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We propose two random network models for complex networks, which are treelike and
always grow very fast. One is the uniform model and the other is the preferential attach-
ment model, and both of them depends on a parameter 0 < p < 1. We first briefly discuss
the network sizes, each of which can be corresponding to a supercritical branching process.
And then we mainly study the degree distributions of both models. The asymptotic degree
distribution of the first one with any parameter 0 < p < 1 is a geometric distribution with
parameter 1/2, whereas that of the second one, which depends on p, can be uniquely
determined by a functional equation of its probability generating function.
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1. INTRODUCTION

Complex networks have received a tremendous amount of attention in the past decade. The
main feature of complex networks in real world is that they are large and grow very fast.
Examples of such networks are the World-Wide Web, Internet, social networks, collaboration
and citation networks of scientists, etc. As a result, their complete description is utterly
impossible, and researchers, both in physics and mathematics, have turned to concrete
network models using their local description.

Many dynamic random network models have been studied in physical and mathematical
literature. However, in most of them the network sizes grow linearly with time. The simplest
imaginable model is the scale-free network, which was introduced in Barabási and Albert [3].
For numerous known results of dynamic random network models, we refer the reader to the
surveys in Durrett [10] and van der Hofstad [13]. Based on Barabási–Albert’s model, several
fast growth network models are introduced and studied. The accelerated growth of networks,
first proposed by Dorogovtsev and Mendes [8], refers to the fact that in many real growing
networks the numbers of edges grow faster than linear in the numbers of nodes. Similarly,
Cooper and Pra�lat [6] studied a random graph process, where the number of nodes added
at time t is about tc for some constant c > 0. And Smith, Onnela, and Jones [21] considered
the growth rate for both nodes and edges.
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Besides, a variety of deterministic network models, in which the network size always
increases exponentially with time, are also introduced in physical literature (see, e.g.,
Barabási, Ravasz, and Vicsek [4]). These models, of course, should have some important
properties observed in real-world networks, such as scale-free and small-world (see Lu, Su,
and Guo [18] and references therein). One of the advantages of the deterministic models
is that it may be easier to study some dynamic problems on them (see, e.g., Agliari and
Burioni [1]). Nevertheless, a deterministic rule produces a complex growing network, which
is certainly not a fractal (Dorogovtsev, Goltsev, and Mendes [7]). Our purpose of this paper
is to introduce a couple of new fast growth network models, and consider their asymptotic
degree distributions.

In what follows, we give the definitions of two random treelike network models, both
of which strongly depend on a parameter 0 < p < 1. The value of p will be always fixed,
and we do not mention the dependence in the underlying p in our notation. For the sake of
convenience, we set q = 1 − p.

The first one is called the uniform model. At initial time n = 0, we have only a single
node. Progressively, nodes are added in each discrete time: at time n ≥ 1, each existing node
gives birth to a new node with probability p, or nothing with probability q, independently
of all the other nodes. If a new node is born, then we connect it with a single edge to its
parent. For the deterministic case p = 1, this model coincides with the simplest case of the
deterministic network models in Jung, Kim, and Kahng [17], Comellas and Miralles [5] and
Zhang et al. [22].

In the uniform model, the number of offspring newly born by each existing node is
according to a common Bernoulli distribution with success rate p. To incorporate preferential
attachment, in our second model we assume that the number of offspring newly born by
each existing node depends on its degree. Also, to avoid the situation where the degrees
are initially zero, we start with a graph, which has two nodes connected by a single edge.
Formally, the growth rule is as follows. Conditionally on the graph at time n − 1, for each
node v with degree dv,n−1, at time n ≥ 1 the number of offspring newly born by v obeys
the binomial distribution Bin(dv,n−1, p), independently of all the other nodes. We call the
resulting network the preferential attachment model. In this model, we may also think of
that at each time n ≥ 1 each node degree, not the node itself, independently gives birth to a
new node with probability p, or nothing with probability q. For the deterministic case p = 1,
this model is slightly different from the simplest deterministic network of the multiplication
rule in Jung et al. [17].

Not like many well-studied dynamic random network (or graph) models, the main
feature of our models here is that each existing node can give birth to new one(s) simul-
taneously. To investigate the usual preferential attachment models, some continuous time
random trees, in which each existing node independently gives birth to a child (or children)
according to some specified exponential distribution, are proposed as analysis tools (see,
e.g., Rudas, Tóth, and Valkó [20]). However, in these models the probability that two or
more existing nodes give birth to children at the same time is indeed 0.

To avoid using too much notation, we shall use identical notation in both models for
the same type of variables, unless otherwise specified. For n ≥ 0, we denote the set of all
nodes in a random network at time n by Vn, and the network size by Xn = |Vn|. Let Bn

be the set of nodes newly born at time n, and Nn = |Bn|. This leads to a decomposition of
Vn as

Vn =
n⋃

m=0

Bm, (1)
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and hence Xn =
∑n

m=0 Nm. For convenience, here we assume that the initial node(s) is
(are) born at time 0. For an event E, let Ec be the complement, |E| the cardinality, and
1E the indicator of E. For a real number x, denote its floor and ceiling function by �x� and
�x�, respectively. All unspecified limits are taken to be n → ∞.

The rest of the paper is organized as follows. We first briefly discuss the network size Xn

in Section 2. It is shown that the process {Xn, n ≥ 0} can be interpreted as a supercritical
branching process in each model. Then we can get the properties of Xn immediately from the
classical theory of branching processes. In Section 3, we mainly study the asymptotic degree
distributions of both models. As shown in Section 3.1, the asymptotic degree distribution of
the uniform model with any parameter 0 < p < 1 is a geometric distribution with parameter
1/2. For the preferential attachment model with any parameter 0 < p < 1, in Section 3.2
we prove that the probability generating function of its asymptotic degree distribution is
uniquely determined by a functional equation, which involves p; and the numerical analysis
shows that the asymptotic degree distribution is very close to a power law. Finally, we give
a conjecture on this distribution.

2. THE SIZES

In this section, we shall investigate separately the size of a random network at time n in
the uniform and preferential attachment models. It will be shown that the network size
in each model is related to a supercritical branching process. It is also well known that
some other classes of random trees and graphs, such as Galton–Watson trees and simply
generated trees, have been connected with branching processes for a long history. For more
backgrounds and results on these models, we refer to the survey paper Janson [15] or the
monograph Drmota [9].

2.1. The Uniform Model

In the uniform model, the initial network size X0 = 1. By the growth rule, we have that for
n ≥ 1,

Xn = Xn−1 +
Xn−1∑
j=1

I
(n)
j , (2)

where I
(n)
j is the indicator of the event that the jth node in Vn−1 gives birth to a new

node at time n. It is clear that {I(n)
j ; n, j = 1, 2, . . .} is a sequence of i.i.d. Bernoulli random

variables with success rate p.
The relation (2) can be rewritten as

Xn =
Xn−1∑
j=1

(1 + I
(n)
j ), n ≥ 1. (3)

Consequently, the process {Xn, n ≥ 0} can be interpreted as a standard Galton–Watson
branching process with the common offspring distribution

P(X1 = 1) = q, P(X1 = 2) = p.
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From the classic results in the theory of branching processes, or with straightforward
calculations via (2), we can obtain that

E[Xn] = (1 + p)n, (4)

Var[Xn] = q(1 + p)n−1[(1 + p)n − 1], n ≥ 1,

and {
Mn :=

Xn

(1 + p)n
, n ≥ 0

}

is a nonnegative martingale with mean 1. Since

Var[Mn] =
q[(1 + p)n − 1]

(1 + p)n+1
→ q

1 + p
< ∞,

by the martingale convergence theorem, there exists a random variable M , such that Mn →
M almost surely and in L2. From Section I.8 in Harris [12], the limit M is also an absolutely
continuous random variable with support [0,∞), and its moment generating function in the
form

φ(t) = E[e−tM ], t ≥ 0,

satisfies the Poincaré functional equation

φ((1 + p)t) = f(φ(t)), (5)

where

f(x) := E[xX1 ] = px2 + qx, 0 < x ≤ 1 (6)

is the probability generating function of X1. Moreover, the functional Eq. (5) has a unique
solution (see, e.g., p. 29 in Athreya and Ney [2]). That is, the function φ(t), and hence the
distribution of M is uniquely determined by (5).

Collecting the above results, we conclude with a summary in the following.

Proposition 1: Let Xn denote the size of a network at time n in the uniform model. Then
the following asserts hold.

(i) For any n ≥ 0, the mean and variance of Xn are given as

E[Xn] = (1 + p)n, Var[Xn] = q(1 + p)n−1[(1 + p)n − 1].

(ii) There exists a nonnegative, absolutely continuous random variable M , such that

E[M ] = 1, Var[M ] =
q

1 + p
,

and Xn/(1 + p)n converges to M almost surely and in L2.
(iii) The moment generating function φ(t) of M is uniquely determined by (5).

However, the Poincaré functional Eq. (5) may not be solved explicitly for φ(t), and then
it is rarely possible to invert φ(t) to obtain the distribution of M . A numerical result for
the distribution of M in the case p = 0.6 is given in Harris [11].
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2.2. The Preferential Attachment Model

In the preferential attachment model, the initial network size is now X0 = 2. Note that
the total sum of the degrees of the nodes in a tree with size n is 2(n − 1). Regarding each
existing node degree as the possible parent of a newly born node, analogously to (2), the
size Xn can be also interpreted as

Xn = Xn−1 +
2(Xn−1−1)∑

j=1

I
(n)
j , n ≥ 1, (7)

where {I(n)
j ; n, j = 1, 2, . . .} is a sequence of i.i.d. Bernoulli random variables with success

rate p.
Define Xn := 2(Xn − 1). In an analogous way to (3), the relation (7) can be rewritten as

Xn =
Xn−1∑
j=1

(1 + 2I
(n)
j ), n ≥ 1.

Then it follows that the process {Xn, n ≥ 0} is also a Galton–Watson branching process
with initial value X0 = 2, and the common offspring distribution law

P(X1 = 1) = q, P(X1 = 3) = p. (8)

Analogously to the network size in the uniform model, we can also obtain the parallel results
for Xn, and further for Xn through their linear relation. These results are summarized in
the following, and the proofs are omitted.

Proposition 2: Let Xn denote the size of a network at time n in the preferential
attachment model. Then the following asserts hold.

(i) For any n ≥ 0, the first two moments of Xn are given as

E[Xn] = (1 + 2p)n + 1, Var[Xn] = q(1 + 2p)n−1[(1 + 2p)n − 1].

(ii) There exists a nonnegative, absolutely continuous random variable M∗, such that

E[M∗] = 1, Var[M∗] =
q

1 + 2p
,

and Xn/(1 + 2p)n converges to M∗ almost surely and in L2.
(iii) The moment generating function ϕ(t) = E[etM∗

] is uniquely determined by the
functional equation

ϕ((1 + 2p)t) = pϕ3(t) + qϕ(t). (9)

One can easily see that Eq. (9) is similar in form to (5). In fact, the term 1 + 2p on the
left-hand side of (9) is the mean of the law (8), and the right-hand side of it can be expressed
as f∗(ϕ(t)), where f∗(x) = px3 + qx is corresponding to the probability generating function
of (8).

From Propositions 1 and 2, it is not hard to see that both our models have the small-
world property. In fact, in both models the maximal graph distance between any pair of
nodes is not greater than 2(n + 1), which is of the logarithmic order of the whole network
size as time n → ∞.
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Moreover, for the numbers of nodes newly born at the same time in both models we
have the following result, which is also a direct consequence of Propositions 1 and 2.

Corollary 1: Let Nn be the number of nodes newly born at time n in a network. For any
fixed integer m ≥ 0, then

(i) in the uniform model,

Nn−m

(1 + p)n
→ p

(1 + p)m+1
M, a.s.,

where M is a random variable defined in Proposition 1;
(ii) in the preferential attachment model,

Nn−m

(1 + 2p)n
→ 2p

(1 + 2p)m+1
M∗, a.s.,

where M∗ is a random variable defined in Proposition 2.

Proof: Since the similarity, we only prove (i). By (ii) in Proposition 1, for any fixed integer
m ≥ 0, we have that

Xn−m

(1 + p)n−m
→ M, a.s.

Then

Nn−m

(1 + p)n
=

1
(1 + p)m+1

(
(1 + p)Xn−m

(1 + p)n−m
− Xn−m−1

(1 + p)n−m−1

)
→ p

(1 + p)m+1
M, a.s.

�

3. THE DEGREE DISTRIBUTION

The degree distribution of a network(graph) is defined to be the fraction of nodes with any
degree k ≥ 0. In other words, for any k ≥ 0, the degree distribution shows the probability
that the degree of a node picked uniformly at random in the network is k.

To study the degree distribution of our models, we need to introduce some additional
notation. Let Vn,k be the set of all nodes with degree k at time n, and Xn,k = |Vn,k| the
total number of such nodes. Let Dv(n) denote the degree of node v ∈ Vn at time n. Further,
we write

Pk(n) =
1

Xn

∑
v∈Vn

1{Dv(n)=k} =
Xn,k

Xn
, k ≥ 0,

for the empirical degree distribution of the degrees. The sequence {Pk(n)}∞k=0 is also called
the degree sequence of the network at time n.

3.1. The Uniform Model

In the uniform model, at time n the maximal node degree is at most n. Therefore, with a
different way from (1), we can decompose the node set Vn into a sequence of disjoint subsets
as Vn =

⋃n
k=0 Vn,k, and hence Xn =

∑n
k=0 Xn,k. It is trivial that

P(Xn,0 = 1) = qn = 1 − P(Xn,0 = 0)

for any n ≥ 0, and P(Xn,m = 0) = 1 for any m > n.
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We first consider the mean of Xn,k, and start with k = 1. Note that at time n, the set
Vn−1,1 makes no additional contribution to the quantity Xn,1, whether the nodes in Vn−1,1

give birth to a new node or not. We thus have

Xn,1 = Xn−1,1 +
∑

v∈Vn−1\Vn−1,1

1Ev(n) + 1{Xn−1,0=1, Xn,1=2}, (10)

where Ev(n) denotes the event that the existing node v gives birth to a new node at time
n, occurring with probability p independently of the other nodes. Taking expectations on
both sides of (10) gives that, by (4),

E[Xn,1] = E[Xn−1,1] + p(E[Xn−1] − E[Xn−1,1]) + pqn−1

= p[(1 + p)n−1 + qn−1] + qE[Xn−1,1].

With the initial value E[X0,1] = 0, the solution of this recurrence relation is

E[Xn,1] =
1
2

[(1 + p)n − qn] + npqn−1, n ≥ 0. (11)

In a similar way, for general 2 ≤ k ≤ n, we have

Xn,k =
∑

v∈Vn−1,k

1Ec
v(n) +

∑
v∈Vn−1,k−1

1Ev(n).

Applying the conditional expectation yields

E[Xn,k] = qE[Xn−1,k] + pE[Xn−1,k−1],

or equivalently,

E[Xn,k] = pqn−1
n−1∑

j=k−1

E[Xj,k−1]
qj

, 2 ≤ k ≤ n. (12)

By (11) and (12), then we can recursively obtain the mean of Xn,k, and arrive at the
following result.

Proposition 3: Let Xn,k be the number of nodes with degree k at time n in the uniform
model. Then E[Xn,0] = qn, and for any 1 ≤ k ≤ n,

E[Xn,k] =
1
2k

[
(1 + p)n − qn

(
1 + p

q

)k−1 k−1∑
i=0

(
n − k + i

i

)(
2p

1 + p

)i]
+
(

n

k

)
pkqn−k.

(13)

Proof: The case k = 0 is trivial, since Xn,0 is a Bernoulli variable with success rate qn.
We next prove (13) by induction on k. For k = 1, formula (11) initializes the induction
hypothesis. To advance the induction hypothesis, suppose (13) holds for some 1 ≤ k < n
and we will prove it also holds for k + 1. By the recurrence (12), as well as the induction
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hypothesis, we thus have

E[Xn,k+1] = pqn−1
n−1∑
j=k

E[Xj,k]
qj

=
pqn−1

2k

(
n−1∑
j=k

(
1 + p

q

)j

−
n−1∑
j=k

(
1 + p

q

)k−1 k−1∑
i=0

(
j − k + i

i

)(
2p

1 + p

)i)

+ pqn−1
n−1∑
j=k

(
j

k

)
pkq−k

=
1
2k

[
(1 + p)n

2
− qn

(
1 + p

q

)k−1(
1 + p

2q
+

p

q

k−1∑
i=0

(
2p

1 + p

)i n−1∑
j=k

(
j − k + i

i

))]

+
(

n

k + 1

)
pk+1qn−(k+1)

=
1

2k+1

[
(1 + p)n − qn

(
1 + p

q

)k(
1 +

k−1∑
i=0

(
n − k + i

i + 1

)(
2p

1 + p

)i+1)]

+
(

n

k + 1

)
pk+1qn−(k+1)

=
1

2k+1

[
(1 + p)n − qn

(
1 + p

q

)k k∑
i=0

(
n − (k + 1) + i

i

)(
2p

1 + p

)i]

+
(

n

k + 1

)
pk+1qn−(k+1).

This advances the induction hypothesis, and completes the proof. �

We note that the first term on the right-hand side of (13) makes an absolutely dominant
contribution to E[Xn,k] for any fixed k ≥ 1, that is,

lim

(
E[Xn,k] − 1

2k
(1 + p)n

)
= 0.

Theorem 1: In the uniform model with any parameter 0 < p < 1, the asymptotic degree
distribution is a geometric distribution with parameter 1/2. More precisely, for any fixed
k ≥ 1,

Pk(n) =
Xn,k

Xn
→ 1

2k
, a.s.

We should point out that the above result is somewhat expected. Roughly speaking,
the uniform model may be regard as a recursive tree of a random size, since at any time
n a new node is connected to an existing one chosen uniformly (despite the fact that the
number of new nodes at time n is not always 1). It is well known that the asymptotic degree
distribution of a random recursive tree is also a geometric distribution with parameter 1/2,
as the size of the tree grows to infinity (see Janson [14]). For the rigorous proof of Theorem 1
we need some auxiliary lemmas, interesting in their own right.
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Lemma 1: For integer n ≥ 1 and 0 < p0 < 1, if random variable X has the binomial
distribution Bin(n, p0), then for any 0 < ε < 3/2,

P(|X − np0| ≥ εnp0) ≤ 2 exp

{
− ε2np0

3

}
.

Proof: See Corollary 2.3 in Janson, �Luczak, and Ruciński [16]. �

Lemma 2: For each n ≥ 1, if Ini, i = 1, 2, . . . , n, are i.i.d. Bernoulli random variables with
success rate 0 < p0 < 1, then

1
n

n∑
i=1

Ini → p0, a.s. (14)

Proof: By Lemma 1, for any 0 < ε < 3p0/2, we have

∞∑
n=1

P

(∣∣∣∣∣ 1n
n∑

i=1

Ini − p0

∣∣∣∣∣ ≥ ε

)
=

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

Ini − np0

∣∣∣∣∣ ≥ εn

)

≤ 2
∞∑

n=1

exp

{
− ε2n

3p0

}

< ∞.

Then (14) follows by the Borel–Cantelli lemma. �

Proof of Theorem 1: Recall that Bn is the set of nodes newly born at time n. Then
Xn,k can be expressed as

Xn,k = |Vn,k| =
n∑

m=k−1

|Bn−m ∩ Vn,k|. (15)

Consider any node v in the set Bn−m for any 0 < m ≤ n. It is obvious that Dv(n) − 1 has
the distribution Bin(m, p), independently of all the other nodes in Bn−m. We conclude that
for k − 1 ≤ m ≤ n,

P(Dv(n) = k|v ∈ Bn−m) =
(

m

k − 1

)
pk−1qm−k+1, (16)

regardless of n. By (i) in Corollary 1, it is easy to see that Nn−m = |Bn−m| grows to infinity
almost surely for any fixed m. Applying Lemma 2 with p0 =

(
m

k−1

)
pk−1qm−k+1, by (16) we

have

1
Nn−m

∑
v∈Bn−m

1{Dv(n)=k} →
(

m

k − 1

)
pk−1qm−k+1, a.s.,
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which, also by (i) in Corollary 1, implies that,

|Bn−m ∩ Vn,k|
(1 + p)n

=
Nn−m

(1 + p)n
· 1
Nn−m

∑
v∈Bn−m

1{Dv(n)=k}

→
(

m

k − 1

)(
p

q

)k(
q

1 + p

)m+1

M, a.s., (17)

where random variable M is defined in Proposition 1, and m ≥ k − 1 is an arbitrary fixed
integer.

To prove Theorem 1, by (ii) in Proposition 1, it is sufficient to show that for any fixed
k ≥ 1,

Xn,k

(1 + p)n
→ 1

2k
M, a.s., (18)

or equivalently,

1
(1 + p)n

n∑
m=k−1

|Bn−m ∩ Vn,k| → 1
2k

M, a.s., (19)

by (15). From (17), it is easy to see that for any fixed n0 ≥ k,

1
(1 + p)n

n0∑
m=k−1

|Bn−m ∩ Vn,k| →
n0∑

m=k−1

(
m

k − 1

)(
p

q

)k(
q

1 + p

)m+1

M, a.s. (20)

Note that the identity

∞∑
m=k−1

(
m

k − 1

)
xm+1 =

(
x

1 − x

)k

is valid for any k ≥ 1 and x ∈ (0, 1), and letting x = q/(1 + p) leads to

∞∑
m=k−1

(
m

k − 1

)(
p

q

)k(
q

1 + p

)m+1

=
1
2k

. (21)

To prove (19), by (20) and (21), we now only need to show that

lim sup
n0→∞

lim sup
n→∞

1
(1 + p)n

n∑
m=n0+1

|Bn−m ∩ Vn,k| = 0, a.s. (22)

In fact, also by (ii) in Proposition 1, for the left-hand side of (22) we have

lim sup
n0→∞

lim sup
n→∞

1
(1 + p)n

n∑
m=n0+1

|Bn−m ∩ Vn,k|

≤ lim sup
n0→∞

lim sup
n→∞

1
(1 + p)n

n∑
m=n0+1

|Bn−m|
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= lim sup
n0→∞

(
(1 + p)−n0−1 lim sup

n→∞
Xn−n0−1

(1 + p)n−n0−1

)

= M · lim sup
n0→∞

(1 + p)−n0−1

= 0, a.s.,

and this completes the proof of Theorem 1. �

3.2. The Preferential Attachment Model

In the preferential attachment model, it is not hard to see that, at time n the size of a
network is at most 3n + 1, and the maximal node degree is not more than 2n. Thus, we
have

Vn =
2n⋃

k=1

Vn,k and Xn =
2n∑

k=1

Xn,k.

We first establish a connection between the degree of any specified node in the current
model and the network size in the uniform model. Let Dv(n) be the degree of any specified
node v at time n in the preferential attachment model, and Xuni(n) the size of a network
at time n in the uniform model.

Proposition 4: For any fixed m ≥ 0 and v ∈ Bm, the node degree process {Dv(n)}∞n=m is
identically distributed with {Xuni(n)}∞n=0, independently of the other nodes in Bm.

Proof: Without loss of generality, by the growth rule we only need to consider o ∈ B0, one
of the two initial nodes. It is obvious that Do(0) = 1, and for n ≥ 1,

Do(n) = Do(n − 1) + Bin(Do(n − 1), p).

Comparing this relation with (2), one can obtain the desired result. �

We next consider E[Xn,k] and start with k = 1. Analogously to (10), we have

Xn,1 = Xn−1,1 +
∑

v∈Vn−1\Vn−1,1

Bv(n), (23)

where Bv(n) denotes the number of offspring born by v ∈ Vn−1 at time n, independently
of each other. Recall that Bv(n) ∼ Bin(Dv(n − 1), p) if Dv(n − 1), the degree of v at time
n − 1, is given. Note that at time n − 1, the total sum of degrees over all nodes in the set
Vn−1 \ Vn−1,1 is 2(Xn−1 − 1) − Xn−1,1. By (i) in Proposition 2 and taking expectations on
both sides of (23),

E[Xn,1] = E[Xn−1,1] + pE[2(Xn−1 − 1) − Xn−1,1]

= qE[Xn−1,1] + 2p(1 + 2p)n−1,

which, with the initial value X0,1 = 2, implies that

E[Xn,1] =
2
3

[(1 + 2p)n + 2qn], n ≥ 0. (24)
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For any 2 ≤ k ≤ 2n, noting that if Dv(n) = k then Dv(n − 1) is at least �k+1
2 � and at most

k, we have

Xn,k =
k∑

m=� k+1
2 �

∑
v∈Vn−1,m

1{Bv(n)=k−m},

which yields that for 2 ≤ k ≤ 2n,

E[Xn,k] =
k∑

m=� k+1
2 �

(
m

k − m

)
pk−mq2m−k

E[Xn−1,m]. (25)

As we have done in (13) for the uniform model, by (24) and (25), here one may also
obtain explicit expressions for E[Xn,k] recursively. However, it is much more complicated to
get it for k large. So a reasonable way is to study the asymptotics of E[Xn,k]. But we will
postpone it till the proof of the following main result on the degree sequence {Pk(n)}∞k=1 is
complete.

Theorem 2: In the preferential attachment model with parameter 0 < p < 1, we have that
for any fixed k ≥ 1,

Pk(n) =
Xn,k

Xn
→ pk, a.s.,

where {pk}∞k=1 is a probability mass function with its probability generating function

g(x) =
∞∑

k=1

pkxk, 0 ≤ x ≤ 1,

satisfying
(1 + 2p)g(x) = 2px + g(px2 + qx). (26)

Proof: We first show that there exists an almost sure limit for the sequence {Pk(n)}∞n=0

for any k ≥ 1. This procedure is somewhat similar to that of the proof of Theorem 1. It is
clear that if a node v has degree k, then its age is at least �log2 k�. In an analogous way
to (15), we thus have that for any k ≥ 1,

Xn,k =
n∑

m=	log2 k

|Bn−m ∩ Vn,k|.

Recall that o ∈ B0 is an initial node of the network. For any node v ∈ Bn−m with �log2 k� ≤
m ≤ n, by the growth rule we have that Dv(n) is independent of other nodes in Bn−m, and

P(Dv(n) = k) = P(Do(m) = k), k = 1, 2, . . . , 2m.

In a similar way to (17), we have that for any fixed integer m ≥ �log2 k�,
|Bn−m ∩ Vn,k|

(1 + 2p)n
→ 2pP(Do(m) = k)

(1 + 2p)m+1
M∗, a.s.,

where M∗ is defined in Proposition 2. Hence, the same technique as in (18) leads to

Pk(n) =
Xn,k

Xn
→ pk, a.s.,
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by (ii) in Corollary 1, where

pk = 2p

∞∑
m=	log2 k


P(Do(m) = k)
(1 + 2p)m+1

, k ≥ 1. (27)

Let Z be a geometric random variable with parameter 2p/(1 + 2p), independently of Do(n)
for any n ≥ 0. Namely,

P(Z = m) =
2p

(1 + 2p)m+1
, m = 0, 1, 2, . . . .

Then (27) means that for any k ≥ 1,

pk = P(Do(Z) = k), (28)

which indicates that {pk}∞k=1 is a probability mass function.
The rest is to prove (26). For any m ≥ 0, let fm(x) = E[xDo(m)] for 0 ≤ x ≤ 1 be the

probability generating function of Do(m). By (3) and Proposition 4, we have that fm(x) =
f (m)(x), where f(x) is defined in (6) and f (m)(x) is its mth iterate, with f (0)(x) = x.
Therefore, by (27),

g(x) = 2p

∞∑
k=1

xk
∞∑

m=	log2 k


P(Do(m) = k)
(1 + 2p)m+1

= 2p

∞∑
m=0

1
(1 + 2p)m+1

2m∑
k=1

P(Do(m) = k)xk

= 2p
∞∑

m=0

f (m)(x)
(1 + 2p)m+1

=
2p

1 + 2p
x + 2p

∞∑
m=1

f (m)(x)
(1 + 2p)m+1

=
2p

1 + 2p
x +

2p

1 + 2p

∞∑
m=0

f (m)(px2 + qx)
(1 + 2p)m+1

=
2p

1 + 2p
x +

1
1 + 2p

g(px2 + qx),

(29)

where in the last equality we used (29). This completes the proof of (26), and thus of
Theorem 2. �

From the proof of Theorem 2, one can find an interesting interpretation for pk. Indeed,
by Proposition 4, the formula (28) implies that the limiting degree distribution of a random
vertex in the preferential attachment model is same as a supercritical branching process
stopped at a geometric time.

As shown in (18) for the uniform model, the proof of Theorem 2 also involves the strong
convergence result for the number of nodes with degree k in the current model. That is, for
any fixed k ≥ 1,

Xn,k

(1 + 2p)n
→ pkM∗, a.s. (30)

The convergence relations (18) and (30) indicate that Xn,k, the numbers of nodes with
any (fixed) degree k at time n, have not asymptotic normality both in our models, unlike
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the corresponding results in random recursive trees (Janson [14]) and scale-free trees
(Móri [19]). Since Xn,k ≤ Xn, by the dominated convergence theorem, it follows from (ii)
in Proposition 2 that the following result for E[Xn,k] holds.

Proposition 5: Let Xn,k be the number of nodes with degree k at time n in the preferential
attachment model. Then for any fixed k ≥ 1,

E[Xn,k] ∼ pk(1 + 2p)n.

We now discuss some more properties of the sequence {pk}∞k=1. Recall that two power
series in x are equal for all x if and only if their corresponding coefficients are equal.
Then (26) may provide a tool to derive the expression of pk for any k ≥ 1. By [xk]h(x) we
denote the coefficient of xk in the power series expansion of a function h(x). It thus follows
from (26) that for k ≥ 1,

(1 + 2p)pk = [xk]

(
2px +

k∑
m=1

pm(px2 + qx)m

)
,

which implies that

p1 =
2p

1 + 2p − q
=

2
3
,

and for k ≥ 2,

(1 + 2p)pk =
k∑

m=� k+1
2 �

(
m

k − m

)
pk−mq2m−kpm. (31)

From the recurrence (31), the power series for g(x) is uniquely determined by

g(x) =
2
3
x +

2p

3(1 + 2p − q2)
x2 +

4p2q

3(1 + 2p − q2)(1 + 2p − q3)
x3

+
2p3(1 + 2p + 5q3)

3(1 + 2p − q2)(1 + 2p − q3)(1 + 2p − q4)
x4 + · · · .

0 2 4 6 8

−
20

−
15

−
10

−
5

0

p=0.4

0 2 4 6 8

−
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−
10
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0
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Figure 1. The limiting degree distributions on log–log scale.
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When k is large, the computation of the exact expression of pk through (31) becomes too
cumbersome. In Figure 1, we illustrate the plots of log k 
→ log pk (1 ≤ k ≤ 2000) for p = 0.4
and p = 0.7, respectively. The plots indicate that {pk, k = 1, 2, . . .} is very close to a power
law. Further, we may conjecture that there exists an oscillating function ω(k), which is
continuous, strictly positive and multiplicatively periodic, such that

pk ∼ ω(k)k−1− log(1+2p)
log(1+p) .

That is, the limiting degree distribution of the preferential attachment model with parameter
0 < p < 1 is close to a power law with exponent

τ = 1 +
log(1 + 2p)
log(1 + p)

.

Thus, by the tuning the parameter p, one can get a variety of scale-free networks with
different exponents in the range 2 < τ < 1 + log2 3.
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