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Abstract

A noncomplete graph is 2-distance-transitive if, for i € {1,2} and for any two vertex pairs (u;,v;) and
(up, v2) with the same distance i in the graph, there exists an element of the graph automorphism group
that maps (u;,v;) to (uz,v2). This paper determines the family of 2-distance-transitive Cayley graphs
over dihedral groups, and it is shown that if the girth of such a graph is not 4, then either it is a known
2-arc-transitive graph or it is isomorphic to one of the following two graphs: K,j,;, where x > 3,y > 2,
and G(2, p, (p — 1)/4), where p is a prime and p = 1 (mod 8). Then, as an application of the above result,
a complete classification is achieved of the family of 2-geodesic-transitive Cayley graphs for dihedral
groups.
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1. Introduction

An arc of a graph is an ordered pair of adjacent vertices. A graph I is said to be
arc-transitive if its automorphism group is transitive on the set of arcs. Let u and v be
two distinct vertices of I'. Then the smallest positive integer »n such that there is a path
of length n from u to v is called the distance from u to v and is denoted by dr(u, v).
A noncomplete arc-transitive graph I' is said to be 2-distance-transitive if, for any two
distinct vertex pairs (11, vy) and (up, v) with dr(uy, vi) = dr(uz, v2) = 2, there exists an
element of Aut(') that maps (u, v;) to (uz, v2).

The systematic investigation of (locally) 2-distance-transitive graphs was initiated
recently. Devillers et al. [7] studied the class of locally s-distance-transitive graphs
using the normal quotient strategy developed for s-arc-transitive graphs in [29]. Corr
et al. [6] investigated the family of 2-distance-transitive graphs, and they determined
the family of 2-distance-transitive but not 2-arc-transitive graphs of valency at most
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FIGURE 1. Octahedron.

five. Then the authors [21] gave a classification of the class of 2-distance-transitive but
not 2-arc-transitive graphs of valency six.

The family of 2-distance-transitive Cayley graphs over cyclic groups (circulants)
was recently classified in [4]. In this paper, we continue the study of the family of
2-distance-transitive Cayley graphs; precisely, we are interested in 2-distance-transitive
Cayley graphs over dihedral groups. The graph in Figure 1 is the octahedron that is a
2-distance-transitive Cayley graph over the dihedral group Dg.

It is easy to see that every noncomplete 2-arc-transitive graph is 2-distance-
transitive. The converse is not necessarily true. If a 2-distance-transitive graph has
girth 3 (length of the shortest cycle is 3), then this graph is not 2-arc-transitive. Hence,
the family of noncomplete 2-arc-transitive graphs is properly contained in the family
of 2-distance-transitive graphs.

The family of 2-arc-transitive dihedrants has been classified in [13, 28, 34].
Thus, we are particularly interested in 2-distance-transitive dihedrants that are not
2-arc-transitive, and the following is a family of examples.

EXAMPLE 1.1. Let T =(a,bla" = 1,b* = 1,a’ =a™ 'y = D,, with n >3, S=T\ (b)
and I' = Cay(7, S). Let u = 1. Then I'x2(u) = {b}, and {u} U S UT2(u) =T. Since T is
vertex-transitive, it follows that I has diameter 2 and is antipodal with each fold having
two vertices, and so I' = K,;;2;.

Moreover, Aut(I') = S, ¢ S, is transitive on both the set of vertices and the set of arcs.
For each arc (u,v) of I', we have [I'>2(#) NI'(v)| = 1, and so I is 2-distance-transitive.
Since I has girth 3 and is noncomplete, it follows that I" is not 2-arc-transitive.

The graph in Figure 1 is the dihedrant K.

Our first theorem gives a complete classification of the family of 2-distance-transitive
Cayley graphs with triangles over dihedral groups.

THEOREM 1.2. Let T' be a connected 2-distance-transitive Cayley graph over a
dihedral group. Then I has girth 3 if and only if T is isomorphic to either Ky for
some x >3,y >2o0r G2, p,(p—1)/4), where p is a prime and p = 1 (mod 8).

The definitions of the graphs arising in Theorem 1.2 are given in the next section.
We give a remark on Theorem 1.2.
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REMARK 1.3. Let I be a connected (G, 2)-distance-transitive graph. If I" has girth
at least 5, then, for any two vertices with distance 2 in I, there is a unique 2-arc
between these two vertices. Hence, I' being (G, 2)-distance-transitive implies that it
is (G, 2)-arc-transitive. Thus, I" has girth 3 or 4 whenever it is not (G, 2)-arc-transitive.

At the moment, all the (G, 2)-distance-transitive but not (G, 2)-arc-transitive graphs
of girth greater than 3 that we know about are 2-arc-transitive. Moreover, the family
of 2-arc-transitive dihedrants has been classified in [13, 28, 34]. By Theorem 1.2, we
give the following conjecture.

CONJECTURE 1.4. A connected 2-distance-transitive dihedrant either is a known
2-arc-transitive dihedrant or is isomorphic to one of the following two graphs: K,
Jor some x > 3,y > 2 and G(2, p,(p — 1)/4), where p is a prime and p = 1 (mod 8).

A vertex triple (u,v,w) of a graph I' with v adjacent to both u and w is called
a 2-geodesic if u+w and u,w are not adjacent. An arc-transitive and noncom-
plete graph is said to be 2-geodesic-transitive if its graph automorphism group
is transitive on the set of 2-geodesics. During the past ten years, several papers
regarding 2-geodesic-transitive graphs have appeared. The possible local structures of
2-geodesic-transitive graphs were determined in [8]. Then Devillers et al. [9, 11] gave
classifications of all finite graphs that are 2-geodesic-transitive but not 2-arc-transitive,
and which have valency four or prime valency. Later, in [10], a reduction theorem
for the family of normal 2-geodesic-transitive Cayley graphs was produced and those
which are complete multipartite graphs were also classified.

By definition, every 2-geodesic-transitive graph must be a 2-distance-transitive
graph, but some 2-distance-transitive graphs may not be 2-geodesic-transitive. For
instance, Paley graphs with at least 13 vertices are 2-distance-transitive but not
2-geodesic-transitive (see [18]).

There is an investigation of the family of connected 2-geodesic-transitive Cayley
graphs of dihedral groups in [20, Theorem 1.2], where a reduction result was given
and also basic normal quotient graphs were determined. In this paper, as an application
of Theorem 1.2, we determine precisely the family of connected 2-geodesic-transitive
Cayley graphs of dihedral groups.

THEOREM 1.5. Let T be a connected 2-geodesic-transitive Cayley graph over a
dihedral group. Then T is isomorphic to a noncomplete 2-arc-transitive dihedrant or
to K,y for some x > 3,y > 2.

Note that, in Theorem 1.5, all connected 2-arc-transitive dihedrants are known, and
there is a classification result in [13, 28, 34]. Thus, all connected 2-geodesic-transitive
dihedrants are known.

2. Preliminaries

In this section, we give some definitions about groups and graphs that are used in
the paper.
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All graphs in this paper are finite, simple, connected and undirected. For a graph I,
we use V(I') and Aut(I') to denote its vertex set and automorphism group, respectively.
For the group theoretic terminology not defined here we refer the reader to [3, 12, 39].

2.1. Groups and graphs. Let T be a finite group and let S be a subset of 7 such that
1 ¢ Sand S = S~'. Then the Cayley graph T = Cay(T, S) of T with respect to S is the
graph with vertex set T and edge set {{g,sg}|g € T, s € S}. In particular, the Cayley
graph Cay(7,S) is connected if and only if 7 = (S). The group R(T) = {o|t € T}
consists of right translations o : x — xt and is a subgroup of the automorphism
group Aut(I') acting regularly on the vertex set. We may identify 7 with R(T).
Godsil [15, Lemma 2.1] observed that Naymy(T) = T : Aut(7, S), where Aut(7,S) =
{o € Au(T)IS7 = S}. If Aut(I') = Nawa(7T), then the graph I' was called a normal
Cayley graph by Xu [40] and such graphs have been studied under various additional
conditions (see [14, 23, 27, 30, 31, 33]).

We call a graph with n vertices a circulant if it has an automorphism that is an
n-cycle. Thus, a circulant is a Cayley graph over a cyclic group.

A dihedral group of order 2n is denoted by D», and is defined by the presentation
Dy, ={a,bld"=1,b*=1,a® =a”"). A Cayley graph Cay(T,S) is called a dihedrant
if the group T is a dihedral group.

The following lemma about normal subgroups of dihedral groups is well known.

LEMMA 2.1. Let Dy, = {a,bla" = 1,b* = 1,bab = a™'), where n > 2. Then all the
normal subgroups N of Dy, are the following.

(1) Ifnisodd, then N = {(a'), where i|n.
(2) If n is even, then N is one of the following groups: {a'), where iln, {a*,b) or
(a?, ab).

Let Q = {w, ws, ..., w,} and let Q® be the set of k-tuples of points of Q. Then
G < Sym(Q) is said to be k-transitive on Q if G is transitive on Q®,

For a vertex-transitive graph I' and a set of Aut(I')-invariant partitions B of V(I'),
the quotient graph I'g of T is the graph whose vertex set is the set 8 such that two
elements B;, B; € B are adjacent in I'g if and only if there exist x € B; and y € B; such
that x, y are adjacent in I'. The graph I' is called a cover of I'g if, for each edge {B;, B;}
of I'g and v € B;, the vertex v is adjacent to exactly one vertex in B;; and, further, if
|B;| = n and we want to emphasize this value, we call I" a n-cover of I'g. Whenever the
blocks in B are the N-orbits, for some nontrivial normal subgroup N of Aut(I'), we
write ['g = I'y. Suppose that I" is a cover of I'g. Then I is further called an antipodal
cover of I'g if, for any B € B and u, v € B, the distance between u, v in I is equal to the
diameter of T".

For a graph T, its diameter is the maximum of the distances between its pairs of
vertices. For u € V(I') and each integer i less than or equal to the diameter of I', we
use I';(«) to denote the set of vertices at distance i from vertex u in I'. Further, I' (u) is
usually denoted by I'(x).
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A vertex triple (u,v,w) of I' with v adjacent to both u and w is called a 2-arc if
u # w. A G-arc-transitive graph I is said to be (G, 2)-arc-transitive if G is transitive
on the set of 2-arcs. Moreover, if G = Aut(I'), then G is usually omitted in the previous
notation. The first remarkable result about the class of finite 2-arc-transitive graphs
comes from Tutte [36, 37]. Due to the influence of Tutte’s work, this class of graphs
has been studied extensively in the literature (see [1, 17, 26, 32]).

We denote by K, the complete multipartite graph with m parts, with each part
having b vertices, where m > 3,b > 2.

Let g = p° be a prime power such that ¢ = 1 (mod 4). Let GF(g) be the finite field
of order g. Then the Paley graph P(q) is defined as the graph with vertex set GF(q),
and two distinct vertices u, v are adjacent if and only if u — v is a nonzero square in
GF(g). Note that the congruence condition on the prime power g implies that —1 is a
square in GF(q), and hence P(q) is an undirected graph. Paley first defined this family
of graphs in 1933 (see [29]). Note that the field GF(g) has (¢ — 1)/2 elements that are
nonzero squares, and so P(g) has valency (g — 1)/2. Moreover, P(q) is a Cayley graph
for the additive group GF(q)* = Z¢; and P(q) is 2-distance-transitive, by [2, 18].

Let p be an odd prime and let r be a positive even integer dividing p — 1. Let A and
A’ denote two disjoint copies of Z, and denote the corresponding elements of A and
A’ by i and ', respectively. Denote the unique subgroup of order  of the multiplicative
group of Z, by L(p,r). We define the graph G(2, p,r) to be the graph with vertex
set A U A’ and edge set {{x, y}, {x', ¥}, {x,y'}, (X', y'}lx,y € Z,,y — x € L(p, r)}. Note that
G(2, p,r) is a nonbipartite bicirculant of valency 2r as it contains a p-cycle. Moreover,
if r=p—1, then G(2, p, r) is the graph K,5; and is also the complement graph of a
complete matching.

2.2. Some lemmas.

LEMMA 2.2. Let T = G(2, p,r), where p is an odd prime, r > 1 is even and r divides
p — 1. Then T is a Cayley graph of the dihedral group D>,.

PROOF. Recall that V(I') consists of the elements i and i’ fori € Z,. Let
T: VO > VD),i—i+1,i’ > @G+1),
oc:VI) = VID),i- (=), - —i.

Then 7 is an automorphism of I" of order p with two orbits being p-cycles, and o is

an automorphism of I of order two swapping the two orbits of 7. Moreover, oro = 77!,

and (o, p) = D, is a dihedral group of order 2p which acts regularly on the vertex set.
Thus, I is a Cayley graph of the dihedral group D;,,. ]

The following useful result about Cayley graphs is observed by Godsil and Xu.

LEMMA 2.3 [15] and [40, Propositions 1.3 and 1.5]. The graph I" = Cay(T,S) is a
normal Cayley graph if and only if Aut(I') = T : Aut(T, S).

We cite two important results about quasiprimitive permutation groups.
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TABLE 1. Quasiprimitive groups containing regular cyclic subgroups.

G G, n Condition 3-transitive?
A, A, n >5isodd Yes
S Sh-1 n>4 Yes
PGL(2,q9).0 [q]: GL(l,q) (q2 -1)/(g—1) o< PI'L2,q)/ Yes
PGL(2,q)

PGL(d,q).0, [¢*']: (¢ -1/(g—1) o< PILd,q)/ No
d>3 GLd-1,9) PGL(d, q)
PSL(2,11) As 11 No
M11 Ml() 11 Yes
M23 M22 23 Yes

TABLE 2. Quasiprimitive groups containing regular dihedral subgroups.
G T G, Condition 3-transitive?
A4 D4 Z3 No
S4 D4 S3 Yes
AGL(3,2) Dg GL(3,2) Yes
AGL(4,2) Dig GL4,2) Yes
Z;: Ay D A, Yes
Z; : Se Dis  Se No
Zg . A6 Dig A6 No
Z;:Ss D Ss No
Z;:TL(2,4) Dis TL(2,4) No
M, Dy My Yes
M22 .Z2 D22 PSL(3, 4)Z2 Yes
My Dyy My Yes
Sos Dy, Soi-1 Yes
Ay Dy Ay Yes
PSLQ2,/1).0 Dy, Zl:Zys_15.0 +/ =3 (mod4), 3-transitive iff

0 <7Z)X Zf Zr <0
PGL(2,¥)Z, Dy. Z!:Z4_1.Z. 1/ =1(mod4), Yes
elf

391

THEOREM 2.4 [22, 24, 35]. Let G be a quasiprimitive permutation group on £ that
contains a regular cyclic subgroup T of degree n. Then G is primitive on ), and either
n = pis prime and G < AGL(1, p) or G is 2-transitive, as listed in Table 1.

THEOREM 2.5 [25, Theorem 1.5]. Let G be a quasiprimitive permutation group on €
that contains a regular dihedral subgroup T. Then G is 2-transitive on Q and (G, T, G,)
is one of the triples in Table 2.
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The following lemma is obvious and is a generalization of [13, Lemma 2.6].

LEMMA 2.6. Let X — Y be a regular cyclic covering of a connected graph such that
some 2-geodesic-transitive group G < Aut(X) projects along X +— Y. Then there exists
a regular prime cyclic covering X' — Y such that some 2-geodesic-transitive group
G’ < Aut(X’) projects along X' — Y.

LEMMA 2.7 [7, Lemma 5.3]. Let I be a connected locally (G, s)-distance-transitive
graphwith s > 2. Let 1 # N < G be intransitive on V(I') and let B be the set of N-orbits
on V(). Then one of the following holds.

i 18 =2

(i) T is bipartite, T'y = K, where r > 2 and G is intransitive on V(T').

(i) s=2, T =zKypand 'y =K, where m >3 and b > 2.

@iv) N is semiregular on V(I'), T" is a cover of I'y, [VI'n)| <|V()| and Ty is
(G/N, s")-distance-transitive, where s’ = min{s, diam(I"y)}.

We use the following lemma frequently.

LEMMA 2.8. Let I be a connected 2-distance-transitive graph of girth 3. Let N be
a nontrivial intransitive normal subgroup of A := Aut(I). Suppose that I & K, for
any x > 3,y > 2. Then N is regular on each orbit, T is a cover of Iy and either I'y is a
complete A|N-arc-transitive graph or Iy is a noncomplete (A/N, 2)-distance-transitive
graph of girth 3.

PROOF. Since I' is a 2-distance-transitive graph, it follows that it is locally
2-distance-transitive, and so Lemma 2.7 applies. Since N is intransitive on V(I')
and using the A-arc-transitivity of I, we know that each nontrivial N-orbit does not
contain any edge of I'. Thus, I' is a nonbipartite graph and N has at least three orbits
in V(I'), as the girth of I is 3. Moreover, I' # K,;,j for any x > 3 and y > 2 implies that
only Lemma 2.7(iv) occurs. Hence, N is semiregular on the vertex set and I is a cover
of ['y. In particular, I'y has girth 3.

Since I' is A-arc-transitive, we can easily show that I'y is A/N-arc-transitive.
Assume that I'y is a noncomplete graph. Let (Cy, C3) and (Cf, C}) be two pairs of
vertices of I'y such that dr, (Cy, C3) = dr, (C}, C}) = 2. Then there exist ¢; € C; and
c; € C7 such that (cy, c3) and (¢}, ¢}) are two pairs of vertices of I' with dr(cy,¢3) =
dr(c},c}) = 2. Since I' is 2-distance-transitive, there exists @ € A such that (¢, ¢3)* =
(¢}, ). Hence, (Cy, G3)* = (C}, C%). In particular, @ induces an element of A/N that
maps (Cy, G3) to (Cf, C}). Therefore, I'y is (A/N, 2)-distance-transitive. O

3. Proof of main theorem

In this section, we prove our main theorem by a series of lemmas.

LEMMA 3.1. Let T be a connected 2-distance-transitive graph of girth 3. Let N be an
intransitive normal subgroup of Aut(I') such that I'y = Ky 2. Then either I' = Ky,
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for some x >3,y >2 or I is a diameter 3, distance-transitive antipodal 2-cover of
Kyvry2 and, in particular, T is isomorphic to one of the graphs in [ 16, Main Theorem)].

PROOF. Suppose that I" ¢ K,y for any x > 3,y > 2. Since I' is a 2-distance-transitive
graph of girth 3, it follows from Lemma 2.8 that N is regular on each orbit and I is a
cover of the normal quotient graph I'y. Furthermore, the assumption that the quotient
graph I'y is isomorphic to K,, where n = |V(I')|/2, implies that N = Z, and I'y has
valency n — 1, and so I" has valency n — 1 and each N-orbit has two vertices. Let B =
{u,u’} be an N-orbit. By the arc-transitivity of I', we know that each N-orbit does not
contain any edge of I', and hence the distance between « and «’ in I is at least 2.

If the distance between u and u’ is 2, then there exists a vertex w that is adjacent to
both u and u’, and so |['(w) N B| = 2, which is impossible since I" is a cover of ['y by
Lemma 2.8.

Thus, the distance between u and u’ in I is at least 3. Hence, I'(u) N T'(u’) = 0.
Since I" has valency n — 1, it follows that |I'(«)| = |['(#’)] = n — 1. As I" is a connected
graph with 2n vertices, we must have ['>(x) = I'(«”). Therefore, the distance between
u and v’ in T is exactly 3. Moreover, I'3(u) = {¢'}, I'3(«’) = {#} and V(') = {u} U
I'(u) UTH(u) U {u'}. By the 2-distance-transitivity of I', for any 2-geodesic (u,v,w),
we have |['5(u) NT'(w)| = 1. This forces I' to be distance-transitive. Thus, I" is a
distance-transitive antipodal 2-cover of K, with diameter 3 and, in particular, this
graph is isomorphic to one of the graphs in [16, Main Theorem]. ]

LEMMA 3.2. Let I" be a connected 2-distance-transitive graph of girth 3 that is not
isomorphic to Ky for any x > 3,y > 2. Let N be an intransitive normal subgroup of
A = Aut(T') such that Uy is a complete graph. Then A/N is 3-transitive on V(I'y) if and
only if 'y is (A/N, 2)-arc-transitive, or, equivalently, if and only if T is 2-arc-transitive.

PROOF. Since T is a 2-distance-transitive graph of girth 3 that is not isomorphic to
K,y for any x > 3,y > 2, it follows from Lemma 2.8 that N is regular on each orbit,
I'is a cover of I'y and |V(I'y)| > 3.

Assume that A/N is 3-transitive on V(I'y). Then, for each N-orbit B € V(I'y), the
stabilizer (A/N)p is 2-transitive on I'y(B), and so I'y is (A/N, 2)-arc-transitive.

Let (bgy,b1,b>) and (cg,c1,c) be two 2-arcs of I', where b; € B; € V(I'y) and
¢; € C; € V(I'y). Then (By, By, B>) and (Cy, C;, C>) are two 2-arcs of I'y. Since 'y
is (A/N,2)-arc-transitive, it follows that (By, B, B,)®" = (Cy, Cy, C,) for some gN €
A/N, and so there exists n € N such that (b, b1, b)*" = (¢, ¢}, c), where ¢ € C;.

Since N is regular on each orbit, there exists n” € N such that (c{))"/ = ¢o. Hence,
(c'l)”' € C; NI(cp). As I is a cover of I'y, it follows that [C; U C;] = IN|K;, and so
|Ci NT(co)l = 1. Hence, {(c})"} = C; NI(co) ={c1}, that is, (¢})" = c;. Similarly,
we can get that (c’z)”' = ¢,. Thus, (cé,c’l,c’z)”' = (o, ¢1,¢2), and so (bg, by, by)e™ =
(co, €1, c2). Therefore, I is 2-arc-transitive.

Conversely, if ' is 2-arc-transitive, then, for each vertex u of I', the stabilizer A,
is 2-transitive on ['(x). Since I' is a cover of the graph Iy, it follows that, for each
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N-orbit B, (A/N)g is 2-transitive on ['y(B). Moreover, I'y being a complete graph
implies that A/N is 3-transitive on V(I'y). O

LEMMA 3.3. Let I be a connected 2-distance-transitive Cayley graph of girth 3 over
the dihedral group T. Let N be a maximal intransitive normal subgroup of A := Aut(I').
If TON =1, then either I = Ky for some x >3,y >2 or I' = G2, p,(p — 1)/4),
where p is a prime and p = 1 (mod 8).

PROOF. Assume that 7 NN = 1. Let
T=(abld"=b*"=1,a"=a'y=D,, wheren> 3.

Since I' is a Cayley graph over the group 7, we have |V(I')| = |T|. Suppose that
I' # Ky for any x > 3,y > 2. As I is 2-distance-transitive of girth 3, it follows from
Lemma 2.8 that the normal subgroup N of A is regular on each of its orbits and I’
is a cover of I'y, and either T'y is isomorphic to the complete graph K, or I'y is a
(A/N,2)-distance-transitive circulant of girth 3. Moreover, I" has girth 3 which also
indicates that N has at least three orbits on V(I'), and so |T|/|N| = [V(I'y)| > 3.

Since TN N = 1, it follows that T = TN/N = T/T NN = T. Let ¢ be an element
of T that fixes every N-orbit setwisely. Then ¢ is in the kernel of the 7T-action on
V('y), and so ¢ is in the kernel of the A-action on V(I'y). Let K be the kernel of the
A-action on V(I'y). Then N < K. Let B be an N-orbit and let u; € B. Suppose that
Ky, # 1. Then, as I' is connected, there exists a path (u;,us,...,u;uir1) of I' such
that K, fixes each of uy,us,...,u;, but not u;;. Let & be an element of K, fixing
u; but not u;;y. Then u, | is a distinct vertex to u;;1 and uf , € I'(w;). Furthermore,
since K fixes every N-orbit, it follows that u?, | is in the same N-orbit B” as u;,1. Thus,
{uivr, uf, |} € T(u;) N B’. However, since T is a cover of I'y, it follows that any two
distinct vertices of the same N-orbit have distance at least 3, which is a contradiction.
Therefore, K, =1 and K is semiregular on V(I'). Hence, |K| = |N|. It follows that
N=K,as N<K.Thus,t€ TNN =1, and so T acts faithfully on V(I'y). Since T is
transitive on V(I'y), the vertex stabilizer Tg = Tg is a core-free subgroup of 7. As the
only nontrivial core-free subgroup of T is (b) = Z,, we conclude that 73 =(b) = 7Z,.
Thus, H := {a) is transitive and so regular on V(I'y). Since N is regular on each orbit,
it follows that |[N| X |[H| = |V(I')| = |T|, and so |[N| = 2. Thus, each N-orbit in the vertex
set has cardinality two and H is regular on V(I'y).

Therefore, I'y is a Cayley graph of H with |V(I'y)| = n. Since H is a cyclic group, it
follows that I'y is a circulant, and so I'y is a graph in [19, Theorem 1.3]. Recall that I
is a cover of I'y, and either I'y is isomorphic to the complete graph K,,, where n > 3, or
I'y is an (A/N, 2)-distance-transitive circulant of girth 3. If the latter case holds, then,
by [4, Theorem 1.1], we get that I'y = K, /2);2; or a Paley graph.

On the other hand, as N is a maximal intransitive normal subgroup of A, the
quotient group A/N is quasiprimitive on V(I'y), and so I'y 2 K(,2);2). Thus, either
I'y is isomorphic to the complete graph K,,, where n > 3, or it is isomorphic to a Paley
graph.
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Since TNN =1, we have HNN =1, and so H=H/(HNN) = HN/N <A/N.
Hence, A/N contains a regular cyclic subgroup. As A/N is quasiprimitive on V(I'y), it
follows from Theorem 2.4 that either:

(1) A/N is a 2-transitive group in Table 1 on V(I'y); or
(2) n=pand A/N < AGL(1, p), where p is a prime.

Assume that I'y is isomorphic to the complete graph K,,, where n > 3. If n = 3, then
I'y has valency two. Since I" is a cover of 'y, it follows that I" also has valency two, and
this forces I" to be the complete graph Ks, as it has girth 3, which is a contradiction.
Hence, n > 4. Moreover, Lemma 3.1 indicates that I is isomorphic to one of the graphs
in [16, Main Theorem]. Then on inspection of the graphs in [16, Main Theorem], the
case n = p and A/N < AGL(1, p) does not occur. Suppose that case (1) holds, that is,
A/N acts 2-transitively on V(I'y) and A/N is in Table 1. By inspecting the candidates
in Table 1, either A/N is 3-transitive on V(I'y) or n = [V(T'y)| = 11,(¢¢ = /(g - 1),
where d > 3 and ¢ is a prime power. By Lemma 3.2, A/N is not 3-transitive on V(I'y).
Thus,n = 11 or (¢* — 1)/(g — 1), where d > 3 and ¢ is a prime power. However, a check
of the graphs listed in [16, Main Theorem] reveals that such a graph does not exist.

Therefore, I'y is isomorphic to a Paley graph P(q/), where ¢ is a prime and ¢/ =
1 (mod 4). Moreover, in this case, A/N is not 2-transitive on V(I'y), and so ¢/ = p and
A/N < AGL(1, p), where p is a prime and p = 1 (mod 4). Recall that |V(I')| = 2n and
n = |V(I'y)|. Hence, the graph I is a 2-cover of the Paley graph P(p). Thus, |V(I')| = 2p,
and it follows that such a graph is isomorphic to one of the ones listed in [5, Theorem
2.4].

By inspecting the candidates in [5, Theorem 2.4], the only connected nonbipartite
graph is G(2, p, r) of valency 2r, where r is even and r|p — 1. The fact that I is a cover
of 'y which is a Paley graph of valency (p — 1)/2 implies that 2r = (p — 1)/2, and
hence r = (p — 1)/4. Since r is an even integer, we have p = 1 (mod 8). Thus, I' =
G2, p,(p—1)/4), where p is a prime and p = 1 (mod 8). Moreover, by Lemma 2.2,
G2, p,(p — 1)/4) is a Cayley graph of a dihedral group. This completes the proof. O

LEMMA 3.4. Let T be a connected 2-distance-transitive Cayley graph of girth 3
over the dihedral group T = (a,bla" = b:=1,a"= a‘1>, where n > 3. Suppose that
I' # Ky for any x > 3,y > 2. Then either:

1) T =GQ2,p,(p—1)/4) where pis a prime and p = 1 (mod 8); or
(i1) every maximal intransitive normal subgroup of Aut(I') is a proper subgroup

of (a).

PROOF. Let N be a maximal intransitive normal subgroup of A := Aut(I'). Then each
N-orbit is a block of the A-action on V(I') and A/N acts quasiprimitively on the set of
N-orbits. Since I is arc-transitive, each N-orbit does not contain any edge of I'. Since
I' has girth 3, it follows that N has at least three orbits. Let 8 = {Bj, ..., B} be the set
of N-orbits. Then ¢ > 3.
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Let Hy and H; be the two orbits of H := (a) on V(I'). Suppose that there exists
some N-orbit B € 8 such that B C H; for some i € {0, 1}, and assume that there is
another block B’ € B such that B N Hy # @ and B’ N H, # @. Then, for each vertex
u € B, there exists h € H such that u" € B N H;, as H acts transitively on H;. Thus,
u" € B NB". Since B" € B and B is a block system, we get B’ = B" C H;, which is a
contradiction. Therefore, either:

(1) all elements of B are subsets of H, or Hy; or
(2) the intersections of each B € B with both Hy and H; are nonempty.

Let B € 8. First, suppose that (1) occurs, that is, B C H; for some H;. Then, since H
acts regularly on H;, it follows that HN/N = H/(H N N) is regular on 8 N H;. Hence,
H NN is regular on B, and so |H N N| = |B| = |N| and we have H NN = N. Thus,
N < H is a cyclic group, so (ii) holds.

Now assume that (2) holds, that is, BN H; # @. As B is a block of H, for
each h € H, we have B" =B or B"Nn B = @. Since (BN H;)" C Hj, it follows that
(BNH)'=BnH; or (BNH)"Nn(BNH;)=0o and so BN H; is a block for H on
H;. Further, HN/N = H/(H N N) is regular on 8, and so H N N is semiregular on
B with two orbits. Thus, H N N is a cyclic index two subgroup of N, and |B N Hy| =
|B N H,yl.

Since I' is a 2-distance-transitive graph of girth 3 and I' # K,,) for any x > 3 and
y > 2, it follows from Lemma 2.8 that N is regular on each orbit, I" is a cover of I'y,
and either 'y is isomorphic to a complete graph or 'y is a (A/N, 2)-distance-transitive
noncomplete graph.

Since BN H; is a block for H on H; and HN/N = H/(H N N) is regular on B, it
follows that 'y is a circulant of the cyclic group H/(H N N).

Suppose that I'y is a (A/N, 2)-distance-transitive noncomplete graph. I'y is one of
the graphs listed in [19, Theorem 1.3]. Since I'y has girth 3 and valency at least three,
and since A/N acts quasiprimitively on 8B, by inspecting the graphs in [19, Theorem
1.3], T'y is a complete graph, which yields a contradiction.

Thus, I'y is a complete graph. For i € {0, 1}, let B, = {B; N H;, ..., B, N H;}. Since
each B; meets each H; nontrivially, we have that |By| = |8B;| = t. Moreover, as H is
transitive on each H;, it is transitive on each 8B;. Since H is cyclic, it has a unique
subgroup of each order and so the kernel of H on B is equal to the kernel of H on 85,
and so is in the kernel of H on 8. It follows that H acts faithfully and hence regularly
on each B;. Thus, |H| = t = |8,], and so each B € B has size two. This indicates that
|BN Hp| =|BN H;| =1. Hence, |N| = |B| = 2. Since N has a cyclic index two normal
subgroup H N N, we have HN N = 1.

Since N <A, we have T NN < T. Further, |T : T N N| > |T|/|N| > 3, and it follows
from Lemma 2.1 that TN N < H.

If TNN=H, then T=T/TNN =7, and |7"| =2, which contradicts that
IT| = |TN/N| = |T/T N N| > |T/N| = |8| > 3. Thus,

TNN<H.
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If1+TNN<H,then HNN =T NN # 1, which is a contradiction. Thus, 7' N
N =1, and, by Lemma 3.3, T' = G2, p,(p — 1)/4), where p is a prime and p = 1
(mod 8), so (i) holds. O

LEMMA 3.5. Let T be a connected 2-distance-transitive Cayley graph over a dihedral
group T. Suppose that I has girth 3 and is isomorphic to neither Ky, where
x>3,y>2 nor G2, p,(p—1)/4), where p is a prime and p = 1 (mod 8). Then, for
each maximal intransitive normal subgroup N of Aut(I'), TV is regular on V(I'y)
and |TY™)| = |T/N| = |V(T'y)|.

PROOF. Let N be a maximal intransitive normal subgroup of A := Aut(I'). Then, since
I' is a 2-distance-transitive graph of girth 3 and I" # K,(,; for any x > 3 and y > 2, it
follows from Lemma 2.8 that N is regular on each orbit and N is the kernel of A acting
on V(I'y). Hence, N N T is the kernel of T acting on V(I'y), and so TV = T/T N N.

Let T = {a,bla" = b* = 1,a” = a') = D,,, where n > 3. Then, as I' is isomorphic
to neither K,,), where x > 3,y > 2, nor G(2, p, (p — 1)/4), where p is a prime and
p = 1 (mod 8), it follows from Lemma 3.4 that N <{a)<T, and so TNN = N.
Thus, |TY™)| = |T/T N N| = |T/N|. Since T is regular on V(I), it follows that |T/N| =
|V(I'y)|. Hence, [TV®¥)| = |T/N| = |V(I'y)|, and TV is regular on V(I'y). O

LEMMA 3.6. Let I" be a connected 2-distance-transitive Cayley graph over a dihedral
group T. Then I has girth 3 if and only if T is isomorphic to either K for some
x>3,y>20rGQ2,p,(p—1)/4), where p is a prime and p = 1 (mod 8).

PROOF. If I" = K,y for some x > 3,y > 2 or G(2, p,(p — 1)/4), where p is a prime
and p = 1 (mod 8), then, clearly, I has girth 3. Conversely, suppose that I" has girth
3. Assume further that I' is isomorphic to neither Ky, where x >3,y > 2, nor
G2, p,(p—1)/4), where p is a prime and p = 1 (mod 8).

LetA := Aut(I'). If A is quasiprimitive on the vertex set V(I'), then, as T is a dihedral
regular subgroup of A, it follows from Theorem 2.5 that A is 2-transitive on V(I'), and
so I is a complete graph, which is a contradiction. Thus, A is not quasiprimitive on
V(). Hence, A has at least one nontrivial intransitive normal subgroup. Let N be
a maximal intransitive normal subgroup of A. Then N is the kernel of A acting on
V(Ty). Thus, NN T is the kernel of T acting on V(I'y), and so 7Y™V = T/T N N.
By Lemma 3.5, the group TV™™ is regular on V(I'y), and hence V(I'y) is the set of
T N N-orbits. It follows that the set of 7' N N-orbits is exactly the set of N-orbits, and
T N N is transitive on each N-orbit.

Let T ={a,bld" = b*>=1,a®> =a™') = D,,, where n>3. Then, since I' is not
isomorphic to G(2, p,(p — 1)/4), it follows from Lemma 3.4 that N < {a) < T, and
soTNN =N.Hence, TV™ = T/T NN = T/N is a dihedral subgroup of A/N. Since
N is a maximal intransitive normal subgroup of A, it follows that A/N is quasiprimitive
on V(Ty). Recall that TV acts regularly on V(I'y). Thus, A/N, T/N and |V(I'y)| lie
in Table 2 of Theorem 2.5. In particular, A/N is 2-transitive on V(I'y), and so I'y is a
complete graph.
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Since I' is a 2-distance-transitive graph of girth 3, it follows that ' is not
2-arc-transitive. Thus, by Lemma 3.2, A/N is 2-transitive but not 3-transitive on V(I'y).
By inspecting the groups in Table 2, one of the following holds.

(1) T/N =Dy and |[V(ITy)| = 4.
(2) T/N =Dy and [V(I'y)| = 16.
(3) A/N =PSL2,#/), TN = D,,,, and [V(Ty)| = ¥/ + 1,/ = 3 (mod 4).

Since N is a cyclic group, it follows that subgroups of N are characteristic
subgroups, and so subgroups of N are normal subgroups of A. Thus, by Lemma 2.6, it
is sufficient to prove the lemma when |N| is a prime. In the remainder of the proof, we
suppose that N = Z,, where p is a prime number.

First, assume that case (1) holds. Then 7/N = D, and |V(I'y)| = 4. By Lemma 2.8,
I' is a cover of I'y. Thus, I' has valency three. Since I' is symmetric and has girth 3,
I' is a complete graph, which is a contradiction.

Next, assume that case (3) occurs. Then A/N = PSL(2,r/), where r/ = 3 (mod 4)
is a nonabelian simple group. Note that C4(N)/N <A/N. We have Co(N)/N =1
or A/N. Assume that C4(N)/N = 1. Then C4(N) =N, and so A/Cs(N) =A/N <
Aut(N) is a cyclic group, which is a contradiction. Thus, Cs(N)/N =A/N,
and so C4(N)=A. Hence, N <Z(A), and A =N x PSL(2,r/), v/ =3 (mod 4).
Moreover, PSL(2,r/) is a maximal intransitive normal subgroup of A as |N|
is a prime. However, by Lemma 3.4, PSL(2,r/) <{(a) is cyclic, which is a
contradiction.

From now on, we suppose that case (2) holds, that is, T/N = D4, soc(A/N) = Z‘g
and |V(I'y)| = 16. Thus, I'y = K. Moreover, Theorem 2.5 says that the quotient group
AIN €{Z3 : Ao, Z2 : S, Z2% : S5,Z3 : TL(2,4)}. Let A := A/N.

Let Y = N.soc(A) = N.Z‘Z‘. Then A = N.A = Y.(A/soc(A)). Thus, for each geA, we
have g = xy, where x € Y and y € A \ Z2. Since N < A and soc(A) = Z3, it follows that
Y8 =YY =Y. Hence, Y <A.

Since Z; is regular on V(I'y), it follows that I'y is a Cayley graph of Z3. Moreover,
soc(A) = Z‘z¥ < A implies that T'y is a A-normal Cayley graph of Z‘z‘. Since N is regular
on each orbit, it follows that Y = N .Z‘; is regular on V(I'), and so I' is a Cayley graph
of Y, say, I' = Cay(Y,S"). As Y < A, we know that I is an A-normal Cayley graph of
Y. Thus, by Lemma 2.3, for the vertex u = 14 € V(I'), we must have A, < Aut(Y, S").
Since I' is a connected 2-distance-transitive graph, A, is transitive on S’. Thus, all
elements of S’ have the same order. Since Y = (§'Yand Y = N.soc(A) = N .Z‘é, it follows
that Y is nonabelian.

First, assume that p is an odd prime. Note that N < Cy(N). If Cy(N) = N, then
Y = N.Z‘21 < N.Z,_1, which is not possible. Thus, N < Cy(N) < Y. Since Y/Cy(N) <
Aut(N) = Z,_;, we have ¥ = N.Z; < Cy(N).Zy_1, and so Cy(N) = N.Z§ =7,X7Z;
and Z,_1 = Z,. Thus, soc(Y) = Z, X Z; has characteristic subgroup P = Z;, and hence
the group P is a normal subgroup of A. It follows that N X P is normal in A and
|Y : N x P| = 2. Therefore, N X P has two orbits on V(I'), and it induces a normal
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quotient graph I'yxp = K,. However, by Lemma 2.8, I" is a cover of ['yxp, since I
has girth 3, and it follows that I'y«p has girth 3, which is a contradiction.

Next, assume that p = 2. Then Y = ZZ.Z‘Z‘. Let Z(Y) denote the center of Y. Then, as
Y is a 2-group, we know that Z(Y) # 1. Further, |Z(Y)| divides 8, as Y is nonabelian. If
|Z(Y)| = 4 or 8, then Z(Y) < A has at least four orbits on V(I'). Hence, I is a cover of
I'z(v). Since I'y = K¢ and I covers the graph I'y, I" has valency 15. Thus, as the valency
of I'z(y) is equal to the valency of I', it is 15, which is impossible as [V(I'zy))| < 8. So
|Z(Y)| = 2.

Now, either Y = Dg - Dg or Y is the central product of Dg and Qg, and Aut(Y) =
Z‘Z‘.OI (2) or Z‘z‘.OZ (2), respectively, where OZ (2) and O} (2) are the orthogonal groups.
Recall that A/N € {Z3 : Ag, Z2 : Se. Z2 : Ss5,Z3 : TL(2,4)}. Since Y = N.soc(A) = N.Z4
and A = N.A = Y.(A/soc(A)), it follows that A/soc(A) € {As, Se, S5, TL(2,4)}. How-
ever, as [ is an A-normal Cayley graph of Y and A = Y.(Z / soc(Z)), we have A / soc(X) <
Aut(Y), which is a contradiction. This completes the proof. ]

From Lemma 3.6, we can get Theorem 1.2 directly.
Now, as an application of Theorem 1.2, we prove our second theorem, that is, we
determine the family of 2-geodesic-transitive Cayley graphs over dihedral groups.

PROOF OF THEOREM 1.5. Let I' be a connected 2-geodesic-transitive Cayley graph
over a dihedral group T = D,,, where n > 3. First, suppose that I" has girth at least 4.
Then every 2-arc of I is a 2-geodesic, and every 2-geodesic is a 2-arc. Thus, I' is a
noncomplete 2-arc-transitive dihedrant.

Now suppose that ' has girth 3. Then I' contains cycles of length 3, and so I
contains some 2-arcs that are not 2-geodesics. Thus, I' is not 2-arc-transitive. Since
I is 2-geodesic-transitive, it follows that I' is a 2-distance-transitive graph. Then by
Theorem 1.2, I" is isomorphic to either K,y forsomex > 3,y > 2 or G(2, p, (p — 1)/4),
where p is a prime and p = 1 (mod 8).

Suppose that I" is isomorphic to G(2, p,(p — 1)/4), where p is a prime and p =
1 (mod 8). Then, by the proof of the Lemma 3.3, we know that I' is a cover of the
Paley graph P(p) with p vertices. Since I' is 2-geodesic-transitive, it follows that
the quotient graph P(p) is also 2-geodesic-transitive. Moreover, since p is a prime
and p =1 (mod 8), we have p > 17. However, by [18, Theorem 1.2], Paley graphs
with at least 13 vertices are 2-distance-transitive but not 2-geodesic-transitive, which
is a contradiction. Thus, I' is not isomorphic to G(2, p,(p — 1)/4), and hence T is
isomorphic to K,,) for some x > 3,y > 2. This completes the proof. |
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