the wrench due to the gravity on the j-link is a force acting on the link’s center of mass, con-
sidering that the z-axis of the coordinate system is parallel to the gravity vector, the gravity wrench can
then be written as

Gj = −mgci∧e43 − mge43 ≡

⎡⎢⎢⎣
−mgci∧e43

0
0

−mge43

⎤⎥⎥⎦ . (52)

Considering the following screw:

G = −ge43 ≡ G =

⎡⎢⎢⎣
0
0
0

−g

⎤⎥⎥⎦ , (53)

one can show that the gravity screw Gj can be expressed in terms of the inertia matrix N as follows:

Gj = Nj(G). (54)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4039

Using this result, one can write the equations of motion even in a more compact manner as

τi =
5∑

j=i

[
Nj(ṡj − G) · Li + {sj, Njsj} · Li

]
. (55)

Note that the use of the Newton–Euler iterative algorithm makes it easy to compute the local
Hamiltonians of more complex robot systems as n DOF robot arms or n-DOF inverted pendulums.

5.2. Iterative computing of the local Hamiltonian and the derivative of the momenta
The next equations are derived according to Eqs. (24–34). The local Lagrangian Li of the robot manip-
ulator at the i-joint can be computed as the difference between the kinetic and potential energies as
follows:

L(θ , θ̇)i = K(θ , θ̇)i − V(θ)i. (56)

The momenta pi is defined as

pi = ∂θ̇i L(θ , θ̇)i. (57)

The Hamiltonian of canonical coordinates at the i-joint is given by

H(qi, pi)i =
∑

i

q̇ipi − L(qi, q̇i) (58)

Using the Legendre’s transformation, the Hamiltonian of canonical coordinates of Eq. (58) is
transformed to the Hamiltonian in the phase space at the i-joint

H(θi, pi)i = pi · θ̇i − L(θi, θ̇i). (59)

Taking the derivative of Eq. (59), we get

∂θH(θi, pi) = ∂θi

(
pi · θi − L(θi, θ̇i)

)= −∂θi L(θi, θ̇i), (60)

henceforth

∂θi H(θi, pi) = −∂θi L(θi, θ̇i). (61)

Using Eqs. (24, 57, 59), we obtain

ṗi − ∂θi L(θi, θ̇i) = τi. (62)

Now taking Eqs. (33, 56, 61), the time derivative of the i-momentum reads

ṗi = τi − ∂θi H(θi, pi). (63)

Thus using these last equations, we can compute iteratively locally at each joint of the robot manipula-
tor the wrench wi Eq. (50), torque τi Eq. (51), the Hamiltonian H(θi, pi) Eq. (59), and the time derivative
of the i-momentum ṗi Eq. (63). These equations computed by the Newton–Euler iterative algorithm are
presented in the next subsection. Moreover, we will use the computed time derivative of the i-momentum
to derive a local decentralized controller in terms of a screw theory.

6. Recursive computing of Hamiltonians for n DOF robot Mmanipultors
The Lagrangian of the system is defined as the difference between the kinetic energy T and potential
energy V .

L(q̇j, . . . , q̇1, qj, . . . , q1) = T(q̇j, . . . , q̇1, qj, . . . , q1) − V(qj, . . . , q1). (64)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4040 Eduardo Bayro-Corrochano et al.

Figure 1. (a) n-DOF planar pendulum. (b) n-DOF spherical pendulum.

The total Hamiltonian of the system shown in Fig. 1(a) is computed via the Legendre transformation
as follows:

H =
n∑

j=1

pjq̇j − L(q̇j, . . . , q̇1, qj, . . . , q1). (65)

For the Bang–Bang control, one requires to compute n Hamiltonians and n control signals uj for each
DOF of the system. The n Hamiltonians are computed as follows:

Hn =
(

n∑
j=1

pjq̇j − L(q̇j, . . . , q̇1, qj, . . . , q1)

)
−
(

n−1∑
j=1

pjq̇j − L(q̇j, . . . , q̇1, qj, . . . , q1)

)
, (66)

Hn−1 =
(

n−1∑
j=1

pjq̇j − L(q̇j, . . . , q̇1, qj, . . . , q1)

)
−
(

n−2∑
j=1

pjq̇j − L(q̇j, . . . , q̇1, qj, . . . , q1)

)
, (67)

...

H2 =
(

2∑
j=1

pjq̇j − L(q̇2, q̇1, q2, q1)

)
− (p1q̇1 − L(q̇1, q1)) , (68)

H1 = p1q̇1 − L(q̇1, q1). (69)

The sum of the Hamiltonians Hj gives the total Hamiltonian of the system.

H =
n∑

j=1

Hj. (70)

The recursive Hamiltonians should fulfill the condition Hj(0) = 0. The Hamiltonians are functions
of the control uj for each DOF Hj(pj, qj, uj). The computed Hamiltonian depends on the control signal
uj and then applying the maximum Pontryagin principle one gets two Hamiltonians a maximum and a
minimum. Thus, one obtains 2n Hamiltonian, n are maximums and n are minimums.

Hj(pj, qj, uj) = Hj − Bjuj. (71)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4041

For the Bang–Bang control, all the control signals are

uj = if H(e)jmax > H(e)jmin then − 1 else 1, (72)

where qjref is the reference for the control related to each DOF qj, and the error e = qj − qjref .
On can use the Newton–Euler recursive method of Subsection 5.1 to easily compute the Hamiltonians

Hj at each joint of any DOF robot manipulator

H(θi, pi)i = pi · si − L(θi, θ̇i). (73)

This method can be applied for the case of n-D spherical pendulums shown in Fig. 1(b), which have
in each joint 2 DOF. Since each joint has 2 DOF, each Hamiltonian Hj is related with two angles φj and
θj, thus one split the Hamiltonian Hj in the other two Hamiltonians.

Hj = Hφj + Hθj . (74)

In total, one gets for the system 2n Hamiltonians.

7. Experimental analysis
In this section, we study the application of localized controllers derived using the local Hamiltonian
Eq. (59) and local derivative momenta Eq. (62) for robot systems. The used localized controllers are
the PD, slide modes, and Bang–Bang controllers. Since this work focuses on the control of spherical or
serial robot manipulators, we cover the most important structures of robot arms. For the comparison, we
used three well-known controllers, this is enough to validate the modeling and control using the motor
algebra framework.

7.1. Bang–Bang control for a 2 DOF robot manipulator
Using the Newton–Euler iterative algorithm, we can compute the tensors of the Euler–Lagrange state
equation with control signals as follows:

M

⎡⎢⎣ θ̈1

θ̈2

⎤⎥⎦+ C

⎛⎜⎝
⎡⎢⎣ θ̇1

θ̇2

⎤⎥⎦ ,

⎡⎢⎣ θ1

θ2

⎤⎥⎦
⎞⎟⎠+ G (θ1, θ2) =

⎡⎢⎣b1u1

b2u2

⎤⎥⎦ , (75)

where

M =

⎡⎢⎢⎢⎣
(m1 + m2)l2

1 m2l1l2 cos (θ1 − θ2)

m2l1l2 cos (θ1 − θ2) m2l2

⎤⎥⎥⎥⎦

C

⎛⎜⎝
⎡⎢⎣ θ̈2

θ̈1

⎤⎥⎦ ,

⎡⎢⎣ θ̇2

θ̇1

⎤⎥⎦
⎞⎟⎠=
⎡⎢⎣ 0 m2l1l2θ̇2 sin (θ1 − θ2)

−m2l1l2θ̇1 sin (θ1 − θ2) 0

⎤⎥⎦

G

⎛⎜⎝
⎡⎢⎣ θ2

θ1

⎤⎥⎦
⎞⎟⎠=
⎡⎢⎣ (m1 + m2)gl1 sin θ1

m2gl2 sin θ2

⎤⎥⎦ .

Furthermore, using the Newton–Euler iterative algorithm of subsection (5.1), we can compute inward
for each joint the following local Hamiltonians using generalized coordinates:

H2 = 1

2
m2l2

2θ̇
2
2 − m2gl2 cos (θ2), (76)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4042 Eduardo Bayro-Corrochano et al.

H1 = 1

2
(m1 + m2)l

2
1θ̇

2
1 + m2l1l2θ̇1θ̇2 cos (θ1 − θ2) − (m1 + m2)gl1 cos (θ1). (77)

Since the H1(0) = 0 and H2(0) = 0, Eq. (76) becomes

H2(θ2) = 1

2
m2l

2
2θ̇

2
2 + m2gl2(1 − cos (θ2)), (78)

H1(θ1) = 1

2
(m1 + m2)l2

1θ̇
2
1 + m2l1l2θ̇1θ̇2 cos (θ1 − θ2)

+ (m1 + m2)gl1(1 − cos (θ1)). (79)

A control algorithm that checks for the process variable exceeding or falling below the set point is
called on/off control. This kind of control is also known as Bang–Bang control because the manipulated
variable output of the controller rapidly changes between fully on and fully off involving no intermediate
state. It has been shown that Bang–Bang control usually provides imprecise control of the process vari-
able. In this work, we applied control only to revoluted joints. A rotation unit is geometrically speaking
a dual of a prismatic joint because for the modeling of its rotation one uses rotors for revoluted joints and
translators for the prismatic joints, thus it is possible to apply Bang–Bang control to prismatic joints.

In this work, Bang–Bang control is applied in a localized manner at each joint using the local
Hamiltonians similar to in the state Eq. (75). These control signals ui = ±1, i = 1, 2 switch between
the scalar functions of H1 and H2.

H2(θ2) = 1

2
m2l2

2θ̇
2
2 + m2gl2(1 − cos (θ2)) − b2θ2u2, (80)

H1(θ1) = 1

2
(m1 + m2)l

2
1θ̇

2
1 + m2l1l2θ̇1θ̇2b cos (θ1 − θ2) (81)

+ (m1 + m2)gl1(1 − cos (θ1)) − b1θ1u1,

Applying in Eqs. (80-82) the maximal principle of Pontryagin and setting the angle references θ1ref =
20o and θ2ref = 30o and ui = ±1, i = 1, 2 for the switching in the Hamiltonians so that the Hamiltonians
reach the zero value, we obtain the following equations:

H11 = 1

2
(m1 + m2)l2

1θ̇
2
1 + m2l1l2θ̇1θ̇2 cos

(
(θ1 − θ1ref) − (θ2 − θ2ref)

)
+ (m1 + m2)gl1(1 − cos (θ1 − θ1ref)) − b1(θ1 − θ1ref), (82)

H12 = 1

2
(m1 + m2)l2

1θ̇
2
1 + m2l1l2θ̇1θ̇2 cos

(
(θ1 − θ1ref) − (θ2 − θ2ref)

)
+ (m1 + m2)gl1(1 − cos (θ1 − θ1ref)) + b1(θ1 − θ1ref), (83)

where u1 = if H12 > H11 then -1 else 1 and

H21 = 1

2
m2l

2
2θ̇

2
2 + m2gl2(1 − cos (θ2 − θ2ref)) − b2(θ2 − θ2ref), (84)

H22 = 1

2
m2l

2
2θ̇

2
2 + m2gl2(1 − cos (θ2 − θ2ref)) + b2(θ2 − θ2ref), (85)

where u2 = if H22 > H21 then -1 else 1. The control signals ui = ±1, i = 1, 2 switch between the
Hamiltonians H1 and H2 surfaces. Figure 3 shows the control signals and the error figures to reach a
reference point. Note that even though that the controllers reach the references, they keep switching
very rapidly between ± 1.

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4043

Figure 2. 2 DOF planar robot.

Figure 3. Hamiltonian Bang–Bang controller: (a) state θ1 : (b) control u1; (c) state θ2 : (d) control u2.

7.2. PD and sliding mode controller for a 2 DOF robot manipulator
Before constructing the law of control, it is necessary to compute Hamilton’s equations in the screw
theory framework. The Hamiltonian on the phase space can be computed using Eqs. (25, 27) as
follows:

H (θ , p, t) =
n∑

j=1

1

2
PT

j N−1
j Pj + g̃T c̃j, (86)

∂H (θ , p, t)

∂pi

= 1

ST
i NiSi

(
pi −

n∑
j=i+1

ST
i Pj −

i−1∑
k=1

ST
i Pi,k

)
, (87)

∂H (θ , p, t)

∂θi

=
n∑

j=i

PT
j

[
Si, N−1

i Pi

]− GT
j Si, (88)

where Si is the twist si written as a 6×1 vector and the momentum Pi is a 6×1 vector as well.

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4044 Eduardo Bayro-Corrochano et al.

According to Eq. (63), the derivative of the momenta at i-joint is

ṗi = τi +
n∑

j=i

GT
j Si − PT

j

[
Si, N−1

i Pi

]
. (89)

A serial robotic system will track a desired smooth function applying the following decentralized PD
law of control:

τi = Kpiθ̃i + Kvĩpi + ṗd i −
n∑

j=i

PT
j

[
N−1

i Pi, Si

]− GT
j Si, (90)

where p̃i = pdi − pi is the error between the desired momentum and the measured momentum and θ̃i =
θdi − θi is the error between the desired joint position and the measured joint position and Kpi, Kvi ∈R

+.
A robotic system will reach the home position by applying the following decentralized sliding modes

law of control:

τi = Kisign(Si) + KS iSi + θ̃i −
n∑

j=i

ST
j {Si, NjLi} − Gj · Li, (91)

where {Si, NjLi} = Nj [Si, Li] and in each joint, Si = −∑n
j=i LT

i NjSj + θ̃i is the sliding surface and
Ki, KS i ∈R

+.
Consider the two-link manipulator with revolute joints illustrated in Fig. 2. In addition, the manipu-

lator link lengths are l1 and l2, and the link masses are m1 and m2, where these masses are concentrated
at the end of each link.

The dynamic of the proposed robot is computed using (55). Hence, the dynamic of each joint can be
written as the following:

τ1 = V̇T
1 N1L1 + VT

1 N1 [L1, V1] − G1 · L1 + V̇T
2 N2L1 + VT

2 N2 [L1, V2] − G2 · L1, (92)

τ2 = V̇T
2 N2L2 + VT

2 N2 [L2, V2] − G2 · L2. (93)

Considering V1 = L1θ̇1 and V2 = L1θ̇1 + L2θ̇2. Thus, the accelerations are constructed by

V̇1 = d

dt

(
L1θ̇1

)= L1θ̈1, (94)

V̇2 = d

dt

(
L1θ̇1 + L2θ̇2

)= L1θ̈1 + L2θ̈2 + ad(V1)L2θ̇2 = L1θ̈1 + L2θ̈2 + [L1, L2] θ̇1θ̇2. (95)

Taking the previous accelerations (V̇1, V̇2) and velocities (V1, V2) into (92) and (93), the dynamic of
the robot can be written as follows:

τ1 = LT
1 N1L1θ̈1 + LT

1 N2L1θ̈1 + LT
1 N2L2θ̈2 + 2LT

1 N2 [L1, L2] θ̇1θ̇2

+ LT
2 N2 [L1, L2] θ̇ 2

2 − GT
1 L1 − GT

2 L1, (96)

τ2 = LT
1 N2L2θ̈1 + LT

2 N2L2θ̈2 − LT
1 N2 [L1, L2] θ̇ 2

1 − GT
2 L2. (97)

7.2.1. PD controller
Given the state variables x1, x2 ∈R

2, where x1 = (θ1, θ2)
T and x2 = (θ̇1, θ̇2

)T , the closed-loop system can
be represented using Eq. (90) as follows:

⎡⎣ ẋ1

ẋ2

⎤⎦=

⎡⎢⎢⎣
x2

−
(

LT
1 N1L1 + LT

1 N2L1 LT
1 N2L2

LT
1 N2L2 LT

2 N2L2

)−1 [(
Kp1 0

0 Kp2

)
x1 +
(

Kv1 0

0 Kv2

)
x2 − B(θ̇1, θ̇2]

]
⎤⎥⎥⎦ (98)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4045

0 1 2 3 4 5 6 7 8 9 10

Time (s)

–5

0

5

10

15

20

25

30

35

S
ta

te
s

(°
)

1

2

0 1 2 3 4 5 6 7 8 9 10

Time (s)

–0.5

0

0.5

1

1.5

2

S
ta

te
s

(R
ad

/s
)

1

2

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

X (m)

0

0.2

0.4

0.6

0.8

1

1.2

Y
 (

m
)

(a) (b) (c)

Figure 4. PD controller: (a) states: angles x1 and angular velocities x2. (b) Robot motion.

where

B(θ̇1, θ̇2) =
⎡⎣2LT

1 N2 [L1, L2] θ̇1θ̇2 + LT
2 N2 [L1, L2] θ̇ 2

2

−LT
1 N2 [L1, L2] θ̇ 2

1

⎤⎦ (99)

To simulate the results of the example, it is necessary to implement the parameters in Table I with
Kp1, Kp2 = 150 and Kv1, Kv2 = 50. The simulations were conducted using the Euler integration method,
with a step size of 0.001s. The initial conditions were selected as x1(0) = x2(0) = 0 and the desired values
as θd1 = 20◦, θd2 = 30◦. Hence, the results of the example are presented in Fig. 4.

7.2.2. Sliding mode controller
Suppose x1, x2 ∈R

2, where x1 = (θ1, θ2)
T and x2 = (θ̇1, θ̇2

)T . Then, the closed-loop system using Eq. (91)
can be represented by⎡⎣ ẋ1

ẋ2

⎤⎦=

⎡⎢⎢⎣
x2(

LT
1 N1L1 + LT

1 N2L1 LT
1 N2L2

LT
1 N2L2 LT

2 N2L2

)−1 [(−K1sign [S1] − KS 1

−K2sign (S2) − KS 2

)
− x2 − B(x2)

]⎤⎥⎥⎦ (100)

where

S1 = LT
1 N1L1θ̇1 + LT

1 N2L1θ̇1 + LT
1 N2L2θ̇2 + θ1

S2 = LT
1 N1L2θ̇1 + LT

2 N2L2θ̇2 + θ2

B(x2) =
⎡⎣2LT

1 N2 [L1, L2] θ̇1θ̇2 + LT
2 N2 [L1, L2] θ̇ 2

2

LT
2 N2 [L1, L2] θ̇1θ̇2

⎤⎦ (101)

To simulate the results of the example, it is necessary to implement the parameters in Table I with
K1, K2 = 1 and KS 1, KS 2 = 50. The simulations were conducted using the Euler integration method, with
a step size of 0.001s. The initial conditions were selected as x1(0) = [45◦, 10◦]T and x2(0) = [0, 0]T . Using
the sliding mode controller [28], we carry out a tracking experiment. Moreover, it is necessary to take
care with the adjustable gains because a small variable cannot easily converge to the position for the
case of different robots. Therefore, it is important to adjust the gain depending on the application.

Figure 5(a) and (b) presents the evolution of the angles and angular velocities of the two joints dur-
ing the tracking. These experiments show that our sliding mode controller performs very well in both
stability and tracking. Figure 5 (c) and (d) shows how well the sliding mode controller manages the 2
DOF robot arm to follow a nonlinear curve.

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4046 Eduardo Bayro-Corrochano et al.

Table I. Parameters of the robot.

Parameter Value Unit
m1 0.25 kg
m2 0.25 kg
l1 1.2 m
l2 1.2 m

0 1 2 3 4 5 6 7 8 9 10

Time (s)

–100

–50

0

50

100

150

S
ta

te
s

(°
)

1

2

0 1 2 3 4 5 6 7 8 9 10

Time (s)

–4

–2

0

2

4

6

8

S
ta

te
s

(R
ad

/s
)

1

2

0 1 2 3 4 5 6 7 8 9 10

Time (s)

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

S
ur

fa
ce

s

S
1

S
2

0.6 0.8 1 1.2 1.4 1.6 1.8 2

X (m)

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

Y
 (

m
)

(a) (b)

(c) (d)

Figure 5. Sliding modes controller: (a) states: angles x1; (b) angular velocities x2; (c) sliding modes
surfaces; and (d) robot motion.

7.3. Bang–Bang control for a 4 DOF double spherical pendulum
The Lagrangian associated with the double spherical pendulum is given by

L = T − V , (102)

where

T = 1

2
(m1 + m2) l2

2

(
θ̇2

2 + sin2 θ2φ̇2
2
)

+ 1

2
m1l2

1

(
θ̇1

2 + sin2 θ1φ̇1
2
)

+ m1l1l2θ̇1θ̇2 sin θ1 sin θ2 + m1l1l2 cos (φ2 − φ1)
(
cos θ1 cos θ2θ̇1θ̇2 + sin φ1 sin φ2φ̇1φ̇2

)
+ m1l1l2 sin (φ2 − φ1)

(
cos θ2 sin θ1φ̇1φ̇2 − sin θ2 cos θ1φ̇2θ̇1

)
, (103)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4047

V = − (m1 + m2) gl2 cos θ2 − m1gl1 cos θ1. (104)

The motion equations can be obtained from the Lagrangian of the double spherical pendulum

M(θj, φj)

(
θ̈j

φ̈j

)
+ C(θj, θ̇j, φj, φ̇j)

(
θ̇j

φ̇j

)
+ G(θj, φj) = Bu. (105)

As we showed in the previous example of the double pendulum by applying the V.M. Yepez theorem,
it is extremely difficult to compute the Hamiltonian for manipulators of more than 2 DOF. This shows
that it is better to compute the Hamiltonian of the system via the Legendre transformation and in a local
manner apply the V.M. Yepez theorem.

H(qj, pj, t) =
∑

pjq̇j − L(qj, q̇j, t). (106)

For the double spherical pendulum, the Hamiltonian of the system is given by

H = T + V . (107)

Based on the Hamiltonian of the 4 DOF of the system, we can derive four Hamiltonians for each
DOF which are obtained using the Newton–Euler recursive algorithm explained in Subsection 5.1, so
the computed Hamiltonian Hj at the j-join is

Hj(θj, φj, pj) = pj · sj − L(θj, φj, θ̇j, φ̇j). (108)

The computed four Hamiltonians are

H4 = 1

2
(m1 + m2) l2

2θ̇2
2 + m1l1l2θ̇1θ̇2 sin θ1 sin θ2, (109)

+ m1l1l2 cos (φ2 − φ1)
(
cos θ1 cos θ2θ̇1θ̇2 + sin φ1 sin φ2φ̇1φ̇2

)
+ m1l1l2 sin (φ2 − φ1)

(
cos θ2 sin θ1φ̇1φ̇2 − sin θ2 cos θ1φ̇2θ̇1

)− (m1 + m2) gl2 cos θ2

H3 = 1

2
(m1 + m2) l2

2

(
sin2 θ2φ̇2

2
)

, (110)

H2 = 1

2
m1l

2
1θ̇1

2 − m1gl1 cos θ1, (111)

H1 = 1

2
m1l

2
1

(
sin2

θ1φ̇1
2
)

. (112)

One applies the maximum principle of Pontryagin to H1, H2, H3 y H4 to obtain two Hamiltonians
a maximum and a minimum for each function, resulting then in eight Hamiltonians, where one has to
impose the condition Hj(0) = 0. The motion equations are obtained from the system Hamiltonians of
the double spherical pendulum including the Bang–Bang control.

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1

= b1u1, (113)

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2

= b2u2, (114)

d

dt

(
∂L

∂φ̇1

)
− ∂L

∂φ1

= b3u3, (115)

d

dt

(
∂L

∂φ̇2

)
− ∂L

∂φ2

= b4u4. (116)

Figure 7 shows the control signals and the error figures to reach a reference point. Note that even
though the controllers reach the references, they keep switching very rapidly between ± 1.

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4048 Eduardo Bayro-Corrochano et al.

Figure 6. 4 DOF spherical pendulum.

7.4. Sliding mode controller for a 4 DOF double spherical pendulum
Consider the two-link manipulator with four revolute joints as illustrated in Fig. 6. The manipulator link
lengths are l1 and l2, and the link masses are m1 and m2, where these masses are concentrated at the end
of each link.

The Newton–Euler iterative algorithm is based on Eq. (55), accordingly the resulting wrench at each
is given by

τi =
5∑

j=i

[
Nj(ṡj − G) · Li + {sj, Njsj} · Li

]
. (117)

To formulate the sliding-mode-based control, first, we require to represent in state variables the
dynamics of the robot arm. This procedure is an extension as presented for the 2 DOF robot arm
of Subsection 7.2. We use Eq. (55) and extend Eqs. (100)–(101) of the 2 DOF manipulator to the
4 DOF double spherical pendulum. To simplify the equation, we gather all the terms in matrices as
follows:

M(x)ẍ + C(ẋ, x)ẋ + G(x) = τ , (118)

where M is the inertia matrix, C is the Coriolis and centripetal matrix, G(x) is the gravity vector, τ is
the actuating torque vector, x is the vector state corresponding with the angular displacement of each
joint, and ẋ and ẍ are the first and second derivatives of the state vector corresponding to the velocity
and acceleration, respectively. The relation between the Hamiltonian and the Euler–Lagrange equations
can be established by using the Legendre’s transformation as mentioned in Subsection 4.

Using the previous Eq. (118), the space state model for the angular displacements and their velocities
of the joints is defined as follows:

ẋ1 = x2, (119)

ẋ2 = f (x1, x2) + B(x1, x2)u, (120)

where x1 = [φ1, θ1, φ2, θ2]	 and x2 = [φ̇1, θ̇1, φ̇2, θ̇2]	 are the state variables (angular displacements
and velocities, respectively), f (x1, x2) = −M−1(x1) (C(x1, x2)x2 + G(x1)), B(x1, x2) = M−1(x1), u = τ the
signal control laws.

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4049

Figure 7. (a) Angle state θ1 and control u1. (b) Angle state θ2 and control u2. (c) Angle state φ1 and
control u3. (d) Angle state φ2 and control u4.

Since the purpose of the controller is to track trajectories, if we define the tracking error as e1 = xd − x1

and using (119-120), the error system is described as

ė1 = ẋd − x2 = e2

ė2 = ẍd − f (x1, x2) − B(x1, x2)u. (121)

Because the system can contain uncertainties attributed to parametric variations, unmodeled dynam-
ics, and external disturbances, it is necessary to add a term that contains these uncertainties, so our error
system is redefined as

ė1 = e2

ė2 = ẍd − f (x1, x2) − B(x1, x2)u0 − B(x1, x2)u1 + h(x1, x2, t), (122)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4050 Eduardo Bayro-Corrochano et al.

where h(x1, x2, t) satisfies the matching condition [28]. Besides, h(x1, x2, t) must be bounded by known
positive defined scalar functions such that

‖h(x1, x2, t)‖ ≤ h+
i (x1, x2, t), i = 1, . . . , n.

Once the error system model of our robotic system is obtained, we proceed to design the law of
control. The law of control is defined as

u = u0 + u1, (123)

where u0 is computed using the inverse dynamic algorithm [29] for the nominal system and u1 is an
integral sliding mode control algorithm that deals with external disturbances and parametric variations.

First, we describe u0 as follows:

u0 = M(x1)ad + C(x1, x2)x2 + G(x1), (124)

where ad is the desired dynamics that will be designed later.
Substituting the control law u0 (124) in the second equation of the error system (122), we have the

following:

ė2 = ẍd − f (x1, x2) + B(x1, x2)u0 + h(x1, x2, t)

= ẍd − M−1(x1) (C(x1, x2)x2 + G(x1)) + M−1(x1)u0 + h(x1, x2, t)

= ẍd − M−1(x1) (u0 − C(x1, x2)x2 − G(x1)) + h(x1, x2, t)

= ẍd − ad + h(x1, x2, t), (125)

which cancels the internal dynamics. To ensure the tracking of the references, we then define ad as
follows:

ad = ẍd − Kp (xd − x1) − Kd (ẋd − x2)

= ẍd − Kpe1 − Kde2, (126)

where xd, ẋd y ẍd are the position, velocity, and acceleration references, and Kp y Kd are 4 × 4 matrices.
Then, the error system with u0 is proposed as follows:

ė1 = e2, (127)

ė2 = Kpe1 + Kde2 + h(x1, x2, t). (128)

A simple way to design the gain matrices Kp and Kd is

Kp = diag
(
ω2

1, ω2
2, . . . , ω2

n

)
(129)

Kd = diag (2ω1, 2ω2, . . . , 2ωn) ,

which, leaving aside the term h(x1, x2, t), results in a decoupled closed-loop system, where each response
of each joint is equal to the response of a critically damped second-order system with natural frequency
ωi, which determines the velocity response of the joints, or equivalently, the decay rate of the tracking
error.

It is noteworthy that to compute u0, the inverse dynamics can be calculated using the Newton–Euler
algorithm described in Section 5. To deal with the term h(x1, x2, t), which includes parametric variations
and disturbances of the system, the control law u1 is designed by using the integral sliding mode algo-
rithm as mentioned above. This algorithm presupposes the existence of a previously designed controller
for the nominal plant (without disturbances), u0, adding to this existing controller a discontinuous term
to force the occurrence of sliding modes and thus obtaining a response as if the plant was the nominal
system with its closed-loop controller, despite external disturbances and parametric variations of the
system.

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4051

0 1 2 3 4 5 6 7 8 9 10
–20

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10
–1.4

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

109876543210–1.5

–1

–0.5

0

109876543210
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1

0

0 1 2 3 4 5 6 7 8 9 10
–2.5

–2

0 1 2 3 4 5 6 7 8 9 10
–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Sliding mode-based control: (a) control signals U1, U2, U3, U4. (b) Space x, y, z errors. (c)
Motion in space (x, y, z). (d) State angle errors. (e–h) States angles φ1, φ2, θ1, θ2-.

For u1, we define the sliding surface

s = σ (x) + z, (130)

where σ (x) = Ce1 + e2 and z is the integral term that will be determined later. Then, if we derive (130)
and substitute (122) and (123) in the result, we have

ṡ = Ce2 + ẍd − f (x1, x2) − B(x1, x2)u0 − B(x1, x2)u1 − h(x1, x2, t) + ż, (131)

and defining

ż = Ce2 + f (x1, x2) + B(x1, x2)u0 − ẍd, z(0) = −Ce1(0) − e2(0), (132)

Eq. (131) reduces to

ṡ = −B(x1, x2)u1 − h(x1, x2, t). (133)

Now it is necessary to propose the control law u1, which will be designed using the super-twisting
algorithm

u1 = α1 |s|1/2 sign (s) + v

v̇ = α2sign (s) . (134)

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4052 Eduardo Bayro-Corrochano et al.

0 1 2 3 4 5 6 7 8 9 10
–5

0

5

10

15

20

25

30

35

109876543210
–0.5

0

0.5

109876543210
–0.5

0

0.5

0 1 2 3 4 5 6 7 8 9 10
–2.4

–2.2

–2

0 1 2 3 4 5 6 7 8 9 10
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10
–0.04

–0.02

0

0.02

0 1 2 3 4 5 6 7 8 9 10

–1

–0.5

0

0 1 2 3 4 5 6 7 8 9 10
–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

(a) (b)

(c)

(e)

(d)

(f)

(g)

(h)

Figure 9. Sliding mode-based control: (a) control signals Ui. (b) Space (x,y,z) tracking. (c) Space x, y, z
errors. (d–g) States angles φ1, φ2, θ1, θ2. (h) Errors of state angle φ1, φ2, θ1, θ2. (i) Sequence of tracking.

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4053

Figure 9. Continued.

Substituting previous Eq. (134) in (133), the dynamics of the sliding surface is described as

ṡ = −B(x1, x2)(α1 |s|1/2 sign (s) + v) + h(x1, x2, t), (135)

v̇ = α2sign (s) . (136)

It is possible to probe that the dynamics of the sliding surface is globally asymptotically stable [30]
with certain conditions of gains α1 and α2. With the explained control above, it will be achieved that the
control u1 rejects the disturbance h(x1, x2, t), that is, B(x1, x2)u1 = −h(x1, x2, t) and even more, achieve
the error system has the form

ė1 = e2

ė2 = ẍd − f (x1, x2) − B(x1, x2)u0, (137)

which is equivalent to the nominal system with control signal u0. It should be noted that u0 was designed
such that the nominal system tracks the desired references.

In order to show the performance of the proposed controller, two simulation experiments were
developed. The parameters for the two-link manipulator are the same as described in the previous
section. The values of the parameters of the controller used are as follows: α1 = diag(3, 3, 1.5, 1.8),
α2 = diag(0.3, 0.3, 0.3, 0.3), C = diag1, 1, 1, 1, Kp = diag(25, 25, 25, 25), Kd = diag(10, 10, 10, 10).

For the first simulation experiment, the reference is described as xd =
[

π

12
,

5π

36
,
π

6
,
π

9

]T

, which

corresponds to fixed point in the space.

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

4054 Eduardo Bayro-Corrochano et al.

Figure 8 shows the double pendulum reaching a 3D point. It shows the control signals, the states, and
angles evolution as their errors. Compared with the Bang–Bang control of the previous subsection, the
integral sliding modes with super-twisting diminish chattering and reject matched perturbations.

Figure 9 shows the results for tracking a nonlinear trajectory. It shows the control signals, the states,
and angles evolution as their errors. The integral sliding modes with super-twisting diminish chattering
and reject matched perturbations.

8. Conclusion
In this work, the authors show the importance of the Hamiltonian in control theory. Instead of using the
Lagrangian formulation of electromechanical or robotic systems, our work is focused on robot dynamics
by its Hamiltonian. We compute the Hamiltonians, dynamics, and applied controllers using screw theory
in the motor algebra. By using the recursive Newton–Euler dynamics, we can compute the Hamiltonians
for each joint. Thanks to the screw theory, it is possible to compute recursively the Hamiltonian and the
dynamics for each joint for robot manipulators of n DOF. As a result, we can apply local controllers to
each joint.

In the experimental analysis, using simulations, we compute via the Newton–Euler dynamics and the
Hamiltonians for a planar 2 DOF robot arm and a spherical pendulum of 4 DOF. We apply and com-
pare four controllers: Bang–Bang., PD, basic sliding modes, and integral sliding modes together with
super-twisting. We show that the sliding-mode-based controllers diminish chattering and reject matched
perturbations. In future work, we will continue to relate geometric algebra and nonlinear control. We
will develop observers ad new nonlinear controllers using the motor algebra framework and conformal
geometric algebra.

Compliance with ethical standards. This study was funded by Mexican Conacyt Grant A1-S-1042.

Conflict of interest. The authors declare that they have no conflict of interest.

Authors participation. All authors have contributed in an equal manner to the elaboration of the article.

References
[1] C. Aguilar-Ibáñez , J. Moreno-Valenzuela, O. García - Alarcón, M. Martinez-Lopez, J. A. Acosta and M. Suarez-Castanon.,

“PI-type controllers and �-� modulation for saturated DC-DC buck power converters,” IEEE Access 9, 20346–20357
(2021).

[2] J. Aguilar-Ibáñez, E. Orozco, D. Cordova, M. Islas, J. Pacheco, G. Gutierrez, A. Zacarias, L. Soriano, J. Meda-Campaña,
D. Mujica-Vargas, “Modified linear technique for the controllability and observability of robotic arms”,” IEEE Access 10,
3366–3377 (2022).

[3] R. Ortega, A. J. van der Schaft, B. Maschke and G. Escobar, “Energy-shaping of port-controlled Hamiltonian systems by
interconnection,” In: Proc. IEEE Conf. on Decision and Control, vol. 2 (1999) pp. 1646–1651.

[4] V. Záda and K. Belda, “Robot Control in Terms of Hamiltonian Mechanics,” In: Proc. of the 22nd International Conference
Engineering Mechanics, Svratka, Czech Republic, 9–12 May (2016) pp. 627–630

[5] Z. Wanxie, W. Zhigan and T. Shujun. Theory and Computation of State Space Control (Science Publishing House, Beijing,
2006).

[6] R. Ortega, A. van der Schaft, F. Castanos and A. Astolfi, “Control by interconnection and standard passivity-based control
of port-Hamiltonian systems,” IEEE Trans. Autom. Cont. 53(11), 2527–2542 (2008).

[7] D. Hestenes, “Hamiltonian mechanics with geometric calculus,” In: Spinors, Twistors, Clifford Algebras, and Quantum
Deformations (Z. Oziewicz et al., eds.) (Springer Science+Bisiness Media, B.V., 1993) pp. 203–214.

[8] E. T.Abou El Dahab, “A formulation of Hamiltonian mechanics using geometric algebra,” Adv. Appl. Clifford Al. 10(2),
217–223 (1972).

[9] R. Pappas, “A Formulation of Hamiltonian Mechanics Using Geometric Calculus,” In: Clifford Algebras and Their
Applications in Mathematical Physics (F. Brackx et al., eds.) (Kluwer Academic Publishers, 1993) pp. 251–258.

[10] D. Hestenes. New Foundation of Classical Mechanics (D. Reidel Publishing Co., Dordrecht/Boston, 1986).
[11] E. Bayro-Corrochano and G. Osuna-Gonzáles, “Modeling, control and tracking in robotics using screw theory in geometric

algebra,” J. Robot. (to appear) (2022).

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741

Robotica 4055

[12] J. G. Romero, R. Ortega and I. Sarras, “A globally exponentially stable tracking controller for mechanical systems using
position feedback,” IEEE Trans. Automat. Contr. 60(3), 818–823 (2015).

[13] A. Yaghmeaei and M. J. Yazdanpanah, “Trajectory tracking for a class of contractive port hamiltonian systems,” Automatica
83(September), 331–336 (2017).

[14] R. Reyes-Baez, A. J. Van der Schaft and B. Jayawardhana, “Tracking Control of Fully Actuated Port-Hamiltonian Mechanical
Systems via Sliding Manifolds and Contraction Analysis,” In: IFAC Papers On-Line (2017) pp. 50–51.

[15] R. Kelly, V. Santibánez and A. Loriá, Control of Robot Manipulators in Joint Space Advanced Textbooks in Control and
Signal Processing (Springer, 2005).

[16] R. Ortega, A. Loria, P. J. Nicklasson and H. Sira-Ramirez, “Passivity based Control of Euler Lagrange Systems: Mechanical,
Electrical and Electromechanical Applications,” In: Communication and Control Systems (Springer, 1998).

[17] K. Fujimoto, K. Sakurama and T. Sugie, “Trajectory tracking control of port-controlled hamiltonian systems via generalized
canonical transformations,” Automatica 39(12), 2059–2069 (2003).

[18] R. Ortega, A. Van Der Schaft, B. Maschke and G. Escobar, “Interconnection and damping assignment passivity-based
control of port-controlled hamiltonian systems,” Automatica 38(4), 585–596 (2002).

[19] K. Fujimoto and T. Sugie, “Time-varying stabilization of hamiltonian systems via generalized canonical transformations,”
IFAC Proc. Vol. 33(2), 63-68 (2000). D. Hestenes, New Foundation of Classical Mechanics (D. Reidel Publishing Co.,
Dordrecht/Boston, 1986)

[20] J. I. Mulero-Martinez, “Canonical transformations used to derive robot control laws from a port-controlled Hamiltonian
system perspective,” Automatica 44(9), 2435–2440 (2008).

[21] D. Dirksz and J. M. A. Scherpen, “Structure preserving adaptive control of port-hamiltonian systems”,” IEEE Trans.
Automat. Contr. 57(11), 2880–2885 (2021).

[22] A. Donaire, T. Perez and N. Bartlett, “Tracking control of a class of hamiltonian mechanical systems with disturbances,”
In: Proceedings of Australasian Conference on Robotics and Automation. Australian Robotics and Automation Association
ARAA (2014) pp. 1–7.

[23] A. Donaire and S. Junco, “On the addition of integral action to port-controlled hamiltonian systems,” Automatica 45(8),
1910–1916 (2009).

[24] E. Bayro-Corrochano, Geometric Algebra Applications. vol. I, Computer Vision, Graphics and Neurocomputing (Springer
Verlag, Heidelberg, 2018).

[25] W. K. Clifford, “Preliminary sketch of bi-quaternions”,” Proc. London Math. Soc. 4, 381–395 (1873).
[26] J. Craig. Introduction to Robotics 2nd edition (Mechanics and Control, Pearson, 1989).
[27] J. Selig, Introductory Robotics (Prentice-Hall International, Hertfordshire, UK, 1992).
[28] V. Utkin, J. Guldner and J. Shi. Sliding Mode Control in Electro-Mechanical Systems, 2nd edition. Automation and Control

Engineering (Taylor & Francis, London, UK, 2009).
[29] M. W. Spong, S. Hutchinson and M. Vidyasagar. Robot Modeling and Control (John Wiley & Sons, 2006).
[30] J. A. Moreno and M. Osorio, “A Lyapunov approach to second-order sliding mode controllers and observers,” In: 47th

IEEE Conference on Decision and Control (December 2008) pp. 2856–2861.

Cite this article: E. Bayro-Corrochano, J. Medrano-Hermosillo, G. Osuna-González and U. Uriostegui-Legorreta (2022).
“Newton–Euler modeling and Hamiltonians for robot control in the geometric algebra”, Robotica 40, 4031–4055.
https://doi.org/10.1017/S0263574722000741

https://doi.org/10.1017/S0263574722000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722000741
https://doi.org/10.1017/S0263574722000741

	
	Introduction
	Motor algebra
	Motors, rotors, and translators in "026E30F textbfG2 +_3,0,1

	Properties of motors
	Screws, twists, and momenta
	Twists
	Momenta and wrenches
	Lie bracket
	Lie co-bracket
	Lagrangian and Hamiltonian formalisms
	Dynamics of n robot links

	Newton"2013`Euler recursive algorithm for dynamics
	Iterative computing of the local Hamiltonian and the derivative of the momenta
	Recursive computing of Hamiltonians for n DOF robot Mmanipultors
	Experimental analysis
	Bang"2013`Bang control for a 2 DOF robot manipulator
	PD and sliding mode controller for a 2 DOF robot manipulator
	PD controller
	Sliding mode controller
	Bang"2013`Bang control for a 4 DOF double spherical pendulum
	Sliding mode controller for a 4 DOF double spherical pendulum
	Conclusion

