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When analyzing data, researchers make some choices that are either arbitrary, based on subjective
beliefs about the data-generating process, or for which equally justifiable alternative choices could have
been made. This wide range of data-analytic choices can be abused and has been one of the underlying
causes of the replication crisis in several fields. Recently, the introduction of multiverse analysis provides
researchers with a method to evaluate the stability of the results across reasonable choices that could
be made when analyzing data. Multiverse analysis is confined to a descriptive role, lacking a proper and
comprehensive inferential procedure. Recently, specification curve analysis adds an inferential procedure to
multiverse analysis, but this approach is limited to simple cases related to the linear model, and only allows
researchers to inferwhether at least one specification rejects the null hypothesis, but notwhich specifications
should be selected. In this paper, we present a Post-selection Inference approach to Multiverse Analysis
(PIMA) which is a flexible and general inferential approach that considers for all possible models, i.e.,
the multiverse of reasonable analyses. The approach allows for a wide range of data specifications (i.e.,
preprocessing) and any generalized linear model; it allows testing the null hypothesis that a given predictor
is not associated with the outcome, by combining information from all reasonable models of multiverse
analysis, and provides strong control of the family-wise error rate allowing researchers to claim that the null
hypothesis can be rejected for any specification that shows a significant effect. The inferential proposal is
based on a conditional resampling procedure.We formally prove that the Type I error rate is controlled, and
compute the statistical power of the test through a simulation study. Finally, we apply the PIMA procedure
to the analysis of a real dataset on the self-reported hesitancy for the COronaVIrus Disease 2019 (COVID-
19) vaccine before and after the 2020 lockdown in Italy. We conclude with practical recommendations to
be considered when implementing the proposed procedure.
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1. Introduction

Real-world data analysis often involves many defensible choices at each step of the analysis,
such as how to combine and transform measurements, how to deal with missing data and outliers,
and even how to choose a statistical model. In general, there is not a single defensible choice for
every decision researchers must make, and there are many defensible options for each step of the
data analysis (Gelman&Loken, 2014) . As a result, raw data do not uniquely yield a single dataset
for analysis. Instead, researchers are faced with a set of processed datasets, each determined by
a unique combination of choices—a multiverse of datasets. Since analyses performed on each
dataset may yield different results, the data multiverse directly implies a multiverse of statistical
results. In recent years, concerns have been raised about how researchers can exploit this flexibility
in data analysis to increase the likelihood of observing a statistically significant result. Researchers
may engage in such questionable research practices due to editorial practices that prioritize the
publication of statistically significant results or the selection of findings that confirm the belief
of the same authors (Begg & Berlin, 1988; Dwan et al., 2008; Fanelli, 2012) . When researchers
select and report the results of a subset of all possible analyses that produce significant results
(Sterling, 1959; Greenwald, 1975; Simmons et al., 2011; Brodeur et al., 2016) , they dramatically
increase the actual false-positive rates despite their nominal endorsement of a low Type I error
rate (e.g., 5%).

Two solutions have been proposed to address the issue of p-hacking. The first solution requires
researchers to specify their statistical analysis plan before examining raw data. Such preregistered
studies control the Type I error rate by reducing flexibility during the data analysis. Preregistration
is easily implemented for replication studies, where researchers specify that they will perform the
same analysis as was performed in an earlier study. For more novel studies, preregistration can
be challenging because researchers may not have enough knowledge to anticipate all the possible
decisions that need to be made when analyzing the data. The second solution recognizes that it
is often not feasible to specify a single analysis before collecting the data and instead advocates
for transparently reporting all possible analyses that can be conducted. Steegen et al. (2016)
introduced multiverse analysis, which aims to use all reasonable options for data processing to
construct amultiverse of datasets and then separately perform the same analysis of interest on each
of these datasets. The main tool used to interpret the output of a multiverse analysis is a histogram
of p values, which summarizes all the p values obtained for a given effect. Researchers then
typically discuss the results in terms of the proportion of significant p values. This procedure not
only provides a detailed picture of the robustness or fragility of the results in different processing
choices, but also allows researchers to explore the key choices that are most consequential in
the fluctuation of their results. Multiverse analysis represents a valuable step towards transparent
science. The method has gained popularity since its development and has been applied in various
experimental contexts, including cognitive development, risk perception (Mirman et al., 2021) ,
assessment of parental behavior (Modecki et al., 2020) , andmemory tasks (Wessel et al., 2020) .
Although some applications are limited to exploratory purposes, aiming to define brief guidelines
for conducting a multiverse analysis (Dragicevic et al., 2019; Liu et al., 2020) , other studies
use this method as a robustness assessment for mediation analysis (Rijnhart et al., 2021) or an
exhaustive modeling approach (Frey et al., 2021) . This research approach permits to exhibit the
stability and robustness of findings, not only across different exclusion criteria or modifications of
variables, but also across different decisions made during all phases of data analysis. This feature
can be particularly interesting and appealing from the perspective of the replicability crisis in
quantitative psychology (Open Science Collaboration, 2015) , and in enhancing the transparency
and credibility of scientific results (Nosek & Lakens, 2014) . Multiverse analysis can therefore
be extended beyond the pre-processing stage to include the methods used for the analysis (the
“multiverse of methods”) (Harder, 2020) . The explicit flexibility in multiverse analysis is not
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to be condemned as it reflects an effort to transparently describe the uncertainty about the best
analysis strategy. However, if, on the one hand, the exploration of multiple analytical choices in
data analysis must be advocated, on the other hand it is challenging to draw reliable inferences
from such a large number of statistical analyses. Although most researchers have interpreted the
results derived from multiverse analysis descriptively, while doing so, it is extremely tempting
to make claims about analyses that yield statistically significant results, and not to make claims
about non-significant results. However, a selective focus on a subset of statistically significant
results once again introduces the problem of selective inference (Benjamini, 2020) and can
potentially inflate the rate at which claims about effects are false positives.

Currently, the only method that allows researchers to make formal inferences in multiverse
analysis is specification curve analysis (Simonsohn et al., 2020) . Analogously to multiverse
analysis, it requires researchers to consider the entire set of reasonable combinations of data-
analytic decisions, called specifications; subsequently, these specifications are used jointly to
derive a test for the null hypothesis of interest. If the null hypothesis is rejected, researchers can
claim with a certain maximum error rate (e.g., 5%) that there exists at least one specification in
which the null hypothesis is false. In themost general case of non-experimental data, the inferential
support is based on bootstrapping techniques and is valid only in linear regression models (LMs),
without the possibility of a general extension to other distributions for the dependent variable that
are usually included in generalized linear models (GLMs). More importantly, this methodology
lacks a formal description of the statistical properties of the test, allows testing only a single
hypothesis, and does not address the problem of controlling multiplicity when testing different
hypotheses. A more formal study of the method’s performance is provided in Sects. 3 and 4.
Because researchers are often interested in models that are more complex than LMs, want to
explore several different processing steps, and possibly wish to investigate more null hypotheses
together, it would be beneficial if more advanced analysis methods for multiverse analysis were
developed. Suchmore advancedmethodswould allow, for example, psychometricians to identify a
set of predictors that are associated with a particular outcome, or allow neuroscientists to identify
brain regions activated by a stimulus. In summary, the multiverse analysis framework allows
researchers to manage degrees of freedom in the data analysis, but the literature still lacks a formal
inferential approach that allows researchers to derive reliable inferences about (sets of) specific
analyses included in multiverse analysis. In this paper, we define the Post-selection Inference
approach to Multiverse Analysis (PIMA) which is a flexible and general inference approach
for multiverse analysis that accounts for all possible models, i.e., the multiverse of reasonable
analyses. In the framework of GLMs, we consider the null hypothesis that a given predictor
of interest is not associated with the outcome, i.e., that the corresponding coefficient is zero.
Furthermore, we assume that researchers consider all reasonable models obtained by different
choices of data processing. We provide a resampling-based procedure based on the sign-flip score
test of Hemerik et al. (2020) and De Santis et al. (2022) that allows researchers to test the null
hypothesis by combining information from all reasonable models, and show that this framework
allows inference about the coefficient of interest on three different levels of complexity. First,
considering the predictor of interest, we compute a global p value considering all models, so
that researchers can state whether the coefficient is non-null in at least one of the models in the
multiverse analysis. Second, we compute individual adjusted p values for each model and thus
obtain the set ofmodels where the coefficient is non-null. Because PIMAaccounts formultiplicity,
researchers are free to choose the preferred model post hoc, after trying all models and seeing the
results. In other words, the procedure allows selective inference, but unlike p-hacking, researchers
can select statistically significant analyses from the multiverse while controlling the Type I error
rate. Finally, we define a third inference strategy for multiverse analysis in which researchers
provide a lower confidence bound for the true discovery proportion (TDP), i.e., the proportion
of models with a non-null coefficient. In this analysis, researchers cannot individually identify
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statistically significant models in the multiverse, but in some cases it may be more powerful to
report the true discovery proportion than individual p values. Finally, we argue that the method
can be easily extended to the case of multiple hypotheses on different coefficients. The resulting
procedure is general, flexible, and powerful, and can be applied to many different contexts. It is
valid as long as all the considered models are reasonable and specified in advance, before carrying
out the analysis. The structure of the paper is as follows. In Sect. 2, we define the framework and
construct the desired resampling-based test. Subsequently, in Sect. 3, we use the test to make
inference in the multiverse framework. We then study the properties of the PIMA method, and
we apply it to real data in Sects. 4 and 5, respectively. We conclude with Sect. 6 that contains a
short remark on the main results, with some hints on still open issues in multiverse analysis and
practical recommendations for the PIMA methodology. All the analyses and simulations were
implemented using the statistical softwareR (RCore Team, 2021) . All R code and data associated
with the real data application are available at https://osf.io/3ebw9/, while further analyses can be
developed through the dedicated package Jointest (Finos et al., 2023) available at https://github.
com/livioivil/jointest.

2. The Sign-Flip Score Test

In the context of multiverse analysis, there is no a single pre-specified model, while we are
interested in testing the effect of a given predictor on a response variable in the multiverse of
possible models. In order to test the global null hypothesis that the predictor has no effect in any
of the models considered, one needs to define a proper test statistic and its distribution under
the null hypothesis. Finding a solution within the parametric framework represents a formidable
challenge, due to the inherent dependence among the univariate test statistics, which in most cases
is very high and usually nonlinear. The resampling-based approach usually provides a solution
to this multivariate challenge. We will rely on the sign-flip score test of Hemerik et al. (2020)
and De Santis et al. (2022) to define an asymptotically exact test for the global null hypothesis of
interest. In this section, we specify the structure of the models and introduce the sign-flip score
test for a single model specification. In the next section, we will give a natural extension to the
multivariate framework. Finally, we will show how to employ the procedure within the closed
testing framework (Marcus et al., 1976) to make additional inferences on the models.

2.1. Model Specification

We consider the framework of GLMs. Let Y = (y1, . . . , yn)� ∈ R
n be n independent

observations of a variable of interest, which is assumed to belong to the exponential dispersion
family distribution with density of the form

h(yi , θi , φi ) = exp

{
yiθi − b(θi )

a(φi )
+ c(yi , φi )

}
(i = 1, . . . , n),

where θi and φi are the canonical and the dispersion parameter, respectively. According to the
usual literature of GLMs (Agresti, 2015) , the mean and variance functions are

μi = E[yi ] = b′(θi ), v(μi ) = b′′(θ) = var(yi )

a(φi )
.

We suppose that the mean of Y depends on an observed predictor of interest X =
(x1, . . . , xn)� ∈ R

n and m other observed predictors Z = (z1, . . . , zn)� ∈ R
n×m through a
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nonlinear relation

g(μi ) = ηi = xiβ + ziγ

where g(·) denotes the link function, β ∈ R is a parameter of interest, and γ ∈ R
m is a vector of

nuisance parameters.
Finally, we define the following n × n matrices that will be used in the next sections:

D = diag{di } = diag

{
∂μi

∂ηi

}

V = diag{vi } = diag{var(yi )}
W = DV−1D.

2.2. Hypothesis Testing for an Individual Model via Sign-Flip Score Test

Given a model specified as in the previous section, we are interested in testing the null
hypothesis H : β = 0 that the predictor X does not influence the response Y with significance
level α ∈ [0, 1). Here γ is estimated by γ̂ and is therefore a vector of nuisance parameters. We
consider the hypothesis β = 0 for simplicity of exposition; however, the sign-flip approach can
be extended to the more general case β = β0.

Relying on the work of Hemerik et al. (2020), De Santis et al. (2022) provide the sign-
flip score test, a robust and asymptotically exact test for H that uses B random sign-flipping
transformations. Even though larger values of B tend to give more power, to have nonzero power
it is sufficient to take B ≥ 1/α. Hence, consider the n×n diagonal matrices Fb = diag{ f bi }, with
b = 1, . . . , B. The first is fixed as the identity F1 = I , and the diagonal elements of the others
are independently and uniformly drawn from {−1, 1}. Each matrix Fb defines a flipped effective
score

Sb = n−1/2X�W 1/2(I − Q)V−1/2Fb(Y − μ̂) (1)

where

Q = W 1/2Z(Z�WZ)−1Z�W 1/2

is a particular hat matrix, symmetric and idempotent, and μ̂ is a
√
n-consistent estimate of the

true value μ∗ computed underH. In practical applications, if the matrices D and V , and thus W ,
are unknown, they can be replace by

√
n-consistent estimates.

This effective score may be written as a sum of individual contributions with flipped signs,
as follows:

Sb = 1√
n

n∑
i=1

f bi νi , νi =
(
xi − X�WZ(Z�WZ)−1zi

) (yi − μ̂i )di
vi

. (2)

Here νi is the contribution of the i-th observation to the effective score. The definition and
properties of the contributions νi are explored in Hemerik et al. (2020) and De Santis et al.
(2022), where they are denoted as ν∗

γ̂ ,i and ν̃∗
i,β , respectively.
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An assumption is needed about the effective score computed when the true value γ ∗ of the
nuisance γ , and so the true value μ∗ of μ, is known. This quantity may be written analogously to
(1) and (2), as

S∗b = n−1/2X�W 1/2(I − Q)V−1/2Fb(Y − μ∗) = 1√
n

n∑
i=1

f bi ν∗
i . (3)

In this case, the contributions ν∗
i are independent if D and V are known and asymptotically

independent otherwise (Hemerik et al., 2020) . The required assumption is aLindeberg’s condition
that ensures that the contribution of each ν∗

i to the variance of Sb∗ is arbitrarily small as n grows.
This can be formulated as follows.

Assumption 1. As n → ∞,

1

n

n∑
i=1

var(ν∗
i ) −→ c

for some constant c > 0. Moreover, for any ε > 0

1

n

n∑
i=1

E

(
ν∗2
i · 1

{ |ν∗
i |√
n

> ε

})
−→ 0

where 1{·} denotes the indicator function.
Given this assumption, the sign-flip score test of De Santis et al. (2022) relies on the stan-

dardized flipped scores, obtained by each effective score (1) by its standard deviation:

S̃b = Sb var(Sb | Fb)−1/2 (4)

where

var(Sb | Fb) = n−1X�W 1/2(I − Q)Fb(I − Q)Fb(I − Q)W 1/2X + oP (1).

The test is defined from the absolute values of the standardized scores, comparing the observed
value |S̃1| with a critical value obtained from permutations. The latter is |S̃|
(1−α)B�, where
|S̃|(1) ≤ . . . ≤ |S̃|(B) are all the sorted values and 
·� denotes the ceiling function.

Theorem 1. (De Santis et al., 2022) Under Assumption 1, the test that rejects H when |S̃1| >

|S̃|
(1−α)B� is an α-level test, asymptotically as n → ∞.

The test of Theorem 1 is exact in the particular case of LMs, and second-moment exact in
GLMs. The second-moment exactness means that underH the test statistics S̃b do not necessarily
have the same distribution, but share the same mean and variance, independently of the sign
flip; this provides exact control of the Type I error rate, for practical purposes, even for finite
sample size. The only requirement is Assumption 1, that states that the variance of the score (3)
is not dominated by any particular contribution. Furthermore, the test is robust to some model
misspecifications, as long as the meanμ and the link g are correctly specified. In particular, under
minimal assumptions, the test is still asymptotically exact for any generic misspecification of the
variance V (De Santis et al., 2022) .
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2.3. Intuition Behind the Sign-Flip Score Test

Although the formal definition of the sign-flip score approach may seem difficult to grasp,
its meaning is quite intuitive. For the sake of clarity, we consider a simple example using a GLM
with gaussian error and identity link that can be easily reconducted to a multiple linear model.
In this case, we have W = D = I and V = σ 2 I , where σ 2 is the variance shared by every
observation. From (2), the observed and flipped effective scores can be written as

S1 = 1√
n

n∑
i=1

νi , Sb = 1√
n

n∑
i=1

f bi νi (b = 2, . . . , B)

where

νi = 1

σ 2 (xi − x̂i )(yi − ŷi ), x̂i = X�Z(Z�Z)−1zi , ŷi = μ̂i = Y�Z(Z�Z)−1zi . (5)

In this perspective, the score can be interpreted as the sum of weighted residuals of yi − ŷi , where
the weights are the residuals xi − x̂i . A further interpretation is that the score is the sum of n
contributions, and these contributions are the residuals of yi predicted by zi multiplied by the
residuals of xi predicted by zi . In this sense, the score extends the covariance by moving from the
empirical mean (i.e., a model with the intercept only) to a full linear model.

To see things in practice, consider the following linear regression model

Y = 1 + βX + γ Z + ε, ε ∼ Nn(0, I )

and suppose we are interested in testing H : β = 0. The predictors X and Z are generated from
a multivariate normal with unit variance and covariance 0.80. We create two scenarios, sharing
the same X and Z , but with different response variable Y : the first scenario is generated under the
null hypothesis H (β = 0, γ = 1), while the second is generated under the alternative (β = 1,
γ = 1). For each simulation, we generate n = 100 observations. We name the resulting datasets
H0 and H1, respectively.

Examples of scatter plots between Y and X considering also Z by color are given in Fig. 1.
In both scenarios, we see a positive correlation between X and Y . From the color of the dots,
one can appreciate the positive dependence of Z—both—with X and Y ; that is, more bluish dots
correspond to higher values of Z and these appear where X and Y have higher values too (upper
right corner). Testing for the null hypothesis H : β = 0, however, corresponds to testing the
partial correlation between X and Y , net of the effect of Z . This partial correlation can be visually
evaluated with a scatter plot of the residuals that form the n addends of the observed score S1

given in (5). These are shown in the two upper plots of Fig. 2 for both the datasets H0 (upper left)
and H1 (upper right). In these scatter plots, the coordinates of each point are the values xi − x̂i and
yi − ŷi , and the observed score S1 is obtained from the sum of the product of these coordinates
(xi − x̂i )(yi − ŷi ). After removing the effect of Z from X and Y , the scatter plot for H0 shows no
relationship between the two variables, while this is still present for H1.

The distribution of the effective score under the null hypothesisH is obtained by computing
a large number of flipped scores Sb. Each flipped score is determined by randomly flipping the
signs of the score contributions νi , and thus of the residuals (yi − ŷi ). The effect of these sign
flips is visible in the scatter plots at the bottom of Fig. 2. The positive (partial) correlation of the
H1 dataset (top right) is destroyed by random flips and is now approximately zero (bottom right).
For the H0 dataset, a random flip maintains the observed correlation around zero.
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Figure 1.
Simulated dataset under the scenario H0 (left) and H1 (right).

There are two further delicate details that may provide an additional value to the flip-scores
approach: (1) the need for sign flips instead of permutations; (2) the need for the standardization
step. One may notice that, in the example proposed here, one may permute the residuals instead
of flipping the signs. However, this is only true in the context of homoscedasticity, but would not
be a valid option in the more general case of GLMs. Although the intuition provided here holds
also for the GLM, one has to bear in mind that the zero-centered contributions νi (2) should be
such that var(νi ) = var(−νi ), while this would not hold when permuting the residuals (yi − ŷi ).

The second relevant detail is the standardization step of De Santis et al. (2022), introduced
in (4). Due to the fact that the nuisance parameters γ are unknown and must be estimated, the
residuals (yi − ŷi ) are independent only asymptotically. As a result, asymptotically the variances
of the observed and permuted scores are equal, which ensures control of the Type I error; however,
this generally does not hold for finite sample sizes. The standardization step compensates for this
different variability, guaranteeing exactness under the linear normal model and second-moment
exactness in the more general GLM setting.

3. PIMA: Post-selection Inference in Multiverse Analysis

3.1. Hypothesis Testing in the Multiverse via Combination of Sign-Flip Score Tests

In the previous section, we presented an asymptotically exact test for a prefixed null hypothe-
sis. Now we consider the framework of multiverse analysis, where we define K plausible models,
given by different processing of the data. Each model k = 1, . . . , K can be characterized by dif-
ferent specifications of the response Yk (e.g., by deleting outliers or removing leverage points), of
the predictors Xk and Zk (e.g., by combining and transforming variables), and of the link function
gk . Let βk be the coefficient of interest in the model k, and define the null hypothesisHk : βk = 0
analogously to the previous section. Then consider the global (i.e., multivariate) null hypothesis
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Figure 2.
Observed (top) and flipped (bottom) distribution residuals of Y versus X in the datasets H0 (left) and H1 (right).

as the intersection of the K individual hypotheses:

H =
K⋂

k=1

Hk : βk = 0 for all k = 1, . . . , K .

This global hypothesisH is truewhen the predictor of interest has no relationshipwith the response
in any of the K models; it is false when such a relationship exists in at least one of the models.
To test H, we will extend the test of Theorem 1 similar to the extension given in the case of the
linear model of Vesely et al. (2022).

To construct the desired global test, we first compute the flipped standardized scores (4)
for all models, using the same sign-flipping transformations. Hence, we obtain S̃b1 , . . . , S̃

b
K for

b = 1, . . . , B. Intuitively, the n scalar contributions νi in (2) are now n vectors of length K ,
each containing the contributions of the i-th observation to each one of the K models. The same
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sign-flip for observation i , f bi , is therefore applied to the whole vector. This resampling strategy
ensures that the test has an asymptotically exact control of the Type I error.

Subsequently, we combine these flipped standardized scores through any function ψ :
R

K −→ R that is non-decreasing in each argument, such as the (weighted) mean and the maxi-
mum. This give us the global test statistic

T b = ψ
(
|S̃b1 |, . . . , |S̃bK |

)
(b = 1, . . . , B). (6)

The following theorem gives a test for H that relies on T 1, . . . , T B .

Theorem 2. Suppose that Assumption 1 holds for all the considered models. Then the test that
rejects H when T 1 > T 
(1−α)B� is an α-level test, asymptotically as n → ∞.

Proof. Throughout the proof, we will denote the k-th model adding a subscript k to the corre-
sponding quantities that vary between models. First, for simplicity of notation we consider only
specifications that maintain the sample size, while we do not consider outlier deletion or leverage
point removal. In this way, the response vector Y is the same across models.

Fix any k ∈ {1, . . . , K }, and assume that Hk : βk = 0 is true, so that the coefficient of
interest is null in the k-th model. The flipped effective scores (1) are

Sbk = n−1/2X�
k W

1/2
k (I − Qk)V

−1/2
k Fb(Y − μ̂k) (b = 1, . . . , B)

where

Qk = W 1/2
k Zk(Z

�
k Wk Zk)

−1Z�
k W

1/2
k

and μ̂k is a
√
n-consistent estimate of the true value μ∗

k computed underHk . Consider the flipped
effective scores computed when the true value γ ∗

k of the nuisance γk , and so the true value μ∗
k of

μk , are known as in (3),

S∗b
k = n−1/2X�

k W
1/2
k (I − Qk)V

−1/2
k Fb(Y − μ∗

k) (b = 1, . . . , B).

Hemerik et al. (2020) show that Sbk and S∗b
k are asymptotically equivalent as n → ∞ (see the

proof of Theorem 2).
Subsequently, assume that the global null hypothesisH is true. Hence, all individual hypothe-

sesHk are true, and βk is null in all considered models. Consider the K B-dimensional vectors of
effective scores

S = (S11 , . . . , S
B
1 , . . . , S1K , . . . , SB

K )�

S∗ = (S∗1
1 , . . . , S∗B

1 , . . . , S∗1
K , . . . , S∗B

K )�

which are asymptotically equivalent. For any couple of models k, j ∈ {1, . . . , K } and any pair of
transformations b, c ∈ {1, . . . , B}, we have

E(S∗b
k ) = 0

cov(S∗b
k , S∗c

j ) = n−1X�
k W

1/2
k (I − Qk)V

−1/2
k E

(
Fb(Y − μ∗

k)(Y − μ∗
j )

�Fc
)
V−1/2
j
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(I − Q j )W
1/2
j X j =

{
ξk j if b = c

0 otherwise

where

ξk j = n−1X�
k W

1/2
k (I − Qk)V

−1/2
k diag

(
(Y − μ∗

k)(Y − μ∗
j )

�)
V−1/2
j (I − Q j )W

1/2
j X j .

Note that S∗ can be written as the sum of n independent vectors. As Assumption 1 holds for
all models, by the multivariate Lindeberg–Feller central limit theorem (van der Vaart, 1998)

S, S∗ d−−−→
n→∞ NN B (0, � ⊗ I )

where N denotes the multivariate normal distribution, ⊗ is the Kronecker product, and

I ∈ R
B×B, � =

(
lim
n→∞ ξk j

)
∈ R

K×K .

Equivalently, we can say that

⎛
⎜⎝
S11 . . . S1K
...

...

SB
1 . . . SB

K

⎞
⎟⎠ d−−−→

n→∞ MN s×B (0, I, �)

where MN denotes the matrix normal distribution. Hence, the B vectors of effective scores
(S11 , . . . , S

1
K ), . . . , (SB

1 , . . . , SB
K ) converge to i.i.d. random vectors.

For each k, the standardized scores S̃bk are obtained dividing the effective scores Sbk by their
standard deviation var(Sbk | Fb)1/2, as in (4). De Santis et al. (2022) show that these standard
deviations are asymptotically independent of b (see the proof of Theorem 2). Therefore, the B
vectors of the absolute values of standardized scores (|S̃11 |, . . . , |S̃1K |), . . . , (|S̃B

1 |, . . . , |S̃B
K |) con-

verge to i.i.d. random vectors. As a consequence, the combinations of their elements T 1, . . . , T B

defined in (6) converge to i.i.d. random variables. Moreover, for each variable k, high values of
|S̃1k | correspond to evidence against Hk and ψ is non-decreasing in each argument, and so high
values of T 1 correspond to evidence against H. From Hemerik et al. (2020) (see Lemma 1),

lim
n→∞ P

(
T 1 > T (
(1−α)B�)) = �αB�

B
≤ α.

Finally, consider the more general case where we also allow for specifications that change the
sample size, so that the response vector Yk may vary between models and have different lengths.
The proof is written analogously to the previous one, with a slight modification of the sign-flipping
matrices within each model. In model k, we use Fb

k , which is obtained from Fb by removing the
diagonal elements corresponding to the removed observations. ��
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Theorem 2 gives an asymptotically exact test for the global null hypothesis H that the coef-
ficient of interest is null in all considered models. A global p value can be obtained directly
as

p = 1

B

B∑
b=1

1{T b ≥ T 1}

(Hemerik & Goeman, 2018) .
An important role is played by the choice of the function ψ that combines the flipped stan-

dardized scores to define the global test statistic (6). There is a plethora of possible choices, each
of them having different power properties in different settings. The most intuitive choices are the
mean

T b
mean = 1

K

K∑
i=1

|S̃bk | (b = 1, . . . , B) (7)

and the maximum

T b
max = max

k
|S̃bk | (b = 1, . . . , B) (8)

but the definition of the test remains flexible and general, allowing for several combinations.
Other possible global test statistics can be obtained transforming the standardized scores S̃bk in p
values pbk and then considering p value combinations. The p values can be defined either through
parametric inversion of the scores or using ranks; we suggest this second choice, where

pbk = 1

B

B∑
c=1

1{|S̃ck | ≥ |S̃bk |} (k = 1, . . . , K ; b = 1, . . . , B).

Subsequently, the p values can be combined with different methods such as those described and
compared in Pesarin (2001). We mention especially Fisher (1925)

T b
Fisher = −2

K∑
k=1

log pbk (b = 1, . . . , B) (9)

and Liptak/Stouffer (Liptak, 1958)

T b
Liptak = −

K∑
k=1

ζ(pbk ) (b = 1, . . . , B)

where ζ(·) denotes the quantile function of the standard normal distribution.
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3.2. Post-selection Inference

In the previous section, we considered different plausible specifications of aGLMand defined
the global null hypothesisH that a predictor of interest does not influence the response in any of
these models. We constructed a test that combines the models’ standardized scores to testH at the
level α, thus ensuring weak control of the FWER. Therefore, if H is rejected, we can state with
confidence 1−α that there is at least one model in which the predictor of interest has an influence
on the response variable. In this section, we show that the global test statistic T b defined in (6) can
be used to make additional inferences about the models in two ways. We rely on the closed testing
framework (Marcus et al., 1976) , which has been proved to be the optimal way to construct
multiple testing procedures, as all FWER, TDP, and related methods are either equivalent to it or
can be improved by it (Goeman et al., 2021) . It is based on the principle of testing different
subsets of hypotheses by means of a valid local test at the α level, which in this case is the test of
Theorem 2.

First, to obtain adjusted p values for each individual model, we apply the maxT method of
Westfall and Young (1993), which corresponds to using as a global test statistic the maximum
defined in (8). This procedure provides for a dramatic shortcut of the closed testing framework
is fast and feasible even for high values of K and B. The resulting p values are adjusted for
multiplicity, ensuring strong control of the FWER. Researchers can postpone the choice of the
preferred model after seeing the data, while still obtaining valid p values. Used in this way, the
method allows researchers to make selective inferences. Where selective inference is a possible
cause of the replication crisis when error rates are not controlled (Benjamini, 2020) , the PIMA
procedure provides strong FWER control, allowing researchers to select a model after analyzing
a multiverse of models without inflating the risk of a false positive.

Second, we can construct a lower (1 − α)-confidence bound for the proportion of models
where the coefficient is non-null (TDP), using the general framework of Genovese andWasserman
(2006) and Goeman and Solari (2011) or, when the combining functionψ can be written as a sum,
the shortcut of Vesely et al. (2023). The method allows one to compute a confidence bound for the
TDP not only for thewhole set ofmodels, but also simultaneously over all possible subsets without
any adjustment of the α level. Simultaneity ensures that the procedure is not compromised by
selective model selection. In this framework, we are not able to individually identify statistically
significant models, but in some cases, reporting the TDP may be more powerful than individually
adjusted p values.

To conclude, the PIMA approach allows researchers to make selective inference on the
parameter of interest in the multiverse of models, providing not only a global p value but also
individually adjusted p values and lower confidence bounds for the TDP of subsets of models.
The PIMA procedure is exact only asymptotically in the sample size n; despite this, we will show
through simulations that it maintains good control of the Type I error even for small values of n.
Furthermore, as shown in the real data analysis of Sect. 5, the same inference framework can be
trivially extended to the case where we are interested in testing multiple parameters, i.e., where
β is a vector. Analogous to the extension from a single model to the multiverse, it is sufficient
to define global test statistics (6) for all individual parameters of interest using the same random
sign-flipping transformations.

3.3. Comparing PIMA with Other Proposals

In this section, we discuss and evaluate possible competitors to the PIMA procedure to test
the global null hypothesis H. A first naive approach would be to rely on a parametric method.
However, after computing a test for each model, there is the need to combine the univariate tests
into a multivariate one. Since these tests coming from different specifications are generally not
independent and their dependence is very difficult to model formally, the safest option is to use
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a Bonferroni correction. This approach has the invaluable advantage of simplicity, but has very
low power in practice. This is mainly due to the strong correlation between model estimates that
usually occurs when different specifications of the same model are tested.

Asmentioned in Sect. 1, the specification curve analysis of Simonsohn et al. (2020) represents
a first attempt to cast the descriptive approach ofmultiverse analysis into an inferential framework.
Two approaches are proposed. The first one relies on a naive permutation of the tested predictor
followed by a re-fitting of the models; the subsequent combination of the test statistics of each
model follows the same logic exposed in Sect. 3.1. This method is only valid when the predictors
are orthogonal, a setting that is typically limited to fully balanced experimental designs. Hence,
the method is no longer valid neither in experimental designs with unbalanced levels nor in
non-experimental designs. The second approach can be used in the more general case of non-
experimental settings. It was originally defined for LMs and is based on the bootstrap method
of Flachaire (1999). For each specification, the model with the observed data is fitted (i.e., yi =
βxi + γ zi + εi ), producing the estimates of the parameters β and γ . Then, a null response ẏi is
generated by subtracting the estimated effect of the predictor of interest xi on yi : ẏi = yi − β̂xi =
(β − β̂)xi + γ zi + εi , where β̂ is the sample estimate of β. The random variable β − β̂ has zero
mean; therefore, a null distribution of β̂ can be obtained by re-fitting the model on bootstrapped
data ẏi , xi , zi . The resulting bootstrapped distribution of β̂ is used to compute the p value forH.
Subsequently, the same resampling scheme is applied to each specification, and the resulting p
values are merged through appropriate combinations: the median, Liptak/Stouffer (Liptak, 1958)
, and the count of specifications that obtain a statistically significant effect. In the case of LMs,
both the bootstrap method and PIMA are robust to heteroscedasticity (Flachaire, 1999) and
ensure asymptotic control of the Type I error. However, while the univariate test of the bootstrap
method is still only asymptotically exact, the sign-flip score test on which PIMA relies has exact
univariate control. Finally, the bootstrap refits themodel at each step and so requires a substantially
larger computational effort, as will be confirmed in simulations.

The same bootstrap procedure of Simonsohn et al. (2020) is then extended to the case of
GLMs. However, this extension is not always valid in our view. For GLMs, the authors base the
bootstrap on the definition of null responses of the form ẏi = g−1(g(yi )− β̂xi ), but this proposal
turns out to be very problematic for some models. For instance, the same issue occurs when
considering the binomial logit-link model, where yi ∈ {0, 1} and ẏi = expit(logit(yi ) − β̂xi ).
When the response is yi = 0, we have that logit(0) = −∞ and so the null response is always
ẏi = 0, regardless of the value of β̂xi . Similarly, when yi = 1 we always obtain ẏi = 1. This
means that the effect of the tested variable is never removed when computing the null response,
contrary to what happens in the case of the LM for which the method was originally defined.
The same problem arises for other GLMs that lead to infinite values, such as the Poisson log-link
model, for which ẏi = exp(log(yi ) − β̂xi ) is always 0 when yi = 0. Thus, in the case of GLMs
we discourage the use of the proposal of Simonsohn et al. (2020). The poor control of the Type I
error in practice will be shown in the simulation study of Sect. 4.

Finally, specification curve analysis only explores weak control of the FWER, i.e., infers on
the presence of at least one significant specification. We underline the importance of the post-
selection inference step introduced in PIMA, which makes it possible to determine which models
have a significant effect and thereby allows researchers to gain a better understanding of the overall
analysis.

4. Simulations

The following simulation study aims to assess the control of Type I error and to quantify
the power of the global test of Theorem 2, by performing a comparison with the bootstrapped
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method of specification curve analysis (Simonsohn et al., 2020) . Adjusted p values for individual
specifications are not reported, since Type I error control of the global test automatically ensures
FWER control through the closed testing principle, as argued in Sect. 3.2.

We set a common framework for all simulations, based on the settings used for specification
curve analysis. Simonsohn et al. (2020) simulated data generating the response Y from a latent
variable X� through a GLM and then considered a multiverse analysis with five different models.
Each model uses a different predictor Xk , which is taken as a proxy for the latent X� and is
generated to be strongly correlated with it. We extend this setting by adding a confounder Z that
is also correlated with X�. The pipeline for the analysis is as follows. First, we simulate the latent
variable X� and the confounder Z from amultivariate normal distribution with mean zero, unitary
variance, and covariance ρX�Z = 0.6. Then we generate the response Y through a GLM, taking

g(μi ) = x�
i β + ziγ + γ0.

Finally, we consider a multiverse analysis with five models. For each model k, we generate a new
predictor Xk so that it has a correlation with the latent variable ρX�Xk

= 0.85. Then we fit a GLM
with Xk as the predictor of interest and Z as the confounder.

We consider four scenarios, where in the first three we fit the correct model, while in the last
scenario the variance in the fitted model is misspecified as follows:

1. LM with homoscedastic Gaussian errors: γ0 = 0, γ = 2, β = 0 (under the null hypoth-
esis) or β = 0.2 (under the alternative hypothesis), homoscedastic normal errors with
variance 1;

2. Binomial logit-link model: γ0 = 0, γ = 2, β = 0 (under the null hypothesis) or β = 0.5
(under the alternative hypothesis);

3. Poisson log-link model: γ0 = 0, γ = 2, β = 0 (under the null hypothesis) or β = 0.08
(under the alternative hypothesis);

4. Data are generated with a Negative Binomial log-link model: γ0 = −2, γ = 2, β = 0
(under the null hypothesis) or β = 0.25 (under the alternative hypothesis), and dispersion
parameter θ = μ (so that the variance μ + μ2/θ = 2μ is twice the variance expected
in a Poisson model). In this case a Poisson log-link model is fitted. In this scenario, we
evaluate the robustness of the methods to misspecification of the variance.

For each scenario, we apply different tests with the scope to assess both the Type I error rate
and the power, setting the coefficient of interest β to 0 in the first case (null hypothesisH) and at
non-null values in the second (alternative hypothesis).We start exploring the behavior of univariate
tests, applying, for each of the five models, three different methods: the sign-flip score test of
Theorem 1, the bootstrapped method of the specification curve analysis (Simonsohn et al., 2020)
, and a suitable parametric test (t-test for LM,Wald test for the otherGLMs). Subsequently,we then
combine the information derived from the five considered models. We apply the PIMA method,
taking as global test statistic the mean (7) and the maximum (8). We also report results for the
bootstrappedmethod (Simonsohn et al., 2020) , combining the individual specifications’ p values
with Stouffer and the median. We do not consider the combination that counts the specifications
having a statistically significant effect since it implicitly involves one-sided alternatives, and
dealing with the control of directional errors in multiple testing is a nontrivial task (Shaffer,
1980; Finner, 1999) which deserves the effort of a more formal dissertation. Finally, an additional
parametric global test could be obtained from the Bonferroni combination of the five univariate
parametric tests; however, this is not feasible in practice, as the Bonferroni method results to be
extremely conservative.

Throughout the simulations, we vary the sample size n ∈ {100, 250, 500}. Furthermore,
we use B = 250 random sign-flipping transformations and bootstraps; the choice of using a
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Figure 3.
Simulations (univariate) under the null hypothesis H : β = 0: empirical Type I error of different methods for sample
size n ∈ {100, 250, 500} under four scenarios. For the Neg. Binom scenario, the empirical Type I errors of the bootstrap
approach exceed the upper limits of the ordinates—ranging between 0.154 and 0.170—and are not shown. The dotted
horizontal lines around 0.05 correspond to the 95% simulation error’s limits.

relatively small number is motivated by the huge computational cost required by the bootstrap,
which refits the model at each step. We remark that the number of the random resamplings—
bootstraps or sign-flips—does not affect the control of the Type I error (Hemerik & Goeman,
2018; Ramdas et al., 2023) . Each scenario is simulated 5,000 times. This implies a standard error
around significance level 5% equal to σerr = √

0.05 · 0.95/5000 = 0.003, and so the bounds in
this case are α ± 1.96σerr = (0.044, 0.056).

Figure 3 reports the Type I empirical error rates for different methods in the four scenarios.
Each row reports the rejection proportion under the null hypothesis H (β = 0) for the five
univariate models. Under the linear model (top-left plot), parametric tests and flipscores ones
show a perfect control of the Type I error as expected from the theory. Even the bootstrap method
shows optimal behavior, although the control is ensured only asymptotically (Freedman, 1981) .
In the Binomial (top-right) and Poisson (bottom-left) scenarios, the parametric and the flipscores
are formally proved to have an asymptotic control of the Type I error; the simulation confirms the
good control in practice. The bootstrap approach shows a conservative behavior in these settings,
especially for small sample sizes. Finally, in the Negative Binomial scenario, where a Poisson
model with log link is fitted (bottom-right), the parametric model largely exceeds the putative
α = 0.05 level, ranging between 0.154 and 0.170; this is not reported in the figure merely for
graphical reasons. In the same setting, the flipscores test performswell while the bootstrap remains
conservative.

Figure 4 shows the results of the multiverse of models underH. The bootstrap and flipscores
methods offer a comparable level of control for the linearmodel scenario. ForGLMs, the bootstrap
does not seem to adequately control the Type I error, resulting too conservative in the Binomial
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Figure 4.
Simulations (combined) under the null hypothesis H : β = 0: empirical Type I error of different methods for sample
size n ∈ {100, 250, 500} under four scenarios. The dotted horizontal lines around 0.05 correspond to the 95% simulation
error’s limits.

scenario and exceeding the nominal level of 5% in most cases for the Poisson and Negative
Binomial scenarios.

Considering only the methods controlling for the Type I error in the previous univariate
tests, the power increases as the sample size increases (Fig. 5); a slightly higher performance
was observed for the parametric and flipscore procedures compared to the bootstrap test in the
Binomial scenario and for the parametric method in the Poisson case. In the combined tests,
the performance of the bootstrap method (only with a Stouffer aggregation) is higher than the
flipscores, while in the Binomial scenario the bootstrap method fails. For the Poisson and the
Negative Binomial scenario, the simulations offer a similar power for both methods.

In conclusion, these simulations provide some insights to evaluate as the PIMA approach
provides a general framework for the multiverse analysis, while the validity of the bootstrap
method offers a limited superiority only under the scenario with linear model and Gaussian error.
An exhaustive analysis in a wider range of settings would be of great interest, but would be very
extensive. Indeed, the PIMA method is extremely general and flexible, since it can be applied to
any GLMs. A substantial number of scenarios could potentially be explored, considering different
combinations of the characteristics studied here, as well as many others, such as the total number
of predictors, their covariance, the nuisance parameters γ , the number and Type of specifications,
etc. Consequently, such an analysis is left for future work.
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Figure 5.
Simulations (univariate) under the alternative hypothesis (β = 1): empirical power of the methods controlling for Type I
error for sample size n ∈ {100, 250, 500} under four scenarios. The power of the methods that do not control the Type I
error—i.e., exceeding the upper limit in the respective setting in Fig. 3—is not shown.

5. Data Analysis: The COVID-19 Vaccine Hesitancy Dataset

5.1. Description of the Dataset

The COVID-19 vaccine hesitancy dataset collected information on people’s intention to get
vaccinated, sociodemographic characteristics and other important variables, i.e., the perceived
risk related to the COVID-19 contagion, doubts about vaccines, and conspiracy (Caserotti et al.,
2021) . This survey was the first data collection that included data on vaccine hesitancy before,
during and after the lockdown in Italy, which lasted fromMarch 8 until May 3, 2020. The dataset
is formed by a collection of voluntary respondents on the basis of a snowball sampling technique.
The willingness to be vaccinated was originally collected on a scale between 1 and 100; in this
example, we mark as hesitant all people with an index below 100 (n = 1359), while the others are
marked as not hesitant (n = 909). The main characteristics are reported in Table 1, in general and
by the state of reluctance. Three variables were marginally associated with the status of hesitancy:
calendar period, perceived risk of COVID-19, and doubts about vaccines.

5.2. Inferential Approach

Wewant to assess whether the doubts of the people about a potential vaccine against COVID-
19 remained constant or reported a substantial change before, during and after the Italian lock-
down, due to different perceptions of risk associated with COVID-19 contagion during different
phases of the epidemic outbreak. To estimate the adjusted effect of the calendar period, several
confounders are taken into account: Covid_perc_risk, COVID-19 Perceived risk, a scale
defined combining different COVID-19 risk subscales (for further details, see Caserotti et al.
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Figure 6.
Simulations (combined) under the alternative hypothesis (β = 1): empirical power of the methods controlling for Type I
error for sample size n ∈ {100, 250, 500} under four scenarios. The power of the methods that do not control the Type I
error—i.e., exceeding the upper limit in the respective setting in Fig. 4—is not shown.

Table 1.
COVID-19 vaccine hesitancy: variables included in the analysis, overall and by hesitancy status.

Characteristic Overall Hesitant No hesitant p valueb

N = 2268a N = 1359a N = 909a

Gender 0.065
Female 1585 (70%) 930 (68%) 655 (72%)
Male 683 (30%) 429 (32%) 254 (28%)

Age (years) 35 (26, 49) 35 (27, 48) 35 (25, 51) 0.4
Geographical area 0.2
Center 95 (4.2%) 65 (4.8%) 30 (3.3%)
North 2,015 (89%) 1,200 (88%) 815 (90%)
South 158 (7.0%) 94 (6.9%) 64 (7.0%)

Period < 0.001
Pre-lockdown 845 (37%) 609 (45%) 236 (26%)
Lockdown 978 (43%) 494 (36%) 484 (53%)
Post-lockdown 445 (20%) 256 (19%) 189 (21%)

COVID-19 Perceived Risk 123 (80, 162) 103 (62, 146) 149 (110, 176) < 0.001
Vaccine doubts 8 (0, 25) 11 (3, 40) 2 (0, 10) < 0.001
Deprivation Index −0.69 (−1.61, 0.43) −0.69 (−1.64, 0.43) −0.69 (−1.49, 0.43) 0.6

an (%); Median (IQR).
bPearson’s Chi-squared test; Wilcoxon rank sum test.
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(2021)); doubts_vaccine, vaccine doubts on a 0–100 scale; Age, age in years; Gender,
gender; Age*Gender, interaction between age and gender; deprivation_ index, Italian
Deprivation Index at the city of residence; geo_are, geographical area.

The variable to be tested is the date of the period of data collection Period recoded in a
categorical variable with three levels according to the temporal window of the Italian lockdown:
pre-lockdown (Pre), during (Lockdown) and post-lockdown (Post). We are interested in all
three possible comparisons, and their post hoc corrected p values. For each comparison, we fit a
model with a zero-centered contrast that models the comparison of interest. For example, to test
the difference between Post and Pre we define X as a variable with a value of 1 for Post, -1
for Pre and 0 for Lockdown. The confounders Z comprise a dummy variable for the level not
involved in the comparison together with the above-mentioned confounders.

Having a dichotomous response Y = {not hesitant, hesitant}, then recoded as Y = {1, 0}, we
use a GLM model with binomial response and logit link:

yi ∼ Bernoulli(pi ), pi ∈ (0, 1)

g(pi ) = log
pi

1 − pi
= α + βxi + γ zi .

In order to implement a flexible approach, the relationship of the continuous predictors with
the response is modeled also by basis of splines (B-splines). For each continuous predictors
Covid_perc_risk, doubts_vaccine, deprivation_index and Age, three transfor-
mations are tested: the natural variable, as well as a B-spline with three and four degrees of
freedom. In total, there are K = 34 = 81 model specifications. For each comparison, e.g., Post–
Pre, the k-th tested null hypothesis in model k is defined as HPost−Pre

k : βPost−Pre
k = 0. The

global null hypothesis is the intersection of all null hypotheses, HPost−Pre = ∩K
k HPost−Pre

k .
For each comparison, we apply the PIMA framework with the max-T combining function.

Thus, we obtain: 1) a global p value for the null hypothesis of no change over time (weak
control of the FWER); 2) adjusted p values for all individual models (strong control of the
FWER); 3) lower confidence bounds for the TDP, i.e, the minimum proportion of models that
show a significant difference. Furthermore, in this peculiar case we need to jointly test all possible
pairwise comparisons: HPost−Pre ∩ HPost−Lockdown ∩ HLockdown−Pre. Accounting for the 81
model specifications, each with three possible comparisons, we obtain 243 tests in total. The
solution to this inferential problem is natural in the PIMA framework, as it is sufficient to define
the closure set as the closure of the union of the univariate hypotheses of the three comparisons.

5.2.1. Results We first report results for a parametric binomial model with linear predictors
(i.e., natural variables, no B-spline used here) and two 0-centered contrasts variables that model
the three-level Period variable. Table 2 reports the summary, while Table 3 shows the post hoc
Tukey correction for the three pairwise comparisons.

As introduced in the previous section, the multiverse analysis framework is built on the basis
of three possible transformations for each continuous predictor (81 models) and also across the
3 comparisons (Pre–Lockdown, Pre–Post, Lockdown–Post), leading to a multiverse of
81 · 3 = 243 models. Figure7 reports the results visually, while detailed results are reported
in Appendix. The usual descriptive interpretation of a multiverse analysis allows us to observe
descriptively that the yellow and red clusters of tests yield p values smaller than 0.05, but we
cannot claim that these results are statistically significant due to the possibility that such a claim
would have an unacceptably high false positive rate.

We now move from the descriptive to the inferential analysis. The global test with post
hoc correction is shown in Table 4. The comparisons Post–Pre and Post–Lockdown are
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Table 2.
Summary of the estimated logistic regressionmodelwith logit link and linear confounders forCOVID-19 vaccine hesitancy
dataset. Period reference category is Post-lockdown.

Estimate Std. Error z value Pr(> |z|)
(Intercept) −2.069 0.264 −7.843 0.000
Pre-lockdown −0.291 0.079 −3.673 0.000
Lockdown −0.089 0.072 −1.236 0.216
Vaccine doubts −0.036 0.003 −13.029 0.000
Deprivation Index −0.011 0.028 −0.389 0.697
COVID-19 Perceived risk 0.015 0.001 12.914 0.000
Age (+1 years) 0.012 0.004 2.665 0.008
Gender [males] 0.539 0.297 1.811 0.070
Geo. Area [North] −0.026 0.176 −0.149 0.881
Age*Gender [males] −0.016 0.007 −2.106 0.035

Table 3.
Post hoc pairwise comparisons with (Tukey) correction of the logistic regression model with logit link and linear con-
founders.

Coefficients Sigma Tstat p values

Lockdown–Pre-lockdown 0.202 0.124 1.634 0.230
Post-lockdown–Lockdown 0.469 0.138 3.392 0.002
Post-lockdown–Pre-lockdown 0.671 0.150 4.476 0.000

Table 4.
Pairwise comparisons of the maxT global test between periods with post hoc correction in the PIMA of COVID-19 vaccine
hesitancy dataset.

Coeff Stat nMods S Pr(> |z|) p.adj (post hoc)

Lockdown–Pre-lockdown maxT 81 1.71 0.1396 0.1396
Post-lockdown–Lockdown maxT 81 3.78 0.0008 0.0008
Post-lockdown–Pre-lockdown maxT 81 4.43 0.0002 0.0006

significant (overall, over the 81 models of the multiverse), while the comparison Lockdown–
Pre is not. We point out that the post hoc correction is based on the three comparisons, and
each comparison is based on the combination of the 81 models. For example, claiming that the
comparison Post–Pre is significant allows us to account only for the fact that at least one of
the 81 models has non-null coefficient for this comparison (and assuming that all models are
correctly specified). In order to select the most promising models among these, we need to shift
the multiplicity correction to the levels of each individual model. This is done in Fig. 8, where the
adjusted p values are reported (the table with the detailed results is reported in the supplementary
material).

Finally, Table 5 reports the number of true discoveries and the TDP for each comparison. For
the Post–Pre comparison, all models show a significant difference (after multiplicity correc-
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Figure 7.
Raw p values versus coefficient estimates of the post hoc comparisons of 81 tested logistic models in the PIMA of
COVID-19 vaccine hesitancy dataset.

Table 5.
Lower 0.95-confidence bound for the number of true discoveries in each comparison in the PIMA of COVID-19 vaccine
hesitancy dataset.

Coeff Stat nMods True Discoveries Proportion

LockDown–Pre maxT 81 0 0%
Post–LockDown maxT 81 29 36%
Post–Pre maxT 81 81 100%

tion),while those in theLockdown–Pre comparison shows no significant effect. The comparison
Post–Lockdown has an intermediate number of significant comparisons (29/81 = 36%).

6. Conclusion and Final Remarks

In this paper, we propose PIMA, a formal inferential framework tomultiverse analysis (Stee-
gen et al., 2016) . Our approach allows researchers to move beyond a descriptive interpretation
of the results of a multiverse analysis and extends other methods to summarize the multitude of
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Figure 8.
Adjusted p values versus coefficient estimates of the post hoc comparisons of 81 tested models in the PIMA of COVID-19
vaccine hesitancy dataset.

performed analyses, such as specification curve (Simonsohn et al., 2020) and vibration analysis
Klau et al. (2020) to any generalized linear model. By extending the sign-flip score test (Hemerik
et al., 2020; De Santis et al., 2022) to the multivariate framework, researchers can now make use
of the full variety of multivariate and multiple testing methods based on conditional resampling
to obtain: (1) weak control of the FWER to test if there is an “overall” effect in one of the models
explored in the multiverse analysis; (2) strong control of the FWER (i.e., adjusted p values for
each tested model) that allows the researcher to select the models that show a significant effect;
(3) a lower confidence bound for the proportion of true discoveries among the tested models.
Furthermore, PIMA proves to be very robust to over/under-dispersion, allowing for a wide range
of models and possible data preprocessing.

This flexibility, however, does not exempt the researcher of the responsibility of the analysis.
Some further remarks and considerations should be made in this regards.

Define your theoretical model. In the multiverse analysis framework, each specification
should follow a model that is based on a strong theory developed within a research field (e.g.,
psychology, medicine, physics, etc.). As an example, in epidemiology, a researcher usually defines
a set of variables called “confounders” in order to adjust for the estimated effect between the
dependent variable (outcome) and the independent variable (determinant) in a quasi-experimental
design. In this case, any specification can be plausible if it includes the same set of confounders as
an evaluation of the same initial theoretical model. Exclusion of some confounders is commonly
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used in sensitivity analysis, but it could lead to implausible specifications because of the potential
mismatch with the theoretical initial model.

Plan your analysis in advance. It is important to note that the PIMA method is not itera-
tive, i.e., the analysis specifications must be planned before performing the multiverse analysis.
Failure to do so (i.e., adding or removing models after seeing the results) will add a layer of data
manipulation, which is impossible to model and hard to formalize, and therefore can inflate the
Type I error rate. The multiverse approach allows the researcher to plan (in advance) a plethora
of models to explore, rather than just a single pre-specified model. However, it is recommended
to pre-register PIMA before it is performed.

Be parsimonious. There is virtually no limit to the number of models that can be used, as
the proposed PIMA approach will integrate all the resulting information. However, the power will
be affected by these choices. Indeed, the overall power to find a significant effect depends on the
power of each individual model. Although adding “futile” models will not decrease the quality
of false positive control, it will decrease the power of the global test and therefore the ability to
detect significant effects.

Be exhaustive.There is a further consideration that applies not only to our inferentialmethods
but also to descriptive methods such as multiverse analysis, specification curve, and vibration
analysis (and to data modeling, more broadly). When planning the data transformations, the
practitioner must realize that failing to take into account any relationship between confounders
and the response variable may be a catastrophic source of false positive results. This case is very
well covered in any basic course in statistical modeling, but it may be useful to provide a flavor of
the consequences of an inaccurate choice of models in the analysis in practice. We run a simple
simulation under the same linear homoscedastic normal framework described in Sect. 4. In this
case, however, we do not include the last two confounders in any of the models. The empirical
Type I error rate exceeds 0.30 (nominal level α = 0.05) in all tested models. As a consequence,
the combined model exceeds the nominal level by the same amount. The same behavior can
be seen in the parametric approach. As practical advice, we recommend including all potential
confounders in all models, since losing control of the Type I error in any of them will make the
inference unreliable.

A more subtle but very relevant example is the case where some transformation of the con-
founders does not account for all the dependence between them. For instance, suppose that a
confounder Z has a linear relationship with the response Y and with the variable of interest X .
Now, to account for nonlinear effects, the researcher decides to use a median-split transformation
of Z . The resulting test on the coefficient of X will lose its control of the Type I error. To elucidate
this case in practice, we run a second simulation, again under the same setting described above
(linear homoscedastic model). In this case, we include all the confounders, but we use a median-
split transformation instead of the parabolic models. With sample size n = 200, the empirical
Type I error of the true (linear) model is under control (sign-flip score test: 0.051, parametric:
0.054), while it largely exceeds 5% for any other model that median-splits the predictors, reaching
0.211 for the sign-flip score test (and 0.219 for the parametric test) when the model has all the
three confounders with a median-split. As a direct consequence of the loss of control of Type I
error of the univariate models, the PIMA method loses its error control as well. The empirical
Type I error is 0.180 for the maximum and similar for other combining functions. It would be
easy to define more dramatic scenarios, of course.

Thorough discussion of the results. The previous consideration may be uncomfortable. It
implies that every significant test must be evaluated with great care, and that the researcher must
take the responsibility for assuming that confounding is properly addressed in every model tested.
However, this is inherently false inmany cases. A trivial example comes from the setting of the last
simulation above: if a linear relationship is appropriate, the median-split transformation will not
provide a testwith an adequate control of theType I error.Conversely,when the dependence should
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Table 6.
Number of models with significant difference Post-Lock for different transformations of the variable Age in the PIMA
of the COVID-19 vaccine hesitancy dataset.

Predictor of Age p-adjusted > 0.05 p-adjusted ≤ 0.05

Age (linear) 0 27
Age with 3 basis of B-splines 27 0
Age with 4 basis of B-splines 25 2

be modeled via a median-split, the natural variables will fail as well. The same can be said for very
well known transformations such as log and square root functions. These considerations shed a
light on the implicit complexity of a multiverse analysis. A significant test must be interpreted
as a significant relationship between the predictor of interest X and the response Y , given the
confounders Z of the model. And the significant result may be due to a real relationship between
X and Y or a poor modeling of Z . It is the responsibility of the researcher to carefully consider
both the possibilities.

Let’s go back to the application in Sect. 5. The comparison LockDown–Pre shows no
significant result; therefore, no (false) claims can be made. More interestingly, the comparison
Post–LockDown has 29 significant—i.e., multiplicity corrected—tests. Let’s now focus on
this comparison. By exploring the results, we can see that most of the significant ones are due to
models where the variable Age is not transformed (i.e., 27/29), while when the age is modeled
by a B-spline transformation, the test becomes not significant in most of the cases (see Table 6).
Such a result should cast doubt on the robustness of the results. Most likely, the significant results
are due to inadequate modeling of the relationship between Age and the response variable which
in turn induces a spurious correlation between the contrast under test and the response variable. In
our opinion, therefore, there is not enough evidence to support the claim that the willingness to get
vaccinatedY has changed between thePre lock-down and theLockDown period. This highlights
the importance of the multiplicity correction in PIMA to obtain a better understanding of the
analysis and results. Particular patterns could suggest, for instance, that significant specifications
correspond only to certain modeling choices; the researcher should then evaluate whether these
particular choices are indeed plausible or, on the contrary, should be discarded.

Robust analysis is still possible. Despite the challenges pointed out in this discussion, we
claim that robust results can still be obtained. Consider the comparison Post–Pre, where all
comparisons turn out to yield significant effects. If we can assume that “at least one” among all
tested models deals properly with confounders, we are allowed to claim that there is a significant
difference between Post and Pre—even though we cannot claim which model is the more
appropriate one. This result directly follows from Berger’s general results on intersection–union
tests (Berger, 1982) . Thus, to control the relevant Type I error probability, it is only necessary
to test each one of the coefficients at the α level.

To conclude, we hope that our proposed inferential framework for multiverse analysis will
allow researchers to learn as much as possible from the multiverse analyses they perform. Our
extension to generalized linear models allows researchers designing a wider to move beyond a
purely descriptive interpretation of a multiverse analysis and allows researchers to test whether
the null hypothesis can be statistically rejected in any or a subset of models. The strong control
for multiplicity in PIMA provides researchers with a statistical tool that allows them to claim
that the null hypothesis can be rejected for each specification that shows a significant effect,
with the comfort of knowing that they are not p-hacking. We underline that in scenarios with a
large number of specifications, the correction for multiple testing is essential to understand for
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which specifications there is a statistically significant relationship and so draw more informative
inferences from the data. PIMA makes it possible for researchers who feel that they can not a-
priori specify a single analysis approach to efficiently test a plausible set of models and still draw
reliable inferences.
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