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MATRIX-FORM RECURSIONS FOR A FAMILY OF
COMPOUND DISTRIBUTIONS 
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ABSTRACT

In this paper, we aim to evaluate the distribution of the aggregate claims in 
the collective risk model. The claim count distribution is fi rstly assumed to 
belong to a generalised ( a, b, 0 ) family. A matrix form recursive formula is
then derived to evaluate the related compound distribution when individual 
claim amounts follow a discrete distribution on non-negative integers. The 
corresponding formula is also given for continuous individual claim amounts. 
Secondly, we pay particular attention to the recursive formula for compound 
phase-type distributions, since only certain types of discrete phase-type distri-
butions belong to the generalised ( a, b, 0 ) family. Similar recursive formulae are 
obtained for discrete and continuous individual claim amount distributions. 
Finally, numerical examples are presented for three counting distributions.
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1. INTRODUCTION

In this paper we consider the following compound random variable 

 X ,S i
i 1

=
=

N
/  (1)

with S  =  0 when N  =  0. N is a discrete random variable, distributed on the 
non-negative integers, with probability function ( p.f. ) pn  =  �( N  =  n ), n  =  0, 1, 
2,   …, and probability generating function ( p.g.f. ) p( z )  =  n 0

3
= nz pn/ , z  !  �.  

{Xi }3i  =  1 is a sequence of independent and identically distributed ( i.i.d. ) ran-
dom variables with the common distribution function F ( x ), x  ≥  0. We assume 
that N is independent of {Xi }3i  =  1.
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The evaluation of compound distributions is one of the main objectives in 
risk theory. Panjer ( 1981 ) gives a recursive formula for computing the distribu-
tion of  S when the distribution of  N belongs to the ( a, b, 0 ) family. Sundt
and Jewell ( 1981 ) further generalise the recursive formula to the ( a, b, 1 ) family 
of claim number distributions. Since then, a large number of extensions and 
modifi cations have appeared in actuarial literature, see Schröter ( 1991 ), Hes-
selager ( 1996 ), Sundt ( 1992, 1999, 2002, 2003 ), and references therein. Hipp 
( 2006 ) gives a simplifi ed Panjer algorithm when the claim amounts follow a 
phase-type distribution. Making use of the property of having rational prob-
ability generating functions of phase-type distributions, Eisele ( 2006 ) gives a 
recursion procedure for the compound phase-type distributions, but the for-
mula is not computationally simple since it is expressed in terms of high order 
convolutions of the individual claim amount distribution.

The purpose of this paper is to generalise Panjer’s ( a, b, 0 ) family and to 
give a simple matrix form recursion for the distribution of S when the distribu-
tion of N belongs to this generalised family. In Section 2, we defi ne the gen-
eralised ( a, b, 0 ) family and provide several members of this family, including, 
as special cases, certain discrete phase-type distributions, linear combinations 
( including mixture ) of Poisson distributions, binomial distributions, and neg-
ative binomial distributions. In Section 3, we derive a matrix form recursive 
formula to evaluate the compound distribution for both discrete and continuous 
individual claim size distributions. A matrix form recursive formula for the 
moments of  the compound distribution is obtained in Section 4. Section 5 
discusses the relationship between the generalised ( a, b, 0 ) family and discrete 
phase-type distributions. Since not all discrete phase-type distributions belong 
to the generalised ( a, b, 0 ) family, recursive formulae for compound phase-type 
distributions are provided. Finally, several numerical examples are presented 
in Section 6.

2. A GENERALISED ( a, b, 0 ) FAMILY OF DISTRIBUTIONS

Defi nition 1. Let {pn}3n  =  0 be the probability function of  r.v. N. If  pn can be 
expressed as 

 =
R
, , , , ...,g n 0 1 21n n =Pp

where 1   =  ( 1, 1, …, 1 )1  ≈  m, g   =  ( g1, g2, …, gm ) is a row vector with gi  ≥  0 and
i 1= ,1ig =
m/  and Pn is an m  ≈  m matrix, satisfying the following recursion:

 Pn   =   Pn  – 1 ,BA n+b l   n  =  1, 2, …, (2)

with A and B being two m  ≈  m matrices, then {pn}3n  =  0 is said to belong to a 
generalised ( a, b, 0 ) family.
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It follows from Sundt and Jewell ( 1981 ) that Poisson, binomial and nega-
tive binomial ( including geometric ) distributions are the only members of the 
( a, b, 0 ) family. However it is hard to list all the members of the generalised 
( a, b, 0 ) family. In what follows we present some members of this generalised 
family.

Example 1. Let Q  =  ( qi, j )
m
i,  j  =  1 be a sub-stochastic matrix with qi,  j  ≥  0 and 

j 1= q 1,i
m #j/  for i  =  1, 2, …, m. Then {pn}3n  =  0 with 

 n R
,Qg I Q n1 0,1, ...,n = - =p ^ h  

is a special discrete phase-type probability function with representation ( A , Q ), 
where A   =  ( a1, a2, …, am )  =  Qg  and p0  =  a0  =  1  –  i 1= a 1i =

m/   –  
RA1   =  1  –  

RQg 1   =  
R
.I Qg 1-^ h  This special phase-type distribution belongs to the gen-

eralised ( a, b, 0 ) family with A  =  Q and B  =  0. The expectation and the p.g.f. 
of N are given by

 
z 1

1 R

R

� ( )

( ) .

,Q I Q

I Q I Q

g

g

N

z

1

1

= -

= - --

-

p

^

^ ^

h

h h

Remark: If  m  =  1, then Q  =  q, g   =  1, 

 pn  =  ( 1  –  q ) qn,  n  =  0,  1,  2,  …, 0  <  q  <  1,

and N follows a geometric distribution.

Example 2. Let L  =  ( li, j )
m
i,  j  =  1 be a m  ≈  m matrix such that {pn}3n  =  0 with 

 
L-

R
, 0,1,2, ...,L

g n n1n

n

= =!p e

is a proper probability function. Then {pn}
3
n  =  0 belongs to the generalised ( a, b, 0 ) 

family with A  =  0 and B  =  L. The expectation and the p.g.f. of N are given by

 
.

R

R

� ( ) ,

( )

Lg

g

N

z e

1

1

=

= ( 1)L z-p

In particular,

1. if  L  =  diag( l1, l2, …, lm ), where l1, l2, …, lm are m distinct positive real num-
bers, then 
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R

, ..., , , , , ...,g n n n n 0 1 21diagn i
i

m

1

1l l
g

l
= = =

=

l l lm
m1

in n n
i

! ! !p
- - -e e e

d n /

 is a mixture of m Poisson distributions;

2. if  L  =  H diag ( l1, l2, …, lm )H –1, where l1, l2, …, lm are m distinct positive 
real eigenvalues of L, then

  1 R
, ..., , , , , ...,H Hg n n n 0 1 21diagn

1l l
= =

-
l lm

m1
n n

! !p
- -e e

d n

 is a linear combination of m Poisson distributions.

Example 3. Let M be a positive integer and Q  =  ( qi, j )
m
i,  j  =  1 be a sub-stochastic 

matrix such that I  –  Q is non-singular and {pn}M
n  =  0 with 

 nM R- , , , , ..., ,Q I Qg n M0 1 21n
n

= - =n
Mp ` ^j h  (3)

is a proper probability function. Then {pn}
M
n  =  0 belongs to the generalised ( a, b, 0 ) 

family with A  =  – Q(I  –  Q ) – 1 and B  =  – ( M  +  1 )A. The expectation and the 
p.g.f. of N are given by

 
.z

R

R

� ( ) ,

( ) I Q Qg

N

z

M 1

1

=

= - +

g

M

Q

p ^ h

In particular,

1. if  Q  =  diag( q1, q2, …,  qm ), with q1, q2, …,  qm being m distinct real numbers 
and 0  <  qi  <  1, then 

  
q

nM MR-
) , , , , ..., ,Q I Qg n M0 1 21n

n
i i

n
i

M n

i

m

1
g= - = - =

-

n n
M

=

p (q 1` ^ `j h j/

 is a mixture of m binomial distributions;

2. if Q  =  Q diag( q1, q2,  …,  qm ) Q – 1, with q1, q2,  …,  qm being m distinct real num-
bers and 0  <  qi  <  1, then 

 , nM 1-q q..., -M M R
) ) ,gQ Qq q 1diagn

n n
m m

M
1 1= - -

-

n n
np ( (1 1` `b j j l

 for n  =  0, 1, 2,  …,  M, is a linear combination of m binomial distributions.

Example 4. Let k be a positive integer and Q  =  ( qi, j )
m
i,  j  =  1 be a sub-stochastic 

matrix such that I  –  Q is non-singular and {pn}3n  =  0 with 
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Rk n 1+ - , 0,1, 2, ...,I Qg n1n

kn
= - =n Qp ` ^j h  (4)

is a proper probability function. Then {pn}
3
n  =  0 belongs to the generalised ( a, b, 0 ) 

family with A  =  Q and B  =  ( k  –  1 ) Q. The expectation and the p.g.f. of N are 
given by

 
.z

1

1

R

R

� ( ) ,

( )

I Q

I Q I Qg

N k

z

1

1
k

= -

= - -

-

-

g Q

p

^

^ ^

h

h h8 B

In particular,

1. if  Q  =  diag( q1, q2,  …,  qm ), with q1, q2,  …,  qm being m distinct real numbers 
and 0  <  qi  <  1, then 

  
1 1 q

Rn n+ - + - ) , , , , ...,I Qg n 0 1 21n
n k

i i
n

i
k

i

m

1
g= - = - =

=
n nQkp k (1q` ^ `j h j/

 is a mixture of m negative binomial distributions;

2. if Q  =  Q diag ( q1, q2,  …,  qm ) Q – 1, with q1, q2,  …,  qm being m distinct real num-
bers and 0  <  qi  <  1, then 

 ,1 1 1q q..., - Rn n+ - + -) ) ,gQ Qq q 1diagn
n

m m
k k

1 1= - -n n
nk kp (1 (1` `a j j k

 for n  =  0, 1, 2,  …,  is a linear combination of m negative binomial distributions.

3. RECURSIONS FOR THE COMPOUND DISTRIBUTIONS

In this section we shall develop a matrix form recursive method for computing 
the distribution of S in which the probability function {pn}3n  =  0 belongs to the 
generalised ( a, b, 0 ) family defi ned in ( 2 ) and individual claim amounts follow 
discrete and continuous distributions, respectively.

The p.g.f. of N can be expressed as 

 
R R

( ) ,g gz z 1 1n
n 0

= =
3

=

n ( )zp P Pf p/

where P( z )  =  3
n 0= .z n

n P/  The recursive property of  Pn in ( 2) enables us to 
derive the following differential equation for P( z ) which can be used to derive 
a recursive formula for the compound distribution of S.

Lemma 1. P( z ) satisfi es the following differential equation:

 P�( z )   =   zP�( z ) A+P( z ) ( A  +  B ). (5)
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Proof: By using the recursion Pn  =  Pn  –  1 ( A  +  B / n ), for n  =  1,  2,  …,  we have

 

(

( (

z

1

1 1
1

1 1

1 1

1 1

1 1

) ( )

( )

) .

( )

B

A B

P

P P

A Bz nz nz n

nz z

z z

nz

z z

n
n

n

n
n

n

n
n

n

n
n

n

n
n

n

n
n

n

n
n

n

n
n

n

1 1

1 1

1 1

0 0

= = +

=

= +

=

= +

3 3

3 3

3 3

3 3

-

=

-
-

=

-
-

=

-
-

=

-
-

=

-
-

=

= =

/

)z

n -

�

�

( )

( )

P P

P P

P P

P A B

A A B

+

+

A

A

+

+

P A +

/ /

/ /

/ /

/ /

This completes the proof. ¡
The matrix form differential equation in (5 ) can be solved explicitly as fol-

lows.

1. If  A  =  0, then solving P�( z )  =  P( z )B and using p( 1 )  =  
R

(1)g 1P   =  1 gives 

  ( )z e .(=P 1)z- B  (6)

2. If  B  =  0 and A  =  Q is a sub-stochastic matrix, then solving P�( z )  = 
P( z )Q(I  –  zQ ) – 1 and using p( 1 )  =  

R
(1)g 1P   =  1 gives 

  z 1( ) I Q I Qz .= - --P ^ ^h h  (7)

3. In general, if  B  !  0 and A  !  0, the solution to ( 5 ) involves the logarithm 
of a matrix which is a bit complicated. However, if  Pn is given, one can 
obtain P( z ) by computing n 0=

3 .z n
n P/  For example, in Eq. ( 3 ), Pn  =

(M
n   ) Q

n(I  –  Q )M –  n for n  =  0, 1,  …,  M, then 

  z( ) .I Q QP z z n
n

M

0
= = - +

=

n MP ^ h/

3.1. Discrete claim amount distribution

Firstly we assume that the Xi’ s are discrete random variables taking non-nega-
tive integer values with the common p.f. f( x ) for x  =  0, 1, 2,  …. Let g( x )  =  �( S  =  x ), 
for x  =  0, 1, 2,  …. Denote f ( z )  =  x 0=

3 ( )z f xx/  and g( z )  =  x 0=
3 ( )z xgx/  as the 

p.g.f.’s of f and g, respectively.
It follows that 

 np f( ) ( ), 0,1, 2, ...,g x x x
n 0

= =
3

=

n*/  (8)
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where f *n is the n-fold convolution of f. In particular, g( 0 )  =  fn 0=
3 ( )0n

np */  =
p(  f ( 0 ) ). Substituting pn  =  

R
g 1nP  into ( 8) yields 

f f
R R R

( ) ( ) ( ) ( ) , 0,1, ...,g g gGg x x x x x1 1 1n n
nn 00

= = = =
33

==

n nP P* *
> H//  (9)

where G( x )  =  fn 0=
3 ( ) .x n

n P*/  Moreover, we have 

 ff(z
R R

) ( ) ( ) ( ) ,g gz z zg 1 1n
n 0

= = =
3

=

p h
n P_ fi p7 A/  (10)

where h( z )  =  (znzn 0=
3 [ ( )] ( )).Pf fn=P/  On the other hand, h( z )  =  x 0=

3 ( ).Gz xx/

Expression ( 9 ) shows that if  there is a method to determine G( x ), then the 
calculation of g( x ) is trivial. The following result enables us to calculate G( x ) 
recursively, which is a matrix version of the well known Panjer recursion.

Theorem 1. If  the distribution of N belongs to the generalised ( a, b, 0 ) family 
defi ned in ( 2 ), then matrix G( x ) defi ned in (9 ) satisfi es the following recursive 
formula:

 f ( )j j( =) ( ) (0) , , , ...,1 2 3,G A IG B Ax x
j

f x
j

x

1
- + - =

=

1-x c m 7 A/  (11)

where the starting value matrix G( 0 )   =   P( f ( 0 ) ).

Proof. Differentiating h ( z ) and using the differential equation in (5 ), we obtain 

 h�( z )  =  f ( z ) h�( z )A +  f �( z ) h( z ) ( A  +  B ). (12)

Expanding both sides of ( 12 ) in power series form and comparing the coeffi -
cients of zx  – 1 in such expansions yields, for x  =  1, 2, …,

 

x

( )x j-

j

j

B

Bj j

j j

( ) ( ) ( ( ) (

( ) ( ( ) ( .

( )G G

G G

x x f j f j

f j f j

j

x

j

x

j

x

j

x

0

1

0 1

1
= - -

= - -

+
=

-

=

= =

G Ax x

x x

) )

) )

A

A

+

+

/ /

/ /
 (13)

Rearranging the terms in both sides of ( 13 ) and simplifying the equation gives 
the recursive formula ( 11 ). The starting value matrix G( 0 ) is determined as 
follows:
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 f n((0) 0 [ ( )] ( ) .( )G Pf f0 0n
n

n
n 00

= = =
33

==

)n P P* //

This completes the proof. ¡

Defi ne ( ) ( )G Ggx x=  to be a row vector. It follows from ( 9 ) that g( x )  =
R

( ) .G x 1  The matrix form recursive formula in ( 11 ) simplifi es to the following 
vector recursion 

     j-( )f j ( (0)f( ) ) , , , ...,,G G A B I Ax x x
j

x 1 2 3
j

x

1

1+ - =
=

= -
c m 7 A/  (14)

where the starting value vector (0) (G g f= P ) .(0 )

Remarks:

1. The vector form recursive formula in ( 14 ) can greatly save computing times 
compared with the matrix form recursive formula ( 11).

2. If the individual claim amounts only take positive integer values, i.e., f ( 0 )  =  0, 
then (0)G g P0=  and 

      j-( )f j (( ) ) , , , , ....G G A Bx x x
j

x 1 2 3
j

x

1
+ =

=

= c m/

3. If m  =  1, we write A  =  a, B  =  b, then ( )G x   =  g( x ) and the recursive formula 
in ( 14 ) simplifi es to the Panjer’s recursive formula ( Panjer ( 1981 ) )

  j
bj

-+( ) ( ) ( ) ( ), , , ...,g x af a x x f j x0
1 1 2

j

x

1
=

-
=

=1 gc m/

 where the starting value is g( 0 )  =  p(  f( 0 )).

3.2. Continuous claim amount distribution

We now assume that the individual claim amounts are continuous random 
variables with probability density function f ( x )  =  F�( x ), x  >  0. Obviously, S 
has a probability mass at zero with amount g( 0 ) and a density function g( x ) 
on ( 0, 3 ). Using the same arguments as in the discrete case, we obtain

 
f

00
R

R R R

( ) ( ) ( ) ,

( ) ( ) ( ) ( ) , .G G

g

g g

g p

g x x x x x

0

0

1

1 1 1 >
n

n

0 0

1

= = = = = =

= = =
3

=

n

� � NS P

P*/
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We defi ne MS( z )  =  �[ezS] and MX( z )  =  �[ezXi ] to be the moment generating 
functions of  S and Xi , respectively. Then we have

 ( )z n( )z X
R R

( ) ( ) ,( ) [ ]g qz z1 1S
n

nX
0

= = =
3

=

p PMM M /

where ( ) Pq gz = ( MX ( z )). By differentiating ( ) Pq gz = ( MX ( z )) with respect 
to z and using (5 ), we have 

 ( XX z( ) ) ( ) ( ) ( ) ( ) .A A Bq q qz z M z z+ += M� � �  (15)

It follows from e
3

( ( )Gq x dxzx

0
z =) #  that Eq. ( 15) can be rewritten as

 
y

(

(

f

f

x y

y

(x y

y

3 3

3

0 0

0

) ( ) ( )

) ( ) ( .

G G

G A B

e e x y x dx

e x dx

zx zx x

x

0

0

- -

+ - +zx

)

)

dx dy

dy

= Ab

b

l

l

# ##

##

Combining terms and equating the coeffi cients of ezx yields the following result.

Theorem 2. ( )G x  satisfi es the following integral equation:

 (f (yy y y(
x x

) ( ) / ) ( ) ( ) , 0.G G G Bx dy x f y dy x >
00

-) x -x= A + ##  (16)

4. THE MOMENTS OF S FOR DISCRETE CLAIM SIZE DISTRIBUTIONS

In this section, we shall derive a recursion for the rth moment of S when claim 
amounts have discrete distributions. Defi ne ( (3

x 0= ),H Gr x x= r) /  then obviously, 
(

R
� [ HS r 1r )=]  and ( 3

x 0= ( .H G0 =) x)/

Our next task is to derive a recursive formula for (H )r  based on the result 
of (G x). From the defi nition of (H )r  and Theorem 1, we have, for r  =  1, 2, …,

 .f +x j( ) j( 1( [ ( )H G B I Ar x
j

f 0
x j

x

1 1
= -

3

= =

-A) r )x - ]c m=> GH/ /

Using the same technique as in Dickson ( 2005, pp. 71 ), we obtain
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Rearranging the terms of both sides of the above equation yields

 i
1=

1r
�( [ ] ( .H H A B AX ir

i

r

0

1
+

-

=

-

ii Ir r 1- -
-) ) a ab k k l= 6G @/

5. RECURSIVE FORMULA FOR THE COMPOUND PHASE-TYPE DISTRIBUTION 

In the generalised ( a, b, 0 ) family of distributions defi ned in (2), if  A  =  Q and 
B  =  0, then {pn}3n  =  0 is a special phase-type distribution with representation
( g  Q, Q ). We remark that this special discrete phase-type distribution is a 
matrix form generalisation of the geometric distribution. The recursive formula 
in ( 14 ) simplifi es to 

 ,jf( ) ( ) ( ) (0) , , , ...,1 2 3G G I QQx j f x
j

x

1

1- - =
=

-= x 7 A/  (17)

with starting value Q(0) (0) ( ) .G Ig Qf 1= - -I-
7 A

Now we discuss the case when the claim count N follows a general discrete 
phase-type distribution with representation ( A , Q ), where A   =  ( a1, a2,  …,  am ) 
with ai  ≥  0 and i 1= a 1,i #

m/  i.e.,
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1

n
n- Q

R

R R

a a A

A A

,

( ) , , , ...,Q I P n

1 1

1 2

1

1 1

i

m

n

0 0
1

= - = -

= - = =

=
i=p

p

/
 (18)

where n
1 Q- ( )QP n

= -* I  satisfi es the following recursive formula:

 n n 1- , , , ....P P Q n 2 3= =* *

Remarks:

1. When m  =  1, Q  =  q, then p0  =  a0 and pn  =  ( 1  –  a0 ) ( 1  –  q )  qn  – 1 for n  =
1, 2, .... {pn}3n  =  0 is a zero-modifi ed geometric distribution. In particular, if  
a0  =  0, then {pn}3n  =  1 is a zero-truncated geometric distribution.

2. It follows from Latouche and Ramaswami ( 1999 ) that every probability 
function with fi nite support on non-negative integers is of discrete phase-
type. Let {qn}m

n  =  0 be a probability function. It is easy to show that {qn}m
n  =  0 

is a phase-type distribution with representation ( A , Q ), where A   =  ( q1,  …,  qm ) 
and Q  =  ( I{i  =  j  +  1} )

m
i, j  =  1 with I{i  =  j  +  1}  =  1, if  i  =  j  +  1, and 0, otherwise.

Phase-type distributions are one of the most general classes of distributions 
permitting a Markovian interpretation. Formalised introductions for the 
 discrete phase-type distributions date back to mid 1970’s, see Neuts ( 1975 ). 
However, more researchers have been focusing on the studies of the continuous 
phase-type distributions. Detailed discussions of continuous phase-type distri-
butions can be found in Neuts ( 1981 ) and Latouche and Ramaswami ( 1999 ). 
Brief overviews of either discrete or continuous phase-type distributions and their 
properties can be found in Asmussen ( 1992, 2000 ), Stanford and Stroinski 
( 1994 ), Bobbio et al ( 2003 ), Drekic et al ( 2004 ), Ng and Yang ( 2005 ), Eisele 
( 2006 ), Hipp ( 2006 ) and the references therein.

Discrete phase-type distributions constitute a class of distributions on non-
negative integer set which seems to strike a balance between generality and 
tractability. They have rational generating functions and include as special 
cases, geometric, negative binomial, as well as linear combinations ( including 
mixture ) and convolutions of these distributions. A phase-type distribution 
inherits the special structure from the Markov property of  the underlying 
discrete-time Markov chain. Moreover, the class of discrete phase-type distri-
butions is one of the classes of distributions which are dense in the class of all 
discrete distributions on �  =  {0,  1,  2,  …} so that any distribution may be 
approximated arbitrarily closely by a suitable discrete phase-type distribution.

Now we turn to fi nding the distribution of the aggregate claims S defi ned 
in ( 1 ) when the distribution of the claim count N follows a discrete phase-type 
distribution given in (18). Eq. ( 8 ) gives 

 1- ( Q RAa(0) ( ( )) ( ) ( ) ) .g f f f0 0 0 10= = + -Qp ( I- )I  (19)
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We can use the same techniques as in Section 3 to derive a matrix form recur-
sive formula to compute g( x ) when x  >  0. Here we use an alternative method 
suggested by a referee to derive the recursive formula as follows.

1. If  the claim amounts are discrete random variables taking non-negative 
integers with common probability function f ( x ) for x  =  0, 1, 2,  …,  then for 
x  =  1, 2, …,

  f fA (* *(xn
R R RA( ) ( ) ( ) ) ) ,P G Gg x x x x1 1 1n

nn 11
= = = =

33

==

*n np* *
> H//

 where ( (f (* * *
nx x( xn 1

3
= A) ) , ) ),P Gx= =*nG * G/  and

  (

(

f f n 1-(

j

*

*

*

n 1

x

*

*Q

Q

x

-

)

x

A A A

A

A

) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ) ,

G P P Q

I

I Q

Q

x f x f x

f x f

f x f j

)

nn

j

x

21

0

1
= = +

= - +

= - +

33

==

=

* * *n ( P

G

G

-* * n//

/

where *n denotes the nth convolution operator. Rearranging terms gives for 
x  =  1,  2,  …,

  ( ( j* *( )x f j ( )f xx A) ) 0( ) ,G Q I Q I Qf
j

x

1

1= - + - -
=

G -
7> 7AH A/  (20)

 where the starting value vector *(0)G  is given by

  
(0)

Q

Q Q Qf

f 1 ( )

( ) ( )

-

- -

*
n

1

n-n

n

A A

A A

(0) (0) [ ( )

(0) [ (0) (0) [ ] .

P Q I

Q I I

f

f f f

0
nn

n

11

0

= =

= = -

33

3

==

=

-

*n ]

]

*

I

G //

/

Remarks:

( 1 ) For the special phase-type distributions that belong to the generalised 
( a, b, 0 ) family, which are mentioned at the beginning of this section, 
two versions of recursive formulae have been obtained, equations (17) 
and ( 20 ), where A .Qg=   From the corresponding defi nitions we can 
verify that *(G x( )Gx =)  for x  =  1, 2,  … and Q* A(0) (0) ( ),G = + -IG  
which equates the equation ( 17 ) with ( 20 ).

( 2 ) Using the same method that was employed in Section 4, the following 
recursive formula for the rth moment of S is obtained for the general 
phase-type number of claims:
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  (i( 1* * i1 1
r

� � A[ ] [ ] ,H Hr X X
i

r
r

0

1
+

-

=

-
-

i=) )r (Q Q)-Ia k/

 where  (*( x*3
x 0= ),H Gr xr=) /  then obviously,  (*S

R
� [ ] H r 1=

r )  and   *(H 0 =)

(x*3
x 0= ) .G/

2. If  the claim amounts are continuous random variables taking positive real 
numbers with common probability density function f ( x ) for x  >  0, then 
using the same arguments as above we have that the density of S for x  >  0

 can be expressed as (* x(
R

) ,g x 1= G)  where 

 
(f

** *

*

( (

y

x xA

A

) ( ) )

) ( ) ( ) [ ] 0.

G Q G Q

Q I Q

f x f

y dy f x x >
x

0

= +

= - + - ,x

( )-I

G#
 (21)

6. NUMERICAL EXAMPLES

In this section, three numerical examples are provided to illustrate the applica-
tion of the recursive formulae derived in the previous sections.

Example 5. We assume that N has a generalised ( a, b, 0 ) distribution discussed 
in Example 3 with g   =  ( 0.1, 0.2, 0.5, 0.05, 0.15 ), M  =  10 and
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It can be verifi ed by computation that defi nition ( 3) gives a proper probability 
function. We have A  =  – Q (I  –  Q ) – 1 and B  =  –  ( M  +  1 ) A.

The individual claims follow a negative binomial distribution with 

 4 5 ,+( ) 0,1, 2, ....(0.25) (0.75)f x xx
= =4

x
a k

A direct application of equation ( 14 ) gives Table 1 that summarises vector 
values ( )G x  and probability g( x ) for selected x values up to 250. Results for 
x  >  250 are too small to be included in the table and the total tail probability 
above 250 is 0.00022. The computing time using Mathematica is 1.5 seconds.
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Example 6. We assume that N follows a distribution with fi nite non-negative 
support, which is a special case of  discrete phase-type distributions as we 
remarked in Section 5. Details of  the parameters are specifi ed as follows. 
Assume that N has distribution {pn}

10
n  =  0  =  ( 0.4, 0.24, 0.144, 0.086, 0.052, 0.031, 

0.019, 0.011, 0.007, 0.005, 0.005 ).
{pn}

10
n  =  0 has a phase-type representation ( A , Q ), where

 10A ( , , ..., ), .Qp p p

0
1
0
0

0

0
0
1
0

0

0
0
0
0

1

0
0
0
0

0

and1 2

g

g

g

g

h

g

= =

J

L

K
K
K
K
K
K
K

N

P

O
O
O
O
O
O
O

Individual claim distribution f ( x ) is the same as in Example 5. Table 2 sum-
maries vector values (* x)G  and probability g( x ) for selected x values up to 
200. Due to the high dimension for the vectors included in the table, we can 
only show 3 decimal places for the vector values. The total tail probability of 
S above 200 is 0.000166. It took Mathematica 2.8 seconds to calculate up to 
x  =  200.

TABLE 1

VECTOR G  VALUES AND THE P.F. OF S IN EXAMPLE 5

x G
"

(x) g(x) 

  0 ( – 0.01030, 0.04926, 0.06784, – 0.04423, – 0.04110 ) 0.021474 

  1 ( – 0.00009, 0.00025, 0.00042, – 0.00022, – 0.00024 ) 0.000125 

  2 ( – 0.00021, 0.00057, 0.00094, – 0.00049, – 0.00053 ) 0.000282 

  3 ( – 0.00037, 0.00010, 0.00165, – 0.00085, – 0.00093 ) 0.000495 

  4 ( – 0.00057, 0.00150, 0.00249, – 0.00128, – 0.00140 ) 0.000744 

  5 ( – 0.00077, 0.00203, 0.00338, – 0.00173, – 0.00190 ) 0.001008 

 10 ( – 0.00160, 0.00389, 0.00674, – 0.00331, – 0.00373 ) 0.001992 

 20 ( – 0.00208, 0.00266, 0.00671, – 0.00220, – 0.00326 ) 0.001826 

 30 ( – 0.00219, 0.00031, 0.00525, – 0.00032, – 0.00184 ) 0.001212 

 40 ( – 0.00199, – 0.00146, 0.00390, 0.00087, – 0.00061 ) 0.000707 

 50 ( – 0.00163, – 0.00233, 0.00278, 0.00126, 0.00028 ) 0.000369 

100 ( 0.00006, 0.00061, 0.00061, 0.00051, 0.00185 ) 0.003633

150 ( 0.00403, 0.00249, 0.00193, 0.00155, 0.00313 ) 0.013122

200 ( 0.00045, 0.00025, 0.00021, 0.00016, 0.00031 ) 0.001380

250 ( 0.00000, 0.00000, 0.00000, 0.00000, 0.00000 ) 0.000014
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Example 7. In last example we assume that both claim frequency and claim 
severity have phase-type distributions. We assume that random variable N fol-
lows a general phase-type distribution with representation ( A , Q ), where

TABLE 2

VECTOR G*  VALUES AND THE P.F. OF S IN EXAMPLE 6

x G
"*(x) g(x) 

0 ( 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.400235 

1 ( 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.000880 

2 ( 0.001, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.001981 

3 ( 0.001, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.003473 

4 ( 0.002, 0.001, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.005222 

5 ( 0.003, 0.002, 0.001, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.007073 

10 ( 0.006, 0.003, 0.002, 0.001, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.013935 

20 ( 0.005, 0.003, 0.002, 0.001, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.012623 

30 ( 0.004, 0.002, 0.001, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.008949 

40 ( 0.003, 0.002, 0.001, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.006509 

50 ( 0.002, 0.001, 0.001, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.004735 

100 ( 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.000978

200 ( 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 ) 0.000014

TABLE 3

VECTOR G*  VALUES AND THE P.F. OF S IN EXAMPLE 7

x G
"*(x) g(x) 

0 ( 0.00008, 0.00010, 0.00016, 0.00000, 0.00003 ) 0.000366 

1 ( 0.00029, 0.00037, 0.00059, 0.00000, 0.00013 ) 0.001375 

2 ( 0.00066, 0.00083, 0.00132, 0.00000, 0.00029 ) 0.003098 

3 ( 0.00115, 0.00145, 0.00232, 0.00000, 0.00051 ) 0.005431 

4 ( 0.00173, 0.00218, 0.00349, 0.00001, 0.00076 ) 0.008168 

5 ( 0.00234, 0.00295, 0.00473, 0.00001, 0.00103 ) 0.011069 

10 ( 0.00448, 0.00582, 0.00948, 0.00016, 0.00202 ) 0.021958 

20 ( 0.00313, 0.00527, 0.00973, 0.00102, 0.00183 ) 0.020989 

30 ( 0.00129, 0.00355, 0.00816, 0.00141, 0.00166 ) 0.016074 

40 ( 0.00053, 0.00223, 0.00659, 0.00107, 0.00183 ) 0.012246 

50 ( 0.00022, 0.00131, 0.00500, 0.00064, 0.00181 ) 0.008978 

100 ( 0.00000, 0.00006, 0.00069, 0.00002, 0.00046 ) 0.001228

150 ( 0.00000, 0.00000, 0.00006, 0.00000, 0.00006 ) 0.000125

200 ( 0.00000, 0.00000, 0.00000, 0.00000, 0.00001 ) 0.000012
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 A (0.1,0.2,0.5,0.05,0.15),
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Then we have 1-Q R
� A[ ] ( ) 2.35714.N 1= - =I

The individual claims follow the same negative binomial distribution as in 
the above two examples. A direct application of (20 ) gives Table 3. In this table 
vector values (* x)G  and probability g( x ) are provided for selected x values up 
to 200. We consider results for x  >  200 are too small to include and the total 
tail probability of S above 200 is 0.00026.

Since f ( x ) is also a discrete phase-type distribution with representation
( b , T ), where

 

(0.2373, 0.3955, 0.2637, 0.0879, 0.0146),

0.75 .
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0. 5
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It follows from Theorem 2.2.6 in Neuts ( 1981 ) that S follows a discrete phase-
type distribution with representation (j , L ), where

 
R 1

A . ,

. ,

I Q

I I Q Qt

j b

bL T

0 001

0 001

1
7

7 7

= -

= + -
-

-
7

7

A

A

where (TR R
( ) 0, 0, 0, 0, 0.25t 1= - =

R
)I  and 7 is the Kronecker product of 

matrices.
Comparing the computing times for the above two methods, we fi nd in this 

example the Neuts’ theorem is quicker than our recursive formula (14 ). It took 
Mathematica 1.5 seconds to calculate the fi rst 200 recursions in ( 14 ) but it 
needs almost no time to calculate the fi rst 200 probabilities of g( x ) using the 
exact phase-type expression. However, the dimensions of j  and L will increase 
signifi cantly when the numbers of phases increase for both p and f, which will 
make the Theorem 2.2.6 not suitable for computation in that sense.

To complete this example, we shall calculate the fi rst four moments of S 
for the distributions considered in this example. Table 4 summaries values of 

(*H r) and �[Sr] for r  =  1, 2, 3, 4.
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