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Primary fluid recovery from a porous medium is driven by the volumetric expansion
of the in situ fluid. For production from a petroleum reservoir, primary recovery
accounts for more than half of the total amount of recovered hydrocarbon. The
primary recovery process is studied here at the pore scale and the macroscopic scale.
The pore-scale flow is first analysed using the compressible Navier–Stokes equations
and the mathematical theory for low-Mach-number flow developed by Klainerman &
Majda (Commun. Pure Appl. Maths, vol. 34 (4), 1981, pp. 481–524; vol. 35 (5), 1982,
pp. 629–651). An asymptotic analysis shows that the pore-scale flow is governed by
the self-diffusion of the fluid and it exhibits a slip-like mass flow rate, even though
the velocity satisfies the no-slip condition on the pore wall. The pore-scale density
equation is then upscaled to a macroscopic diffusion equation for the density which
possesses a diffusion coefficient proportional to the fluid’s kinematic viscosity. Darcy’s
law is shown to be inapplicable to primary fluid recovery and it should be replaced by
a new mass flux equation which depends on the porosity but not on the permeability.
This is in stark contrast to the classical result and it can have important implications
for hydrocarbon recovery as well as other applications.
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1. Introduction

Extracting a fluid stored in a porous medium is a problem of fundamental interest
to many applications, such as hydrocarbon recovery, geothermal energy harvesting,
filtration and bioengineering. When the porous medium is rigid and no fresh fluid
is injected into the fluid-bearing reservoir to drive the in situ fluid out of the pore
space, fluid recovery relies entirely on the volumetric expansion of the fluid; such a
process is called primary recovery in the petroleum literature (Muskat 1949). Primary
recovery is the first and the most important stage of hydrocarbon recovery, as it often
accounts for more than half of the total amount of hydrocarbon recovered from a
petroleum reservoir (Dake 1978). Like all flows through porous media, primary fluid
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Non-penetrable

Wellbore

FIGURE 1. (Colour online) Schematic of primary fluid recovery from a porous reservoir.
The outer boundary is impenetrable and the fluid is produced from the inner boundary
(e.g. wellbore).

recovery has been studied using Darcy’s law (Darcy 1856) for more than 80 years
(Muskat 1937, 1949; Bear 1972; Scheidegger 1974; Dake 1978). As reviewed by
Lasseux & Valdes Parada (2017), theoretical justification of Darcy’s law did not
appear until more than 100 years after Darcy’s experiment, when it was shown
that the macroscopic-scale Darcy’s law can be derived from the pore-scale Stokes
flow equation by the method of volume averaging or homogenization (Whitaker
1966, 1986; Keller 1980; Auriault 1987). This direct connection to the fundamental
equations of fluid dynamics provides a solid theoretical support for broad application
of Darcy’s law to flows in porous media. While many of these derivations were based
on the steady incompressible Stokes equation at the pore scale, notably Keller (1980)
and more recently Masmoudi (2002) employed general compressible Navier–Stokes
equations in their derivations. The leading-order problem from which Darcy’s law is
derived, however, is still an incompressible flow problem.

Primary fluid recovery from a porous medium is an inherently unsteady process
occurring in a reservoir with a sealed outer boundary (figure 1). For a hydrocarbon
reservoir, the outer boundary can be considered as impenetrable by fluids from the
outside on the production time scale, which is of the order of several months to
several years (but not on a geological time scale). Since no fresh fluid is injected
into the reservoir, primary fluid recovery is driven by the volumetric expansion of
the in situ fluid. Expansion of the porous rock occurs over a much larger time scale,
since the rock’s bulk modulus is several orders of magnitude higher than that of the
fluid; and rock expansion also requires a significant drawdown in the pore pressure,
which can only occur in the very late stage of primary recovery when significant
fluid depletion has already taken place. Thus, despite a very low fluid velocity, which
would normally justify the incompressible flow approximation from the classical gas
dynamics arguments based on a vanishing Mach number, the flow during primary
fluid recovery is physically dominated by the fluid’s compressible effect. Recently,
Chen & Shen (2018a,b) have studied fluid-expansion-driven drainage flow of a
viscous compressible fluid from a semi-sealed small cylindrical capillary, which can
be considered as a simple pore-scale model for primary recovery (figure 2). They
solved the linearized compressible Navier–Stokes equations subject to the no-slip
condition. Their results show that the fluid mass production rate from the capillary is
proportional to the fluid’s kinematic viscosity; and the no-slip drainage flow exhibits
a slip-like mass flow rate proportional to the square of the capillary radius. These
pore-scale results differ fundamentally from those for a Poiseuille-type flow, which
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FIGURE 2. (Colour online) Primary recovery: a simple pore-scale model of draining a
compressed fluid from a semi-sealed small capillary (from Chen & Shen 2018a). The exit
density ρe is lower than the initial density ρi.

produces a mass flow rate inversely proportional to the fluid’s kinematic viscosity and
proportional to the quartic of the pore radius. Thus, it is expected that, when these
pore-scale results are upscaled, the corresponding macroscopic mass flow rate will
not obey Darcy’s law, which is the upscaled version of the pore-scale Poiseuille’s law.
This indicates that, at the macroscopic scale, primary fluid recovery is not governed
by Darcy’s law.

The present study on primary fluid recovery starts from the pore-scale compressible
Navier–Stokes equations with no-slip condition and derives the corresponding
macroscopic-scale governing equations. It assumes that the condition for slip at
the pore scale (Lasseux et al. 2014; Lasseux, Valdes Parada & Porter 2016) is not
met and the no-slip condition applies. For simplicity and clarity, the present work
is limited to a single-phase fluid; and the motion of a compressible fluid in the
pore space is treated as a viscous compressible flow. Such a compressible flow is
characterized by a small global Mach number, which is defined as the ratio between
a reference fluid speed vref and a reference speed of sound cref , M = vref /cref � 1.
An appropriate choice of the reference speed is the diffusion speed based on the
longitudinal mass diffusion, D/Lref , with D being the mass diffusion coefficient and
Lref the length of the medium. The flow is close to the incompressible limit of
compressible flows, yet the compressible effect dominates the dynamics, as the flow
in primary fluid recovery is solely driven by the volumetric expansion of the fluid.
While it is widely known that the vanishing-Mach-number limit of the compressible
Navier–Stokes equations converges to the incompressible Navier–Stokes equations,
this limiting process is actually subtle, since the speed of sound tends to infinity
and the governing equations change their type (Klainerman & Majda 1981). This
low-Mach-number limit has attracted significant attention since the pioneering work
of Ebin (1977, 1982) and Klainerman & Majda (1981, 1982) (see e.g. Schochet
1987a,b, 2005; Klein 1995; Lions & Masmoudi 1998; Desjardins & Grenier 1999;
Desjardins & Lin 1999; Desjardins et al. 1999; Masmoudi 2000, 2007; Danchin 2001,
2002, 2005; Alazard 2006; Feireisl & Novotny 2009). We will first employ asymptotic
expansions based on the work of Klainerman & Majda (1982) and the Helmholtz
decomposition theorem to derive asymptotic equations for low-Mach-number viscous
compressible flow at the pore scale for primary recovery. It will be shown that, for
primary fluid recovery, the limiting incompressible field at a vanishing Mach number
is identically zero and density is the primary variable of concern. The leading-order
equations show that density change is controlled by the longitudinal mode of the
acoustic field; while the role of the transverse mode (or solenoidal field) is to enforce
the no-slip boundary condition on the pore wall. Density change obeys a damped
wave equation; and at large times, this damped wave equation reduces to a diffusion
equation with mass transport driven by the self-diffusion of the compressible fluid.
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The pore-scale density diffusion equation is then upscaled using the method of
volume averaging (Whitaker 1999) to obtain a macroscopic-level density diffusion
equation. The new macroscopic-scale diffusion equation is compared to the classical
macroscopic-scale equation based on Darcy’s law. It will be shown that there is
a fundamental difference in the diffusion coefficients between the present and the
classical results. The new macroscopic-level diffusion equation for the averaged
density possesses a diffusion coefficient that is independent of the permeability
but proportional to the fluid’s kinematic viscosity, instead of proportional to the
permeability and inversely proportional to the kinematic viscosity for the classical
diffusion coefficient based on Darcy’s law. The new diffusion coefficient can be
several orders of magnitude larger than the classical diffusion coefficient. The analysis
will show that Darcy’s law is not applicable to, and permeability plays no role in
determining the production rate for, primary fluid recovery. A new macroscopic mass
flux equation is derived and it can be used to replace Darcy’s law for primary fluid
recovery.

2. Asymptotic expansion of the governing equations for low-Mach-number flow
Pore-scale flow of a compressible fluid is governed by the continuity and

compressible Navier–Stokes equations (Anderson 1995)

∂ρ

∂t
+∇ · (ρv)= 0, (2.1)

ρ
∂v

∂t
+ ρv · ∇v =−∇p+

(
µb +

1
3
µ

)
∇(∇ · v)+µ∇2v, (2.2)

where v, p, ρ are the velocity, pressure and density, and µ, µb are the shear
and bulk viscosity of the fluid, respectively. Temperature change is assumed to be
negligible. We follow Klainerman & Majda (1982) in making the governing equations
dimensionless. Let vref be the magnitude of a reference fluid particle velocity, Lref
a reference length, and a reference time is defined as tref = Lref /vref . The reference
pressure and density are pref and ρref , respectively. A reference speed of sound can
be defined as cref =

√
pref /ρref (a constant factor is dropped for convenience; see

Klainerman & Majda (1982)). We define dimensionless velocity, pressure, density,
coordinates and time as v̄ = v/vref , p̄= p/pref , ρ̄ = ρ/ρref , x̄ = x/Lref and t̄ = t/tref .
A global Mach number is defined as M = vref /cref , and it will be assumed small. A
Reynolds number is defined as Re= ρrefvref Lref /µ. The dimensionless equations are

∂ρ̄

∂ t̄
+ ∇̄ · (ρ̄v̄)= 0, (2.3)

ρ̄
∂ v̄

∂ t̄
+ ρ̄v̄ · ∇̄v̄ =−

1
M2
∇̄p̄+

µb/µ+ 1/3
Re

∇̄(∇̄ · v̄)+
1

Re
∇̄

2v̄. (2.4)

Using these equations and for inviscid isentropic flow, Klainerman & Majda (1982)
have rigorously proved that, for given initial data, the linearized acoustics is a
uniformly valid principal correction in the deviation of the compressible flow solution
from the incompressible solution as the global Mach number M→ 0, i.e.

|v̄ − (v̄I
+M ṽ

A
)|6∆5M2, (2.5)

|p̄− (p̄0 +M2(p̃I
+ p̃A))|6∆6M3, (2.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

87
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.874


304 Y. Jin and K. P. Chen

where | | stands for the magnitude, and superscripts ‘I’ and ‘A’ stand for incompressible
and acoustic quantities, respectively; v̄I

= limM→0 v̄ with ∇̄ · v̄I
=0 is the incompressible

solution at vanishing Mach number; ∆5 > 0, ∆6 > 0 are fixed constants, and p̄0 is
a background thermodynamic pressure. This asymptotic result has been extended by
Klein (1995) to non-isentropic flows and by Munz et al. (2003) and Munz, Dumbser
& Rolle (2007) to the general heat-conducting viscous compressible Navier–Stokes
equations. These asymptotic results have been used to construct efficient numerical
schemes such as the multiple-pressure-variable method to overcome slow convergence,
even failure, of fully compressible solvers for small-Mach-number flows (Klein 1995;
Klein & Munz 1995; Bijl & Wesseling 1998; Bailly, Bogey & Juve 1999; Wesseling
2001; Munz et al. 2003, 2007).

The above asymptotic theory allows us to decompose a low-Mach-number flow into
the sum of two fields, the limiting incompressible field v̄I and a linearized acoustic
field v̄A,

v̄ = v̄I
+ v̄A. (2.7)

For primary recovery, the outer boundary of the reservoir is non-penetrable. Thus,
except for isolated dead pores, all pores in the reservoir are half-sealed, with the
sealed ends located on the outer boundary or in the interior of the reservoir, and the
open ends located at the wellbore where the fluid is being produced. Therefore, an
incompressible velocity field does not contribute to the mass flow rate at the wellbore,
since integration of the incompressibility condition over the connected pore space
gives the corresponding volumetric flow rate at the wellbore as zero:

Q I
=

∫
wellbore

n · vI da=−
∫

outer boundary
n · vI da= 0, (2.8)

where n is the unit outward normal vector on the corresponding boundaries. Since the
flow in half-sealed pores relies entirely on the volumetric expansion or compressibility
of the fluid, the limiting incompressible velocity v̄I

= limM→0 v̄ must be identically zero
in primary recovery, v̄I

= 0. For v̄I to be non-zero, the pores must have two open ends.
Physically, an incompressible fluid cannot expand in volume; and in half-sealed pores,
there is no fresh fluid to take the place of the volume in the pore space that would
have been vacated by the produced fluid. In other words, to leading order, flow in
primary recovery is completely characterized by the acoustic field v̄A (since v̄I

= 0),
which is coupled to the density change of the fluid. Primary recovery is determined
by how a fluid expands in volume in semi-sealed pores, not by how it is pushed out
of the pores such as in a tube with open ends.

The acoustic velocity field v̄A can be further decomposed into the sum of an
irrotational part v̄IR and a rotational part v̄RT using the Helmholtz decomposition
theorem (Aris 1989; Leal 2010; Panton 2013),

v̄A
= v̄IR + v̄RT, (2.9)

where the irrotational part is a potential flow and the rotational part is solenoidal
(divergence-free):

∇× v̄IR = 0, v̄IR =∇Φ, (2.10)
∇ · v̄RT = 0. (2.11)
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In the above, Φ is the scalar velocity potential for the irrotational part of the
velocity. Thus, for primary recovery, v̄I

= 0, and the asymptotic results (2.5) and (2.6)
suggest the following small-Mach-number expansions for the velocity and pressure:

v̄ = v̄A
+O(M2)=M ṽRT +M ṽIR +O(M2), (2.12)

p̄− p̄0 =M2p̃1 +M2p̃A
+O(M3), (2.13)

where v̄RT = M ṽRT and v̄IR = M ṽIR. The pressure p̄1 = M2 p̃1 is the Lagrangian
multiplier associated with the solenoidal field v̄RT to ensure that the incompressibility
condition for v̄RT is satisfied. The pressure p̄1 is thus a hydrodynamic pressure
induced by the solenoidal field v̄RT and it is not described by the equation of state.
The necessity to include p̃1 in the pressure expansion has been discussed by Klein
(1995) and Munz et al. (2003, 2007). The estimates (2.5) and (2.6) guarantee the
convergence of the series (2.12) and (2.13) in the limit M → 0. Density can be
similarly expanded as

ρ̄ = 1+M2ρ̃2 +O(M4). (2.14)

Density change is only related to the acoustic pressure p̄A
=M2p̃A via the equation of

state
p̃A
= ρ̃2. (2.15)

When the expansions (2.12) and (2.13) are substituted into the governing equations,
to leading order we obtain the following equations for the irrotational field:

∂ρ̃2

∂ t̃
+ ∇̄ · ṽIR = 0, (2.16)

∂ ṽIR

∂ t̃
=−∇̄p̃A

+
µb/µ+ 4/3

ReAC
∇̄(∇̄ · ṽIR), (2.17)

p̃A
= ρ̃2, (2.18)

where the fast-time variable t̃= t̄/M= t/tref ,AC, with tref ,AC=Lref /cref being the acoustic
time scale; and the acoustic Reynolds number ReAC = ρref cref Lref /µ, which is related
to the Reynolds number by Re=MReAC. The leading-order solenoidal field equations
are

∇̄ · v̄RT = 0, (2.19)
∂ v̄RT

∂ t̄
=−∇̄p̃1 +

1
Re
∇̄

2v̄RT . (2.20)

In the acoustic literature, the irrotational field and the solenoidal field are called
the longitudinal mode and the transverse mode, respectively (Morse & Ingard 1968;
Pierce 1981).

It is noted that the solenoidal field is absent in the leading-order irrotational velocity
equations (2.16)–(2.18). The irrotational velocity, however, should not be expected to
satisfy the no-slip condition on a solid boundary. The solenoidal field v̄RT is induced
by the irrotational velocity v̄IR at the boundary so that the no-slip condition for the
overall velocity v̄A

= v̄RT + v̄IR on the pore wall is satisfied:

v̄RT =−v̄IR. (2.21)

For primary recovery, the solenoidal field v̄RT does not generate a net flow rate
(see (2.8)).
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It is noted that mode decomposition of the linear acoustic field has been used
for a long time and it was examined theoretically in detail by Lagerstrom, Cole &
Trilling (1949) and Wu (1956). However, there is one major difference between these
earlier works and the one presented here: in the earlier studies, the pressure p̃1 in the
solenoidal field momentum equation (2.20) has been set to zero identically, p̃1 = 0
(Lagerstrom et al. 1949; Wu 1956; Morse & Ingard 1968; Pierce 1981; Temkin 1981;
Friend & Yeo 2011). However, without this induced pressure, which serves as a
Lagrangian multiplier to enforce the incompressibility condition for the solenoidal
field, the solenoidal equations (2.19) and (2.20) are, in general, overdetermined, as
there would be four equations for three unknowns (the three velocity components).
Thus, in the absence of p̃1, except for a few special cases, the set of equations (2.19)
and (2.20) is likely to give rise to solutions that are internally incompatible due to
overconstraint. In fact, a key result of the asymptotic theory of Klainerman & Majda
(1982) is the splitting of the pressure into the sum of a thermodynamic pressure, a
hydrodynamic pressure and an acoustic pressure for small-Mach-number flows. The
distinct multiple roles that pressure plays physically in the small-Mach-number limit
of a compressible flow and the necessity to include p̃1 in the pressure expansion
have been discussed in detail in Klein (1995), Klein & Munz (1995) and Munz
et al. (2003, 2007). These results form the basis for the multiple-pressure-variable
numerical method for small-Mach-number flows (Klein 1995; Klein & Munz 1995;
Bijl & Wesseling 1998; Bailly et al. 1999; Klein et al. 2001; Wesseling 2001; Munz
et al. 2003, 2007).

3. The damped wave equation for density and its asymptotic form at large times
For primary fluid recovery, integration of the continuity equation (2.1) in the entire

interconnected pore space gives the mass flow rate at the wellbore as

ṁ=−
∫

pore space

∂ρ

∂t
dV, (3.1)

where the property that the outer boundary is non-penetrable has been used. Thus,
density change in the pore space determines the mass production rate at the wellbore.
Density change appears only in the equations (2.16)–(2.18) for the irrotational field,
which leads to a decoupled damped wave equation for the density:

∂2ρ̃2

∂ t̃2
= ∇̄

2ρ̃2 +
µb/µ+ 4/3

ReAC

∂

∂ t̃
∇̄

2ρ̃2. (3.2)

This equation is based on the fast acoustic time scale t̃. The dimensional form of
the damped wave equation is

∂2ρ

∂t2
= c2

ref∇
2ρ +Dρ,0

∂

∂t
∇

2ρ, (3.3)

where
Dρ,0 =

µb + 4µ/3
ρref

= (µb/µ+ 4/3)νref , (3.4)

with νref =µ/ρref being the kinematic viscosity. Here Dρ,0 is a damping coefficient, as
the last term on the right-hand side of (3.3) represents viscous damping of the acoustic
(density) waves; Dρ,0 is also the self-diffusion coefficient of the fluid, as the damping
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stems from the self-diffusion of the fluid mass due to a local density gradient. When
the bulk viscosity is zero as in the Stokes hypothesis, Dρ,0 = 4νref /3. This result is
consistent with the kinetic theory of gases, which shows that the self-diffusivity of a
gas is proportional to the momentum diffusion coefficient ν (Hirschfelder, Curtiss &
Bird 1954). Damping presented by the last term on the right-hand side of (3.3) is also
called sound absorption, as the acoustic waves are absorbed by the bulk of the fluid. In
the absence of a source for continuous excitation, an acoustic wave is expected to be
absorbed by the fluid as well as the boundaries and damped out over large times (here
‘large’ is relative to the acoustic time scale). The linear damped wave equation (3.3),
called the Stokes equation by Rayleigh (1945), is well known in the acoustic literature
and it has appeared in many textbooks (e.g. Morse & Ingard 1968; Temkin 1981).

When the damped wave equation (3.2) is expressed in terms of the slow time
variable t̄=M t̃, which is suitable for large times, we have

M2 ∂
2ρ̃2

∂ t̄2
= ∇̄

2ρ̃2 +M2µb/µ+ 4/3
Re

∂

∂ t̄
∇̄

2
ρ̃2, (3.5)

where the relation Re=MReAC has been used. Thus, when viewed on the large time
scale, to leading order in Mach number,

∇̄
2ρ̃2 = 0. (3.6)

This is the equation for t̄→∞ that corresponds to the final equilibrium state. At the
next order, i.e. for finite t̄, we have a diffusion equation,

∂2ρ̃2

∂ t̄2
=
µb/µ+ 4/3

Re
∂

∂ t̄
∇̄

2
ρ̃2. (3.7)

Consider an initial value problem starting from the state of rest. Then, the initial
condition t̃= 0: ∂ρ̃2/∂ t̃= 0 can be approximated as t̄= 0: ∂ρ̃2/∂ t̄= 0 for the diffusion
equation (3.7) if the acoustic waves are damped rapidly when measured on the large
time scale t̄. Integration of the diffusion equation (3.7) yields the standard diffusion
equation

∂ρ̃2

∂ t̄
=
µb/µ+ 4/3

Re
∇̄

2ρ̃2. (3.8)

Thus, at large times, the density wave becomes purely diffusive, controlled by
diffusion with a diffusive velocity scale vref =Dρ,0/Lref . The Reynolds number is then
Re=µb/µ+ 4/3, and the dimensionless diffusion equation (3.8) becomes

∂ρ̃2

∂ t̄
= ∇̄

2
ρ̃2, (3.9)

where t̄ = t/tref = Dρ,0t/L2
ref . Once the density is solved from the diffusion equation

(3.9), the irrotational velocity can be obtained from the continuity equation (2.16) and
the solenoidal field from solving (2.19) and (2.20).

It should be noted that, with an error of the order of O(M4), equation (3.9) can be
written as

∂ρ̄

∂ t̄
= ∇̄

2 ln ρ̄. (3.10)

In dimensional form,
∂ρ

∂t
=∇ · (Dρ∇ρ), (3.11)
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where
Dρ = (µb/µ+ 4/3)ν, (3.12)

with ν =µ/ρ being the variable kinematic viscosity, is a density-dependent diffusion
coefficient. It can be easily shown from (3.11) and the continuity equation that the
mass flux of the irrotational field ṁIR=ρvIR for primary recovery is given by a Fick’s
law type of relation,

ṁIR =−Dρ∇ρ. (3.13)

Since the solenoidal field does not contribute to the mass flow rate in primary
recovery, the irrotational mass flux ṁIR is also the pore-scale mass flux ṁ = ρv for
primary recovery, i.e. ṁ= ṁIR.

The above analysis shows that, at large times, density in the pore space diffuses
according to the diffusion equation (3.11) with the diffusion coefficient given by
(3.12). We emphasize that the diffusive time scale tref = L2

ref /Dρ,0 is always much
larger than the acoustic time scale tref ,AC = Lref /cref ; and ‘large’ or ‘long’ time is
measured relative to the acoustic time scale. The density diffusion equation (3.11)
is derived from an asymptotic analysis of the compressible Navier–Stokes equations
at low Mach numbers, and it is the fundamental pore-scale transport equation from
which upscaling can be performed.

For a semi-sealed cylindrical pore with a radius R and length L, Chen & Shen
(2018a,b) obtained the complete solution for drainage flow using the linearized
damped wave equation (3.3). A prominent feature of the pore-scale flow is that
density relaxes quickly in the transverse direction after the start-up and density
becomes uniform in the tube cross-section. The velocity field satisfies the no-slip
condition and the fluid production rate at large times is given by

ṁe(t)= 2ML
Dρ,0

L2

∞∑
n=0

exp
[
−
(2n+ 1)2π2Dρ,0t

4L2

]
, (3.14)

where ML = πR2L(ρi − ρe) is the amount of producible fluid for the given density
drop; and ρi and ρe are the initial density and exit density, respectively. The same
result can be obtained by solving the linearized density diffusion equation (3.9).
Clearly, the fluid production rate exhibits a slip-like behaviour as it is proportional to
R2. The fluid production rate is proportional to the fluid’s kinematic viscosity instead
of the reciprocal of the kinematic viscosity as provided by the classical Poiseuille’s
law. These pore-scale results are indicative of the invalidity of the Poiseuille–Darcy
framework for flow in primary recovery at the pore scale, and consequently at the
macroscale.

4. Macroscopic equations for primary recovery
At the pore scale, density change is controlled by self-diffusion and it obeys the

diffusion equation (3.11). Thus, to compute the fluid production rate for primary
recovery using the macroscopic equation (A 4) given in appendix A, we only need to
upscale the density diffusion equation (3.11) subject to the zero-mass-flux condition
on the pore wall,

n · ∇ρ = 0. (4.1)

The spatial deviation of the density, ρ−〈ρ〉f , as defined in Whitaker (1986) with 〈ρ〉f
being the intrinsic average of the density (appendix A), also satisfies the boundary
condition (4.1).
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The problem of upscaling a diffusion equation with a heterogeneous reaction in
porous media has been studied in detail by Whitaker (1999) and more recently
by Lugo-Mendez et al. (2015). Other works on upscaling of a diffusion equation
using the same methodology include, but are not limited to, Wood & Whitaker
(1997, 1999), Valdes-Parada et al. (2009), Valdes-Parada & Aguilar-Madera (2011),
Valdes-Parada, Aguilar-Madera & Alvarez-Ramirez (2011), Benitez-Olivares, Valdes-
Parada & Saucedo-Castaneda (2016), Santos-Sanchez, Valdes-Parada & Chirino
(2016) and Valdes-Parada, Lasseux & Whitaker (2017). In the absence of reaction,
the microscopic-scale diffusion problem studied by Whitaker (1999) and Lugo-
Mendez et al. (2015) is exactly the same as the diffusion equation (3.11) with the
no-penetration condition on the fluid–solid surface (4.1). Thus, the upscaled density
diffusion equation for the present problem is a special case of the upscaled diffusion
equation of Lugo-Mendez et al. (2015, equation (41)), which takes the form

∂〈ρ〉f

∂t
=∇ · (D<ρ>f∇〈ρ〉f ), (4.2)

where the diffusion coefficient is valued at the averaged density,

D〈ρ〉f =
µb + 4µ/3
〈ρ〉f

. (4.3)

The upscaled equation (4.2) is derived under the condition that the closure problem
for the spatial deviation of the density is local, periodic, quasi-steady and linear.
Under this condition and in the absence of reaction, the local closure problem for
the spatial deviation of the density (equations (18a–e) of Lugo-Mendez et al. (2015)),
is homogeneous when subject to the no-penetration boundary condition and zero
initial deviation. Thus, the spatial deviation of the density is identically zero. The
specific time- and length-scale constraints corresponding to the above condition for
simplifying the closure problem have been examined in detail by Lugo-Mendez et al.
(2015), which become (note that the so-called Thiele modulus for the closure problem
is zero in the absence of reaction)

`γ � r0� L,
`γ

L
� 1,

1�
Dρ,0t∗

`2
γ

.

 (4.4)

In (4.4), `γ is the characteristic length for the fluid phase, which can be taken as
the pore throat diameter; r0 is the characteristic size of the averaging volume; L is
the characteristic length of the porous system, which can be taken as the size of the
reservoir; and t∗ is a characteristic time for the fluid production. The characteristic
time for primary recovery is the diffusive time scale L2/Dρ,0; thus, the third condition
in (4.4) coincides with the second condition. The diffusion coefficient (4.3) is valued
at the mean density 〈ρ〉f of the averaging cell. This can be obtained by a Taylor-series
expansion and neglecting the nonlinear terms under the local theory, as shown by
Lugo-Mendez et al. (2015). In cases where the length-scale constraints prevent such
a linearization, Lugo-Mendez et al. (2015) have also developed an iterative procedure
for the nonlinear closure problem.
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The new diffusion equation (4.2) for 〈ρ〉f can be compared to the classical
diffusion equation (A 6) for 〈ρ〉f based on Darcy’s law listed in appendix A.
The diffusion coefficient D〈ρ〉f for (4.2) differs significantly, both physically and
magnitude-wise, from the classical diffusion coefficient DDarcy in (A 6) given by (A 7),
DDarcy = κc2

T〈ρ〉
f /(µφ), with κ, φ, cT being the permeability and porosity of the

porous medium and the isothermal speed of sound of the fluid, respectively. The
diffusion coefficient D〈ρ〉f is directly related to the self-diffusion coefficient of the
fluid,

D11 = (µb/µ+ 4/3)ν. (4.5)
When the bulk viscosity is zero, D11 = 1.33ν for a dilute gas (Hirschfelder et al.
1954). The appearance of the self-diffusion coefficient in the pore-scale fluid density
diffusion equation (3.11) as well as the upscaled fluid density diffusion equation (4.2)
for the intrinsic average density 〈ρ〉f is natural and expected, as the density diffusion
equation describes the mass transport process in the diffusion-dominated flow regime.
On the other hand, DDarcy is inversely proportional to the self-diffusion coefficient
D11, since DDarcy is inversely proportional to the kinematic viscosity ν. Darcy’s law
is only appropriate for incompressible flows and it is irrelevant to the self-diffusion
process. Therefore, the classical diffusion coefficient DDarcy cannot be the correct
diffusion coefficient for the intrinsic average density 〈ρ〉f .

In addition, the magnitude of D〈ρ〉f can be several orders of magnitude higher
than DDarcy. If we evaluate the diffusivities D〈ρ〉f and DDarcy for methane at typical
shale conditions at temperature 80 ◦C and pressure of 25 MPa (appendix B), we have
DDarcy= 4.53× 10−8 m2 s−1 when the porosity is φ= 0.1 and the permeability is one
nanodarcy (κ ≈ 10−21 m2); while D〈ρ〉f = 4.82 × 10−5 m2 s−1. Thus, for methane in
shale, D〈ρ〉f is three orders of magnitude higher than DDarcy. At a lower pressure, the
difference between these two diffusion coefficients becomes even larger, since, as the
pressure is decreased, D〈ρ〉f increases while DDarcy decreases.

To find the mass flux J , which is the mass flow rate per unit porous medium area,
the density diffusion equation (4.2) needs to be written in the form

∂m
∂t
+∇ · J = 0, (4.6)

where m is fluid mass per unit porous medium volume, i.e. the superficial average
density 〈ρ〉, which is related to intrinsic averaged density 〈ρ〉f by 〈ρ〉 = φ〈ρ〉f

(appendix A). Thus,

∂〈ρ〉

∂t
−∇ ·

(
φ
µb + 4µ/3
〈ρ〉

∇〈ρ〉

)
= 0. (4.7)

Equation (4.7) is the effective (i.e. homogenized) medium equation, which shows that,
in the effective medium, mass (density) diffuses with a mass diffusion coefficient

Dm = φ
µb + 4µ/3
〈ρ〉

. (4.8)

Clearly, Dm depends on the porosity, but not on the permeability. The mass flux J is
given by

J =−Dm∇〈ρ〉, (4.9)
which is also independent of permeability. Permeability is a property introduced by
Darcy’s law for incompressible flows and it plays no role in determining the mass
flow rate in primary recovery. Thus, Darcy’s law should be replaced by the mass flux
equation (4.9) for primary fluid recovery.
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1Cell number 2 3 4 5 6 99 100

FIGURE 3. Top: Microscale simulation for density in drainage flow (primary recovery)
with 100 horizontally repeated identical unit cells. The solid circles (totalling 49 for
φ = 0.5840) are randomly distributed in the unit cell. Bottom: Macroscale effective
medium simulation for density distribution. Three porosities φ = 0.5840, 0.4630, 0.3202
are considered.

5. Comparison of macroscale equation with pore-scale simulation

In this section, we solve the upscaled and the microscale density diffusion equations
for drainage of a compressible fluid from a semi-sealed two-dimensional porous
medium channel and compare the average density distributions (figure 3). The porous
medium is made of 100 identical unit cells with a compressible fluid saturating the
pore space with an initial density ρi. The solids in a unit cell with a size of 0.02 m
× 0.02 m are randomly distributed circles with various diameters between 0.0004 m
and 0.0025 m obeying the normal size distribution (several such random generated
patterns have been tested and they produce the same cell averaged densities). The
left end of the channel is sealed while the right end is opened at t = 0, with an
exit density ρe < ρi. We solve the microscale density diffusion equation (3.11) in
the pore space, together with the no-penetration condition (4.1) imposed on the
solid surfaces, including the channel walls. We then compute the average density in
each unit cell and compare the result to the corresponding macroscale density. The
macroscale density is obtained by solving the effective medium density diffusion
equation (4.7) subject to the no-penetration condition on the channel walls. Both
calculations are carried out using COMSOL (COMSOL 2016). In these computations,
ρi = 1 kg m−3, ρe = 0.9 kg m−3, µ = 10−3 Pa s, r0 = 0.02 m, L = 2 m and three
porosities φ = 0.5840, 0.4630, 0.3202 have been used. A large viscosity value is
chosen in order to shorten the computational time required for draining out the fluid
from the channel. Convergence tests have been conducted by mesh refinements.

Figure 4 shows the local density distributions for each system for the case
φ = 0.5840 in three segments of the channel at time t = 1000 s, for cells 6–15,
cells 46–55 and cells 85–94. It is observed that the microscale density distribution in
each unit cell is fairly uniform despite the presence of the solid fractions, and there
is little difference between the microscale and macroscale densities in these three
segments. Figure 5 shows a specific comparison of the cell-averaged dimensionless
density ρavg/ρi for these two systems for cells 10, 50 and 90 (marked as A, B
and C, respectively). For the microscale model, the average density ρavg,mic is the
intrinsically averaged density in the unit cell; while for the macroscale model, ρavg,mac

is averaged over the entire unit cell area since the medium is homogenized. The
relative error of the cell-averaged density between these two models, defined as
|ρavg,mac − ρavg,mic|/ρavg,mic, is plotted against time for each of these three cells in
figure 6(a). The maximum relative errors for these three cells (A, B and C) are
0.6 %, 0.4 % and 0.1 %, respectively. Similarly, for φ= 0.4630, the maximum relative
errors for these three cells are 0.65 %, 0.45 % and 0.15 %, respectively, as shown in
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Cell number

Cell number

7

(a)

(b)

(c)

8 9 10 11 12 13 14

0.90 0.91
Local density distribution in cells 6–15 

Local density distribution in cells 46–55 

Local density distribution in cells 85–94

0.92 0.93 0.94 0.95 0.96

47 48 49 50 51 52 53 54

Cell number

0.91 0.92 0.93 0.94 0.95 0.96 0.97

0.91 0.92 0.93 0.94 0.95 0.96 0.97

86 87 88 89 90 91 92 93

FIGURE 4. (Colour online) Computed local density distributions in the various cells
indicated for the two systems, microscale (top) and macroscale (effective medium)
(bottom) at time t = 1000 s, for φ = 0.5840 and µ = 10−3 Pa s. Initial density ρi =

1 kg m−3 and exit density ρe = 0.9 kg m−3.

figure 6(b). For φ= 0.3202, the maximum relative errors for these three cells are 1 %,
0.7 % and 0.3 %, respectively (figure 6c). This range of relative error is acceptable
for many practical applications. Together, these comparisons provide a numerical
validation of the upscaled density equation.

6. Conclusions

The work reported in this study shows that the macroscopic equation for primary
fluid recovery is fundamentally different from Darcy’s law. The key reason for this
difference is that primary fluid recovery is entirely driven by the fluid’s volumetric
expansion; as a result, the corresponding incompressible limit of the velocity is
identically zero. Since Darcy’s law arises from the upscaling of this incompressible
limit velocity, it then becomes irrelevant to primary recovery. Instead, Darcy’s law
should be replaced by the mass flux equation (4.9) for such a process. In particular,
the mass production rate depends on the porosity, but not on the permeability, of
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FIGURE 5. (Colour online) Comparison of the dimensionless average density for the three
cells (A, B and C) computed from the macroscale equation and the microscale equation,
for φ = 0.5840.

the porous medium. The implication of this result can be significant for hydrocarbon
recovery and possibly for other applications.
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Appendix A. Classical macroscopic equations
Consider the motion of a single-phase compressible fluid in a fully saturated

isotropic homogeneous and rigid porous medium. The superficial averages of the
fluid density ρ and velocity v are defined in terms of the porous medium volume as

〈ρ〉 =
1
V

∫
Vf

ρ dv, 〈v〉 =
1
V

∫
Vf

v dv, (A 1a,b)

where V, Vf are the local volumes of the porous medium and the fluid, respectively.
The superficial averages are related to the intrinsic phase averages, denoted by
superscript ‘f ’ and defined in terms of the fluid volume, by the simple relations

〈ρ〉 = φ〈ρ〉f , 〈v〉 = φ〈v〉f , (A 2a,b)

where φ = Vf /V is the porosity or volume fraction of the fluid phase. The superficial
average velocity 〈v〉 is also known as the specific discharge, which is the volumetric
flow rate per unit area of the porous medium. The macroscopic-level continuity
equation expressed for unit medium volume, which for a rigid porous medium,
φ = const., can be written (Lasseux et al. 2014) as

∂

∂t
(φ〈ρ〉f )+∇ · (〈ρ〉f 〈v〉)= 0. (A 3)
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FIGURE 6. (Colour online) Relative error |ρavg,mac − ρavg,mic|/ρavg,mic versus time for the
three representative cells: (a) φ = 0.5840, (b) φ = 0.4630 and (c) φ = 0.3202.

In primary fluid recovery, the outer boundary of the reservoir is non-penetrable and
the inner boundary, for example a wellbore, is where the fluid is produced (figure 1).
Integrating the continuity equation (A 3) over the entire reservoir volume and applying
the divergence theorem gives the mass flow rate (production rate) at the wellbore as

ṁprimary =

∫
exit
〈ρ〉f n · 〈v〉 da=−

∂

∂t

∫
reservoir

φ〈ρ〉f dv =−
∂

∂t

∫
reservoir

〈ρ〉 dv, (A 4)
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where n is the unit outward normal on the respective boundary. The integral on the
right-hand side of (A 4) is the fluid mass in the reservoir, and (A 4) simply states that
the rate of fluid produced at the wellbore is the time rate of decrease of the fluid mass
in the reservoir. Equation (A 4) shows that density change is the most fundamental
variable for primary fluid recovery. This result was well recognized a long time ago
by Muskat (1937) in his pioneering work on flow in porous media, as he formulated
his macroscopic governing equations using density change instead of pressure change
almost exclusively. In the classical approach, Darcy’s law (Darcy 1856; Bear 1972;
Whitaker 1986)

〈v〉 =−
κ

µ
∇〈p〉f (A 5)

is used to derive the governing equation for the density change at the macroscopic
level. In (A 5), κ is the permeability and µ is the fluid’s shear viscosity. Substituting
(A 5) into (A 3) yields

∂〈ρ〉f

∂t
=∇ · (DDarcy∇〈ρ〉

f ), (A 6)

with the diffusion coefficient

DDarcy =
κc2

T

µφ
〈ρ〉f , (A 7)

where c2
T = ∂〈p〉

f /∂〈ρ〉f |T is the square of the isothermal speed of sound in the fluid.

Appendix B. Methane properties
The following properties of methane at 80 ◦C and 25 MPa, typical for shale forma-

tion, are taken from http://www.peacesoftware.de/einigewerte/methane.html: µ =
1.99 × 10−5 Pa s, µb = 6.368 × 10−3 Pa s, ρ = 136.78 kg m−3, c = 584 m s−1. In
particular, the bulk viscosity for methane is estimated to be 320 times its shear
viscosity at 80 ◦C (Cramer 2012).
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