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Abstract

A noncomplete graph is 2-distance-transitive if, for i ∈ {1, 2} and for any two vertex pairs (u1, v1) and
(u2, v2) with the same distance i in the graph, there exists an element of the graph automorphism group
that maps (u1, v1) to (u2, v2). This paper determines the family of 2-distance-transitive Cayley graphs
over dihedral groups, and it is shown that if the girth of such a graph is not 4, then either it is a known
2-arc-transitive graph or it is isomorphic to one of the following two graphs: Kx[y], where x ≥ 3, y ≥ 2,
and G(2, p, (p − 1)/4), where p is a prime and p ≡ 1 (mod 8). Then, as an application of the above result,
a complete classification is achieved of the family of 2-geodesic-transitive Cayley graphs for dihedral
groups.
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1. Introduction

An arc of a graph is an ordered pair of adjacent vertices. A graph Γ is said to be
arc-transitive if its automorphism group is transitive on the set of arcs. Let u and v be
two distinct vertices of Γ. Then the smallest positive integer n such that there is a path
of length n from u to v is called the distance from u to v and is denoted by dΓ(u, v).
A noncomplete arc-transitive graph Γ is said to be 2-distance-transitive if, for any two
distinct vertex pairs (u1, v1) and (u2, v2) with dΓ(u1, v1) = dΓ(u2, v2) = 2, there exists an
element of Aut(Γ) that maps (u1, v1) to (u2, v2).

The systematic investigation of (locally) 2-distance-transitive graphs was initiated
recently. Devillers et al. [7] studied the class of locally s-distance-transitive graphs
using the normal quotient strategy developed for s-arc-transitive graphs in [29]. Corr
et al. [6] investigated the family of 2-distance-transitive graphs, and they determined
the family of 2-distance-transitive but not 2-arc-transitive graphs of valency at most
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FIGURE 1. Octahedron.

five. Then the authors [21] gave a classification of the class of 2-distance-transitive but
not 2-arc-transitive graphs of valency six.

The family of 2-distance-transitive Cayley graphs over cyclic groups (circulants)
was recently classified in [4]. In this paper, we continue the study of the family of
2-distance-transitive Cayley graphs; precisely, we are interested in 2-distance-transitive
Cayley graphs over dihedral groups. The graph in Figure 1 is the octahedron that is a
2-distance-transitive Cayley graph over the dihedral group D6.

It is easy to see that every noncomplete 2-arc-transitive graph is 2-distance-
transitive. The converse is not necessarily true. If a 2-distance-transitive graph has
girth 3 (length of the shortest cycle is 3), then this graph is not 2-arc-transitive. Hence,
the family of noncomplete 2-arc-transitive graphs is properly contained in the family
of 2-distance-transitive graphs.

The family of 2-arc-transitive dihedrants has been classified in [13, 28, 34].
Thus, we are particularly interested in 2-distance-transitive dihedrants that are not
2-arc-transitive, and the following is a family of examples.

EXAMPLE 1.1. Let T = 〈a, b|an = 1, b2 = 1, ab = a−1〉 � D2n with n ≥ 3, S = T \ 〈b〉
and Γ = Cay(T , S). Let u = 1. Then Γ2(u) = {b}, and {u} ∪ S ∪ Γ2(u) = T . Since Γ is
vertex-transitive, it follows that Γ has diameter 2 and is antipodal with each fold having
two vertices, and so Γ � Kn[2].

Moreover, Aut(Γ) = S2 � Sn is transitive on both the set of vertices and the set of arcs.
For each arc (u, v) of Γ, we have |Γ2(u) ∩ Γ(v)| = 1, and so Γ is 2-distance-transitive.
Since Γ has girth 3 and is noncomplete, it follows that Γ is not 2-arc-transitive.

The graph in Figure 1 is the dihedrant K3[2].

Our first theorem gives a complete classification of the family of 2-distance-transitive
Cayley graphs with triangles over dihedral groups.

THEOREM 1.2. Let Γ be a connected 2-distance-transitive Cayley graph over a
dihedral group. Then Γ has girth 3 if and only if Γ is isomorphic to either Kx[y] for
some x ≥ 3, y ≥ 2 or G(2, p, (p − 1)/4), where p is a prime and p ≡ 1 (mod 8).

The definitions of the graphs arising in Theorem 1.2 are given in the next section.
We give a remark on Theorem 1.2.
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REMARK 1.3. Let Γ be a connected (G, 2)-distance-transitive graph. If Γ has girth
at least 5, then, for any two vertices with distance 2 in Γ, there is a unique 2-arc
between these two vertices. Hence, Γ being (G, 2)-distance-transitive implies that it
is (G, 2)-arc-transitive. Thus, Γ has girth 3 or 4 whenever it is not (G, 2)-arc-transitive.

At the moment, all the (G, 2)-distance-transitive but not (G, 2)-arc-transitive graphs
of girth greater than 3 that we know about are 2-arc-transitive. Moreover, the family
of 2-arc-transitive dihedrants has been classified in [13, 28, 34]. By Theorem 1.2, we
give the following conjecture.

CONJECTURE 1.4. A connected 2-distance-transitive dihedrant either is a known
2-arc-transitive dihedrant or is isomorphic to one of the following two graphs: Kx[y]

for some x ≥ 3, y ≥ 2 and G(2, p, (p − 1)/4), where p is a prime and p ≡ 1 (mod 8).

A vertex triple (u, v, w) of a graph Γ with v adjacent to both u and w is called
a 2-geodesic if u � w and u, w are not adjacent. An arc-transitive and noncom-
plete graph is said to be 2-geodesic-transitive if its graph automorphism group
is transitive on the set of 2-geodesics. During the past ten years, several papers
regarding 2-geodesic-transitive graphs have appeared. The possible local structures of
2-geodesic-transitive graphs were determined in [8]. Then Devillers et al. [9, 11] gave
classifications of all finite graphs that are 2-geodesic-transitive but not 2-arc-transitive,
and which have valency four or prime valency. Later, in [10], a reduction theorem
for the family of normal 2-geodesic-transitive Cayley graphs was produced and those
which are complete multipartite graphs were also classified.

By definition, every 2-geodesic-transitive graph must be a 2-distance-transitive
graph, but some 2-distance-transitive graphs may not be 2-geodesic-transitive. For
instance, Paley graphs with at least 13 vertices are 2-distance-transitive but not
2-geodesic-transitive (see [18]).

There is an investigation of the family of connected 2-geodesic-transitive Cayley
graphs of dihedral groups in [20, Theorem 1.2], where a reduction result was given
and also basic normal quotient graphs were determined. In this paper, as an application
of Theorem 1.2, we determine precisely the family of connected 2-geodesic-transitive
Cayley graphs of dihedral groups.

THEOREM 1.5. Let Γ be a connected 2-geodesic-transitive Cayley graph over a
dihedral group. Then Γ is isomorphic to a noncomplete 2-arc-transitive dihedrant or
to Kx[y] for some x ≥ 3, y ≥ 2.

Note that, in Theorem 1.5, all connected 2-arc-transitive dihedrants are known, and
there is a classification result in [13, 28, 34]. Thus, all connected 2-geodesic-transitive
dihedrants are known.

2. Preliminaries

In this section, we give some definitions about groups and graphs that are used in
the paper.
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All graphs in this paper are finite, simple, connected and undirected. For a graph Γ,
we use V(Γ) and Aut(Γ) to denote its vertex set and automorphism group, respectively.
For the group theoretic terminology not defined here we refer the reader to [3, 12, 39].

2.1. Groups and graphs. Let T be a finite group and let S be a subset of T such that
1 � S and S = S−1. Then the Cayley graph Γ = Cay(T , S) of T with respect to S is the
graph with vertex set T and edge set {{g, sg} | g ∈ T , s ∈ S}. In particular, the Cayley
graph Cay(T , S) is connected if and only if T = 〈S〉. The group R(T) = {σt |t ∈ T}
consists of right translations σt : x 
→ xt and is a subgroup of the automorphism
group Aut(Γ) acting regularly on the vertex set. We may identify T with R(T).
Godsil [15, Lemma 2.1] observed that NAut(Γ)(T) = T : Aut(T , S), where Aut(T , S) =
{σ ∈ Aut(T)|Sσ = S}. If Aut(Γ) = NAut(Γ)(T), then the graph Γ was called a normal
Cayley graph by Xu [40] and such graphs have been studied under various additional
conditions (see [14, 23, 27, 30, 31, 33]).

We call a graph with n vertices a circulant if it has an automorphism that is an
n-cycle. Thus, a circulant is a Cayley graph over a cyclic group.

A dihedral group of order 2n is denoted by D2n and is defined by the presentation
D2n = 〈a, b | an = 1, b2 = 1, ab = a−1〉. A Cayley graph Cay(T , S) is called a dihedrant
if the group T is a dihedral group.

The following lemma about normal subgroups of dihedral groups is well known.

LEMMA 2.1. Let D2n = 〈a, b|an = 1, b2 = 1, bab = a−1〉, where n ≥ 2. Then all the
normal subgroups N of D2n are the following.

(1) If n is odd, then N = 〈ai〉, where i|n.
(2) If n is even, then N is one of the following groups: 〈ai〉, where i|n, 〈a2, b〉 or

〈a2, ab〉.

Let Ω = {ω1,ω2, . . . ,ωn} and let Ω(k) be the set of k-tuples of points of Ω. Then
G ≤ Sym(Ω) is said to be k-transitive on Ω if G is transitive on Ω(k).

For a vertex-transitive graph Γ and a set of Aut(Γ)-invariant partitions B of V(Γ),
the quotient graph ΓB of Γ is the graph whose vertex set is the set B such that two
elements Bi, Bj ∈ B are adjacent in ΓB if and only if there exist x ∈ Bi and y ∈ Bj such
that x, y are adjacent in Γ. The graph Γ is called a cover of ΓB if, for each edge {Bi, Bj}
of ΓB and v ∈ Bi, the vertex v is adjacent to exactly one vertex in Bj; and, further, if
|Bi| = n and we want to emphasize this value, we call Γ a n-cover of ΓB. Whenever the
blocks in B are the N-orbits, for some nontrivial normal subgroup N of Aut(Γ), we
write ΓB = ΓN . Suppose that Γ is a cover of ΓB. Then Γ is further called an antipodal
cover of ΓB if, for any B ∈ B and u, v ∈ B, the distance between u, v in Γ is equal to the
diameter of Γ.

For a graph Γ, its diameter is the maximum of the distances between its pairs of
vertices. For u ∈ V(Γ) and each integer i less than or equal to the diameter of Γ, we
use Γi(u) to denote the set of vertices at distance i from vertex u in Γ. Further, Γ1(u) is
usually denoted by Γ(u).
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A vertex triple (u, v, w) of Γ with v adjacent to both u and w is called a 2-arc if
u � w. A G-arc-transitive graph Γ is said to be (G, 2)-arc-transitive if G is transitive
on the set of 2-arcs. Moreover, if G = Aut(Γ), then G is usually omitted in the previous
notation. The first remarkable result about the class of finite 2-arc-transitive graphs
comes from Tutte [36, 37]. Due to the influence of Tutte’s work, this class of graphs
has been studied extensively in the literature (see [1, 17, 26, 32]).

We denote by Km[b] the complete multipartite graph with m parts, with each part
having b vertices, where m ≥ 3, b ≥ 2.

Let q = pe be a prime power such that q ≡ 1 (mod 4). Let GF(q) be the finite field
of order q. Then the Paley graph P(q) is defined as the graph with vertex set GF(q),
and two distinct vertices u, v are adjacent if and only if u − v is a nonzero square in
GF(q). Note that the congruence condition on the prime power q implies that −1 is a
square in GF(q), and hence P(q) is an undirected graph. Paley first defined this family
of graphs in 1933 (see [29]). Note that the field GF(q) has (q − 1)/2 elements that are
nonzero squares, and so P(q) has valency (q − 1)/2. Moreover, P(q) is a Cayley graph
for the additive group GF(q)+ � Ze

p; and P(q) is 2-distance-transitive, by [2, 18].
Let p be an odd prime and let r be a positive even integer dividing p − 1. Let A and

A′ denote two disjoint copies of Zp and denote the corresponding elements of A and
A′ by i and i′, respectively. Denote the unique subgroup of order r of the multiplicative
group of Zp by L(p, r). We define the graph G(2, p, r) to be the graph with vertex
set A ∪ A′ and edge set {{x, y}, {x′, y}, {x, y′}, {x′, y′}|x, y ∈ Zp, y − x ∈ L(p, r)}. Note that
G(2, p, r) is a nonbipartite bicirculant of valency 2r as it contains a p-cycle. Moreover,
if r = p − 1, then G(2, p, r) is the graph Kp[2] and is also the complement graph of a
complete matching.

2.2. Some lemmas.

LEMMA 2.2. Let Γ = G(2, p, r), where p is an odd prime, r > 1 is even and r divides
p − 1. Then Γ is a Cayley graph of the dihedral group D2p.

PROOF. Recall that V(Γ) consists of the elements i and i′ for i ∈ Zp. Let

τ : V(Γ) 
→ V(Γ), i 
→ i + 1, i′ 
→ (i + 1)′,
σ : V(Γ) 
→ V(Γ), i 
→ (−i)′, i′ 
→ −i.

Then τ is an automorphism of Γ of order p with two orbits being p-cycles, and σ is
an automorphism of Γ of order two swapping the two orbits of τ. Moreover,στσ = τ−1,
and 〈σ, ρ〉 � D2p is a dihedral group of order 2p which acts regularly on the vertex set.
Thus, Γ is a Cayley graph of the dihedral group D2p. �

The following useful result about Cayley graphs is observed by Godsil and Xu.

LEMMA 2.3 [15] and [40, Propositions 1.3 and 1.5]. The graph Γ = Cay(T , S) is a
normal Cayley graph if and only if Aut(Γ) = T : Aut(T , S).

We cite two important results about quasiprimitive permutation groups.
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TABLE 1. Quasiprimitive groups containing regular cyclic subgroups.

G Gu n Condition 3-transitive?

An An−1 n ≥ 5 is odd Yes
Sn Sn−1 n ≥ 4 Yes
PGL(2, q).o [q] : GL(1, q) (q2 − 1)/(q − 1) o ≤ PΓL(2, q)/ Yes

PGL(2, q)
PGL(d, q).o, [qd−1] : (qd − 1)/(q − 1) o ≤ PΓL(d, q)/ No
d ≥ 3 GL(d − 1, q) PGL(d, q)
PSL(2, 11) A5 11 No
M11 M10 11 Yes
M23 M22 23 Yes

TABLE 2. Quasiprimitive groups containing regular dihedral subgroups.

G T Gu Condition 3-transitive?

A4 D4 Z3 No
S4 D4 S3 Yes
AGL(3, 2) D8 GL(3, 2) Yes
AGL(4, 2) D16 GL(4, 2) Yes
Z

4
2 : A7 D16 A7 Yes
Z

4
2 : S6 D16 S6 No
Z

4
2 : A6 D16 A6 No
Z

4
2 : S5 D16 S5 No
Z

4
2 : ΓL(2, 4) D16 ΓL(2, 4) No

M12 D12 M11 Yes
M22.Z2 D22 PSL(3, 4).Z2 Yes
M24 D24 M23 Yes
S2l D2l S2l−1 Yes
A2l D4l A4l−1 Yes
PSL(2, r f ).O Dr f+1 Z

f
r : Zr f−1/2.O r f ≡ 3 (mod 4), 3-transitive iff

O ≤ Z2 × Z f Z2 ≤ O
PGL(2, r f )Ze Dr f+1 Z

f
r : Zr f−1.Ze r f ≡ 1 (mod 4), Yes

e| f

THEOREM 2.4 [22, 24, 35]. Let G be a quasiprimitive permutation group on Ω that
contains a regular cyclic subgroup T of degree n. Then G is primitive on Ω, and either
n = p is prime and G ≤ AGL(1, p) or G is 2-transitive, as listed in Table 1.

THEOREM 2.5 [25, Theorem 1.5]. Let G be a quasiprimitive permutation group on Ω
that contains a regular dihedral subgroup T. Then G is 2-transitive onΩ and (G, T , Gu)
is one of the triples in Table 2.
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The following lemma is obvious and is a generalization of [13, Lemma 2.6].

LEMMA 2.6. Let X 
→ Y be a regular cyclic covering of a connected graph such that
some 2-geodesic-transitive group G ≤ Aut(X) projects along X 
→ Y. Then there exists
a regular prime cyclic covering X′ 
→ Y such that some 2-geodesic-transitive group
G′ ≤ Aut(X′) projects along X′ 
→ Y.

LEMMA 2.7 [7, Lemma 5.3]. Let Γ be a connected locally (G, s)-distance-transitive
graph with s ≥ 2. Let 1 � N � G be intransitive on V(Γ) and let B be the set of N-orbits
on V(Γ). Then one of the following holds.

(i) |B| = 2.
(ii) Γ is bipartite, ΓN � K1,r where r ≥ 2 and G is intransitive on V(Γ).
(iii) s = 2, Γ � Km[b] and ΓN � Km where m ≥ 3 and b ≥ 2.
(iv) N is semiregular on V(Γ), Γ is a cover of ΓN, |V(ΓN)| < |V(Γ)| and ΓN is

(G/N, s′)-distance-transitive, where s′ = min{s, diam(ΓN)}.

We use the following lemma frequently.

LEMMA 2.8. Let Γ be a connected 2-distance-transitive graph of girth 3. Let N be
a nontrivial intransitive normal subgroup of A := Aut(Γ). Suppose that Γ � Kx[y] for
any x ≥ 3, y ≥ 2. Then N is regular on each orbit, Γ is a cover of ΓN and either ΓN is a
complete A/N-arc-transitive graph or ΓN is a noncomplete (A/N, 2)-distance-transitive
graph of girth 3.

PROOF. Since Γ is a 2-distance-transitive graph, it follows that it is locally
2-distance-transitive, and so Lemma 2.7 applies. Since N is intransitive on V(Γ)
and using the A-arc-transitivity of Γ, we know that each nontrivial N-orbit does not
contain any edge of Γ. Thus, Γ is a nonbipartite graph and N has at least three orbits
in V(Γ), as the girth of Γ is 3. Moreover, Γ � Kx[y] for any x ≥ 3 and y ≥ 2 implies that
only Lemma 2.7(iv) occurs. Hence, N is semiregular on the vertex set and Γ is a cover
of ΓN . In particular, ΓN has girth 3.

Since Γ is A-arc-transitive, we can easily show that ΓN is A/N-arc-transitive.
Assume that ΓN is a noncomplete graph. Let (C1, C3) and (C′1, C′3) be two pairs of
vertices of ΓN such that dΓN (C1, C3) = dΓN (C′1, C′3) = 2. Then there exist ci ∈ Ci and
c′i ∈ C′i such that (c1, c3) and (c′1, c′3) are two pairs of vertices of Γ with dΓ(c1, c3) =
dΓ(c′1, c′3) = 2. Since Γ is 2-distance-transitive, there exists α ∈ A such that (c1, c3)α =
(c′1, c′3). Hence, (C1, C3)α = (C′1, C′3). In particular, α induces an element of A/N that
maps (C1, C3) to (C′1, C′3). Therefore, ΓN is (A/N, 2)-distance-transitive. �

3. Proof of main theorem

In this section, we prove our main theorem by a series of lemmas.

LEMMA 3.1. Let Γ be a connected 2-distance-transitive graph of girth 3. Let N be an
intransitive normal subgroup of Aut(Γ) such that ΓN � K|V(Γ)|/2. Then either Γ � Kx[y]

https://doi.org/10.1017/S1446788721000409 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788721000409


[8] Finite two-distance-transitive dihedrants 393

for some x ≥ 3, y ≥ 2 or Γ is a diameter 3, distance-transitive antipodal 2-cover of
K|V(Γ)|/2 and, in particular, Γ is isomorphic to one of the graphs in [16, Main Theorem].

PROOF. Suppose that Γ � Kx[y] for any x ≥ 3, y ≥ 2. Since Γ is a 2-distance-transitive
graph of girth 3, it follows from Lemma 2.8 that N is regular on each orbit and Γ is a
cover of the normal quotient graph ΓN . Furthermore, the assumption that the quotient
graph ΓN is isomorphic to Kn, where n = |V(Γ)|/2, implies that N � Z2 and ΓN has
valency n − 1, and so Γ has valency n − 1 and each N-orbit has two vertices. Let B =
{u, u′} be an N-orbit. By the arc-transitivity of Γ, we know that each N-orbit does not
contain any edge of Γ, and hence the distance between u and u′ in Γ is at least 2.

If the distance between u and u′ is 2, then there exists a vertex w that is adjacent to
both u and u′, and so |Γ(w) ∩ B| = 2, which is impossible since Γ is a cover of ΓN by
Lemma 2.8.

Thus, the distance between u and u′ in Γ is at least 3. Hence, Γ(u) ∩ Γ(u′) = ∅.
Since Γ has valency n − 1, it follows that |Γ(u)| = |Γ(u′)| = n − 1. As Γ is a connected
graph with 2n vertices, we must have Γ2(u) = Γ(u′). Therefore, the distance between
u and u′ in Γ is exactly 3. Moreover, Γ3(u) = {u′}, Γ3(u′) = {u} and V(Γ) = {u} ∪
Γ(u) ∪ Γ2(u) ∪ {u′}. By the 2-distance-transitivity of Γ, for any 2-geodesic (u, v, w),
we have |Γ3(u) ∩ Γ(w)| = 1. This forces Γ to be distance-transitive. Thus, Γ is a
distance-transitive antipodal 2-cover of Kn with diameter 3 and, in particular, this
graph is isomorphic to one of the graphs in [16, Main Theorem]. �

LEMMA 3.2. Let Γ be a connected 2-distance-transitive graph of girth 3 that is not
isomorphic to Kx[y] for any x ≥ 3, y ≥ 2. Let N be an intransitive normal subgroup of
A := Aut(Γ) such that ΓN is a complete graph. Then A/N is 3-transitive on V(ΓN) if and
only if ΓN is (A/N, 2)-arc-transitive, or, equivalently, if and only if Γ is 2-arc-transitive.

PROOF. Since Γ is a 2-distance-transitive graph of girth 3 that is not isomorphic to
Kx[y] for any x ≥ 3, y ≥ 2, it follows from Lemma 2.8 that N is regular on each orbit,
Γ is a cover of ΓN and |V(ΓN)| ≥ 3.

Assume that A/N is 3-transitive on V(ΓN). Then, for each N-orbit B ∈ V(ΓN), the
stabilizer (A/N)B is 2-transitive on ΓN(B), and so ΓN is (A/N, 2)-arc-transitive.

Let (b0, b1, b2) and (c0, c1, c2) be two 2-arcs of Γ, where bi ∈ Bi ∈ V(ΓN) and
ci ∈ Ci ∈ V(ΓN). Then (B0, B1, B2) and (C0, C1, C2) are two 2-arcs of ΓN . Since ΓN

is (A/N, 2)-arc-transitive, it follows that (B0, B1, B2)gN = (C0, C1, C2) for some gN ∈
A/N, and so there exists n ∈ N such that (b0, b1, b2)gn = (c′0, c′1, c′2), where c′i ∈ Ci.

Since N is regular on each orbit, there exists n′ ∈ N such that (c′0)n′ = c0. Hence,
(c′1)n′ ∈ C1 ∩ Γ(c0). As Γ is a cover of ΓN , it follows that [Ci ∪ Cj] � |N |K2, and so
|C1 ∩ Γ(c0)| = 1. Hence, {(c′1)n′ } = C1 ∩ Γ(c0) = {c1}, that is, (c′1)n′ = c1. Similarly,
we can get that (c′2)n′ = c2. Thus, (c′0, c′1, c′2)n′ = (c0, c1, c2), and so (b0, b1, b2)gnn′ =

(c0, c1, c2). Therefore, Γ is 2-arc-transitive.
Conversely, if Γ is 2-arc-transitive, then, for each vertex u of Γ, the stabilizer Au

is 2-transitive on Γ(u). Since Γ is a cover of the graph ΓN , it follows that, for each
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N-orbit B, (A/N)B is 2-transitive on ΓN(B). Moreover, ΓN being a complete graph
implies that A/N is 3-transitive on V(ΓN). �

LEMMA 3.3. Let Γ be a connected 2-distance-transitive Cayley graph of girth 3 over
the dihedral group T. Let N be a maximal intransitive normal subgroup of A := Aut(Γ).
If T ∩ N = 1, then either Γ � Kx[y] for some x ≥ 3, y ≥ 2 or Γ � G(2, p, (p − 1)/4),
where p is a prime and p ≡ 1 (mod 8).

PROOF. Assume that T ∩ N = 1. Let

T = 〈a, b|an = b2 = 1, ab = a−1〉 � D2n where n ≥ 3.

Since Γ is a Cayley graph over the group T, we have |V(Γ)| = |T |. Suppose that
Γ � Kx[y] for any x ≥ 3, y ≥ 2. As Γ is 2-distance-transitive of girth 3, it follows from
Lemma 2.8 that the normal subgroup N of A is regular on each of its orbits and Γ
is a cover of ΓN , and either ΓN is isomorphic to the complete graph Kn or ΓN is a
(A/N, 2)-distance-transitive circulant of girth 3. Moreover, Γ has girth 3 which also
indicates that N has at least three orbits on V(Γ), and so |T |/|N | = |V(ΓN)| ≥ 3.

Since T ∩ N = 1, it follows that T = TN/N � T/T ∩ N � T . Let t be an element
of T that fixes every N-orbit setwisely. Then t is in the kernel of the T-action on
V(ΓN), and so t is in the kernel of the A-action on V(ΓN). Let K be the kernel of the
A-action on V(ΓN). Then N ≤ K. Let B be an N-orbit and let u1 ∈ B. Suppose that
Ku1 � 1. Then, as Γ is connected, there exists a path (u1, u2, . . . , ui, ui+1) of Γ such
that Ku1 fixes each of u1, u2, . . . , ui, but not ui+1. Let α be an element of Ku1 fixing
ui but not ui+1. Then uαi+1 is a distinct vertex to ui+1 and uαi+1 ∈ Γ(ui). Furthermore,
since K fixes every N-orbit, it follows that uαi+1 is in the same N-orbit B′ as ui+1. Thus,
{ui+1, uαi+1} ⊆ Γ(ui) ∩ B′. However, since Γ is a cover of ΓN , it follows that any two
distinct vertices of the same N-orbit have distance at least 3, which is a contradiction.
Therefore, Ku1 = 1 and K is semiregular on V(Γ). Hence, |K| = |N |. It follows that
N = K, as N ≤ K. Thus, t ∈ T ∩ N = 1, and so T acts faithfully on V(ΓN). Since T is
transitive on V(ΓN), the vertex stabilizer TB = TB is a core-free subgroup of T. As the
only nontrivial core-free subgroup of T is 〈b〉 � Z2, we conclude that TB = 〈b〉 � Z2.
Thus, H := 〈a〉 is transitive and so regular on V(ΓN). Since N is regular on each orbit,
it follows that |N | × |H| = |V(Γ)| = |T |, and so |N | = 2. Thus, each N-orbit in the vertex
set has cardinality two and H is regular on V(ΓN).

Therefore, ΓN is a Cayley graph of H with |V(ΓN)| = n. Since H is a cyclic group, it
follows that ΓN is a circulant, and so ΓN is a graph in [19, Theorem 1.3]. Recall that Γ
is a cover of ΓN , and either ΓN is isomorphic to the complete graph Kn, where n ≥ 3, or
ΓN is an (A/N, 2)-distance-transitive circulant of girth 3. If the latter case holds, then,
by [4, Theorem 1.1], we get that ΓN � K(n/2)[2] or a Paley graph.

On the other hand, as N is a maximal intransitive normal subgroup of A, the
quotient group A/N is quasiprimitive on V(ΓN), and so ΓN � K(n/2)[2]. Thus, either
ΓN is isomorphic to the complete graph Kn, where n ≥ 3, or it is isomorphic to a Paley
graph.
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Since T ∩ N = 1, we have H ∩ N = 1, and so H � H/(H ∩ N) � HN/N ≤ A/N.
Hence, A/N contains a regular cyclic subgroup. As A/N is quasiprimitive on V(ΓN), it
follows from Theorem 2.4 that either:

(1) A/N is a 2-transitive group in Table 1 on V(ΓN); or
(2) n = p and A/N ≤ AGL(1, p), where p is a prime.

Assume that ΓN is isomorphic to the complete graph Kn, where n ≥ 3. If n = 3, then
ΓN has valency two. Since Γ is a cover of ΓN , it follows that Γ also has valency two, and
this forces Γ to be the complete graph K3, as it has girth 3, which is a contradiction.
Hence, n ≥ 4. Moreover, Lemma 3.1 indicates that Γ is isomorphic to one of the graphs
in [16, Main Theorem]. Then on inspection of the graphs in [16, Main Theorem], the
case n = p and A/N ≤ AGL(1, p) does not occur. Suppose that case (1) holds, that is,
A/N acts 2-transitively on V(ΓN) and A/N is in Table 1. By inspecting the candidates
in Table 1, either A/N is 3-transitive on V(ΓN) or n = |V(ΓN)| = 11, (qd − 1)/(q − 1),
where d ≥ 3 and q is a prime power. By Lemma 3.2, A/N is not 3-transitive on V(ΓN).
Thus, n = 11 or (qd − 1)/(q − 1), where d ≥ 3 and q is a prime power. However, a check
of the graphs listed in [16, Main Theorem] reveals that such a graph does not exist.

Therefore, ΓN is isomorphic to a Paley graph P(q f ), where q is a prime and q f ≡
1 (mod 4). Moreover, in this case, A/N is not 2-transitive on V(ΓN), and so q f = p and
A/N ≤ AGL(1, p), where p is a prime and p ≡ 1 (mod 4). Recall that |V(Γ)| = 2n and
n = |V(ΓN)|. Hence, the graph Γ is a 2-cover of the Paley graph P(p). Thus, |V(Γ)| = 2p,
and it follows that such a graph is isomorphic to one of the ones listed in [5, Theorem
2.4].

By inspecting the candidates in [5, Theorem 2.4], the only connected nonbipartite
graph is G(2, p, r) of valency 2r, where r is even and r|p − 1. The fact that Γ is a cover
of ΓN which is a Paley graph of valency (p − 1)/2 implies that 2r = (p − 1)/2, and
hence r = (p − 1)/4. Since r is an even integer, we have p ≡ 1 (mod 8). Thus, Γ =
G(2, p, (p − 1)/4), where p is a prime and p ≡ 1 (mod 8). Moreover, by Lemma 2.2,
G(2, p, (p − 1)/4) is a Cayley graph of a dihedral group. This completes the proof. �

LEMMA 3.4. Let Γ be a connected 2-distance-transitive Cayley graph of girth 3
over the dihedral group T = 〈a, b|an = b2 = 1, ab = a−1〉, where n ≥ 3. Suppose that
Γ � Kx[y] for any x ≥ 3, y ≥ 2. Then either:

(i) Γ = G(2, p, (p − 1)/4) where p is a prime and p ≡ 1 (mod 8); or
(ii) every maximal intransitive normal subgroup of Aut(Γ) is a proper subgroup

of 〈a〉.

PROOF. Let N be a maximal intransitive normal subgroup of A := Aut(Γ). Then each
N-orbit is a block of the A-action on V(Γ) and A/N acts quasiprimitively on the set of
N-orbits. Since Γ is arc-transitive, each N-orbit does not contain any edge of Γ. Since
Γ has girth 3, it follows that N has at least three orbits. Let B = {B1, . . . , Bt} be the set
of N-orbits. Then t ≥ 3.
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Let H0 and H1 be the two orbits of H := 〈a〉 on V(Γ). Suppose that there exists
some N-orbit B ∈ B such that B ⊆ Hi for some i ∈ {0, 1}, and assume that there is
another block B′ ∈ B such that B′ ∩ H0 � ∅ and B′ ∩ H1 � ∅. Then, for each vertex
u ∈ B, there exists h ∈ H such that uh ∈ B′ ∩ Hi, as H acts transitively on Hi. Thus,
uh ∈ B′ ∩ Bh. Since Bh ∈ B and B is a block system, we get B′ = Bh ⊆ Hi, which is a
contradiction. Therefore, either:

(1) all elements of B are subsets of H0 or H1; or
(2) the intersections of each B ∈ B with both H0 and H1 are nonempty.

Let B ∈ B. First, suppose that (1) occurs, that is, B ⊂ Hi for some Hi. Then, since H
acts regularly on Hi, it follows that HN/N � H/(H ∩ N) is regular on B ∩ Hi. Hence,
H ∩ N is regular on B, and so |H ∩ N | = |B| = |N | and we have H ∩ N = N. Thus,
N ≤ H is a cyclic group, so (ii) holds.

Now assume that (2) holds, that is, B ∩ Hi � ∅. As B is a block of H, for
each h ∈ H, we have Bh = B or Bh ∩ B = ∅. Since (B ∩ Hi)h ⊆ Hi, it follows that
(B ∩ Hi)h = B ∩ Hi or (B ∩ Hi)h ∩ (B ∩ Hi) = ∅ and so B ∩ Hi is a block for H on
Hi. Further, HN/N � H/(H ∩ N) is regular on B, and so H ∩ N is semiregular on
B with two orbits. Thus, H ∩ N is a cyclic index two subgroup of N, and |B ∩ H0| =
|B ∩ H1|.

Since Γ is a 2-distance-transitive graph of girth 3 and Γ � Kx[y] for any x ≥ 3 and
y ≥ 2, it follows from Lemma 2.8 that N is regular on each orbit, Γ is a cover of ΓN ,
and either ΓN is isomorphic to a complete graph or ΓN is a (A/N, 2)-distance-transitive
noncomplete graph.

Since B ∩ Hi is a block for H on Hi and HN/N � H/(H ∩ N) is regular on B, it
follows that ΓN is a circulant of the cyclic group H/(H ∩ N).

Suppose that ΓN is a (A/N, 2)-distance-transitive noncomplete graph. ΓN is one of
the graphs listed in [19, Theorem 1.3]. Since ΓN has girth 3 and valency at least three,
and since A/N acts quasiprimitively on B, by inspecting the graphs in [19, Theorem
1.3], ΓN is a complete graph, which yields a contradiction.

Thus, ΓN is a complete graph. For i ∈ {0, 1}, let Bi = {B1 ∩ Hi, . . . , Bt ∩ Hi}. Since
each Bj meets each Hi nontrivially, we have that |B0| = |B1| = t. Moreover, as H is
transitive on each Hi, it is transitive on each Bi. Since H is cyclic, it has a unique
subgroup of each order and so the kernel of H on B0 is equal to the kernel of H on B1,
and so is in the kernel of H on B. It follows that H acts faithfully and hence regularly
on each Bi. Thus, |H| = t = |Bi|, and so each B ∈ B has size two. This indicates that
|B ∩ H0| = |B ∩ H1| = 1. Hence, |N | = |B| = 2. Since N has a cyclic index two normal
subgroup H ∩ N, we have H ∩ N = 1.

Since N � A, we have T ∩ N � T . Further, |T : T ∩ N | ≥ |T |/|N | ≥ 3, and it follows
from Lemma 2.1 that T ∩ N ≤ H.

If T ∩ N = H, then T � T/T ∩ N � Z2 and |T | = 2, which contradicts that
|T | = |TN/N | = |T/T ∩ N | ≥ |T/N | = |B| ≥ 3. Thus,

T ∩ N < H.
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If 1 � T ∩ N < H, then H ∩ N = T ∩ N � 1, which is a contradiction. Thus, T ∩
N = 1, and, by Lemma 3.3, Γ = G(2, p, (p − 1)/4), where p is a prime and p ≡ 1
(mod 8), so (i) holds. �

LEMMA 3.5. Let Γ be a connected 2-distance-transitive Cayley graph over a dihedral
group T. Suppose that Γ has girth 3 and is isomorphic to neither Kx[y], where
x ≥ 3, y ≥ 2, nor G(2, p, (p − 1)/4), where p is a prime and p ≡ 1 (mod 8). Then, for
each maximal intransitive normal subgroup N of Aut(Γ), TV(ΓN ) is regular on V(ΓN)
and |TV(ΓN )| = |T/N | = |V(ΓN)|.

PROOF. Let N be a maximal intransitive normal subgroup of A := Aut(Γ). Then, since
Γ is a 2-distance-transitive graph of girth 3 and Γ � Kx[y] for any x ≥ 3 and y ≥ 2, it
follows from Lemma 2.8 that N is regular on each orbit and N is the kernel of A acting
on V(ΓN). Hence, N ∩ T is the kernel of T acting on V(ΓN), and so TV(ΓN ) � T/T ∩ N.

Let T = 〈a, b|an = b2 = 1, ab = a−1〉 � D2n, where n ≥ 3. Then, as Γ is isomorphic
to neither Kx[y], where x ≥ 3, y ≥ 2, nor G(2, p, (p − 1)/4), where p is a prime and
p ≡ 1 (mod 8), it follows from Lemma 3.4 that N < 〈a〉 < T , and so T ∩ N = N.
Thus, |TV(ΓN )| = |T/T ∩ N | = |T/N |. Since T is regular on V(Γ), it follows that |T/N | =
|V(ΓN)|. Hence, |TV(ΓN )| = |T/N | = |V(ΓN)|, and TV(ΓN ) is regular on V(ΓN). �

LEMMA 3.6. Let Γ be a connected 2-distance-transitive Cayley graph over a dihedral
group T. Then Γ has girth 3 if and only if Γ is isomorphic to either Kx[y] for some
x ≥ 3, y ≥ 2 or G(2, p, (p − 1)/4), where p is a prime and p ≡ 1 (mod 8).

PROOF. If Γ � Kx[y] for some x ≥ 3, y ≥ 2 or G(2, p, (p − 1)/4), where p is a prime
and p ≡ 1 (mod 8), then, clearly, Γ has girth 3. Conversely, suppose that Γ has girth
3. Assume further that Γ is isomorphic to neither Kx[y], where x ≥ 3, y ≥ 2, nor
G(2, p, (p − 1)/4), where p is a prime and p ≡ 1 (mod 8).

Let A := Aut(Γ). If A is quasiprimitive on the vertex set V(Γ), then, as T is a dihedral
regular subgroup of A, it follows from Theorem 2.5 that A is 2-transitive on V(Γ), and
so Γ is a complete graph, which is a contradiction. Thus, A is not quasiprimitive on
V(Γ). Hence, A has at least one nontrivial intransitive normal subgroup. Let N be
a maximal intransitive normal subgroup of A. Then N is the kernel of A acting on
V(ΓN). Thus, N ∩ T is the kernel of T acting on V(ΓN), and so TV(ΓN ) � T/T ∩ N.
By Lemma 3.5, the group TV(ΓN ) is regular on V(ΓN), and hence V(ΓN) is the set of
T ∩ N-orbits. It follows that the set of T ∩ N-orbits is exactly the set of N-orbits, and
T ∩ N is transitive on each N-orbit.

Let T = 〈a, b|an = b2 = 1, ab = a−1〉 � D2n, where n ≥ 3. Then, since Γ is not
isomorphic to G(2, p, (p − 1)/4), it follows from Lemma 3.4 that N < 〈a〉 < T , and
so T ∩ N = N. Hence, TV(ΓN ) � T/T ∩ N = T/N is a dihedral subgroup of A/N. Since
N is a maximal intransitive normal subgroup of A, it follows that A/N is quasiprimitive
on V(ΓN). Recall that TV(ΓN ) acts regularly on V(ΓN). Thus, A/N, T/N and |V(ΓN)| lie
in Table 2 of Theorem 2.5. In particular, A/N is 2-transitive on V(ΓN), and so ΓN is a
complete graph.
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Since Γ is a 2-distance-transitive graph of girth 3, it follows that Γ is not
2-arc-transitive. Thus, by Lemma 3.2, A/N is 2-transitive but not 3-transitive on V(ΓN).
By inspecting the groups in Table 2, one of the following holds.

(1) T/N � D4 and |V(ΓN)| = 4.
(2) T/N � D16 and |V(ΓN)| = 16.
(3) A/N = PSL(2, r f ), T/N = Dr f+1, and |V(ΓN)| = r f + 1, r f ≡ 3 (mod 4).

Since N is a cyclic group, it follows that subgroups of N are characteristic
subgroups, and so subgroups of N are normal subgroups of A. Thus, by Lemma 2.6, it
is sufficient to prove the lemma when |N | is a prime. In the remainder of the proof, we
suppose that N � Zp, where p is a prime number.

First, assume that case (1) holds. Then T/N � D4 and |V(ΓN)| = 4. By Lemma 2.8,
Γ is a cover of ΓN . Thus, Γ has valency three. Since Γ is symmetric and has girth 3,
Γ is a complete graph, which is a contradiction.

Next, assume that case (3) occurs. Then A/N = PSL(2, r f ), where r f ≡ 3 (mod 4)
is a nonabelian simple group. Note that CA(N)/N � A/N. We have CA(N)/N = 1
or A/N. Assume that CA(N)/N = 1. Then CA(N) = N, and so A/CA(N) = A/N ≤
Aut(N) is a cyclic group, which is a contradiction. Thus, CA(N)/N = A/N,
and so CA(N) = A. Hence, N ≤ Z(A), and A = N × PSL(2, r f ), r f ≡ 3 (mod 4).
Moreover, PSL(2, r f ) is a maximal intransitive normal subgroup of A as |N |
is a prime. However, by Lemma 3.4, PSL(2, r f ) < 〈a〉 is cyclic, which is a
contradiction.

From now on, we suppose that case (2) holds, that is, T/N � D16, soc(A/N) = Z4
2

and |V(ΓN)| = 16. Thus, ΓN � K16. Moreover, Theorem 2.5 says that the quotient group
A/N ∈ {Z4

2 : A6, Z4
2 : S6, Z4

2 : S5,Z4
2 : ΓL(2, 4)}. Let A := A/N.

Let Y = N.soc(A) = N.Z4
2. Then A = N.A = Y .(A/soc(A)). Thus, for each g ∈ A, we

have g = xy, where x ∈ Y and y ∈ A \ Z4
2. Since N � A and soc(A) = Z4

2, it follows that
Yg = Yy = Y . Hence, Y � A.

Since Z4
2 is regular on V(ΓN), it follows that ΓN is a Cayley graph of Z4

2. Moreover,
soc(A) = Z4

2 � A implies that ΓN is a A-normal Cayley graph of Z4
2. Since N is regular

on each orbit, it follows that Y = N.Z4
2 is regular on V(Γ), and so Γ is a Cayley graph

of Y, say, Γ = Cay(Y , S′). As Y � A, we know that Γ is an A-normal Cayley graph of
Y. Thus, by Lemma 2.3, for the vertex u = 1A ∈ V(Γ), we must have Au ≤ Aut(Y , S′).
Since Γ is a connected 2-distance-transitive graph, Au is transitive on S′. Thus, all
elements of S′ have the same order. Since Y = 〈S′〉 and Y = N.soc(A) = N.Z4

2, it follows
that Y is nonabelian.

First, assume that p is an odd prime. Note that N ≤ CY (N). If CY (N) = N, then
Y = N.Z4

2 ≤ N.Zp−1, which is not possible. Thus, N < CY (N) < Y . Since Y/CY (N) ≤
Aut(N) � Zp−1, we have Y = N.Z4

2 ≤ CY (N).Zp−1, and so CY (N) = N.Z3
2 � Zp × Z3

2
and Zp−1 = Z2. Thus, soc(Y) � Zp × Z3

2 has characteristic subgroup P � Z3
2, and hence

the group P is a normal subgroup of A. It follows that N × P is normal in A and
|Y : N × P| = 2. Therefore, N × P has two orbits on V(Γ), and it induces a normal
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quotient graph ΓN×P � K2. However, by Lemma 2.8, Γ is a cover of ΓN×P, since Γ
has girth 3, and it follows that ΓN×P has girth 3, which is a contradiction.

Next, assume that p = 2. Then Y = Z2.Z4
2. Let Z(Y) denote the center of Y. Then, as

Y is a 2-group, we know that Z(Y) � 1. Further, |Z(Y)| divides 8, as Y is nonabelian. If
|Z(Y)| = 4 or 8, then Z(Y) � A has at least four orbits on V(Γ). Hence, Γ is a cover of
ΓZ(Y). Since ΓN � K16 and Γ covers the graph ΓN , Γ has valency 15. Thus, as the valency
of ΓZ(Y) is equal to the valency of Γ, it is 15, which is impossible as |V(ΓZ(Y))| ≤ 8. So
|Z(Y)| = 2.

Now, either Y � D8 · D8 or Y is the central product of D8 and Q8, and Aut(Y) �
Z

4
2.O+4 (2) or Z4

2.O−4 (2), respectively, where O+4 (2) and O−4 (2) are the orthogonal groups.
Recall that A/N ∈ {Z4

2 : A6, Z4
2 : S6, Z4

2 : S5,Z4
2 : ΓL(2, 4)}. Since Y = N.soc(A) = N.Z4

2
and A = N.A = Y .(A/soc(A)), it follows that A/soc(A) ∈ {A6, S6, S5, ΓL(2, 4)}. How-
ever, as Γ is an A-normal Cayley graph of Y and A = Y .(A/soc(A)), we have A/soc(A) ≤
Aut(Y), which is a contradiction. This completes the proof. �

From Lemma 3.6, we can get Theorem 1.2 directly.
Now, as an application of Theorem 1.2, we prove our second theorem, that is, we

determine the family of 2-geodesic-transitive Cayley graphs over dihedral groups.

PROOF OF THEOREM 1.5. Let Γ be a connected 2-geodesic-transitive Cayley graph
over a dihedral group T � D2n, where n ≥ 3. First, suppose that Γ has girth at least 4.
Then every 2-arc of Γ is a 2-geodesic, and every 2-geodesic is a 2-arc. Thus, Γ is a
noncomplete 2-arc-transitive dihedrant.

Now suppose that Γ has girth 3. Then Γ contains cycles of length 3, and so Γ
contains some 2-arcs that are not 2-geodesics. Thus, Γ is not 2-arc-transitive. Since
Γ is 2-geodesic-transitive, it follows that Γ is a 2-distance-transitive graph. Then by
Theorem 1.2, Γ is isomorphic to either Kx[y] for some x ≥ 3, y ≥ 2 or G(2, p, (p − 1)/4),
where p is a prime and p ≡ 1 (mod 8).

Suppose that Γ is isomorphic to G(2, p, (p − 1)/4), where p is a prime and p ≡
1 (mod 8). Then, by the proof of the Lemma 3.3, we know that Γ is a cover of the
Paley graph P(p) with p vertices. Since Γ is 2-geodesic-transitive, it follows that
the quotient graph P(p) is also 2-geodesic-transitive. Moreover, since p is a prime
and p ≡ 1 (mod 8), we have p ≥ 17. However, by [18, Theorem 1.2], Paley graphs
with at least 13 vertices are 2-distance-transitive but not 2-geodesic-transitive, which
is a contradiction. Thus, Γ is not isomorphic to G(2, p, (p − 1)/4), and hence Γ is
isomorphic to Kx[y] for some x ≥ 3, y ≥ 2. This completes the proof. �
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