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The buoyancy-driven chemoconvection induced by a neutralization reaction is
theoretically studied for a system consisting of nitric acid and sodium hydroxide aqueous
solutions placed in a vertically oriented Hele-Shaw cell. This pair of reactants is a
representative case of reacting miscible acid–base systems investigated experimentally
in Part 1 of this work (Mizev et al., J. Fluid Mech., vol. 916, 2021, A22). We showed
that the list of the possible instabilities in this system is much richer than previously
thought. A new scenario for pattern formation depends on a single parameter denoted by
Kρ , the reaction-induced buoyancy number defined in Part 1. In this paper, the theoretical
analysis complementing the experimental observations provides the conceptual insights
required for a full understanding of the mechanisms of the observed phenomena. The
mathematical model we develop consists of a system of reaction–diffusion–advection
equations governing the evolution of concentrations coupled to the Navier–Stokes
equation. The system dynamics is examined through transient linear stability analysis and
numerical simulation. If Kρ > 1, then a statically stable potential well appears adjacent
to the reaction front. As a result, a Rayleigh–Bénard-like cellular pattern can arise in this
depleted density region. If Kρ � 1, then a potential well collapses, and a shock-wave-like
structure with an almost planar front occurs. This wave propagates fast compared with the
diffusion time and acts as a turbulent bore separating immobile fluid and an area of intense
convective mixing. Finally, we determine the place of the above instabilities in an extended
classification of known instability types.
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1. Introduction

In recent years, the interaction between reaction–diffusion phenomena and convective
instabilities has attracted increasing interest both from the fundamental point of view
and numerous applications. As shown, the reaction–diffusion processes and fluid motion
can establish positive feedback. On the one hand, the chemically induced changes of
fluid properties, such as concentration, density, viscosity or surface tension, may result
in instabilities, which exhibit a large variety of convective patterns. On the other hand,
convective flows can significantly change the distribution of reactants in the medium,
setting new scenarios for the reaction.

An exothermic neutralization reaction occurring in a two-layer miscible system has been
actively studied in recent years because of a comparatively simple, but nonlinear, kinetics.
If two miscible solutions are brought into contact in zero gravity, then the reaction can
form a front. The papers (Gálfi & Rácz 1988; Koza & Taitelbaum 1996) considered the
properties of an A + B → C chemical front in the framework of a reaction–diffusion
approach. If the reaction occurs in a two-layer miscible system under gravity, it may
result in various buoyancy-driven instabilities, which were intensively studied both
experimentally and theoretically in the last decade (Zalts et al. 2008; Almarcha et al. 2010;
Hejazi & Azaiez 2012; Tsuji & Müller 2012; Lemaigre et al. 2013; Kim 2014, 2019). For
the most complete recent review on this topic, see De Wit (2020).

In the non-reactive case, pattern formation in the form of irregular plumes and fingers
is observed when the upper layer is denser than the lower one. This stratification is
unstable under gravity via a Rayleigh–Taylor (hereinafter abbreviated to RT) instability. It
is important to note that the density fingering develops similarly above and below the initial
contact surface since the underlying density gradient is symmetric (Fernandez et al. 2002;
Trevelyan, Almarcha & De Wit 2011; Carballido-Landeira et al. 2013). By contrast, the
RT fingering triggered by the reaction can develop asymmetric patterns (Zalts et al. 2008;
Almarcha et al. 2010; Lemaigre et al. 2013). The reason is that the downward-moving
denser reactant dissolved in the upper layer is consumed by the reaction and replaced by
the salt of lower density (De Wit 2020).

Another important engine breaking the equilibrium in a liquid is the difference between
the diffusion rates of species resulting in either a double-diffusive (DD) instability
(Stern 1960) or diffusive-layer convection (DLC) (Stern & Turner 1969). If the initial
stratification is statically stable, the DD instability occurs if the solute dissolved in the
lower layer diffuses faster, while the DLC mode occurs if the opposite is true. And again, in
the absence of reaction, the DD convection is symmetric (Fernandez et al. 2002; Trevelyan
et al. 2011), but the reaction produces asymmetric patterns (Lemaigre et al. 2013; De Wit
2020). Finally, the paper (Trevelyan, Almarcha & De Wit 2015) classified all possible types
of buoyancy-driven instabilities that occur in two-layer miscible systems. Thus, the result
of all these studies is the conclusion that a neutralization reaction does not give rise to new
types of instabilities, but rather changes the features of previously well-known instability
mechanisms (RT, DD and DLC).

In this review, it makes sense to also mention several papers devoted to immiscible
systems studied under gravity. The statically unstable density profiles can generate
spontaneous convective flows near the liquid–liquid interface. Such buoyancy-related
patterns induced by chemically driven unfavourable density gradients have received
increasing attention over recent decades (Avnir & Kagan 1984; Bees et al. 2001).
Convective phenomena related to heat and solutal buoyancy effects due to an exothermic
A + B → C neutralization reaction close to a liquid–liquid interface have been studied
experimentally by Eckert & Grahn (1999) and Eckert, Acker & Shi (2004). Their first
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Buoyancy-driven flows induced by a neutralization reaction

experimental system consisted of an organic solution containing a carboxylic acid put in
contact in a Hele-Shaw cell with an aqueous solution in which sodium hydroxide was
dissolved. Dynamics and patterns in the form of irregular plumes and fingers are observed
(Eckert & Grahn 1999). When propionic acid was dissolved in the upper layer and NaOH
was replaced by an organic base, the impressive regular fingered structure in the form of
long self-growing cells with one side keeping contact with the interface and the other side
propagating downwards out of the interface was observed in the same system (Eckert et al.
2004). Those observations may be relevant to the effects discussed in this paper.

We have recently demonstrated in Bratsun et al. (2015, 2017) that the interaction of
the buoyancy-driven flow and the neutralization reaction can lead to much more radical
scenarios of the pattern formation. The format of the short communications of those
publications made it impossible to describe the obtained results consistently. The goal
of this work, which is divided into Part 1 (experiment) and Part 2 (theory), is to provide a
comprehensive experimental and theoretical study on recently revealed pattern formations
and to find their place in the general classification of instabilities.

In Part 1 of this work (Mizev, Mosheva & Bratsun 2021), we have introduced a
reaction-induced buoyancy number Kρ defined as the ratio of the density of the reaction
zone to that of the upper layer. As was shown experimentally in Part 1, the pattern
formation in the system depends on the value of this non-dimensional parameter. If
Kρ > 1, then the process is governed mainly by diffusion, which results in the development
of relatively weak convective motion caused by the differential-diffusion effect. Besides
the irregular density fingering, reported earlier in numerous studies, we found a new
type of instability, a concentration-dependent diffusion (CDD) convection, which is
characterized by the formation of a regular cellular convective pattern. If Kρ � 1, then
the entire reaction zone becomes unstable, giving rise to the vigorous convection in the
form of the shock-wave-like (SW) structure. It forces the reaction front to move down
fast so that it takes just a few minutes for reactants to burn out. This effect has been
revealed and carefully studied in different pairs of reactants, which provides proof of the
versatility of the instability mechanisms. In Part 2, the theoretical analysis complementing
the experimental observations presented in Part 1 provides the conceptual insights required
for a full understanding of the mechanisms of the observed phenomena.

2. Problem formulation

2.1. Reaction kinetics
We study a two-layer system consisting of miscible solutions initially separated by a
horizontal contact plane (figure 1). The upper layer of the system is always of lower density
than the lower one, which allows us to exclude the development of a global RT instability
from the very beginning of the study. We assume that nitric acid A (it can initially be either
in the upper or lower layer) diffuses to react with sodium hydroxide B to form their salt C
under the production of water. This process is accompanied by significant heat release Q.
The standard enthalpy of the reaction is 57 kJ mol−1. Such a neutralization reaction can
be described by the simplified equation

A + B → C + Q, (2.1)

with the reaction rate characterized by the constant K. Thus, a second-order exothermic
neutralization reaction defined by (2.1) has a comparatively simple, albeit nonlinear,
kinetics.
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Figure 1. Geometrical configuration of the two-layer miscible system and coordinate axes.

2.2. Hele-Shaw flow approximation
The Hele-Shaw cell, since its description by Hele Shaw (1898), has proven to be a
useful instrument to study quasi-two-dimensional flows. These flows develop between
two parallel flat plates separated by an infinitesimally small gap. As is well known, Hele
Shaw’s theory for single-phase flow results in the depth-averaged equations for pressure
and two-dimensional velocity fields. In the simplest case, the Hele-Shaw approximation
reduces the equation of motion to Darcy’s law formulated initially for the fluid filtration
through a porous medium. In this limit, the flow in the Hele-Show cell is completely
analogous to the fluid filtration through a porous medium. The majority of works, which
we cited above, have used the Darcy model to describe the phenomena in the system
under consideration (Almarcha et al. 2010; Hejazi & Azaiez 2012; Tsuji & Müller 2012;
Lemaigre et al. 2013; Kim 2014; Trevelyan et al. 2015). It should be noted that the Darcy
equation for the description of fluid flow in porous media is valid under the condition that
the mean velocity varies slowly in space (Zeng, Yortsos & Salin 2003). In many cases,
however, this condition is not met. For example, this may be due to a sharp change in fluid
properties, as in the context of the RT problem Martin, Rakotomalala & Salin (2002), or
in viscous fingering (Martin et al. 2011), or due to the presence of the interface in the
immiscible system, which requires the correct formulation of the boundary conditions for
the velocity (Bratsun & De Wit 2004). The simplest way to correct this inadequacy in the
model is to add the term suggested by Brinkman (1947). A more complicated correction
implies taking into account the inertial term in a special form in the equation of motion,
as was suggested by Ruyer-Quil (2001) and Martin et al. (2002).

The system we consider consists of two vertical solid plates placed parallel to each other
with a small distance between them. Let x, z be the directions parallel to the flat plates,
and y the perpendicular direction, with h the gap between the plates at y = ±h/2 (see
figure 1). For the sake of clarity, suppose that the z-axis is anti-directed to gravity. The
resulting closed cavity is defined by 0 � x � L and −H � z � H.

We start with a three-dimensional Navier–Stokes equation, coupled with a continuity
equation, implying that the fluid is incompressible

∇ · u = 0, (2.2)
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Buoyancy-driven flows induced by a neutralization reaction

ρ̂

(
∂u
∂t

+ u · ∇u
)

= −∇p + η∇2u + ρ̂g. (2.3)

Here, u : (ux, uy, uz) is the velocity, ρ̂ is the solution density and p is the pressure; η and
g stand for the dynamic viscosity and the acceleration vector due to gravity, respectively.
Under the assumption that the fluid adheres to the solid walls, the boundary conditions for
the velocity at the solid plates are

y = ±h
2

: u = 0. (2.4a,b)

We further assume that the gap width h is small enough so that the fluid flow may
be considered as quasi-two-dimensional, i.e. a Hele-Shaw approximation is applicable.
Taking into account the boundary condition (2.4a,b), the velocity can be approximated by
the following functions:

ux(x, y, z) = 3
2

(
1 − 4y2

h2

)
U(x, z),

uy(x, y, z) = 0,

uz(x, y, z) = 3
2

(
1 − 4y2

h2

)
V(x, z),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.5)

where v : (U,V) is the two-component velocity field obtained after averaging the velocity
u across the gap.

The approximations (2.5) should then be substituted into the Navier–Stokes equation
(2.3) and averaged across the gap

〈· · · 〉 = 1
h

∫ h/2

−h/2
. . . dy. (2.6)

As a result, we obtain the motion equation written in the Hele-Shaw approximation

ρ0

(
∂v

∂t
+ 6

5
v · ∇v

)
= −∇p + η�v − 12η

h2 v + 〈ρ〉g, (2.7)

where ρ0 is the density of the solvent and 〈ρ〉 is the average medium density, which will be
determined below. In addition to the correction factor 6/5 (Ruyer-Quil 2001), (2.7) differs
from the standard Navier–Stokes equation by the term proportional to the velocity. One
can interpret this term as the average friction force due to the presence of the plates, and it
is analogous to Darcy’s law for the porous medium.

Let us estimate whether it is necessary to use the Hele-Shaw approximation in the form
(2.7), which includes the Brinkman term and the inertial term, in this problem. We define
the characteristic size of the chemoconvective structure as H, which can be estimated as√
τRDa0, where τR = 1/KA0 stands for the characteristic reaction time and Da0 is the table

value of the diffusion coefficient of acid. Then we scale the equation (2.7) choosing the
following characteristic units: for time τR, for length H, for velocity H/τR, for pressure
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12ρ0νDa0/h2 and obtain

ε

Sc

(
∂v

∂t
+ 6

5
v · ∇v

)
= −∇p + ε�v − v + εScGa

〈ρ〉
ρ0

z, (2.8)

where Sc is the Schmidt number, Ga is the Galileo number and

ε = h2

12H2 = h2√KA0

12
√

Da0
(2.9)

stands for the parameter determining the relative contribution of the Brinkman term to the
motion equation.

In addition, we can evaluate the applicability of the Hele-Shaw approximation by
reasoning in terms of the convective instability itself, regardless of the characteristic size
of the cavity, which largely imposes its scale on physical processes. In our problem, there
are two fundamental types of instabilities: RT convection and diffusive instability. Let us
estimate the characteristic wavelength of each instability expressed in terms of diffusion,
viscosity and buoyancy. An estimate of the characteristic length of diffusive types of
instabilities can be obtained using the formula derived by Stern (1960). Stern considered
doubly stratified water: warm and salty above cold and fresh, that is typical for the ocean
stratification, and was the first to explain the mechanism of the onset of double-diffusion
instability. Since, in our work, the role of heat is played by a rapidly diffusing acid, we must
replace the characteristics of the thermal field in the Stern formula with the characteristics
of the acid concentration field. Then, we obtain the estimate for an aqueous solution of
nitric acid

LDD = π

(
4νDa0

gβa|Ga|
)1/4

≈ 0.7 mm, (2.10)

where βa is the acid expansion coefficient and Ga is the characteristic vertical gradient of
acid concentration in the domain where the instability occurs. To obtain (2.10), we have
used the data presented in table 1 of Part 1 (Mizev et al. 2021).

To estimate the characteristic size of the RT convection at the very beginning of the
evolution, we can use the formula suggested by Martin et al. (2002). The authors have
introduced the characteristic length LRT for the RT instability developing in miscible
systems. For our case, we get the following estimate:

LRT =
(

2ρ0νDa0

g�ρ

)1/3

≈ 0.1 mm, (2.11)

where �ρ stands for the characteristic density difference giving rise to the RT instability.
We can learn from the estimates (2.10) and (2.11) that the characteristic instability

length is either of the same order of magnitude as the Hele-Shaw cell gap (h = 1 mm)
used in the experiment or even smaller. This serves as another justification for using
the Navier–Stokes–Darcy model equation (2.7) instead of the simple Darcy model.
What is important is that the use of the averaged two-dimensional Navier–Stokes–Darcy
equation (2.7) allows us to unify all limiting cases. The Darcy model for the Hele-Shaw
cell description is valid when the cell gap is small compared to this characteristic
reaction–diffusion length (ε � 1), whereas the case of fully three-dimensional flows
governed by the Navier–Stokes equation is obtained in the opposite limit (ε 	 1). The use
of the equation (2.7) allows us to recover these two limits and to give a good approximation
in the intermediate range of cell thicknesses (Ruyer-Quil 2001; Martin et al. 2002).
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Buoyancy-driven flows induced by a neutralization reaction

We can learn from the experimental observations (Mizev et al. 2021) that, at the very
beginning of evolution (at t < 200 s in dimensionless units), the characteristic size of
the structures can be small enough and the diffusion represented by the Brinkman term
in (2.7) can play an important role in the system dynamics. At later stages of evolution
(t > 200 s), Darcy’s law can be used to model flows. In fact, the situation is ambiguous,
since chemoconvective cells form for a rather long time. In the case of the SW mode,
the processes are much faster, but the characteristic size of convective structures is
larger. Summarizing all of this, we can state that the use of the full three-dimensional
Navier–Stokes equations in this problem is redundant, but the use of the Brinkman term is
desirable.

All other physical fields should be averaged in the same style as the velocity.

2.3. Boussinesq approximation
The Boussinesq approximation is commonly applied in convection theory to describe
buoyancy-driven flows. This approximation embodies two essential ideas. First, any
fluctuations in density that occur with the onset of fluid motion are produced mainly by
either thermal effects (in the case of thermally induced buoyancy) or by concentration
effects (in the case of solutally induced buoyancy) rather than by pressure effects. The
second idea is that all variations in fluid properties, except density, may be neglected.
Furthermore, this approximation ignores density differences except where they appear
in the terms responsible for the convective buoyancy force. The Boussinesq approach
is justified for the problems in which ‘weak’ convection exists in the cavity on the
laboratory scale, and the density variations caused by thermal or concentration expansion
are relatively small.

In fact, we have already implicitly used the Boussinesq approach when we replaced the
density function ρ on the left side of the motion equation (2.7) with a constant value ρ0
of the solvent density. To complete the work, one needs to expand the density 〈ρ〉 on the
right-hand side of (2.7) as a power series of temperature and concentrations, retaining only
linear terms

〈ρ〉 = ρ0 + ρ = ρ0(1 − βT + βaA + βbB + βcC), (2.12)

where β and βi are the thermal and solutal expansion coefficients, respectively. In (2.12),
we take into account the fact that all the dissolved substances are heavier than water. Let us
evaluate the contribution of thermal and solutal effects to the buoyancy force by composing
the ratio of the first two terms of the first order in the expansion (2.12)

βΘ∗

βAA∗ = Le
β|Q|Da0

βaκ
≈ 0.08, (2.13)

where Da0 is the table value of the diffusion coefficient of acid, κ is the thermal
conductivity of solvent andΘ∗ and A∗ stand for the characteristic values of the temperature
and acid concentration, respectively; Le stands for the Lewis number defined as the ratio
of thermal diffusivity to mass diffusivity. To get an estimate (2.13), we have used data
for water and nitric acid: Le = 42, β = 0.207 × 10−3 K−1, βa = 3.34 × 10−2 l mol−1,
Da0 = 3.15 × 10−5 cm2 s−1, κ = 0.6 J s−1 m−1 K−1.

In addition to the evaluation (2.13), one can notice that the thick walls of the
experimental Hele-Shaw cell are made from glass, which transmits significant heat
because the thermal conductivity coefficients of water and glass are nearly the same.
In comparison with the concentration effects, the thermal effects can be controlled to a
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Figure 2. Instantaneous density profiles ρ0(z, t) calculated for successive times in the case of pure diffusion
(a), reaction–diffusion without the CDD effect (b) and reaction–diffusion influenced by the CDD effect (c). The
position of the initial contact surface of the solutions is determined by the line z = 0. The initial concentrations
are γa = 0.667, γb = 0.7.

greater extent during the experiment. Thermally insulated walls enhance the role of heat,
while perfectly conductive walls make the heat effect negligible.

Finally, one can learn from (2.13) that the thermally induced buoyancy is an order of
magnitude weaker than the buoyancy force caused by the solute effect. For this reason, in
what follows, we consider the problem as isothermal.

2.4. Governing equations
As follows from the experimental observations presented in Part 1 of this work (Mizev
et al. 2021), the processes that occur during the neutralization of a strong acid with
alkali metal hydroxides are very similar. Therefore, we present the theoretical study
for one characteristic pair of reactants: nitric acid and sodium hydroxide. So, let two
miscible fluids fill the Hele-Shaw cell with a gap depth h, and let them be spatially
separated at the very beginning by a contact surface z = 0. The upper (or lower) layer
is an aqueous solution of HNO3, and the lower (or upper) layer is an aqueous solution
of NaOH (figure 2). The initial values of reactant concentrations are A0 and B0. These
two parameters are key to the problem since they are the only ones we can easily tune in
the experiments with a fixed pair of reactants. In all cases considered below, the initial
concentrations of reactants are selected so that the stratification of the system at the very
beginning is statically stable. Thus, we exclude the occurrence of the RT instability.

We use h as the measurement unit for length and h2/Da0 for time, Da0/h
for velocity, ρ0νDa0/h2 for pressure and Alim for concentration, where Alim is the
maximum concentration at which the linear law of CDD is observed for nitric acid.
The incompressibility constraint (2.2) can be satisfied automatically by defining a
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Buoyancy-driven flows induced by a neutralization reaction

streamfunction Ψ such that

U = −∂Ψ
∂z
, V = ∂Ψ

∂x
. (2.14a,b)

In what follows, we use the vorticity–streamfunction formulation of the governing
equations. Thus, the set of reaction–diffusion–advection equations written in the
Boussinesq and Hele-Shaw approximations is as follows:

Φ = −∇2Ψ, (2.15)

1
Sc

(
∂Φ

∂t
+ 6

5
∂Ψ

∂z
∂Φ

∂x
− 6

5
∂Ψ

∂x
∂Φ

∂z

)
= ∇2Φ − 12Φ − Ra

∂A
∂x

− Rb
∂B
∂x

− Rc
∂C
∂x
, (2.16)

∂A
∂t

+ ∂Ψ

∂z
∂A
∂x

− ∂Ψ

∂x
∂A
∂z

= ∇(Da∇A)− DaAB, (2.17)

∂B
∂t

+ ∂Ψ

∂z
∂B
∂x

− ∂Ψ

∂x
∂B
∂z

= ∇(Db∇B)− DaAB, (2.18)

∂C
∂t

+ ∂Ψ

∂z
∂C
∂x

− ∂Ψ

∂x
∂C
∂z

= ∇(Dc∇C)+ DaAB, (2.19)

where (2.15) is the definition of the vorticity Φ. The diffusion terms in (2.17)–(2.19) have
been written in the most general form taking into account the CDD effect (Crank 1975).

Equations (2.15)–(2.19) should be supplemented by the boundary conditions

x = 0, L : Ψ = 0,
∂Ψ

∂x
= 0,

∂A
∂x

= 0,
∂B
∂x

= 0,
∂C
∂x

= 0, (2.20a,b)

z = ±L : Ψ = 0,
∂Ψ

∂z
= 0,

∂A
∂z

= 0,
∂B
∂z

= 0,
∂C
∂z

= 0. (2.21a,b)

If the acid solution is on the top, the initial conditions at t = 0 are written as

z � 0 : Ψ = 0, A = 0, B = γb, (2.22a,b)

z > 0 : Ψ = 0, A = γa, B = 0, (2.23a,b)

where γa and γb stand for

γa = A0

Alim
, γb = B0

Alim
, (2.24a,b)

respectively.
If the base solution is on the top, the initial conditions are

z � 0 : Ψ = 0, A = γa, B = 0, (2.25a,b)

z > 0 : Ψ = 0, A = 0, B = γb. (2.26a,b)

The set of equations (2.15)–(2.19) has two dimensionless parameters

Sc = ν

Da0
, Da = KAlimh2

Da0
, (2.27a,b)

the Schmidt number and the Damköhler number, respectively. These two numbers are
the ratio of either the viscous diffusion rate or reaction rate to the mass diffusion
rate, respectively. The evaluation of the Schmidt number for nitric acid gives the value
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Sc = 317. As for the Damköhler number, in this paper, we accept a comparatively high
value, which makes the reaction frontal: Da = 103. Note that the above parameters
(2.27a,b) are determined by the reaction kinetics, and they cannot be tuned in the
experiments with a particular pair of reactants.

In addition, the set of Rayleigh numbers appears in (2.16)

Ra = gβaAlimh3

νDa0
, Rb = gβbAlimh3

νDa0
, Rc = gβcAlimh3

νDa0
, (2.28a–c)

characterizing the contribution of each water dissolved substance to density variations.
The values of the parameters (2.28a–c) can also be estimated with the table values: Ra =
3.18 × 105, Rb = 3.82 × 105, Rc = 5.1 × 105.

In what follows, it is convenient to define a variable based on the expansion (2.12), which
makes sense of the addition to the density of a pure solvent due to dissolved substances

ρ(x, z, t) = A(x, z, t)+ Rb

Ra
B(x, z, t)+ Rc

Ra
C(x, z, t). (2.29)

Finally, the only parameters which can be manipulated by an experimenter are the initial
values of the reactant concentrations γa and γb.

Thus, by obtaining a full set of equations (2.15)–(2.19) with the boundary conditions
(2.20a,b), (2.21a,b) and the initial conditions in the form of either (2.22a,b), (2.23a,b)
or (2.25a,b), (2.26a,b), we have formulated the problem. Note that the reaction-induced
buoyancy number Kρ does not automatically appear in the governing equations
(2.15)–(2.19) after they have been converted to a dimensionless form. We will define this
parameter below.

2.5. Concentration-dependent diffusion
The CDD effect is key to this work. To evaluate the diffusion formulas for the pair
HNO3/NaOH, we have brought together all the known experimental data (Bratsun et al.
2015). Note that the data on the concentration dependence of the diffusion coefficients
have appeared to be fragmentary and incomplete for most substances. Therefore, we were
forced to conduct our experiments to measure the diffusion coefficients (see data presented
in Mizev et al. 2021). We assume for simplicity that the data set falls in the experimentally
interesting range of concentration on a straight line f (X) = a + bX, where X stands for
concentration, a and b are some constants. We suppose here that each diffusion coefficient
depends only on the concentration of its substance. These linear laws in a dimensionless
form, then, are

Da(A) ≈ 0.881 + 0.158A,

Db(B) ≈ 0.594 − 0.087B,

Dc(C) ≈ 0.478 − 0.284C.

⎫⎪⎬
⎪⎭ (2.30)

Equations (2.30) perfectly approximate the diffusive properties within the concentration
range from 0.1 up to Alim = 3 mol l−1. The dimensionless table values for diffusion
coefficients are as follows:

Dtab
a = 1.0, Dtab

b = 0.68, Dtab
c = 0.5, (2.31a–c)

where the coefficients were scaled using Da0.
One can see that the results of (2.30) for the limiting case of zero concentration do not

coincide with the table values (2.31a–c). This is explained by the fact that the experimental
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dependencies of the diffusion coefficients at small concentrations are strongly nonlinear.
Since the neutralization reaction under ideal mixing runs fast, we can neglect these
nonlinear effects at low concentrations.

3. Base-state solution

3.1. Potential barrier and well
The problem (2.15)–(2.26a,b), (2.30) has an unsteady solution, which describes the
reaction–diffusion processes. The fluid remains at mechanical equilibrium. We will
consider this solution as a base-state solution. We assume that the fluid velocity equals zero
in (2.15)–(2.19) and that the concentration fields depend only on the vertical coordinate and
time: A0(z, t), B0(z, t), C0(z, t). The resulting time-dependent nonlinear equations

∂A0

∂t
= Da(A0)

∂2A0

∂z2 + dDa(A0)

dA0

(
∂A0

∂z

)2

− DaA0B0, (3.1)

∂B0

∂t
= Db(B0)

∂2B0

∂z2 + dDb(B0)

dB0

(
∂B0

∂z

)2

− DaA0B0, (3.2)

∂C0

∂t
= Dc(C0)

∂2C0

∂z2 + dDc(C0)

dC0

(
∂C0

∂z

)2

+ DaA0B0 (3.3)

should be complemented with the boundary and initial conditions (2.20a,b)–(2.26a,b) and
the formulas for CDD (2.30). This problem has no analytical solution and can only be
solved numerically.

Figure 2 presents the base-state profiles of the density ρ0(z, t) for four consecutive times
t = 0, 2, 5, 10. We consider three fundamentally different cases. Figure 2(a) illustrates the
situation when, the solutions being brought into contact, do not react (Da = 0). In this
case, one can observe a typical profile of the DLC instability, which occurs when the
system is initially statically stable, and the fastest diffusing solute is in the upper layer. One
can see here that a sharp drop in the density of the solutions given at the very beginning is
gradually smoothed out since diffusion is a typical relaxation process.

Figure 2(b) shows the dynamics of the density profile starting from the same initial
conditions, but now the solutions of HNO3 and NaOH react according to the equation
(2.1). The CDD effect (2.30) is here not taken into account. Instead, the equations are
integrated with constant tabular values (2.31a–c) for the diffusion coefficients. One can
see that the situation does not change qualitatively, but the profiles become non-symmetric
concerning the z-axis. However, the main feature of the density profile, to spread out over
time under the influence of the relaxation process, has been preserved.

Finally, figure 2(c) shows the density evolution taking into account the CDD effect.
A qualitative change here is the appearance of a potential barrier on the density profile.
For this reason, the density profile has two minima above and below the reaction. It is
interesting to note that the height and width of the potential barrier vary very little with
time. This implies that the barrier is the result of an exact balance between CDD and the
nonlinear chemical reaction.

Figure 3 shows the relative contributions of acid, base and salt to the total density
ρ0(z, t) of the medium. One can see that the reaction product makes a decisive contribution
to the emergence of a potential barrier. Due to the barrier, which successfully resists
the relaxation process, a potential well that is statically quasi-stable in time also arises
in the system. Since gravity is anti-directed to the z-axis, only the potential well can exist
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Figure 3. Base-state profiles of acid A0, base B0 and their salt C0 showing contributions of species to the total
density ρ0. The initial concentrations are γa = 0.667, γb = 0.55. All profiles are shown for time t = 5. The
position of the potential barrier is indicated by the circle.

(the region to the left of the barrier in figure 3). The bottom of the potential well is marked
with an open square. In this case, the potential barrier prevents the low-density area from
floating up under the action of the Archimedes force. The low-density region to the right
of the barrier is statically unstable and can float under the action of a buoyancy force. It
is interesting to note that the well’s depth almost does not change with time, yet its width
increases time as the left wall is gradually smoothed out due to diffusion (see figure 2c).

Thus, the neutralization reaction, coupled with the CDD, can result in a potential well
and maintain it for a long time in a quasi-steady state. As we will show below, this ability
provides completely new opportunities for pattern formation scenarios in the system.

3.2. Stability map based on the base-state density profiles
We found that the stability map of the principal reaction–diffusion–convection modes
observed experimentally (Mizev et al. 2021) can be constructed by analysing changes in
the base-state density profile ρ0(z, t) calculated using (3.1)–(3.3). Figure 4 presents this
map in the parameter plane of the initial values for the concentrations of acid γa and base
γb defined by (2.24a,b).

The relation (2.29) implies that the weight of an elementary volume of liquid depends
both on the structure of the solute’s molecule and on the amount of solute. Therefore, the
condition

γb = βa

βb
γa = Ra

Rb
γa (3.4)

on the stability map gives a line of equal density for the upper and lower layers, that is, an
isopycnal line (thick solid line in figure 4). If the parameters are taken above the isopycnal
line, then the base solution is heavier than the acid solution. Since we do not consider here
the RT instability, this means that a less dense fluid lies above a denser fluid in a gravity
field. Therefore, the intersection of the isopycnal line (3.4) means that the solutions change
places.

After bringing the solutions of HNO3 and NaOH into contact, the reaction–diffusion
processes transform the density profile and may cause potentially unstable conditions
for the system under the gravity force. Density transformations under different initial
concentrations are shown in figure 5. This figure presents typical density profiles that
correspond to a vertical slice indicated in figure 4, which includes the main areas above
and below the isopycnal line. Let us discuss the characteristic areas of the stability map in
more detail. The upper left part of the map corresponds to the parameters at which the DLC
instability arises (the solution with a faster diffusing substance is at the top). As a rule,
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Figure 4. Stability map constructed by inspection of variations of the base-state density profile in the (γa, γb)
parameter space. Abbreviations DLC, SW and CDD denote the diffusive layer convection (1), shock wave (3)
and convection of CDD (2), respectively. The characteristic cross-section γa = 0.667 of the stability map is
indicated by a red straight line and discussed in figures 5 and 6 in more detail. Experimental interferograms
(Mizev et al. 2021) are shown alongside to illustrate the main modes indicated in the map.

with no reaction, it is a formation of two areas with weak convective movements divided
by a diffusion zone where the fluid remains motionless. The zones above and below are
characterized by the system of fingers which propagate symmetrically up and down from
the mixing zone (Trevelyan et al. 2011). It is known that the running reaction could violate
the symmetry of the fingering process, giving preference to fingers that extend up or down
(Almarcha et al. 2010). However, the effect of the reaction on the mass transfer processes
in the system can be much more radical (Bratsun et al. 2015, 2017).

Moving down along the red line γa = 0.667 shown in figure 4, we first cross the point
a, which corresponds to the appearance of a new local maximum on the density curve
(figure 5a). The reason is that the diffusion rate of salt decreases with the concentration
increase (see (2.30)), which results in local accumulation of the reaction product near the
initial contact surface of the solutions. Also, since the salt is quite heavy, its contribution to
the density (2.29) is significant. Thus, the density maximum indicates where the reaction
product accumulates in the system and serves as an indicator for the reaction front location.
The appearance of a potential well, or in other words ‘a density pocket’, in figure 5(a) does
not mean the immediate development of convection there. For this, the local Rayleigh
number must exceed its critical value. Let us define this parameter as follows:

Rlocal = 1
Rcr

local

gβcNd4

16νDc0
, (3.5)

where Dc0 is the table value of the diffusion coefficient of salt, N is the characteristic
linear gradient of salt concentration in a potential well and d is the width of the potential
density well. The semi-width d/2 is chosen as the characteristic size because the instability
condition is fulfilled only in one half of the potential well. It can be calculated as

d
2

= |zbar − zcdd| (3.6)

(see figure 3 for details). The parameter Rlocal is normalized by its critical value Rcr
local,

which could be either calculated within a linear stability analysis or taken from a

916 A23-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

20
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.202


D.A. Bratsun, A.I. Mizev and E.A. Mosheva

0.6

0.8

1.0

1.2

γa = 0.667, γb = 1.02

0.6

0.8

γa = 0.667, γb = 0.74

0.6

0.7

γa = 0.667, γb = 0.58

0.6

γa = 0.667, γb = 0.55

0.6

γa = 0.667, γb = 0.52

0.4

0.6

–20 –15 –10 –5 0 5 10

–20 –15 –10 –5 0 5 10

–20 –15 –10 –5 0 5 10

–20 –15 –10 –5 0 5 10

–20 –15 –10 –5 0 5 10

–20 –15 –10 –5 0 5 10

z

γa = 0.667, γb = 0.37

ρ

ρ

ρ

ρ

ρ

ρ

(a)

(b)

(c)

(d )

(e)

( f )

Figure 5. Instantaneous density profiles ρ0(z, t) for the reaction–diffusion base state calculated for different
values of the control parameters γa and γb marked on the stability map (see figure 4). Red horizontal lines are
drawn for the convenience of comparing the reaction zone and upper layer densities. The position of the initial
contact surface of the solutions is determined by z = 0. All profiles are shown for time t = 5.

textbook on the solutal Rayleigh–Bénard problem (Gershuni & Zhukhovitskii 1976). In
the definition (3.5), we also take into account the fact that the main contribution to the
appearance of the potential well is made by the reaction product.

The variation of Rlocal as a function of γb and fixed γa = 0.667 is shown in figure 6(a).
It is seen that the fluid loses its stability with respect to local perturbations limited to
the density pocket at approximately γb = 0.73 (point b in figure 4). The corresponding
density profile is presented in figure 5(b). We have called this type of instability CDD
convection, emphasizing the fact that, without the effect of CDD, convection in the
potential well would not have been possible. To demonstrate this, figure 6(a) also presents
the curve calculated without taking into account the CDD effect. Although the local
Rayleigh number slightly exceeds the critical value of 1 near the isopycnal line itself,
this instability still does not occur because, in this parameter range, the system becomes
unstable to another type of perturbation (see below). In fact, the potential well, where the
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Figure 6. Variation of the local Rayleigh number calculated inside a potential well (a) and the inverse of the
reaction-induced buoyancy number Kρ (b) as a function of the dimensionless initial concentration of base γb.
The corresponding cross-section of the stability map is given in figure 4. The critical value of the parameter in
each case is indicated by a red dashed line (instability above the line).

CDD instability occurs, is destroyed by a global bifurcation and begins to float upward
together with the entire reaction zone.

By inspecting the critical density profile shown in figure 5(b), we can conclude the
reaction zone density is still less than the density of the lower layer, but higher than that of
the upper layer. This allows the DLC and CDD instabilities to coexist together while being
separated by a thin diffusive layer.

Moving further down along the red line in figure 4, we cross the point c (γb ≈ 0.58),
where the densities of the reaction zone and the upper layer become equal. In what follows,
for convenience, we define the reaction-induced buoyancy number Kρ introduced in Mizev
et al. (2021) as

Kρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + A0(zbar, tc)+ Rb

Ra
B0(zbar, tc)+ Rc

Ra
C0(zbar, tc)

1 + A0(H, tc)
, if acid is above base;

1 + A0(zbar, tc)+ Rb

Ra
B0(zbar, tc)+ Rc

Ra
C0(zbar, tc)

1 + Rb

Ra
B0(H, tc)

, if base is above acid,

(3.7)

where zbar stands for the position of the local maximum density in the reaction zone (it
coincides with the position of the potential barrier, see figure 3), tc is the point in time
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when the density measurement occurs. Generally, the measurement should be carried out
in the limit of the large time asymptotic solution tc → ∞. In practice, the parameter (3.7)
was calculated for a sufficiently long time tc = 10.

In figure 6(b), we show the variation of 1/Kρ as a function of γb and fixed γa = 0.667.
The density profile in figure 5(c) indicates that this is the point for global bifurcation in
the system, at which an intense convective motion in the form of a shock wave occurs
(Bratsun et al. 2017). It can be noted that the area limited by the curve Kρ = 1 is a narrow
band pressed to the isopycnal line. The area becomes narrower and fades away at both
small and comparatively large values of the initial concentrations. The estimates show that
at γa > 1 the effect disappears.

Moving further along the parameter plane, we pass over the isopycnal line at γb = 0.55
(the point d in figure 4) and enter the parameter area where the acid and base solutions
change places. Figure 6(b) demonstrates that, below the isopycnal line, there is also a
region of intense convective motion. The exit from this mode occurs at the point e (γb ≈
0.52). The corresponding density profile is shown in figure 5(e).

It is important to show why the CDD convection does not occur if the acid and base
change places in the system (below the isopycnal line in figure 4). Figure 5 clearly
demonstrates that the bifurcation points for the onset of the CDD and SW instabilities
practically coincide. Due to this, the CDD convection, which is principally local, does not
have a chance to develop. Ultimately, this happens because of the asymmetry of the local
maximum with respect to the up–down reflection, which is the result of different diffusion
rates of HNO3 and NaOH. The slope of the potential wall located on the side of the base
solution is always greater since the diffusion rate of nitric acid in the water is higher
(for example, compare the profiles shown in the figure 5c,e). Thus, chemoconvective
cells cannot arise, although the potential well supported by the CDD effect and nonlinear
reaction continues to exist between the points e and f in figure 4.

4. Linear stability analysis

Although in the previous section we have been able to build a stability map based only
on the analysis of the base-state density profiles, it makes sense to analyse the stability
of a time-dependent base state with respect to small perturbations. The appearance of a
potential well on the density profile (figure 5) provides the necessary, but not sufficient,
conditions for the onset of instability.

There are two methods commonly used to determine the stability of a time-dependent
flow. The first one is the quasi-steady-state approximation (QSSA) method, in which one
freezes the time and determines the growth constant as if the base state were steady.
The second method is the initial value problem (IVP) for small disturbances. The former
method neglects the rate of change of the base state and leads to an eigenvalue problem
with time appearing as a parameter. The second method is an exact solution for the IVP,
which brings the initial data into consideration. Tan & Homsy (1986) have shown for
viscous fingering problems that the IVP calculation gives essentially the same results as
the QSSA approach, except for a short time when the base state changes rapidly. The
difference between the methods is that, at the very beginning of evolution, the growth rate
of disturbances within the IVP calculations is always negative because the development of
the instability takes time.

Generally, there is a considerable list of papers devoted to linear stability analysis in
different time-dependent problems with a non-monotonic density profile (see Manickam
& Homsy 1993, 1995; Loggia et al. 1995; Loggia, Salin & Yortsos 1998; Loggia et al.
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1999; Martin et al. 2002; Hejazi et al. 2010; Trevelyan et al. 2011; Hejazi & Azaiez 2012;
Gandhi & Trevelyan 2014; Kim 2014; Trevelyan et al. 2015; Bratsun 2019; Kim 2019).

Earlier work provides examples of analysis in viscous fingering systems. For example,
Loggia et al. (1995, 1998) studied the stability of the downdip displacement in a porous
medium of a dense and viscous fluid by a lighter and less viscous fluid, and vice versa using
an acoustic technique. They found that conventional predictions based on a long-wave
(LW) theory lead to identical instability thresholds for the two flows, while a short-wave
(SW) analysis suggests that instability sets in earlier than the LW predictions and leads
the two different thresholds. Manickam & Homsy (1993) and Manickam & Homsy (1995)
employed a linear theory using the QSSA to study the effect of a non-monotonic viscosity
profile on the stability of miscible displacements in a porous medium. The important
finding was that the diffusion of the base state does not always mitigate the instabilities and
the small wavenumber expansion gives a sufficient condition for the flow to be unstable.
Generally, the assumption of an especially designed density profile (step like) allows one
to obtain an analytical solution (or quasi-analytical solution) for time t = 0 by applying
the QSSA method. In special cases, it is possible to obtain an exact solution for later
times, for example, in the absence of dispersion and diffusion (Hickernell & Yortsos 1986).
However, in the general case, at late times t > 0, the density profile changes irreversibly,
the constructed initial state is destroyed and the problem can only be solved numerically.
In the case of a reaction with nonlinear kinetics and/or nonlinear diffusion, researchers
are faced with the problem of obtaining a closed-form solution for the base state since the
system should be solved numerically already in the main order of expansion. There are
few examples of exact solutions (Hejazi et al. 2010; Kim 2014), but they are valid for very
special cases of reactions and initial concentrations of reactants.

4.1. Analytical QSSA solution for the simplified problem
In our problem, an initially stable density profile evolves to a state with a potential well.
One can see in figure 2(c) that the density profile changes rapidly at the very beginning and
then slowly evolves, but does not change qualitatively. We can use this property employing
a linear theory analytically within the QSSA approach.

Let us consider the following simplified system of equations:

Φ + ∇2Ψ = 0, (4.1)

∇2Φ − 12Φ − ∂ρ

∂x
= 0, (4.2)

∂ρ

∂t
+ ∂Ψ

∂z
∂ρ

∂x
− ∂Ψ

∂x
∂ρ

∂z
= ∇2ρ, (4.3)

where ρ is the density of the medium. The variables in (4.1)–(4.3) were rescaled in such a
way that the diffusion coefficient and Rayleigh number were removed from the equations
(Hejazi et al. 2010; Gandhi & Trevelyan 2014). We neglect the processes of reaction and
nonlinear diffusion in (4.3). To simplify the analysis, we replace the reaction–diffusion
equations generating a non-monotonic density profile by the initial state in the form of a
rectangular potential well, which slowly (in terms of the development of hydrodynamic
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disturbances) expands with time

ρ0(τ, z) =

⎧⎪⎪⎨
⎪⎪⎩

0, z > d(τ )
−D, 0 � z � d(τ )
0, z < 0

, (4.4)

where d stands for the width of the potential well changing over slow time τ , D is the
constant well depth. The density profile constructed from a linear combination of step
functions as in (4.4) allows us to obtain the closed-form analytical solution (Tan & Homsy
1986; Gandhi & Trevelyan 2014).

We decompose the small monotonic perturbations in the following way:⎛
⎝Φ(t, x, z)
Ψ (t, x, z)
ρ(t, x, z)

⎞
⎠ =

⎛
⎝ 0

0
ρ0(τ, z)

⎞
⎠ +

⎛
⎝ϕ(z)ψ(z)

a(z)

⎞
⎠ exp(σ t + Ikx), (4.5)

where ϕ,ψ, a are, respectively, the amplitudes of normal mode perturbations for the
vorticity, streamfunction and density; k is the wavenumber and σ is the growth rate.

Substituting (4.5) into (4.1)–(4.3) and linearizing these equations near the base state
(4.4), we obtain the following system of amplitude equations for the determination of
critical perturbations:

ϕ + d2ψ

dz2 − k2ψ = 0, (4.6)

d2ϕ

dz2 − (k2 + 12)ϕ − k2a = 0, (4.7)

σa = d2a
dz2 − k2a − ψ

dρ0

dz
. (4.8)

Equations (4.6)–(4.8) should be supplemented by the condition that the solutions are
continuous at the jumps

z = 0, d(τ ) : [ψ]+− = 0, [ϕ]+− = 0, [a]+− = 0,[
dψ
dz

]+

−
= 0,

[
dϕ
dz

]+

−
= 0,

[
da
dz

+ ψρ0
]+

−
= 0.

⎫⎪⎬
⎪⎭ (4.9)

The sixth-order system of ordinary differential equations (4.6)–(4.8) can be analytically
solved for three spatial ranges (inside and outside the potential well). The obtained
solutions then are substituted into the jump conditions (4.9), yielding a linear system
of twelve algebraic equations for the unknowns. We should require that the determinant
12 × 12 coefficient matrix be equal to zero, which results in the dispersion equation

24σ 2(σ − 12)2

D2k2 = k
l
(σ − 12)

(
1 − e−(k+l)d

)
− kσ

12m
(σ − 12)

(
1 − e−(k+m)d

)

− k2σ

ml

(
1 − e−(l+m)d

)
+ 6k2

l2

(
1 − e−2ld

)
+ k2σ 2

24m2

(
1 − e−2md

)

+ (σ − 12)2

24

(
1 − e−2kd

)
, (4.10)

where l2 ≡ k2 + σ , m2 ≡ k2 + 12.
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The equation for the cutoff wavenumber k is then obtained in the limit σ → 0

d2D2 = 2304k2d2

F1 + F2
(
1 − e−(k+m)d

) − F3 e−2kd + F4
(
1 − e−2md

) , (4.11)

where

F1 = 1 − 1
3

k2 − 12d − m
36m

k4, F2 = k3

3m

(
1 + dk − 1

6
k2

)

F3 = 1 + 2dk + 2d2 − 1
3

k2 − H
3

k3 + 1
36

k4, F4 = k6

36(k2 + 12)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.12)

Let us determine the condition for the instability onset in the LW limit expanding the
cutoff condition (4.11) for small k

(
−6d2 + 13824

D2

)
k2 +

(
2d − 2

m
+ 2

memd + 4d3
)

k3 + · · · . (4.13)

To leading order in k, we obtain the important relation for the threshold

d(τ ) >
48
D
. (4.14)

We can compare our result with the analytical result obtained by Tan & Homsy (1986)
and Gandhi & Trevelyan (2014) for initial time t = 0 in the case of the Darcy motion
equation

d >
4
D
. (4.15)

Our analysis (4.14) is applicable at any time. At the very beginning of evolution, the
width of the potential well is extremely small; therefore, LW disturbances will not be
excited. We should expect that the most dangerous disturbances will be short waves (SW).
Comparing (4.14) and (4.15), we can conclude that taking into account the Brinkman term
results in the fact that LW disturbances are successfully damped.

4.2. Numerical IVP solution
In our case, the instability always develops after some critical time and the IVP usage is
more reasonable. Let us decompose the small monotonic perturbations in the following
way: ⎛

⎜⎜⎜⎝
Φ(t, x, z)
Ψ (t, x, z)
A(t, x, z)
B(t, x, z)
C(t, x, z)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0

A0(t, z)
B0(t, z)
C0(t, z)

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

ϕ̂(t, z)
ψ̂(t, z)
a(t, z)
b(t, z)
c(t, z)

⎞
⎟⎟⎟⎠ eIkx, (4.16)

where ϕ̂, ψ̂, a, b, c are, respectively, the amplitudes of normal mode perturbations for the
vorticity, streamfunction, acid, base and salt concentrations while k is their wavenumber.
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Substituting (4.16) into (2.15)–(2.19) and linearizing these equations near the base state
(3.1)–(3.3), we obtain the following system of time-dependent amplitude equations for the
determination of critical perturbations:

ϕ + ∂2ψ

∂z2 − k2ψ = 0, (4.17)

1
Sc
∂ϕ

∂t
= ∂2ϕ

∂z2 − (k2 + 12)ϕ − k2(Raaa + Rabb + Racc), (4.18)

∂a
∂t

= Da(A0)

(
∂2a
∂z2 − k2a

)
+ dDa(A0)

dA0

(
2
∂A0

∂z
∂a
∂z

+ a
∂2A0

∂z2

)

−Da(A0b + aB0)− ψ
∂A0

∂z
, (4.19)

∂b
∂t

= Db(B0)

(
∂2b
∂z2 − k2b

)
+ dDb(B0)

dB0

(
2
∂B0

∂z
∂b
∂z

+ b
∂2B0

∂z2

)

−Da(A0b + aB0)− ψ
∂B0

∂z
, (4.20)

∂c
∂t

= Dc(C0)

(
∂2c
∂z2 − k2c

)
+ dDc(C0)

dC0

(
2
∂C0

∂z
∂c
∂z

+ c
∂2C0

∂z2

)

+Da(A0b + aB0)− ψ
∂C0

∂z
, (4.21)

where ψ ≡ −Ikψ̂ , ϕ ≡ −Ikϕ̂. Equations (4.17)–(4.21) should be supplemented by the
boundary conditions for disturbances

z = ±H : ψ = 0, ϕ = 0, ψ = 0
∂a
∂z

= 0,
∂b
∂z

= 0,
∂c
∂z

= 0. (4.22a–e)

To find stability conditions, the equations for disturbances (4.17)–(4.21) and (4.22a–e)
are numerically integrated together with the equations for the base state (3.1)–(3.3) to
compute the growth rate λL(z, t) for a given wavenumber k. Repeating the calculations
for varying k enables us to describe the growth of small disturbances over a range of
wavenumbers. As is known, the growth rate for time-dependent stability problems can be
defined in a different way. Based on the fact that the acid in the system is the most active
agent, we define the growth rate similar to a Lyapunov exponent

λL(z0, t) = 1
N

N∑
j=1

1
�t

ln
aj(t +�t, z0)

aj(t, z0)
, (4.23)

where �t is the integration time step and N is the number of independent realizations
(typically 10–15). Because λL is sensitive to the given initial data, each independent
integration starts from white noise with an amplitude of less than 10−4. We fix the
occurrence of instability to the time when λL(t) averaged over N realizations changes sign
from negative to positive. The integration time step �t is not constant and changes in
accordance with the Courant rule so that the explicit scheme would be stable.

We can apply a linear analysis only to instabilities that develop locally. For example,
the SW convection occurs after a global bifurcation, which looks like a catastrophe for
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Figure 7. Real parts of the growth rate λL of the pure CDD instability (a), the pure DLC instability (b) and
the mixed-mode instability (c) are illustrated at different times. The initial concentrations are γa = 0.667,
γb = 0.66.

the system. Obviously, the study of stability boundaries for infinitesimal perturbations, in
this case, does not make sense. Therefore, we can only investigate the development of the
CDD and DLC instabilities. Thus, it is convenient to calculate the growth rate of the CDD
and DLC disturbances respectively as λL(zcdd, t) and λL(zdlc, t), i.e. at points zcdd and zdlc,
which coincide with two minima of the density profile (see figure 3).

Figure 7(a) presents the instantaneous growth rates λL(zcdd, t) as a function of the
wavenumber k calculated for the CDD convection. This instability develops below the
initial contact surface. The minimum of the neutral curve corresponds to the wavenumber
kcdd ≈ 4.4 at time t1 ≈ 0.156. The figure shows the development of a pure type of
instability, which is not affected by other disturbances. This is achieved by considering
only those perturbations that are localized inside the potential well. All other disturbances
during the calculation have been artificially nullified. Figure 7(b) presents the growth rates
λL(zdlc, t) calculated for the pure DLC instability developing above the initial contact
surface. This instability starts at kdlc ≈ 0.75 and t2 ≈ 0.253.
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Although the potential barrier in the form of dense immobile fluid separates the
sublayers where two instabilities develop, the instabilities still can influence each other
through a diffusion mechanism. To demonstrate the mode interaction, we have recalculated
the growth rate curve for both modes, allowing any disturbances to develop in the system.
Figure 7(c) presents the growth rates λL(zcdd, t) and λL(zdlc, t) for t = 1. In this case,
the instability region for the CDD convection has significantly expanded due to the longer
modes. The DLC mode develops exactly in the same wavelength range. Thus, the influence
of the DLC on the CDD instability looks obvious. It is provided by a relatively mobile acid,
which easily penetrates the potential barrier and invades the potential well. Thus, it is the
acid diffusion that is responsible for the nonlinear mixed-mode instability. To be precise,
the DLC instability develops almost independently, since the low-mobility salt and base
cannot penetrate the potential barrier separating the sublayers.

5. Numerical simulation

5.1. Numerical solution technique
The problem (2.24a,b)–(3.7) is solved numerically by a finite difference method. We
consider the Hele-Shaw cell with aspect ratio almost as in the experimental cuvette:
L = 20, H = 37 (20 per 74 units of dimensionless length). The equations and boundary
conditions are approximated on a rectangular uniform grid with 101 × 371 nodes using
a second-order approximation for the spatial coordinates. The one-sided and central
differences are used to approximate the time and coordinate derivatives, respectively. The
choice of this resolution is based on our previous experience with the numerical simulation
of buoyancy-driven flows and is defined by the characteristic size of the arising structures
(Bratsun et al. 2015, 2017). The nonlinear equations are solved using an explicit scheme.
The Poisson equation is solved by the iterative Liebman successive over-relaxation method
at each time step: the accuracy of the solution is fixed to 10−4. The initial condition for
the velocity is determined by a random distribution of the streamfunction field with an
amplitude of no more than 10−3.

Generally, a large Schmidt number allows us to omit the left part of the equation in
(2.30). However, in terms of a numerical procedure, it is easier and more efficient to solve
a non-stationary motion equation than to iterate while solving the Poisson equation. That
is why a nonlinear term in (2.30) is not omitted, although this imposes a special condition
on the time step

�t = �x2

2(2 + max(|Ψ |, |Φ|)) . (5.1)

The following fixed parameters have been used for all the simulations performed in this
paper: Sc = 317, Da = 103, Ra = 3.18 × 105, Rb = 3.82 × 105, Rc = 5.1 × 105.

To characterize the nonlinear dynamics resulting from the coupling between chemical
reactions and hydrodynamic flows, various types of measurements have been made during
the numerical simulations. At successive times, the concentration fields can be spatially
averaged along the transverse coordinate x to yield the averaged density profile

ρz(z, t) = 1
L

∫ L

0

(
A(x, z, t)+ Rb

Ra
B(x, z, t)+ Rc

Ra
C(x, z, t)

)
dx. (5.2)

The transverse-averaged profile (5.2) gives information on the speed and intensity of the
invasion of the reaction front and convective currents into the lower layer.
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behind the wave

Figure 8. Variation of the integral reaction rate R as a function of time.

If the chemical reactions affect the fluid flows, then convection can also significantly
affect the reaction rate, thus ensuring more intensive mixing of the reacting substances. In
that respect, an important measurement is provided by the reaction rate computed in terms
of the area of the reacted zone (i.e. the number of points where C(x, z, t) is larger than an
arbitrary threshold C0) normalized by the area of the system 2HL versus time

R(t) = 1
2HL

∫ H

−H

∫ L

0
θ(C − C0) dz dx, (5.3)

where θ stands for the Heaviside step function. This function returns zero everywhere,
except for the areas with a salt concentration C exceeding C0. In the latter case, θ = 1.
Typically, the threshold was defined to be C0 = 10−3.

In what follows, we present the results of direct numerical simulation of
buoyancy-driven flows governed by (2.24a,b)–(3.7). We consider here two fundamentally
different situations in which reaction–diffusion–convection processes occur under the
control of convection (Kρ < 1) or under the control of diffusion (Kρ > 1).

5.2. Shock-wave convection
To be specific, we consider the case γa = 0.667, γb = 0.56 (between points c and d on the
stability map shown in figure 4). Mass transfer processes in this area proceed under the
control of convection, because the reaction zone is much lighter than the upper layer, and
the estimate for the parameter (3.7) gives a value Kρ = 0.97. Figure 8 shows changes in
the integral reaction rate R(t) for this case. One can see that almost complete mixing of
salt occurs already after the passage of half a unit of time after the solutions were brought
into contact (approximately 150 s). This indicates the extremely intense mass transfer that
occurs in the system and the large-scale movement of the fluid throughout the cell.

Figure 9 illustrates the evolution of the density profile obtained within a base
reaction–diffusion state (t = 0.3) and in the context of the nonlinear theory (t = 0.7, 2, 3).
If the linear theory makes it possible to demonstrate the structure of the reaction zone with
two minima (see also figure 3), then the nonlinear evolution clearly shows the formation of
a SW structure already at the early stage of the reaction–diffusion–convection processes.
The pattern is formed as a result of the collapse of two depleted zones of low density.
Finally, we note that the SW consists of two density levels with a thin transition region and
moves towards a denser lower layer. This figure clearly demonstrates that the analysis of the
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Figure 9. Time evolution of a transverse-averaged total density ρz(z, t) during the development of the SW
convection. The initial concentrations are γa = 0.667, γb = 0.56. The reaction-induced buoyancy number is
Kρ = 0.97.

base-state density profile, as well as the linear stability analysis associated with it, become
meaningless. The SW mode is triggered as a result of a global bifurcation. It is interesting
to note that the density profile at the bifurcation value Kρ = 1 can be represented as a
homoclinic trajectory (see figure 5c).

Figure 8 clearly illustrates the fact that the system evolution passes through two
qualitatively different stages. The first stage is characterized by the exponential growth
of the mixing region. In the second stage, the mixing region grows monotonically.
Figure 10 shows the density ρ for sequential time moments. The first SW formation stage
is presented in (a). At the very beginning of the system evolution, when the convection
is still not strongly involved in the mass transfer processes, the densities of the upper
and lower layers away from the reaction zone are close to each other and the isopycnal
line (γa = 0.667, γb = 0.56). Along with that, the reaction–diffusion processes create two
layers of reduced densities which are formed from the burning out of the acid and base
in the reaction zone, resulting in the accumulation of the heavy salt in the centre of the
reaction zone. Since, with the value of the reaction-induced buoyancy number Kρ < 1,
the density of the reaction zone is lower than the density of the upper layer, the entire
reaction zone almost immediately after bringing the fluids into contact begins to float up
(see figure 10, t = 0.1). One can see the formation of powerful plumes that emerge under
the influence of the buoyancy force (figure 10, t = 0.3).

The intense mode described above cannot last for a long time in a closed reactor.
The continuous SW development requires a constant input of fresh reactants. Therefore,
the evolution of the system becomes calm, which is illustrated in figure 10(b). After
approximately t = 0.5, the upper part of the system becomes quasi-homogeneous,
while the lower part, which does not participate in the convective movement, remains
homogeneous (figure 10, t = 1). The system is split into two zones with typical density
values divided by the narrow transition zone. A reduced-weight reaction zone continues
to be produced, floating up either at the edges of the cell or in certain places. Thus, the
fresh acid continues to flow to the contact surface with the lower base layer. Finally, one
can observe a SW structure with an almost planar front and nearly discontinuous change
in density across the wavefront. This wave propagates fast compared to the characteristic
diffusion times and separates the motionless fluid and the area with anomalously intense
convective mixing (figure 10, t = 1.5, 2.5, 3, 3.5).

5.3. CDD convection
If the control parameters are set so that the density of the reaction zone is higher than
the density of the upper layer, then a completely different scenario for the development of
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Figure 10. Evolution of the density ρ with time showing the development of the SW structure. The frames
from left to right and from top to bottom correspond to times t = 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, 2.5, 3.0
and 3.5, respectively. The integration domain is 0 � x � 20, −37 � z � 37. The initial concentrations are
γa = 0.667, γb = 0.56. The reaction-induced buoyancy number is Kρ = 0.97.

instability is observed. Figure 11 shows the dynamics of the density field for Kρ = 1.08
(between points b and c on the stability map shown in figure 4). Note that the system
evolution begins with the base reaction–diffusion state, in which the fluid remains at
mechanical equilibrium (figure 11, t = 1). In this state, there is a local maximum located
just below the initial contact line z = 0. Over time, two types of convective perturbation
begin to grow in the system.

In the upper layer, favourable conditions are created for the initiation of the DLC
instability, which usually occurs when two solutions are mixed with a rapidly diffusing
solute at the top and slowly diffusing solute at the bottom. In this case, these are acid and
salt, respectively.
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Figure 11. Evolution of the density ρ with time, showing the development of the CDD convection coupled
with the DLC instability. The frames from left to right correspond to times t = 1, 2, 3, 4 and 5, respectively.
The integration domain is defined by 0 � x � 20, −37 � z � 37. The initial concentrations are γa = 0.667,
γb = 0.66. The reaction-induced buoyancy number is Kρ = 1.08. The wavelength of the CDD cell and the
width of the potential well are determined as shown in the inset, they are used to obtain the theoretical curves
in figure 13 of Part 1 (Mizev et al. 2021).

Below the maximum, a local convective instability arises, which is enclosed inside
a potential well. As shown above, the density pocket and conditions for instability
development are created under the CDD effect. If this effect is not taken into account,
then the liquid in this area remains at rest. That is why this type of instability is
called CDD convection (Bratsun et al. 2015). The growth of disturbances leads to the
development of a spatially periodic convective structure (figure 11, t > 2). The integration
domain, which corresponds to the width of the experimental cavity, is rather narrow,
and therefore only a few cells fit it. However, the numerical simulation with a wider
integration domain shows that there exists a periodic system of chemoconvective cells. The
obtained pattern is fundamentally different from the usual disordered process of fingering
observed commonly in such systems. Most of all, the structure in figure 11 looks like
Rayleigh–Bénard convection in a horizontal layer.

An important feature of the system is the independence of the instabilities from each
other: they appear in different parts of the medium, are separated by a stably stratified
diffusive layer and practically do not interact with each other at the beginning of evolution.
Over time, the DLC convection begins to affect the CDD convection by transmitting
diffusion signals through the potential barrier separating the two instability zones. Since
diffusively coupled instabilities at the beginning have different wavelengths, this causes
a LW modulation of one pattern by another. This situation has been studied in detail in
Bratsun (2019).

The potential well defining the CDD convection zone slowly expands because of the
diffusion of the reactants (compare times t = 2 and t = 5 in figure 11), and the downward
motion of heavy salt-enriched cellular structures follows this expansion. This makes it
possible to classify this mass transfer regime as a regime under the control of diffusion.
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Figure 12. Vorticity field Φ (a) and the total density ρ (b) show the occurrence of a localized convection cell
inside a two-layer system when the acid solution enters the system from above in a narrow band defined by
x = [23, 33]. The integration domain is defined by 0 � x � 40, −20 � z � 20. The initial concentrations are
γa = 0.667, γb = 0.66. The reaction-induced buoyancy number is Kρ = 1.08.

5.4. Convection cell inside two-layer system
The CDD convection gives a great example of how a localized convective structure can be
formed in a medium that generates statically stable potential wells of a density field. It is
worth noting that self-sustaining convection localized in the bulk of an almost stationary
fluid looks very unusual for researchers who have been educated within the paradigm of
thermal convection. In the latter case, the medium, as a rule, is heated from the boundary
side and convective motion quickly expands to the entire accessible region of the cuvette.
The chemical reaction that destabilizes a liquid medium is fundamentally a local tool. By
using the CDD instability, we can create, at least in numerical simulation, a convective cell
that is statically stable and works autonomously for a sufficiently long time.

To illustrate the above statement, consider a two-layer miscible system placed in a square
Hele-Shaw cell (40 per 40 units of dimensionless length), where the lower layer is an
aqueous solution of the base, and the upper layer is an aqueous solution of a neutral solute
that does not react with alkali. The density of the upper layer is less than the density of
the upper. Thus, at the very beginning, the system is stable to perturbations of the RT
instability. Suppose that the acid diffuses into the system from above in a narrow band
defined by x = [23, 33]. Then, the reaction occurs only at the intersection of this band
and the contact interface. Further, the diffusion of reactants results in the bulk reaction.
Figure 12 shows the vorticity contours and total density field at the time t = 3. One can
see that edge effects affect the shape of the reaction front. The CDD instability appears
below the potential barrier, while two rising plumes of the DLC convection are developed
above the barrier. The vorticity field shows that the fluid motion is localized in a square
convective cell measuring 10 by 10 units. The fluid around almost does not take part in the
movement.

5.5. Comparison between experimental and theoretical studies
By inspecting the experimental data presented in Part 1 and the theoretical results
presented in Part 2, we can conclude that there is a good agreement between
experimental observations and theoretical modelling. The principal stability maps
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Figure 13. Comparison of experimental data and results of numerical analysis: the growth of the potential
well width d over time (a); the variation of the wavelength of chemoconvective cells λ scaled by the potential
well width with time (b); the speed of the reaction front V in the mode controlled by diffusion (Kρ > 1) and
convection (Kρ < 1) (c).

obtained experimentally (see figures 6(b) and 14(a) in Part 1 (Mizev et al. 2021))
and theoretically (figure 3) coincide qualitatively and quantitatively. The modes of
chemoconvection observed experimentally (see figures 4 and 12 in Part 1 (Mizev et al.
2021)), are almost indistinguishable from the regimes obtained in numerical simulation
(figures 10 and 11).

Figure 13 demonstrates important quantitative comparisons between experimental data
and numerical simulations. Figure 13(a) shows the change in the width of the potential well
d over time. As noted in Part 1 (Mizev et al. 2021), the method of Fizeau interferometry
makes it possible to qualitatively visualize the spatial distribution of species concentration.
This allows comparison with theory. One can see from the figure that, except for the
very initial stage, the width of the well increases linearly with time. Good agreement
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between theory and experiment indicates that the theoretical reaction–diffusion model
works correctly.

Figure 13(b) shows the evolution of the wavelength λ of chemoconvective cells scaled
by the potential well width d. One can see that the cells appear earlier in the experiment
than in numerical simulation. This may be due to the fixed amplitude of the perturbations
of the streamfunction that we used as the initial state of the system (less than 10−4) and
the slow growth of perturbations at the very beginning of evolution. It is interesting to note
that the wavelength of convective cells grows according to the root law t−1/2, while the
width of the potential well, where the cells develop, grows linearly (figure 13a).

The important characteristic of a shock wave is its velocity. The system enters the SW
mode only if the wave acquires a speed higher than some critical value c∗. We have
previously shown in Bratsun et al. (2017) that the critical velocity can be defined as

c∗ =
√

Sc =
√

ν

Da0
. (5.4)

In our problem, c∗ plays the same role as the speed of sound in gas dynamics. This means
that, if the density wave moves faster than

√
Sc, it behaves as a subsonic analogue of the

shock wave in gas. The velocity (5.4) estimated for our problem as c∗ ≈ 17.8 (0.05 mm s−1

in dimensional units) is in perfect agreement with experimental data. We found that, as
soon as the propagation velocity of the SW falls below this value, the wave immediately
stops and is replaced by a common fingering under the DC mode. Figure 13(c) shows a
comparison between the reaction front velocity at the very initial moment of evolution
depending on the value of Kρ . One can notice that the experimental values slightly exceed
the velocity values obtained in the numerical analysis. This difference may be related to
the value of the Damköhler number, which was fixed in the simulations. Since we do not
know the exact value of the reaction rate K in the medium under consideration, we fixed it
to the value 103. Most likely, in a real system, this value is a bit higher and the reaction in
the experiment proceeds more vigorously.

6. Revised and extended classification

It would be interesting and useful to show the new types of instability discussed in this
paper in the stability maps of other authors. Figure 14 presents the stability map, which
is a modified version of the map proposed in Trevelyan et al. (2015). All lines on the
figure marked in black have been drawn by the authors of the above-mentioned work. To
classify the possible convective instability scenarios, they have analysed the variation of
large time asymptotic density profiles as a function of the key parameters of the problem.
The main chemoconvection modes are shown in the plane of the governing parameters
R̂c and δc. The first parameter is the ratio of the Rayleigh number, which determines the
salt buoyancy, to the Rayleigh number of the upper solution. In our notation, it can be
either Rc/Ra (acid at the top) or Rc/Rb (base at the top). The latter parameter is the ratio
of the tabular diffusion coefficients of the salt and the solute dissolved in the upper layer:
Dc0/Da0 (acid at the top) or Dc0/Db0 (base at the top). The stability map is presented for
the part of the medium above the reaction front.

The only bifurcation curve we added to the map is marked in red. Let us explain
where it comes from. It is first necessary to clarify that the curves R̂c = U1 and R̂c = U2
correspond to the condition of either the appearance or disappearance of an extremum on
the base-state density profile calculated in the limit of large times. More specifically, the
curve R̂c = U1 is responsible for the occurrence of two extrema at once (one maximum
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Figure 14. Revised and extended classification based on the analysis of the large time asymptotic base-state
density profiles above the reaction front formed in Trevelyan et al. (2015). The direction of the reaction front
is downwards. The shaded area corresponds to the system at rest. The bifurcation curve of the excitation of
the SW mode is marked in red. The map corresponds to the case when, at the very beginning, the system is
statically stable. The effect of the CDD is not taken into account.

and one minimum), and the curve R̂c = U2 indicates the moment of disappearance of
one extremum (either the maximum or the minimum). Thus, we can assume that, in the
parametric space between these curves, there are always one maximum and one minimum
on the density profile. Therefore, our bifurcation curve Kρ = 1, which denotes a balance
between the reaction zone density (the local maximum) and the density of the upper layer
(the asymptotic density value obtained at z → ∞), should always be between the curves
R̂c = U1 and R̂c = U2. Unlike the latter curves, Kρ = 1 is a true bifurcation curve because
it separates the onsets of two qualitatively different flow patterns.

We believe that the analysis of the principal instabilities above the reaction front shown
in figure 14 cannot be discussed in isolation from the processes below the reaction front.
Therefore, we accept the additional condition that the lower layer is heavier than the upper
one: γaRa < γbRb (if the acid solution is at the top) and γaRa > γbRb (if the base solution
is at the top). This condition can easily be satisfied by selecting the initial concentration
of the solutions. In this case, the upper and lower layers are separated by a potential
barrier. When changing key parameters in the system, one could then observe the types of
instabilities shown in figure 14.
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Let us discuss the stability map in more detail. Most pairs of reactants considered in
the present work satisfy the condition under which the diffusion coefficient of the salt is
less than the diffusion coefficient of the solute in the upper layer δc < 1. The sequence of
changes with an increase in salt weight R̂c is as follows. If the salt is weightless R̂c � 1,
then a SW mode similar to that shown in figure 10 is observed. In the classification of
Trevelyan et al. (2015), this type of instability is indicated as RT convection. However,
since the lower layer is denser, there exists a SW structure. When we cross the bifurcation
curve Kρ = 1, the weight of the reaction zone becomes greater than the weight of the
upper layer, and the propagation of the SW structure ceases. It is replaced by either the
CDD or DLC instability (see figure 11). Finally, when we cross the curve R̂c = U2, the
potential well disappears and only the DLC convection remains in the system at R̂c 	 1.

In the upper part of the stability map δc > 1, the sequence of events is slightly different:
the SW convection also develops first at R̂c � 1. When we cross the bifurcation curve
Kρ = 1, the SW is replaced by the DD instability. We found that only the pair of nitric
acid and lithium hydroxide falls into this parameter range because their salt satisfies the
ratio δc > 1 if the base solution is at the top.

7. Final discussion and conclusions

Let us discuss the nature of the new types of instability of heterogeneous reacting
media, the characteristic features of which have been discussed above. In our opinion,
the fundamental condition for the appearance of these instabilities is the ability of the
reaction–diffusion processes to create statically quasi-stable potential barriers. We should
note that diffusion alone is not capable of creating such barriers since it is a typical
relaxation process that leads to equal concentrations of substances. However, the combined
action of the diffusive process and the neutralization reaction, which has a high rate and
nonlinear kinetics, can create an inhomogeneous concentration distribution over space
and, more importantly, can maintain such a distribution for a sufficiently long time in a
quasi-stable state. As is shown above, two potential barriers facing each other form an even
more complicated structure, a potential well, which we call figuratively ‘a density pocket’.
By cutting the medium with such barriers and pockets, the reaction–diffusion processes
create conditions for qualitatively new types of self-organization in a liquid medium.

For example, a SW structure occurs when the density of the reaction zone becomes less
than the density of the upper layer (Kρ < 1), and the collapse of the two-layer system
begins through the mechanism of the RT instability. In this case, the diffusive layer
separating the more dense on top and the less dense on the bottom is unstable to any
disturbances. The heavier top layer sinks and the lighter reaction zone floats up, penetrating
each other under the gravitational field. When the layers are turned over the physical
system searches for a minimum of potential energy trying to find a new equilibrium state.
The distinguishing feature of the instability development, however, is that the collapse of
the layers does not occur in the entire system, but only in the part separated from the
lower layer by the potential barrier. Perturbations propagate exactly to the potential barrier
and stop there. Thus, one can observe a SW structure that resembles the phenomenon
of a turbulent bore: it has a front separating the region of an immobile fluid (or laminar
flow if the observer is in the reference frame of the moving front) and the region of an
intensive turbulent flow. This comparison is conditional since a turbulent bore is formed
by a surface gravity wave, and we deal with an internal density wave. We should recognize
that the potential barrier that limits the development of the RT convection imposes a
qualitatively new scenario of the dynamic development of instability, which requires its
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separate description in the general classification. The main difference is that the SW
structure propagates with an almost flat front, whereas the classical RT instability leads
to the development of irregular fingering.

Another example where the reaction–diffusion processes redraw the convective pattern
formation scenario is CDD convection (Kρ > 1). In this case, a local potential well arises
near the reaction front, the width and depth of which are determined by the effects of CDD,
and the quasi-stability of the entire structure is guaranteed by the neutralization reaction.
Hypothetically, it could be stated here that the periodic system of chemoconvective cells
arising inside such a density pocket is just a strongly deformed DLC convection. Moreover,
the region of appearance of the CDD cells in the stability map always adjoins the region
where the DLC instability is excited (see figure 13). However, we believe that this point
of view is incorrect because the potential well in the form of a horizontal layer, where
the instability develops, imposes completely new properties on convection: periodicity
and regularity of the structure. In fact, the cellular structure of the CDD convection most
closely resembles the Rayleigh–Bénard convection in a layer with free boundaries, and we
use this fact to estimate the local Rayleigh number inside a potential well (4.21).

In conclusion, we note that the described picture of the phenomena under study is most
likely incomplete. The world of even only one neutralization reaction is very diverse: in
addition to the strong acids and bases considered in this paper, there are weak reactants; in
addition to alkali metal bases, there are more complex organic bases, etc. It is likely that in
other, not yet investigated, systems of reacting fluids, the various combinations of potential
barriers can significantly change the standard pattern formation in the form of fingering.
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