
J. Fluid Mech. (2018), vol. 838, pp. 435–477. c© Cambridge University Press 2018. This is a work
of the U.S. Government and is not subject to copyright protection in the United States.
doi:10.1017/jfm.2017.889

435

Non-localized boundary layer instabilities
resulting from leading edge receptivity at

moderate supersonic Mach numbers

M. E. Goldstein1,† and Pierre Ricco2

1National Aeronautics and Space Administration, Glenn Research Centre, Cleveland, OH 44135, USA
2Department of Mechanical Engineering, The University of Sheffield, S1 3JD Sheffield, UK

(Received 25 July 2017; revised 10 November 2017; accepted 1 December 2017;
first published online 16 January 2018)

This paper uses matched asymptotic expansions to study the non-localized (which we
refer to as global) boundary layer instabilities generated by free-stream acoustic and
vortical disturbances at moderate supersonic Mach numbers. The vortical disturbances
produce an unsteady boundary layer flow that develops into oblique instability
waves with a viscous triple-deck structure in the downstream region. The acoustic
disturbances (which for reasons given herein are assumed to have obliqueness angles
that are close to a certain critical angle) generate slow boundary layer disturbances
which eventually develop into oblique stable disturbances with an inviscid triple-deck
structure in a region that lies downstream of the viscous triple-deck region. The paper
shows that both the vortically generated instabilities and the acoustically generated
oblique disturbances ultimately develop into modified Rayleigh-type instabilities
(which can either grow or decay) further downstream.
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1. Introduction

It is well known that laminar to turbulent transition in boundary layers is strongly
influenced by unsteady disturbances in the free stream. This is often the result of
a sequence of events beginning with the excitation of spatially growing instability
waves by the free-stream disturbances. This so-called receptivity problem differs from
classical instability theory in that it leads to a boundary value problem rather than
an eigenvalue problem for the Orr–Sommerfeld or Rayleigh equations, which only
applies in a region where the mean flow is nearly parallel (refer to review article
by Reshotko (1976)). However, the relevant boundary conditions cannot be imposed
on the Orr–Sommerfeld or Rayleigh equations in the infinite Reynolds number limit
being considered here. The free-stream disturbances can, however, produce unsteady
boundary layer disturbances near the leading edge of the boundary layer which
eventually become unstable further downstream.

† Email address for correspondence: marvin.e.goldstein@nasa.gov
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Goldstein (1983) used a low frequency parameter matched asymptotic expansion
to show that there is an overlap domain where appropriate asymptotic solutions
to the forced boundary layer equations match onto the Tollmien–Schlichting wave
solutions of the Orr–Sommerfeld equation, which applies further downstream. The
Tollmien–Schlichting wave/free-stream disturbance coupling tends to be fairly weak
for the two-dimensional incompressible flow considered by Goldstein (1983), primarily
because the boundary layer disturbances undergo considerable decay before turning
into growing Tollmien–Schlichting waves in the Orr–Sommerfeld region.

But the situation can be quite different in supersonic flows where various modes of
instability, which have been well documented by Mack (1984), can occur. Our interest
here is in the moderately supersonic regime (Mach number less than 4) where the
so called 1st Mack instability mode, which results from a purely inviscid mechanism
when the mean flow has a generalized inflection point, is the dominant instability.
Smith (1989) showed that there are also viscous instabilities with obliqueness angles
θ greater than the critical angle, say θc, which is equal to the inverse cosine of the
free-stream Mach number, cos−1(M−1

∞
). These instabilities exhibit the same triple-deck

structure as the subsonic Tollmien–Schlichting waves in the vicinity of the lower
branch. Their critical layers lie near the wall and their phase speeds are very small.
They must therefore be generated by a wall layer mechanism analogous to the one
identified by Goldstein (1983).

Ricco & Wu (2007) extended the Goldstein (1983) analysis to compressible
subsonic and supersonic flat plate boundary layer flows and showed that highly
oblique vortical disturbances can generate the viscously unstable disturbances that
are a limiting form of the instability identified by Smith (1989). The present
paper considers the more general case where the free-stream vortical disturbances
generate the complete Smith (1989) instability, which now comes into play when
the frequency-scaled (i.e. scaled with the free-stream velocity/frequency) streamwise
coordinate x is of the order of ε−2, where ε denotes the frequency parameter F
(defined explicitly below) to the one-sixth power. (Refer to figure 1, which will be
discussed more fully below.) The instability waves can have arbitrary obliqueness
angles at subsonic Mach numbers but our interest here is in the supersonic case,
where θ must be greater than θc, since our computations show that the instability
wave lower branch lies further upstream than the subsonic lower branch and much
further upstream than the incompressible lower branch considered by Goldstein (1983).
This means that the instability wave/free-stream disturbance coupling will be much
greater in this case. The instability does not possess an upper branch in this case and
matches onto a low frequency (short streamwise wavenumber) Rayleigh instability
(that can be identified with the 1st Mack mode) when x is of the order of ε−4.

Fedorov & Khokhlov (1991) and Fedorov (2003) (hereafter referred to as
F/K) analysed the generation of inviscid instabilities in a supersonic flat plate
boundary layer by fast and slow acoustic disturbances in the free stream. (The
Fedorov & Khokhlov (1991) analysis was two-dimensional and Fedorov (2003)
extended it to include oblique disturbances.) The slow acoustic mode propagates
downstream/upstream when the obliqueness angle θ of the acoustic disturbances is
smaller/larger than the critical angle θc, which, as already indicated, corresponds to
the minimum obliqueness angle of the Smith (1989) instabilities. Fedorov (2003)
considered the case where the deviation 1θ ≡ θc − θ of the obliqueness angle from
its critical value is O(1) and showed that downstream propagating slow acoustic
modes with 1θ > 0 generate unsteady boundary layer disturbances that match onto
the inviscid 1st Mack mode instability without undergoing any significant decay.
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FIGURE 1. Structure of disturbance flow where r is a real number in the range 06 r< 1.

But the inviscid Mack mode only emerges when the frequency-scaled distance x is
O(ε−6)=O(F−1) which is much further downstream than the region where the long
streamwise wavelength Rayleigh (1st Mack) mode emerges from the Smith (1989)
triple-deck solution. The latter instability can, therefore, undergo considerable growth
before reaching the downstream region where the inviscid Mack mode emerges from
the F/K solution. This is important because (as will be shown below) this region is
likely to lie too far downstream to be of practical interest when scaled up to actual
flight conditions. It also turns out that the most rapidly growing instability in the
moderately supersonic regime being considered here is the (usually highly oblique)
1st mode. (The obliqueness angle of the most rapidly growing 1st mode lies between
50◦ and 70◦ for an insulated wall when the Mach number is between 2 and 6,
Mack 1984.)

The spanwise wavenumber of the slow acoustic mode increases as θ approaches θc
and the F/K analysis, which is completely inviscid, breaks down when 1θ becomes
sufficiently small (Fedorov 2003). We extend their analysis to these small values of
1θ and show that viscous effects come into play in the diffraction region where
the slow boundary layer disturbance is generated when 1θ = O(ε2/3)= O(F 1/9) and
that this region, as well as the downstream region where an instability wave can
emerge, moves upstream as 1θ→ 0. The latter region lies at an O(ε−(4+2r)) distance
downstream when 1θ is reduced to O(ε1−r) where r is a real number in the range
1/36 r<1, which is downstream of the viscous triple-deck region where the Goldstein
(1983)–Ricco–Wu (2007) instability begins to grow (since it turns out that there are
no global solutions when r< 1/3) but can now be of considerable significance under
actual flight conditions since it lies upstream of the region where the 1θ = O(1)
instability begins to grow.

It is therefore reasonable to consider both the vortical and small-1θ acoustic
disturbances simultaneously. The vortically generated instability is likely to be more
important than the acoustically generated instability since the analysis shows that the
former, which comes into play when x=O(ε−2), has an O(ε−1) growth rate while the
maximum growth rate of the latter, which cannot come into play until x=O(ε−(4+2r)),
turns out to be O(1).

The forced slow mode generated by the F/K mechanism appears to exist for smaller
obliqueness angles with 1θ < 0, but the streamwise wavenumber then becomes
negative, which means that the acoustic disturbances propagate upstream and are
probably not able to directly produce 1st Mack mode instabilities which propagate
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downstream. The deviation angle 1θ is negative for the supersonic triple-deck
instabilities but the streamwise wavenumber is positive in that case and the solution
can, therefore, match the downstream propagating 1st Mack mode instability.

Fedorov (2003) showed that the F/K solution is in close agreement with the data of
Maslov et al. (2001) at O(1) values of 1θ but greatly underpredicts the experimental
receptivity coefficient when 1θ is close to zero, which could be due the additional
inviscid instability that evolves from the viscous triple-deck solution.

As noted above, the present paper is concerned with the unsteady flow in a flat
plate boundary layer generated by mildly oblique vortical disturbances and small-1θ
acoustic disturbances in a moderate supersonic Mach number free stream. It shows,
among other things, that the vortical disturbances generate a viscous instability that
can exhibit much less decay upstream of its lower branch than the corresponding two-
dimensional subsonic modes considered by Goldstein (1983) even when the frequency
parameter is small and that the resulting instabilities could, therefore, dominate over
those generated by the acoustic disturbances. The relevant experiments are usually
conducted with a trailing edge flap that tends to move the leading edge stagnation
point to the lower surface of the plate, which could certainly cause the leading edge
boundary layer to be slightly different from the Blasius boundary layer considered in
the paper and thereby slightly modify the leading edge receptivity. But the present
paper is meant to explain the relevant physics and we believe that this is best done
by analysing the ideal situation that the experiments are meant to simulate.

The outline of the paper is as follows. The imposed upstream disturbance
environment is discussed in § 2 and the upstream boundary layer flow generated
by the imposed vortical disturbances is analysed in § 3.1. Section 3.2 describes the
resulting asymptotic eigensolutions produced by this flow. The slow boundary layer
disturbances generated by acoustic disturbances with obliqueness angles close to the
critical angle are analysed in § 4. Section 5 shows that the vortically generated
asymptotic eigensolutions evolve into oblique instability waves with a viscous
triple-deck structure when, as noted above, the scaled streamwise coordinate is
O(ε−2) while the acoustically generated slow boundary disturbances do not evolve
into oblique instability waves in this region and eventually develop into oblique
stable disturbances with an inviscid triple-deck structure when the scaled streamwise
coordinate becomes O(ε−(2+4r)), 1/3 6 r< 1. Section 6 shows that both the vortically
generated instability and the acoustically generated oblique disturbance eventually
evolve into modified Rayleigh-type instabilities at larger downstream distances. The
numerical procedures are described in § 7. The numerical results are presented in § 8
and their physical implications are discussed. Some final conclusions are given in § 9.

2. Formulation

We consider a supersonic flow of an ideal gas with uniform free-stream velocity U∗
∞

,
temperature T∗

∞
, dynamic viscosity µ∗

∞
and density ρ∗

∞
past an infinitely thin flat plate

and suppose that a small amplitude harmonic distortion with angular frequency ω∗ is
superimposed on the flow. We also suppose that the time t is normalized by ω∗, the
velocities by U∗

∞
, the pressure fluctuation by ρ∗

∞
(U∗
∞
)2, the temperature by T∗

∞
and the

dynamic viscosity by µ∗
∞

. We let {x, y, z} denote Cartesian coordinates normalized by
L∗ ≡U∗

∞
/ω∗ with the coordinate y being perpendicular to the surface of the plate.

As indicated in the introduction, the present paper assumes the Reynolds number
ρ∗U∗

∞
L∗/µ∗

∞
to be large and uses asymptotic theory to explain how the imposed

harmonic distortion generates oblique instabilities at large downstream distances in
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the viscous boundary layer that forms on the surface of the plate. The distortion
will therefore be inviscid at lowest approximation and, as is well known (Kovasznay
1953), can be decomposed into an acoustic component that carries no vorticity, and
vortical and entropic components that produce no pressure fluctuations.

We only consider the first two for simplicity. The vortical velocity uv is given by

uv = {uv, vv,wv} = δ̂{u∞, v∞,w∞} exp[i(x− t+ γ y+ βz)], (2.1)

where δ̂� 1 and u∞, v∞,w∞ satisfy the continuity condition

u∞ + γ v∞ + βw∞ = 0 (2.2)

but are otherwise arbitrary constants while the acoustic component is governed by the
linear wave equation which has a fundamental plane wave solution

{ua, pa} = {ua, va,wa, pa} =
δ̂p∞

1− α
{α, γ , β, 1− α} exp[i(αx+ γ y+ βz− t)], (2.3)

for the velocity and pressure perturbation where

γ =
√
(M2
∞
− 1)(α − α1)(α − α2), α1,2 =

M2
∞
±
√

M2
∞
+ β2(M2

∞
− 1)

M2
∞
− 1

, (2.4a,b)

where, as noted in the introduction, M∞ denotes the free-stream Mach number.
The leading edge interaction will produce large scattered fields when the incidence

angle tan−1(va/ua)= tan−1(γ /α) of the acoustic wave and tan−1(vv/uv) of the vortical
disturbance are O(1). In order to avoid this complication, we only consider the case
where the incidence angle of the vortical disturbance is small, which requires that

v∞

u∞
� 1 (2.5)

and the case where the incidence angle of the acoustic disturbance is zero, which
requires that

α = α∓ =
M∞ cos θ

M∞ cos θ ∓ 1
, θ ≡ tan−1

(
β

α

)
, (2.6)

where the subscripts ∓ refer to the slow/fast acoustic modes. Equation (2.6) shows that
the slow mode wavenumber becomes infinite when the obliqueness angle is equal to
the critical angle referred to in the introduction.

As indicated above our interest here is in explaining how the incident harmonic
distortions generate oblique instabilities at large downstream distances in the viscous
boundary layer where the mean temperature, density and streamwise velocity, say T ,
ρ, U, respectively, can be expressed as functions of the Dorodnitsyn–Howarth variable

η≡
1

ε3
√

2x

∫ y

0
ρ(x, ỹ) dy (2.7)

and determined from the similarity equations (Stewartson 1964)

U = F′(η), (2.8)(
µF′′

T

)′
+ FF′′ = 0, (2.9)
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Pr−1

(
µT ′

T

)′
+ FT ′ + (γr − 1)M2

∞
(F′′)2 = 0, (2.10)

ρT = 1, (2.11)
F(0)= F′(0)= 0, T ′(0)= 0; F′→ 1, T→ 1 as η→∞, (2.12)

where γr is the specific heat ratio and the mean viscosity µ is assumed to depend on
the temperature. The prime is used to denote differentiation with respect to η and Pr
is used to denote the Prandtl number.

The natural small parameter for the asymptotic expansion turns out to be

ε ≡F 1/6, (2.13)

where, as indicated in the introduction,

F ≡
ω∗µ∗

∞

ρ∗
∞
(U∗
∞
)2

(2.14)

denotes the frequency parameter. We begin by considering the unsteady flow generated
by the upstream vorticity.

3. Boundary layer disturbances generated by free-stream vorticity
3.1. Leading edge region

Our interest here is in boundary layer disturbances that generate oblique viscous
instabilities in a triple-deck region that lies at an O(ε−2) distance downstream. These
instabilities, as will be shown below, will have O(ε−1) spanwise wavenumbers. And
we therefore require that

β ≡ εβ =O(1) (3.1)

since the spanwise wavenumber must remain constant as the disturbances propagate
downstream. The continuity condition (2.2) will then require that

w∞ ≡
w∞
ε
=O(1) (3.2)

and the obliqueness requirement (2.5) can be satisfied if we require that

v∞ ≡
v∞

ε
=O(1). (3.3)

Equation (2.2) then becomes

u∞ + γ v∞ + βw∞ = 0, (3.4)

where
γ ≡ εγ =O(1). (3.5)

The vortical velocity (2.1) will then interact with the plate to produce the following
inviscid velocity field (Ricco & Wu 2007):

uv(x, y, z) = δ̂

{
u∞eiγ y/ε

+ iε2 v∞

g
e−gy/ε, εv∞(eiγ y/ε

− e−gy/ε),

ε

(
w∞eiγ y/ε

+ iv∞
β

g
e−gy/ε

)}
ei(x−t+βz/ε), (3.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.889


Leading edge receptivity at supersonic Mach numbers 441

g≡ ε

√
1+

(
β

ε

)2

= β +
ε2

2β
+ · · · , (3.7)

when the streamwise coordinate x is assumed to be large enough so that the leading
edge refraction effects have decayed.

As noted above the free-stream disturbance (2.1) generates a slip velocity at
the surface of the plate that must be brought to zero in a thin viscous boundary
layer whose mean velocity and temperature are given by (2.7)–(2.12). We begin by
considering the flow in the vicinity of the leading edge where the streamwise length
scale is x=O(1). Since (3.6) depends on the streamwise coordinate only through this
relatively long streamwise length scale, the solution {u, v, w, ϑ} for the velocity and
temperature in this region is given by (Ricco & Wu 2007)

{u, v,w, ϑ} =
{

F′(η),
ε3T
√

2x

(
ηcF′ − F

)
, 0, T

}
+ δ̃

{
u0(x, η), ε3

√
2xv0(x, η), εw0(x, η), ϑ0(x, η)

}
ei(βz/ε−t), (3.8)

where

ηc ≡
1

T(η)

∫ η

0
T(η̃) dη̃ (3.9)

and {u0(x, η), ε3
√

2xv0(x, η), εw0(x, η), ϑ0(x, η)} is determined by the linearized
boundary layer equations. The solution {u0, v0, w0, ϑ0} to these equations can be
divided into the two components (Gulyaev et al. 1989)

{u0, v0,w0, ϑ0} =

(
u∞eiγ y/ε

+ iε2 v∞

g
e−gy/ε

)
{u, v, 0, ϑ}

+ iβ
(

w∞eiγ y/ε
+ iv∞

β

g
e−gy/ε

)
{u(0), v(0),w(0), ϑ

(0)
}, (3.10)

where {u(0), v(0), w(0), ϑ
(0)
} satisfy the three-dimensional compressible linearized

boundary layer equations subject to the boundary conditions (Ricco & Wu 2007)

u(0)→ 0, w(0)
→ eix, ϑ

(0)
→ 0 as η→∞, (3.11a−c)

while the two-dimensional solution {u, v, 0, ϑ} satisfies the two-dimensional linearized
boundary layer equations

− iu+ F′
∂u
∂x
−

F
2x
∂u
∂η
−
ηcF′′

2x
u+

F′′

T
v +

1
2x

(
F−

∂µ′

∂η

)(
F′′

T
ϑ

)
=

1
2x

∂

∂η

(
µ

T
∂u
∂η

)
,

(3.12)

∂u
∂x
−
ηcT
2x

∂

∂η

(
u
T

)
+
∂

∂η

(
v

T

)
+

(
i− F′

∂

∂x
+

F
2x

∂

∂η

)(
ϑ

T

)
= 0, (3.13)
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−
ηcT ′

2x
u−

2M2
∞
(γr − 1)F′′

2x
∂u
∂η
+

T ′v
T
−

[
i−

T ′F
2xT
+

1
2xPr

(
µ′T ′

T

)′
+

M2
∞
(γr − 1)(F′′)2

2xT

]
ϑ +

[
F′
∂

∂x
−

1
2x

(
F+

µ′T ′

PrT

)
∂

∂η

]
ϑ −

1
2xPr

∂

∂η

(
µ

T
∂ϑ

∂η

)
= 0,

(3.14)

(where µ′ denotes dµ/dT) subject to the boundary conditions

u→ eix, w, ϑ→ 0 as η→∞. (3.15a,b)

The estimate (5.18) below suggests that the lowest-order triple-deck solution
considered in § 5 will match onto the viscous quasi-two-dimensional solution
{u, v, 0, ϑ}, where the spanwise dependence only enters parametrically through
the exponential factor in (3.8).

3.2. Asymptotic eigensolutions
Prandtl (1938), Glauert (1956) and Lam & Rott (1960) showed that

u(x, η)=−
B(x)F′′(η)
√

2xT
, v(x, η)= iB(x)+

dB
dx

F′(η)−
B(x)ηcF′′(η)

2x
, (3.16a,b)

ϑ(x, η)=−
B(x)T ′(η)
√

2xT
(3.17)

is an exact eigensolution of the two-dimensional linearized unsteady boundary
layer equations (3.12)–(3.14) that satisfies the homogeneous boundary conditions
u, w, ϑ → 0 as η → ∞ for all B(x), but does not necessarily satisfy the no-slip
condition at the wall. Lam & Rott (1960) showed that (3.12)–(3.14) also possess
asymptotic eigensolutions that emerge at large values of x and satisfy a no-slip
condition at the wall but only considered the incompressible limit. These solutions
have a double layer structure which consists of an outer region that encompasses the
main part of the boundary layer and a thin viscous wall layer. They showed that the
solution in the outer region is still given by (3.16) and (3.17) but with the arbitrary
function B(x) determined by matching with the flow in the viscous wall layer. Ricco
& Wu (2007) pointed out that their analysis will also apply to the compressible case
provided the full compressible solution (3.16) and (3.17) is used in the outer region
and the solution in the viscous wall layer is slightly modified to account for the
temperature and viscosity variations. The end result is that the function B(x) will now
be given by

B(x)= x3/2Bn exp

[
−

23/2eiπ/4

3λζ 3/2
n

(
Tw

µw

)1/2

x3/2

]
+ · · · , (3.18)

where ζn is a root of

Ai′(ζn)= 0, for n= 0, 1, 2, 3 . . . (3.19)

and
λ≡ F′′(0). (3.20)
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The only difference from the Lam–Rott result is the (Tw/µw)
1/2 factor in the exponent.

The asymptotic solution to the full inhomogeneous boundary value problem (3.12)–
(3.15) can now be expressed as the sum of a Stokes layer solution plus a number
of these asymptotic eigensolutions. Goldstein (1983) and Goldstein, Sockol & Sanz
(1983) showed how the multiplicative constants Bn can be determined from the full
numerical solution to the boundary layer problem. However, our primary interest here
is in the lowest-order n= 0 solution because, as will be shown below, this is the one
that will match onto a spatially growing oblique instability wave further downstream.
The final result can then be used to relate the instability wave amplitude to the initial
amplitude of the free-stream disturbance, i.e. to solve the receptivity problem.

The three-dimensional linearized boundary layer equations could also have
quasi-two-dimensional asymptotic eigensolutions which satisfy (3.12)–(3.14) and the
present result will apply to those solutions as well. Both sets of eigensolutions will
have to be considered when the full receptivity problem is solved. These boundary
layer disturbances will, as already noted, eventually evolve into a spatially growing
instability in a region that lies further downstream. But we first consider the boundary
layer disturbances generated by the free-stream acoustic waves.

4. Boundary layer disturbances generated by the Fedorov/Khokhlov mechanism
for obliqueness angles close to critical angle

F/K analysed the generation of Mack mode instabilities in flat plate boundary layers
by oblique acoustic waves of the form (2.3) where the wavenumbers α and β satisfy
the dispersion relation (2.6) when the incidence angle γ is equal to zero, which, for
reasons given in § 2, is the case of interest here. The focus of the present paper is on
the moderate supersonic regime (the Mach number is less than approximately 4) where
the most rapidly growing disturbances are usually highly oblique 1st Mack modes.
(As indicated above, the obliqueness angle of the most rapidly growing 1st mode lies
between 50◦ and 70◦ for an insulated wall when the Mach number is between 2 and 6,
Mack 1984.) F/K showed that diffraction of the slow acoustic wave by the non-parallel
mean boundary layer flow can produce a 1st Mack mode instability in the downstream
region where x=O(ε−6) when its obliqueness angle θ is less than the critical angle

cos θc ≡
1

M∞
(4.1)

and the deviation
1θ ≡ θc − θ (4.2)

is O(1). Their analysis shows that the diffraction occurs in the downstream region
where x=O(ε−3) and the unsteady flow has a three layer structure: a passive Stokes
layer near the wall, a main boundary layer region that fills the mean boundary layer
and an outer diffraction region of thickness O(ε−3/2). The instability emerges from the
downstream limit of the solution in this region.

As noted above our interest here is in comparing the unstable flow produced
by this mechanism with that produced by the vortical disturbances. It is natural
to do this comparison at the same scaled spanwise wavenumber and scaled time
(and, therefore, the same period for the periodic motion being considered here). But,
as noted above, the vortical disturbances must have large spanwise wavenumber
β in order to produce oblique instability waves in the downstream region. The
corresponding acoustic disturbances will only have large spanwise wavenumbers
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when their obliqueness angles θ are close to the critical angle θc, i.e. when 1θ � 1.
And since

cos(θc −1θ)= cos θc +1θ sin θc +O((1θ)2), (4.3)

tan(θc −1θ)= tan θc −
1θ

cos2 θc
+O((1θ)2), (4.4)

when 1θ� 1, it follows from (2.6) that

β = β1 =
β̃

1θ
(4.5)

and

α =
α̃

1θ
+ α̃1 + · · · , (4.6)

where
α̃ =

1
tan θc

, β̃ = 1, α̃1 =
1

sin2θc
(4.7a−c)

are O(1) constants when this occurs. This shows that α also becomes large when
1θ � 1 and that α will expand in powers of 1θ as indicated in (4.6), if β is fixed
at (4.5) to all orders in 1θ (which we now assume to be the case). But the F/K
diffraction region equations do not provide an appropriate asymptotic balance when
1θ � 1 and new equations have to be derived before that analysis can be extended
into the small-1θ regime. The relevant equations are derived in this section.

We begin by rescaling the F/K diffraction region equations. F/K showed that the
1θ =O(1) solution, say {u, v, w, ϑ, p}, for the velocity, temperature and pressure in
the outer diffraction region (region 2 in their notation) is of the form

{u, v,w, ϑ, p} = {1, 0, 0, 1, 1} + δ̂ {u2(x2, y2), ε
3/2v2(x2, y2),w2(x2, y2), ϑ2(x2, y2),

p2(x2, y2)} exp

{
i

[(
α̃

1θ
+ α̃1

)
x+

β̃z
1θ
− t

]}
, (4.8)

where
x2 ≡ xε3

=O(1), y2 ≡ yε3/2
=O(1) (4.9a,b)

and the pressure is determined by

∂2p2

∂y2
2
= 2i[M2

∞
(α − 1)− α]

∂p2

∂x2
, (4.10)

subject to the boundary conditions

p2(x2,∞)= p2(0, y2)= 1, (4.11)
∂p2

∂y2
=−i(α − 1)v1(x2,∞), p2 = p1(x2) at y2 = 0, (4.12)

where the wall normal velocity v1(x2,∞) = limη→∞ v1(x2, η) is determined by the
solution in the boundary layer where η=O(1). This solution shows that v1(x2,∞) is
related to the boundary layer pressure p1 by

v1(x2,∞)=
iαk

cos2 θ

√
x2p1, (4.13)

where k is a constant.
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Equations (4.10) and (4.12) become

∂2p2

∂y2
2
= 2iα(M2

∞
− 1)

∂p2

∂x2
, (4.14)

∂p2

∂y2
=−iαv1(x2,∞), p2 = p1(x2) at y2 = 0, (4.15)

when the obliqueness angle is close to the critical angle. But, as noted above, these
equations have to be rescaled in order to obtain an asymptotically balanced result
because now α � 1. Appendix A shows that they will remain unchanged, i.e. they
can be written as

∂2p2

∂ ˜̃y
2

2

= 2iα̃(M2
∞
− 1)

∂p2

∂ ˜̃x2

, (4.16)

∂p2

∂ ˜̃y2

=−iαv1( ˜̃x2,∞), p2 = p1( ˜̃x2) at ˜̃y2 = 0, (4.17)

v1( ˜̃x2,∞)=
iα̃k̃( ˜̃x2)

cos2 θ

√
˜̃x2p2, (4.18)

if we put

˜̃x2 ≡
x2

(1θ)3/21ϕ
=

xε3

(1θ)3/21ϕ
,

˜̃y2 ≡
y2

(1ϕ)5/4(1θ)1/2
=O(1), k̃( ˜̃x2)≡ k1ϕ,

 (4.19)

where we now allow the rescaled proportionality constant k̃( ˜̃x2) to depend on ˜̃x2 in
order to accommodate the altered boundary layer flow which determines (4.18). The
scale factor 1ϕ � 1 is introduced to account for the fact this flow now develops
a double layer structure below the outer diffraction region when 1θ → 0: a main
boundary layer where η=O(1) and a wall layer where

η̃≡
η

1ϕ
=O(1). (4.20)

The solution to (4.16), which is essentially the same as that in F/K, implies that the
wall boundary condition (4.17) can be written as

p2( ˜̃x2, 0)= 1−
˜̃x2√

2πiα̃(M2
∞
− 1)

∫ 1

0

i
√
σ

√
1− σ

α̃

v1( ˜̃x2σ ,∞)√
˜̃x2σ

 dσ . (4.21)

It turns out that the wall layer flow can be balanced if the lowest-order solution
{u, v,w, p} in the main boundary layer behaves like

{u, v,w, p} = {U(η), 0, 0, 1} + δ̂

{
u1( ˜̃x2, η)

1ϕ
,

[
ε3

(1θ)1/21ϕ

]1/2

v1( ˜̃x2, η),w1( ˜̃x2, η),

p1( ˜̃x2)

}
exp

{
i
[(

α̃

1θ
+ α̃1

)
x+ βz− t

]}
, (4.22)
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with

v1 = iα̃U(η)Ã( ˜̃x2)

√
2 ˜̃x2 and u1 =−

U′(η)Ã( ˜̃x2)

T(η)
. (4.23a,b)

The wall layer flow will be completely viscous when the convective and viscous
terms in the wall layer equations, which are proportional to αη and (2x)−1∂2/∂η2

respectively, are of the same order. This occurs when

α̃

(
1ϕ

1θ

)
=O

(
1

2x(1ϕ)2

)
(4.24)

or

x=O
(

1θ

(1ϕ)3

)
(4.25)

and, since ˜̃x2 =O(1), it follows from (4.19) that this occurs when

1ϕ =

[
ε3

(1θ)1/2

]1/4

(4.26)

or equivalently when
1ϕ

1θ
=

(
ε2/3

1θ

)9/8

. (4.27)

Inserting (4.26) into (4.19) shows that

˜̃x2 ≡
x2

ε3/4(1θ)11/8
=

xε9/4

(1θ)11/8
= xε4/3

(
ε2/3

1θ

)11/8

= x
[

ε6

(1θ)11/3

]3/8

,

˜̃y2 ≡
y2

(1θ)31/64ε15/16
.

 (4.28)

The distinguished limit corresponds to the case where the wall layer flow is also time
dependent. This occurs when 1ϕ = 1θ or, in view of (4.27), when 1θ = O(ε2/3).
The corresponding wall layer solution, which is given in appendix B, shows that the
wall normal velocity v1( ˜̃x2,∞) = limη→∞ v1( ˜̃x2, η) is given in terms of the integral∫
∞

ξ0
Ai(ξ) dξ and the derivative Ai′(ξ0) of the Airy function Ai(ξ0) by

v1( ˜̃x2,∞)√
2 ˜̃x2

= ip1( ˜̃x2)
(α̃2
+ β̃2)T2

wξ0

λAi′(ξ0)

∫
∞

ξ0

Ai(ξ) dξ, (4.29)

which behaves like
v1( ˜̃x2,∞)√

2 ˜̃x2

∼−
ip1( ˜̃x2)(α̃

2
+ β̃2)T2

w

λ
(4.30)

as ˜̃x2→∞ since (Abramowitz & Stegun 1964, pp. 446–447)

Ai′(ξ0)∫
∞

ξ0

Ai(q) dq
→−ξ0 as ξ0→∞. (4.31)
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Inserting (4.17) and (4.30) into (4.21) shows that

p1( ˜̃x2)= 1− γ0

∫ 1

0

√
σ

√
1− σ

p(σ ˜̃x2) dσ , (4.32)

where

γ0 ≡
˜̃x2(α̃

2
+ β̃2)α̃1/2T2

w

λ
√

2πi(M2
∞
− 1)

, (4.33)

which is formally the same as the equation considered by F/K who showed that the
solution is given by

p1( ˜̃x2)∼ exp[γ 2
0 π( ˜̃x2)

2
] as ˜̃x2→∞. (4.34)

This result also applies when

ε2/3

1θ
= εr, 0< r< 2/3. (4.35)

But the wall layer flow will be inviscid when 1θ > ε2/3 and the time dependent
term must again balance the convective term in the wall layer equations, which
means that the wall layer scale factor 1ϕ must also be set equal to 1θ in this case.
Equation (4.19) then becomes

˜̃x2 ≡
x2

(1θ)5/2
=

xε3

(1θ)5/2
=O(1), ˜̃y2 ≡

y2

(1θ)7/4
=O(1), k̃≡ k1θ, (4.36a−c)

which is consistent with (4.28) when 1θ = ε2/3 and shows that the diffraction region
moves upstream when 1θ→ 0. The expansion breaks down when the length of the
diffraction region x= (1θ)5/2 ˜̃x2ε

−3 is equal to the wavelength 1θ when 1θε−2
=O(1).

Equation (4.27) shows that 1ϕ(1θ)−1
� 1 when ε2/3(1θ)−1

� 1. This implies that
the time dependent terms will drop out of the wall layer equations when ε2/3(1θ)−1

�

1, which occurs when ξ is replaced by ξ in the analysis of appendix B. The relevant
solution for the wall normal velocity v1 can therefore be obtained from (4.29) by
taking the limit ξ0 → 0, with p1, ξ0 held fixed. And, since (Abramowitz & Stegun
1964, pp. 448–449) ∫

∞

ξ0

Ai(ξ) dξ

Ai′(ξ0)
→−

Γ (1/3)
32/3

as ξ0→ 0, (4.37)

where Γ (x) denotes the gamma function, it follows that

v1( ˜̃x2,∞)√
2 ˜̃x2

= −ip1( ˜̃x2)
(α̃2
+ β̃2)T2

wξ0Γ (1/3)
32/3λ

= ip1( ˜̃x2)(α̃
2
+ β̃2)

×T2
wi1/3

[
Γ (1/3)

32/3λ

]
√

2 ˜̃x2

α̃λ

2/3 (
Tw

µw

)1/3

. (4.38)
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And inserting (4.17) and (4.38) into (4.21) shows that

p2 = 1− ( ˜̃x2)
4/3γ1

∫ 1

0

√
σ

1− σ
σ 1/3p2( ˜̃x2σ) dσ , (4.39)

where

γ1 ≡ (α̃
2
+ β̃2)T2

w
21/3Γ (1/3)

λ5/332/3
√

iπα̃(M2
∞
− 1)

(
iTwα̃

µw

)1/3

(4.40)

is a constant.
Equation (4.39) possesses a power series solution of the form

p2 =

∞∑
n=0

anZn, (4.41)

where
Z ≡ γ1( ˜̃x2)

4/3√π, (4.42)

which is somewhat different from the corresponding solution obtained by F/K.
Inserting (4.42) into (4.39), equating coefficients of like powers of Z, summing
the resulting recurrence relation and using equations (6.1.8), (6.2.1) and (6.2.2) of
Abramowitz & Stegun (1964) shows that

an =

n∏
j=1

Γ (4j/3+ 1/2)
Γ (4j/3+ 1)

. (4.43)

It therefore follows from (4.42) and (C 5) that

p1 ∼
3
4

A(8π)1/4
√

πγ1( ˜̃x2)
4/3 exp

[
3γ 2

1 π( ˜̃x2)
8/3

8

]
as ˜̃x2→∞, (4.44)

where γ1 is given by (4.40). Equations (4.17) and (4.22) show that the pressure p( ˜̃x2)

in the main boundary layer is given by

p( ˜̃x2)− 1= δ̂p1( ˜̃x2) exp

{
i

[(
α̃

1θ
+ α̃1

)
x+

β̃z
1θ
− t

]}
. (4.45)

The acoustically generated boundary layer disturbance considered in this section as
well as the vortically generated disturbance considered in § 3 will eventually evolve
into propagating eigensolutions in regions that lie further downstream. The resulting
flow will have a triple-deck structure of the type considered by Smith (1989), Wu
(1999) and Ricco & Wu (2007) in the latter (i.e. vortically generated) case. But
the acoustically generated disturbance considered in the present section can also
potentially have a triple-deck structure when 1θ = O(ε). We therefore begin by
considering the flow in this region and show that the resulting triple-deck solution
will match onto the compressible Lam–Rott eigensolutions (3.16) and (3.17). We
then further investigate whether an analogous matching occurs for the acoustically
generated small-1θ F/K solution.
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5. The triple-deck region
As shown by Smith (1989), Wu (1999) and Ricco & Wu (2007) the linearized

Navier–Stokes equations possess an eigensolution of the form

{u, v,w, p} = δ̂Φ(y, ε) exp
{

i
[

1
ε3

∫ x1

0
κ(x1, ε) dx1 + βz− t

]}
(5.1)

in the triple-deck region where

x1 ≡ ε
2x=O(1) (5.2)

and
z≡

z
ε
=

z∗ω∗

εU∗
∞

(5.3)

is a scaled transverse coordinate and, as noted in Goldstein (1983), κ has the
expansion

κ(x1, ε)= κ0(x1)+ εκ1(x1)+ ε
2κ2(x1)+ · · · , (5.4)

where the lowest-order term in this expansion satisfies the dispersion relation

κ2
0 + β

2
=

1
(iκ0)1/3

(
λ
√

2x1

)5/3 (
µw

T7
w

)1/3
[
β

2
− (M2

∞
− 1)κ2

0

]1/2
Ai′(ξ0)∫

∞

ξ0

Ai(q) dq
(5.5)

and

ξ0 =−i1/3

(√
2x1

κ0λ

)2/3 (
Tw

µw

)1/3

, (5.6)

which is easily obtained by rewriting equation (5.2) of Ricco & Wu (2007) or equation
(3.17) of Wu (1999) in the present notation.

The solution in the main boundary layer where η=O(1) is given by

{u, v,w, p} = δ̂

{
A(x1)U′(η)

T(η)
,−iκ0A(x1)U(η)

√
2x1,−

ε2βPT(η)
κ0U(η)

, ε2P
}

× exp
{

i
[

1
ε

∫ x

0
κ(x1, ε) dx+ βz− t

]}
, (5.7)

where δ̂� 1 is the common scale factor used in (3.6).
The solution in the upper deck where

y≡
y
ε
=

y∗ω∗

εU∗
∞

=O(1) (5.8)

is given by

p= δ̂p̃(2) exp{−[β
2
− (M2

∞
− 1)κ2

0 ]
1/2y} exp

{
i
[

1
ε

∫ x

0
κ(x1, ε) dx+ βz− t

]}
, (5.9)

when the branch of the square root is chosen so that

Re{[β
2
− (M2

∞
− 1)κ2

0 ]
1/2
}> 0 (5.10)

in order to exclude solutions exhibiting unphysical wall normal exponential growth.
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Continuity of pressure and wall normal velocity requires that

p(2) = P,
∂p(2)

∂y
=−

√
2x1κ

2
0 A for y= 0, (5.11a,b)

which implies that P and A are related by

[β
2
− (M2

∞
− 1)κ2

0 ]
1/2P= κ2

0

√
2x1 A. (5.12)

The equation for w can be written as

w= δ̂ε2 κ0β
√

2x1 AT(η)

[β
2
− (M2

∞
− 1)κ2

0 ]
1/2U(η)

exp
{

i
[

1
ε

∫ x

0
κ(x1, ε) dx+ βz− t

]}
. (5.13)

As expected these equations reduce to equations (5.2) and (5.3) of Goldstein (1983)
with H defined by the right-hand side of (4.52) of that reference when β and M∞ are
set to zero.

5.1. Matching with the Lam–Rott solution

Equations (5.5) and (5.6) can be satisfied at small values of x1 if κ0 ∼
√

x1 and

ξ0→ ζn, for n= 0, 1, 2, . . . as x1→ 0, (5.14)

where ζn is the nth root of (3.19). Inserting (5.14) into (5.5) shows that

κ0→
1

λζ
3/2
n

(
2Twx1

iµw

)1/2

as x1→ 0. (5.15)

Inserting (5.15) into (5.4) shows that (5.1) matches onto (3.16)–(3.19). Equation (5.13)
then implies that

w∼ δ̂ε2 2x1TA
U

as x1→ 0. (5.16)

It therefore follows from (5.7) that

w
u
∼
ε2x1

λ
as x1→ 0 (5.17)

and, therefore, that
w
u
=O(ε4) for x=O(1). (5.18)

This shows that w drops out and the flow in the main deck becomes two-dimensional
as x1 → 0 and is therefore compatible with the quasi-two-dimensional Lam–Rott
solution (3.16)–(3.18).
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5.2. Matching with the small-1θ Fedorov/Khokhlov solution
As explained at the end of § 4 it is necessary to investigate whether the acoustically
driven small-1θ F/K solution matches onto the triple-deck instability downstream. To
this end we note that the triple-deck dispersion relation (5.5)–(5.6) also has a solution
that behaves like

κ0→
β

(M2
∞
− 1)1/2

− β
11/3
[α̃0(0)]2x5/3

1 +O(x2
1) as x1→ 0, (5.19)

where

α̃0(x)≡
M2
∞

T2
w(2i)1/3

∫
∞

x
Ai(q) dq

Ai′(x)λ5/3(M2
∞
− 1)17/12(µw/Tw)1/3

=

(α̃2
+ β̃2)T2

w(2iα̃)1/3
∫
∞

x
Ai(q) dq

Ai′(x)λ5/3[α̃(M2
∞
− 1)]1/2(µw/Tw)1/3

(5.20)
and α̃ is given by (4.6) and (4.7). It therefore follows that

1
ε3

∫ x1

0
[κ0(x1)+ εκ1(x1)] dx1→

α̃x
1θ
−

3ε6
[α̃0(0)]2x8/3

8(1θ)11/3

=
α̃x
1θ
−

3[α̃0(0)]2

8

{
x
[

ε6

(1θ)11/3

]3/8
}8/3

=
α̃x
1θ
−

3[α̃0(0)]2

8
˜̃x

8/3

2 , (5.21)

when β is set equal to ε/1θ = O(1) and ˜̃x2 is given by (4.28), which shows that
the F/K solution (4.44), (4.45) and (4.40) matches onto the pressure component of
the outer triple-deck solution (5.7) when 1θ = ε/β =O(ε) with the lowest-order term
in the expansion (5.4) determined by the Smith–Ricco–Wu dispersion relation (5.5),
which is only valid when [β

2
− (M2

∞
− 1)κ2

0 ]
1/2 satisfies (5.10). But inserting (5.19)

into [β
2
− (M2

∞
− 1)κ2

0 ]
1/2 shows that the real part of this quantity is less than zero,

which means that (5.10) is not satisfied and therefore that (5.5) is invalid. This shows
that there are no global solutions with obliqueness angles close to the critical angle
that extend (4.44) and (4.45) into the downstream region since these solutions would
exhibit unphysical exponential growth in the wall normal direction.

It is therefore necessary to increase the magnitude of the critical angle deviation 1θ
in the F/K solution (given in (4.22)) in order to construct a non-local solution that can
be extended downstream. This can be accomplished by putting ε/1θ =O (εr) where
r is required to lie in the range

0< r< 1 (5.22)

since (as explained above) we want the deviation 1θ of the obliqueness angle from
the critical angle to remain small in order to compare the result with the viscous triple-
deck solution. Inserting the rescaled variables

β = β/εr, κ0 = κ0/ε
r, x̂1 = x1ε

4r (5.23a−c)

into (5.5), using (4.31) and taking the limit as ε→ 0 with β, κ0 and x̂1 held fixed,
shows that the rescaled wavenumber κ0 satisfies the inviscid dispersion relation

κ0
2
+ β

2
=
λ[β

2
− (M2

∞
− 1)κ2

0]
1/2

κ0
√

2x̂1T2
w

, (5.24)
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when the square root [β
2
− (M2

∞
− 1)κ2

0]
1/2 is required to remain finite as ε→ 0. It

can then be shown by direct substitution that the solution κ0 behaves like

κ0→
β

(M2
∞
− 1)1/2

− β
5
α̂2

0 x̂1 as x̂1→ 0, (5.25)

where

α̂0 ≡
M2
∞

T2
w

(M2
∞
− 1)7/4λ

. (5.26)

The square root [β
2
− (M2

∞
− 1)κ2

0]
1/2 now satisfies the inequality (5.10) when x̂1→ 0

and (5.24) therefore remains valid in this limit.
The pressure component of the resulting solution (5.7) will then match onto the

downstream limit (4.33), (4.34) and (4.45) of the F/K diffraction region solution when
β =O(ε1−r/1θ) with 1/3 6 r< 1 and ˜̃x2 is given by (4.36a–c) since it follows from
(3.1), (5.2), (5.23) that

1
ε3

∫ x1

0
κ0(x1) dx1 =

1
ε3(r+1)

∫ x̂1

0
κ0(x̂1) dx̂1

→
α̃x
1θ
− εβ

5
α̂2

0x2/2=
α̃x
1θ
− β

5
α̂2

0(ε
3x)2/2=

α̃x
1θ
− α̂2

0
˜̃x

2

2/2. (5.27)

We can investigate the remaining range ε < O(1θ) < ε2/3 of 1θ by noting that
a different limiting form of (5.5) and (5.6) can be obtained when κ0 is allowed to
approach β/(M2

∞
− 1)1/2 as ε → 0. Inserting the first two of the rescaled variables

(5.23) into these equations and putting

κ0 =
β

(M2
∞
− 1)1/2

− ε6r
[â(x̆1)]

2, (5.28)

where
x̆1 ≡ x1/ε

2r, (5.29)

shows that the resulting rescaled equations will be satisfied to lowest order in ε if we
put

â(x̆1)≡
M2
∞
β

11/6

(M2
∞
− 1)5/4

(√
x̆1

λ

)5/3 (
iT7

w

µw

)1/3

∫
∞

ξ0

Ai(q) dq

Ai′(ξ0)
, (5.30)

where

ξ0 =−i1/3

[√
2(M2

∞
− 1)x̆1

βλ

]2/3 (
Tw

µw

)1/3

. (5.31)

The asymptotic behaviour of the upstream diffraction layer solution is given by (4.40),
(4.44) and (4.45) when 1θ <O(ε2/3). The resulting pressure component of the inviscid
triple-deck solution (5.7) will match onto these equations when κ0 is given by (5.28)–
(5.31) with β set equal to ε/1θ since

â→
M2
∞
β

11/6

(M2
∞
− 1)5/4

(√
x̆1

λ

)5/3 (
iT7

w

µw

)1/3

∫
∞

0
Ai(q) dq

Ai′(0)
as x̆1→ 0, (5.32)
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and it therefore follows that

1
ε3

∫ x1

0
κ0(x1) dx1 =

1
ε3+r

∫ x̆1

0
κ0(x̆1) dx̆1

→
xα̃
1θ
−

3α̃2
0

8
{x[ε6/(1θ)11/3

]
3/8
}

8/3
=

xα̃
1θ
−

3α̃2
0

8

(
1θ ˜̃x2

1ϕ

)8/3

, (5.33)

where α̃ is given by (4.6) and (4.7) and α̃0 is an O(1) constant. But it follows from

(5.28) that the square root [β
2
− (M2

∞
− 1)κ2

0]
1/2 does not satisfy (5.10) in this case,

which shows that a global solution does not exist when 1θ = o(ε2/3). The results of
this section therefore show that the small-1θ F/K solution (4.45) only matches onto
a physically realizable inviscid triple solution when ε2/3 6 O(1θ) < 1. This implies,
among other things, that the former solution can only be continued downstream when
the unsteady and convective terms both appear in the wall layer equations.

6. The next stage of evolution
It follows from (4.31), (5.5) and (5.6) that

β→
1

κ
1/3
0 T2

w

(
λ
√

2x1

)5/3 (√2x1

κ0λ

)2/3

=
λ

κ0T2
w

√
2x1

, (6.1)

when x1→∞ and, therefore, that

κ0→
λ

βT2
w

√
2x1

, (6.2)

when κ0 is allowed to approach zero when x1→∞, and that

κ0 =±iβ +
c
√

2x1
+ · · · , (6.3)

when it is not. Substituting this latter result into (5.5) shows that the constant c is
given by

c=−
λM∞
2βT2

w

. (6.4)

We exclude this latter case because it does not seem to match onto a non-trivial
solution downstream.

It is easy to show that the solution to the reduced dispersion relation (5.24) satisfies
the rescaled version

κ0→
λ

βT2
w

√
2x̂1

as x̂1→∞ (6.5)

of (6.2), which can be considered to be a special case of this result if we allow r to
lie in the half-closed interval 06 r< 1 instead of the open interval (5.22). (The subset
0< r< 1/3 will be of little interest since there are no global solutions in this range.)
The expansion (5.4) then generalizes to

κ(x1, ε)= κ0(x̂1)+ ε
1−rκ1(x̂1)+ ε

2(1−r)κ2(x̂1)+ · · · , (6.6)
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where
κ, κ1, κ2 . . .= κ/ε

r, κ1, κ2ε
r . . . (6.7)

and x̂1 is defined in (5.23).
Equation (6.5) implies that the streamwise wavenumber goes to zero as the

disturbance propagates downstream. Its growth rate approaches or is equal to zero
but does not become negative. The spanwise length scale remains constant at O(ε1−r),
but the boundary layer thickness continues to increase and the triple-deck scaling
breaks down when the boundary layer thickness, which is of O(ε3√x), becomes of
the order of the spanwise length scale. This occurs when

x1 = xε4+2r
=O(1), (6.8)

which is upstream of the location where the unsteady flow is governed by the full
Rayleigh equation considered in F/K. The instability wave becomes more oblique in
this limit and it follows from (5.4) and (5.23) that

exp
{

i
[

1
ε3

∫ x1

0
κ(x1, ε) dx1 + βz− t

]}
= exp

{
i

[
1

ε3(1+r)

∫ x̂1

0
κ0(x̂1, ε) dx̂1

+
1

ε2+4r

∫ x̂1

0
κ1(x̂1, ε) dx̂1 +

1
ε1+5r

∫ x̂1

0
κ2(x̂1, ε) dx̂1 +O(ε−4r)+ εrβz− t

]}

→ exp
{

i
[

1
ε4+2r

∫ x1

0
α(x1, ε) dx1 + βz− t

]}
as x̂1→∞, (6.9)

where α(x1) is an O(1) function of x1 (given by (6.8)) and

z≡ εrz=
z
ε1−r

, (6.10)

which means that the solution should be proportional to exp{i[ε−(4+2r)
∫ x1

0 α(x1, ε) dx1+

βz− t]}, where α(x1) is an O(1) function of x1 that behaves like

α→
λ

βT2
w

√
2x1

+ · · · as x1→ 0, (6.11)

in this next stage and should exhibit a double layer structure consisting of an
inviscid region whose thickness is of the order of the boundary layer thickness and
a completely passive viscous wall layer (i.e. a Stokes layer). The scaled variable

Y ≡
ε3y
√

2x1
(6.12)

will be O(1) in the latter region and the scaled variable

y≡
y
ε1−r

(6.13)

will be O(1) in the former region since the boundary layer thickness is now of the
order of the spanwise length scale, O(ε1−r). It therefore follows from (6.8) and (6.13)
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that the transverse pressure gradients are expected to come into play and the solution
in this region should expand like

{u, v,w, p} = {U, 0, 0, 0} + δ̂A(x1){u(y; x1), ε
1−rv(y; x1), ε

1−rw(y; x1), ε
2(1−r)p(y; x1)}

× exp
{

i
[
ε−(4+2r)

∫ x1

0
α(x1, ε) dx1 + βz− t

]}
+ · · · , (6.14)

where A(x1) is a function of the slow variable x1. Substituting this into the linearized
Navier–Stokes equations shows that

iα u+
∂v

∂y
+ iβw= iε2(1−r)M2

∞
(1− αU)p+O(ε4(1−r)), (6.15)

−i(1− αU)u+
dU
dy
v =−ε2(1−r)iαTp+O(ε4(1−r)), (6.16)

−i(1− αU)v =−T
∂p
∂y
, (6.17)

(1− αU)w= Tβp, (6.18)

since the density and temperature fluctuations can be eliminated between the energy
equation and continuity equations to obtain a single equation for the pressure
and velocity fluctuations at this order of approximation (Goldstein 1976, 2003).
Eliminating the velocity between (6.15)–(6.18) leads to the incompressible reduced
Rayleigh equation

(1− αU)2

T
d
dy

[
T

(1− αU)2
dp
dy

]
− β

2
p=O(ε2(1−r)) (6.19)

for a variable temperature mean flow. Equation (6.19) is a limiting form of the full
(compressible) reduced Rayleigh equation

(1− αU)2

T
d
dy

[
T

(1− αU)2
dp
dy

]
−

{
β

2
+ ε2(1−r)

[
α2
−

M2
∞
(1− αU)2

T

]}
p= 0. (6.20)

It is well known that the incompressible Rayleigh equation can also be expressed
in terms of the wall normal velocity v. In fact, substituting (6.17) into (6.20) and
differentiating with respect to y shows that

T
d
dy

{
(1− αU)2

T
d
dy

[
v

1− αU

]}
−

(
β

2
+ ε2α2

)
(1− αU)v

=−ε2(1−r)T
d
dy

[
M2
∞
(1− αU)2

T
p
]

(6.21)

and therefore that

T
d
dy

(
1
T

dv
dy

)
+

[
Tα

1− αU
d
dy

(
1
T

dU
dy

)
−

(
β

2
+ ε2(1−r)α2

)]
v

=−ε2(1−r) T
(1− αU)2

d
dy

[
M2
∞
(1− αU)2

T
p
]
, (6.22)
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whose solution must satisfy the following boundary conditions:

v ∼ e−βy for y→∞, (6.23)
v = 0 at y= 0. (6.24)

Matching with the upstream solution (5.1) and (5.4) requires that α(x1) satisfy the
matching condition (6.11) as x1→ 0.

Inserting (2.7), (2.11) and (6.13) into (6.22) and using (6.24) shows that

d
dη

(
1

T2

dv
dη

)
+

[
α

1− αU

(
U′

T2

)′
−

(
β
√

2x1

)2
]
v =O(ε2(1−r)), (6.25)

v = 0 at η= 0, (6.26)

which means that
α = f (β̂), (6.27)

where
β̂ ≡ β

√
2x1 (6.28)

clearly approaches zero when
x1→ 0, (6.29)

which means α that will be consistent with the matching condition (6.9) if we require
that it behave like

α = α0/β̂ + α1 + α2β̂ + · · · as x1→ 0, (6.30)

where α0 = λ/T2
w and α1, α2 . . . are (in general complex) constants such that

α1 = lim
x̂1→∞

κ1(x̂1) (6.31)

and

α2 = lim
x̂1→∞

κ1(x̂1)

β
√

2x̂1

. (6.32)

We therefore need to consider the expansion (6.30) in order to show that the solution
matches with the triple-deck solution. Substituting (6.30) into (6.25) shows that

d
dη

(
1

T2

dv
dη

)
−

1
U

(
U′

T2

)′ [
1−

β̂

Uα0
+
β̂2(1− α1U)(2− α1U)

(Uα0)2
+ · · ·

]
v − β̂2v = 0,

(6.33)
which suggests that v should expand like

v = v0 + β̂v1 + β̂
2v2 + · · · , (6.34)

when η = O(1). Inserting (6.34) into (6.33) and equating coefficients of like powers
of β̂ yields

d
dη

[
U2

T2

d
dη

(v0

U

)]
= 0, (6.35)
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d
dη

[
U2

T2

d
dη

(v1

U

)]
−

1
Uα0

(
U′

T2

)′
v0 = 0 (6.36)

and (6.24) implies that

v0 = v1 = 0 at η= 0. (6.37)

But (6.25) also shows that
d2v

dη̂2
− v = 0, (6.38)

when

η̂≡ ηβ̂ =O(1), (6.39)

which means that

v = e−η̂ = e−β̂η (6.40)

in this region. And, since expanding (6.40) for small η̂ shows that

v = 1− β̂η+ (β̂η)2/2+ · · · as η̂→ 0, (6.41)

matching the inner solution (6.34), (6.35) and (6.37) to this result implies that

v0 =U. (6.42)

Inserting (6.42) into (6.36) and integrating the result yields

v1 =−
1
α0
− c1U

[∫
∞

η

(
T2

U2
− 1
)

dη− η
]
+ ĉ1U, (6.43)

where c and ĉ1 are integration constants. Matching (6.43) with (6.41) and imposing
the boundary condition (6.37) shows that

c1 =−1, ĉ1 = 1/α0, α0 = λ/T2
w, (6.44a,b)

and it therefore follows from (6.30) and (6.32) that

α =
λ

T2
wβ
√

2x1

+ α1 + α2β̂ + · · · , (6.45)

which is consistent with the matching condition (6.11). Notice that (6.42) is consistent
with (5.7).

While α is initially real it can eventually become complex and thereby produce
exponential growth or decay because

(
U′/T2

)′ can equal zero at some finite value
of η and (6.25) can, therefore, have the equivalent of a generalized inflection point
there.
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7. Numerical procedures
The Newton–Raphson method was used to solve the dispersion relation (5.5). The

complex eigenvalue κ0 was first computed at small-x1 values, where quick numerical
convergence was achieved by using the asymptotic formula (5.15) as an initial guess
for the iterative procedure. The numerically computed κ0 values at the two previous
x1 locations were interpolated to construct the initial guess for the κ0 calculations at
larger x1 locations. The same procedure was used to solve (5.24). The Airy function
was computed with an in-house code based on the method developed by Gil, Segura
& Temme (2002).

An implicit second-order finite-difference scheme was used to solve the modified
Rayleigh boundary value problem (6.23), (6.25) and (6.26). The eigenvalue α was
computed by setting dv/dη|η=0 to an order-one constant and using the Newton–
Raphson method to iteratively update the computed value of α until |v(0)| was
smaller than 10−8, and the difference between the absolute values of two successively
computed values of α was also smaller than 10−8. The computation was first
performed at small β̂ values, where quick numerical convergence was achieved
by using the asymptotic formula (6.11) as an initial guess for the iterative procedure.
The numerically computed α values at the two smaller β̂ values were interpolated to
construct the initial guess for the α calculations at the larger β̂ values.

8. Results and discussion
This paper uses asymptotic analysis to compare the generation of oblique 1st

Mack mode instabilities by free-stream acoustic disturbances with those generated
by elongated vortical disturbances. The focus is on explaining the relevant physics
and not on obtaining accurate numerical predictions. The appropriate small expansion
parameter turns out to be ε=F 1/6, where F denotes the frequency parameter defined
in (2.14).

The free-stream vortical disturbances generate unsteady flows in the leading edge
region that produce short spanwise wavelength instabilities in a viscous triple-deck
region which lies at an O(ε−2) distance downstream. The mechanism is analogous to
the one considered by Goldstein (1983) in incompressible flows, but the instability
onset occurs much further upstream in the present supersonic case and is, therefore,
much more robust. The triple-deck instability does not possess an upper branch and
evolves into an inviscid 1st Mack mode instability with short spanwise wavelength at
an O(ε−4) distance downstream.

Slow free-stream acoustic waves whose obliqueness angles differ from the
critical angle θc by an O(1) amount generate slow boundary layer disturbances
over a relatively long region of length O(ε−3). And these latter disturbances
then produce O(1) spanwise wavelength inviscid 1st Mack mode instabilities at
a much larger O(ε−6) distance downstream. But the physical streamwise distance
x∗ = (U∗

∞
)3/[(ω∗)2ν∗

∞
] corresponding to this scaled downstream location is at least

equal to approximately 7 m for the typical supersonic flight conditions at M∞ = 3
(U∗
∞
= 888 m s−1, ν∗

∞
= 0.000264 m2 s−1) at an altitude of 20 km, with an upper

bound of 100 kHz for typical ‘low’ characteristic frequency. This means that this
instability occurs too far downstream to be any practical interest.

However, the present results show that the slow boundary layer disturbances are
generated over shorter streamwise length scales and produce (possibly unstable)
eigensolutions in a region that lies at an O(ε−(4+2r)) distance downstream when the
deviation 1θ of the acoustic wave obliqueness angle from its critical angle θc is
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FIGURE 2. Re(κ†
0 ) as a function of the scaled streamwise coordinate x†

1 calculated from
the dispersion relation (5.5) together with the Lam–Rott initial condition (5.15) for M∞=
2, 3, 4 (double dot-dashed, dot-dashed and solid lines, respectively) and three values of
the frequency-scaled transverse wavenumber β

†
> 2. In the main graph, the dashed curve

is the rescaled large-x†
1 asymptote (6.5).

reduced to O(ε1−r), with 1/3 6 r< 1. This region lies closer to the leading edge and
the latter eigensolutions are therefore more likely to be of practical interest than the
1θ =O(1) 1st Mack mode instabilities that appear in the F/K analysis. The relevant
flow structure is depicted in figure 1.

The dispersion relation (5.5), which determines the complex wavenumber of the
triple-deck instabilities, is expected to have at least one root corresponding to each
of the infinitely many roots of the Lam–Rott dispersion relation (3.19). But only the
lowest-order n = 0 root of (3.19) can produce the spatially growing modes of (5.5).
The wall temperature Tw and viscosity µw can be scaled out of this equation by
introducing the rescaled variables

κ
†
0 = κ0T1/2

w µ1/6
w , x†

1 = x1T2
w/µ

2/3
w , β

†
= βT1/2

w µ1/6
w . (8.1a−c)

Figures 2 and 3 are plots of the real and negative imaginary parts, respectively,
of the scaled wavenumber κ†

0 as a function of the scaled streamwise coordinate
x†

1 calculated from (5.5) together with the n = 0 Lam–Rott initial condition (5.15)
for M∞ = 2, 3, 4 and three values of the frequency-scaled transverse wavenumber
β

†
> 2. The dashed curves in the main plot of figure 2 show the re-scaled large-x†

1
asymptote (6.2). The insets are included to more clearly show the changes at
small x†

1. The dashed curves in the insets denote the real and imaginary parts
of the small-x†

1 asymptotic formula (5.15). The composite Lam–Rott triple-deck
eigensolution can undergo a significant amount of damping before it turns into a
spatially growing instability wave at the lower branch with the amount of damping
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FIGURE 3. −Im(κ†
0 ) as a function of the scaled streamwise coordinate x†

1 calculated from
the dispersion relation (5.5) together with the Lam–Rott initial condition (5.15) for M∞=
2, 3, 4 (double dot-dashed, dot-dashed and solid lines, respectively) and three values of
the frequency-scaled transverse wavenumber β

†
> 2.

determined by the upstream behaviour of the triple-deck solution (5.1) since this
solution actually contains the Lam–Rott solution as an upstream limit. Equation (5.1)
shows that the exponential damping factor is proportional to Im[

∫ xLB

0 κ(x1) dx] = ε−2

Im[
∫ (x1)LB

0 κ(x1) dx], where xLB denotes the streamwise location of the lower branch
of the neutral stability curve and (x1)LB denotes the scaled streamwise location of
that curve. In other words it is proportional to the area under the growth rate curve
in figure 3 between zero and the lower branch. The inset in figure 3 is particularly
relevant because it shows that the length 1x†

1 = 0.01 of this upstream region is very
short and therefore that the amount of damping is relatively small. The supersonic
leading edge receptivity mechanism is therefore expected to be much more relevant
than in the incompressible case considered by Goldstein (1983).

The rapid changes allow small changes in x†
1 to produce order-one changes in κ

†
0

which means that the asymptotic expansion will not be accurate in the region where
x†

1 ∈1x†
1 unless the small expansion parameter ε is much smaller than 1x†

1 (although
it is still likely to be accurate in the region where x†

1 =O(1)). This requirement will
probably not be satisfied at realistic values of ε and the full linearized Navier–Stokes
equations will then have to be used to obtain accurate results in this upstream region.
This was done by Wanderley & Corke (2001) for the incompressible case considered
by Goldstein (1983). Analogous calculations were carried out by Ricco & Wu (2007)
who solved the boundary region equations driven by highly oblique free-stream
disturbances and obtained exponentially growing (i.e. unstable) solutions which
exactly correspond to the large β limit of the triple-deck dispersion relation (5.5).
But the full linearized Navier–Stokes equations would have to be used in the present
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λ∗z =
2π

β∗
(m) x∗ (m) Rex =

U∗
∞

x∗

ν∗
∞

0.02 0.05 180 000
0.03 0.1 343 000
0.04 0.16 544 000
0.05 0.23 777 000

TABLE 1. Estimation of location of triple-deck viscous instability for flight conditions at
an altitude of 20 km.

case in order to account for the streamwise pressure gradients that enter into the
β =O(1) triple-deck solutions.

Since these results show that the complex wavenumber κ†
0 is nearly independent of

the Mach number for the Mach number range being considered here, the remaining
discussion of the triple-deck regime is restricted to the M∞ = 3 case.

Realistic values of the actual unscaled streamwise location of the triple-deck region
can be estimated by first selecting the characteristic scaled spanwise wavenumber
β

†
and taking x†

1 to be the streamwise coordinate of the downstream location of
maximum growth rate. It follows from figure 3 that typical values of β

†
and x†

1

are β
†
= 2 and x†

1 = 0.25, which satisfy the requirement, alluded to above, that
the scaled streamwise location x†

1 be significantly larger than the short streamwise
region of length 1x†

1 = 0.01 where the gradient of the growth rate is too large
for the asymptotic balance to be valid. By expressing β

†
and x†

1 in terms of
dimensional quantities, β

†
= 2π(U∗

∞
)2/3(ν∗

∞
)1/6T2/3

w /[λ∗z (ω
∗)2/3], and eliminating the

frequency ω∗, the dimensional (unscaled) downstream location can be estimated as
x∗ = x†

1(β
†
λ∗z )

8/5(U∗
∞
)3/5/[(2π)8/5(ν∗

∞
)3/5T12/5

w ]. The streamwise locations of the points
of maximum instability wave growth are given in table 1 for typical supersonic flight
conditions and realistic values of the spanwise wavelength λ∗z = 2π/β∗. We therefore
conclude that the triple-deck instability can play an important role in the boundary
layer transition process on actual supersonic aircraft wings.

Figure 4 is a plot of the real part of κ̂0 as a function of the frequency-scaled
transverse wavenumber β

†
for various values of the scaled streamwise coordinate

x†
1 calculated from the dispersion relation (5.5) together with the Lam–Rott initial

condition (5.15) for M∞ = 3. It shows that the results are well approximated by the
(appropriately rescaled) large-x1 asymptote (6.2) and therefore that this formula is
also the lowest-order term in the large-β

†
asymptotic expansion of κ̂0 at fixed x1 for

β
†
> 2.

Figure 5 is a plot of the complex wavenumber κ
†
0 for M∞ = 3 and various

values of β
†
< 5. The β

†
< 0.978 curves are discontinued at the value of x†

1
where Im(κ̂0) = 0 because the upper-deck solution, which is proportional to

exp
[
−y
√
β

2
− (M2

∞
− 1)κ2

0

]
, becomes unbounded at large y when the curves are

continued to larger x†
1 values. Similar behaviour was found to occur in rotating-disk

boundary layers (Healey 2006). The inset in figure 5 shows that the bifurcation
occurs at β

†
= 0.978 and x†

1 = 0.025. Figure 6 shows that this happens because the
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FIGURE 4. Re(κ†
0 ) as a function of the frequency-scaled transverse wavenumber β

†
for

three values of the scaled streamwise coordinate x†
1 calculated from the dispersion relation

(5.5) together with the Lam–Rott initial condition (5.15) for M∞ = 3. The dashed curve
is the rescaled large-x†

1 asymptote (6.5), which shows that this result is also valid when
β→∞ and x†

1 =O(1).

real part of the exponent
√
β

2
− (M2

∞
− 1)κ2

0 becomes negative when Im(κ†
0 ) becomes

negative if β
†
< 0.978 but remains positive if β

†
> 0.978, which means that the n= 0

Lam–Rott solution cannot be continued into the downstream region when M∞ = 3
and β

†
6 0.978 and a linear steady state (time periodic) global solution will not exist.

But the higher-order n> 0 modes shown in figure 7 exist for all x†
1 when β

†
> 0.978,

which means that there will be at least one global solution for all values of β
†
. The

lowest-order n= 0 modes have a positive growth rates for at least some values of x†
1

when β
†
> 0.978 and have negative or zero growth at all x†

1 values when β
†

is less
than this critical value 0.978. The higher-order n > 0 modes have negative growth
rates for all values of x†

1.
The dashed curves in figure 5 show the small-x†

1 asymptote (5.15) which is the
initial condition for the calculation. The dashed curves in figure 7 show the small-x†

1
asymptotes (5.15) for n> 0.

While the slow F/K solution constructed in § 4 can be matched onto a viscous triple-
deck solution when β ≡ ε/1θ =O(1), we have shown (after (5.21)) that this result is
unphysical because it does not remain bounded at large wall normal distances from
the plate. This means that a global triple-deck solution can only exist at larger 1θ ,
which corresponds to the scaling

β =
ε1−r

1θ
=O(1), (8.2)
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FIGURE 5. (a) Re(κ†
0 ), (b) scaled growth rate −Im(κ†

0 ) as a function of the scaled
streamwise coordinate x†

1 calculated from the dispersion relation (5.5) together with the
initial condition given by (5.15) with n = 0 for M∞ = 3 and various values of the
frequency-scaled transverse wavenumber β

†
< 5.

with 0 < r < 1. But § 5 shows that the resulting solution can only be matched onto
the slow F/K solution when 1/3 6 r < 1, which means that the F/K solution cannot
be continued into the downstream region when 06 r< 1/3. The minimum 1θ , which
is determined by β = ε2/3/1θ =O(1) in (8.2), corresponds to an upstream diffraction
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FIGURE 6. Constant β curves in
√
β

2
− (M2

∞
− 1)κ2

0 -plane for M∞ = 3.
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FIGURE 7. (a) Re(κ†
0 ), (b) scaled growth rate −Im(κ†

0 ) as a function of the scaled
streamwise coordinate x†

1 calculated from the dispersion relation (5.5) with the initial
condition given by (5.15) with n> 0 for M∞ = 3 and β

†
0 = 0.6.

region solution that matches onto an inviscid triple-deck solution in the downstream
region where x̂1 = x1ε

4/3
= O(1), which is still further downstream than the viscous

triple-deck region where x1 =O(1) but upstream of the full Rayleigh equation region
where the 1θ =O(1) solution becomes unstable.
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FIGURE 8. Scaled wavenumber κ0/β = κ0/β as a function of the scaled streamwise
coordinate (βTw)

4x̂1/λ
2
= (βTw)

4x1/λ
2 for various values of the free-stream Mach number

M∞. The solid lines represent the numerical solution while the dashed lines represent the
asymptotic solution (5.25).

Figure 8 is a plot of the scaled wavenumber κ0/β= κ0/β as a function of the scaled
streamwise coordinate (βTw)

4x̂1/λ
2
= (βTw)

4x1/λ
2 for various values of the free-stream

Mach number M∞ calculated from the inviscid triple-deck dispersion relation (5.24)
together with the F/K asymptotic initial condition (5.25) which is shown by the dashed
curves in the figure. The wavenumber is now completely real and the disturbance
growth rates are therefore zero. This means that these F/K disturbances are potentially
much less significant than the Lam–Rott instabilities which occur upstream and can
exhibit significant streamwise growth.

The non-local Lam–Rott instabilities are low frequency disturbances that occur
when the scaled frequency parameter β

−1
is less than the critical value 1/0.4925

for M∞ = 3 and the non-local F/K instabilities are high frequency disturbances that
occur when β

−1
= ε−r, 1/3 6 r < 1. Since ε1/3 could easily be equal to 0.4925

numerically and since the leading edge shock wave can convert acoustic disturbances
into convected disturbances, this may explain the results plotted in figure 13 of
Fedorov (2003) which show that the F/K solution significantly underpredicts the
experimental data of Maslov et al. (2001) in the vicinity of the critical angle.

We have also shown that the solutions in the (viscous or inviscid) triple-deck
regions eventually evolve into a Rayleigh equation phase whose eigenvalues α

are determined by the boundary value problem (6.23), (6.25) and (6.26) and must
therefore occur in complex conjugate pairs since the coefficients in (6.25) are all real.
These equations suggest that α will depend on the single parameter β̂, but it will,
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FIGURE 9. Re(ᾱ) versus β̂ calculated from the modified Rayleigh equation eigenvalue
problem. The dashed curves are calculated from the asymptotic formula (6.11).

in reality, also be Mach number dependent since (2.8)–(2.11) show that the mean
streamwise velocity U = F′(η) and mean temperature distribution T(η) exhibit this
dependence. The eigenvalues that satisfy this non-local problem must also satisfy the
initial conditions (6.30)–(6.32). We assume in the following that the Prandtl number
Pr is equal to unity and that the viscosity µ(T) satisfies the simple linear relation
µ(T)= T(η).

Figures 9 and 10 are plots of the real and imaginary parts respectively of these
eigenvalues as a function of β̂. They clearly show that Im(α) undergoes very rapid
changes at small values of β̂. But, as in the triple-deck case, these changes again allow
small changes in β̂, say 1β̂ = 0.05, to produce order-one changes in α which means
that the asymptotic solution may not be accurate in the region where β̂ ∈1β̂. It may
even lead to unphysical results unless the expansion parameter is much smaller than
1β̂, although, analogously to the triple-deck solution, it should still be accurate in the
region where β̂ = O(1) and the results should still be qualitatively correct for all β̂.
It is again unlikely that this restriction on ε will be satisfied for realistic values of
epsilon and the full linearized Navier–Stokes equations may again have to be used to
obtain accurate solutions in this region.

Figures 9 and 10 also show that the numerical solution for α is consistent with the
initial conditions (6.11) and (6.32) provided that Im(α1)= Im[limx̂1→∞ κ1(x̂1)] = 0 and
α2= limx̂1→∞ κ2(x̂1)/β

√
2x̂1=±iC, where the values of C are given in the caption of

figure 10.
The last of these three conditions would determine the sign of Im(α) and

therefore whether the Rayleigh instability will grow or decay, if the solution for
the second-order term in the triple-deck expansion (5.4) was known. We do not
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FIGURE 10. |Im(ᾱ)| versus β̂ calculated from the modified Rayleigh solution. The dashed
lines in the inset are |Im(ᾱ)|=Cβ̂, where the following values for the scale factor C were
obtained by optimizing the fit to the computations: C = 36 for M∞ = 2, C = 129.4 for
M∞ = 3 and C= 340.1 for M∞ = 4.

pursue this further since κ2(x̂1) is determined by a very complicated higher-order
triple-deck problem. But (6.8) and (6.28) show that actual streamwise length of
the region where |Im(α)| > 0 increases as r → 1 (i.e. the flow will become more
unstable when Im(α)< 0) and setting β equal to ε/1θ in (5.23) suggests that present
solution will merge into the 1θ =O(1) solution constructed by Fedorov (2003) when
r approaches this limit, which tends to support the positive growth option for the F/K
result since the Fedorov solution is known to produce spatially growing instabilities.
But the Lam–Rott instability may exhibit negative growth at large values of β since
the Ricco & Wu (2007) boundary region equation solutions suggest that its amplitude
exhibits a single peak as it increases from zero and eventually decays back to zero
at large streamwise distances (refer to their figure 10). But the present results allow
us to compare the F/K and Lam–Rott transition mechanisms even when this issue
remains unresolved. The comparison is most meaningful with β rather than β held
fixed. Equations (5.1) and (5.2) show that the maximum scaled growth rate of the
Lam–Rott instability is O(ε−1) and occurs at x= O(ε−2) while (6.8) and (6.14) now
show that the maximum scaled growth rate of the F/K instability can only be O(1)
and must occur further downstream at x=O(ε−(4+2r)) for 1/3 6 r< 1.

The computations show that the growth rates go to zero when β̂ = 0.477 and that
no solutions, other than the trivial solution

{u, v,w, p} = {0, 0, 0, 0}, (8.3)

exist beyond this point, which might suggest that there are no global solutions to the
receptivity problem. But (6.25) has a critical layer at the point where U(η)=α−1 when
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α is real. The Rayleigh equation solution will be regular (i.e. analytic) there since this
point coincides with the generalized inflection point where (U′/T2)′ = 0. But viscous
effects must be taken into account within a thin critical layer surrounding this point
before continuing the solution into the downstream region because the streamwise and
spanwise velocity perturbations still become singular there.

The viscous effects actually come into play in a thin critical layer at the point,
say xc, where Im(α) = O(ε4/3) which lies slightly upstream of the neutral stability
point xn.s.. The difference between the corresponding scaled streamwise coordinates,
say x1c − xn.s., will also be O(ε4/3) at this point, but its actual location can otherwise
be arbitrarily specified. The critical layer flow can only be balanced by allowing the
unsteady flow to evolve on the relatively fast streamwise length scale

x1 ≡ ε
4/3(x− xc), (8.4)

which can be done by changing the amplitude function in (6.14) and using (6.16) to
show that the streamwise velocity outside of the critical layer should expand like

u = U(η)+ δ̂
{

A(x1)v(η; x1c)U′(η)
iT(η)
√

2x1c[1− αcU(η)]
+ ε4/3u1(η, x1)+ · · ·

}
× exp

{
i
[

1
ε4+2r

∫ x1

0
α(x1, ε) dx1 + β z− t

]}
, (8.5)

where x1c denotes the scaled streamwise coordinate x1 at the location of the critical
point

αc = αR + iε4/3κ ≡ α(x1c) (8.6)

and v(η; x1) denotes the solution to the Rayleigh equation (6.25) described in § 6. The
second-order solution can be determined from (6.15)–(6.18) with α replaced by the
operator αc+ ε

4/3∂/∂x1 but the O(ε2(1−r)) terms have to be included when 1/36 r6 1,
which is the range of r-values associated with the F/K solutions.

Since (6.8) and (8.4) show that x1≡ ε
4/3(x1− x1c)/ε

4+2r and since x1c− x1n.s. must be
O(ε4/3) the relatively short streamwise distance x1 can be as large as ε−(2r+4/3) and still
lie in the upstream region where the Rayleigh problem can be solved, which means
that the limit x1→∞ will also lie in this region in a strict asymptotic sense. The outer
solution (8.5) will therefore still exist and be compatible with the trivial solution (8.3)
if the, as yet undetermined, amplitude function A(x1) goes to zero as x1→∞. But
it now has a singularity at the critical point which must be eliminated by accounting
for viscous effects.

Balancing the viscous and convective terms shows that the streamwise velocity
within the critical layer should expand like

u = Uc + δ̂{ε
−4/3u0(η, x1)+ u1(η, x1)+ · · ·}

× exp
{

i
[

1
ε4+2r

∫ x1

0
α(x1, ε) dx1 + β z− t

]}
, (8.7)

where the lowest-order scaled dependent variable u0 is determined by

i(αRU′cη+ iUcκ)u0 +Uc
∂u0

∂x1
+A(x1)

v(ηc, x1c)

Tc
√

2x1c
U′c =

1
T2

c 2x1c

∂2u0

∂η2 , (8.8)
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where ηc denotes the transverse location of the critical layer,

Uc ≡U(ηc)= αR
−1, (8.9)

Tc and U′c denote the mean temperature and mean velocity derivative at that level and

η≡
η− ηc

ε4/3
. (8.10)

The solution to (8.8) is given by

u0 =−
v(ηc, x1c)U′c
UcTc
√

2x1c

∫ x1

−∞

A(x̂)Γ̂ (x1 − x̂) dx̂, (8.11)

where

Γ̂ (x̂)≡ exp

{
−

[
ix̃
Uc
(αRU′cη+ iUcκ)+

(
x̃

Uc

)3
(αRU′c)

2

6T2
c x1c

]}
. (8.12)

Integrating by parts shows that

u0→−
v(ηc, x1c)U′cA(x̂)

i(αRU′cη+ iUcκ)Tc
√

2x1c
as η→±∞ (8.13)

and, therefore, that (8.11) matches with (8.7).
The slowly varying amplitude A(x1) is determined by requiring that the change

in the second-order outer streamwise velocity u1(η, x1; x1c) balance the change in
the second-order inner streamwise velocity u1(y, x1) across the critical layer. We will
not go through the details here but the results are expected to show that A(x1)→
0 as x1 →∞ which, as noted above, implies that the instability wave will vanish
on the relative fast streamwise length scale x1 and is therefore compatible with the
non-existence of a non-trivial Rayleigh equation solution downstream of the neutral
point.

The dimensional streamwise location of the neutral stability point (which lies well
outside the small region 1β̂ where the complex wavenumber α undergoes rapid
change and the modified Rayleigh equation is therefore expected to accurately predict
the unsteady flow at this location) is given by x∗ = β̂2U∗

∞
(λ∗z )

2/(8π2ν∗
∞
), where

λ∗z = 2π/β∗ is the spanwise wavelength. We can estimate the downstream distance to
this point under typical supersonic flight conditions for the case where M∞= 3 as we
did for the 1θ =O(1) F/K Rayleigh instability and for the triple-deck instability. The
results, which are given in table 2, show that these distances are probably too large
to be relevant to the transition process on actual aircraft wings and we therefore do
not further pursue the critical layer analysis.

Figure 11 is a plot of the Rayleigh solution wall normal velocity profiles as
a function of the transverse Blasius coordinate η defined by (2.7) for small and
intermediate values of β̂. The dashed curves denote the one-term uniformly valid
composite solution v = e−β̂η + U − 1 + · · · , constructed from (6.40)–(6.42). The
numerical results are in excellent agreement with the asymptotic results when β̂� 1.

The Rayleigh equation (6.25) develops a critical layer when α becomes real, which
occurs when β̂→ 0. It follows from the expansion (6.30) that the critical layer moves
toward the wall and lies at η = β̂(Tw/λ)

2 when β̂→ 0. It eventually moves into the
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FIGURE 11. Wall normal velocity profiles of the real parts of the Rayleigh solution as
a function of the transverse Blasius coordinate η for M∞ = 3. (a) For small values of β̂
(dashed curves denote uniformly valid composite solution constructed from (6.40)–(6.42).
(b) For intermediate values of β̂.

λ∗z =
2π

β∗
(m) x∗ (m) Rex =

U∗
∞

x∗

ν∗
∞

0.02 3.98 2 300 000
0.03 8.53 5 150 000
0.04 15.36 9 170 000
0.05 24.49 14 000 000

TABLE 2. Estimation of modified Rayleigh neutral point location for flight conditions at
M∞ = 3 (U∗

∞
= 888 m s−1, ν∗

∞
= 0.000264 m2 s−1) at an altitude of 20 km.

viscous wall layer when x1 =O(ε2+r). This corresponds to x̂1 =O(ε3r)6 O(1) which
will lie well within the triple-deck region for realistic values of ε.

The present study can also be extended to two-dimensional mean flow boundary
layers on slightly curved surfaces. And while the analysis is probably not relevant
for the boundary layers on highly swept wings such as the ones on current subsonic
transports, it is expected to be very relevant to boundary layer transition on the nearly
straight wing on aircraft such as the low-sweep Aerion AS2 supersonic Bizjet, shown
in figure 12 – especially for wind tunnel testing, where strong acoustic disturbances
are generated on the wind tunnel walls.

The analysis is also easily extended to supersonic wedge flows. It would directly
apply to the flow behind the leading edge shock if the free-stream disturbance
downstream of the shock rather than the disturbance field upstream of the shock were
taken as input. But the shock wave will now couple the acoustic and vortical (as well
as the entropic) free-stream disturbances and the downstream boundary layer can even
produce reflected acoustic disturbance, which, as shown by the theoretical analyses
of Duck, Lasseigne & Hussaini (1997) and Cowley & Hall (1990), will not play a
significant role in the moderate supersonic Mach number regime being considered in
this paper. The simultaneous consideration of the acoustic and vortical free-stream
disturbances is however essential in this case. And finally it should be noted that
the F/K disturbances are expected to become more significant than the Lam–Rott
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FIGURE 12. Low-sweep Aerion AS2 supersonic Bizjet. Posted by Tim Brown on the
manufacturer Newsletter.

disturbances at sufficiently high free-stream Mach numbers (say, M∞ > 4) and/or
sufficiently cold walls (for which Tw is smaller than the adiabatic wall temperature),
where the growth rate of the second Mack mode becomes larger than that of the
oblique first mode. In fact, the main purpose of the F/K analysis was to deal with
such hypersonic cases.

9. Concluding remarks

High Reynolds number asymptotics was used to study the non-local behaviour of
boundary layer instabilities generated by small amplitude free-stream disturbances at
moderate supersonic Mach numbers. The vortical disturbances produce an unsteady
boundary flow that develops into oblique instability waves with a viscous triple-deck
structure in the downstream region where the frequency-scaled streamwise coordinate
x is O(ε−2). The analysis is analogous to the leading edge receptivity analysis carried
by Goldstein (1983) in the incompressible limit, but the present results are expected
to be much more robust because the instability waves now undergo very little decay
before they begin to grow. F/K analysed the generation of inviscid instabilities in
supersonic boundary layers by fast and slow acoustic disturbances in the free stream.
They considered the case where the deviation 1θ ≡ θc − θ of the obliqueness angle
from its critical value is O(1) and showed that downstream propagating slow acoustic
disturbances with 1θ > 0 generate unsteady boundary layer disturbances that match
onto the inviscid 1st Mack instability mode when the frequency-scaled distance x
is O(ε−6) = O(F−1) which is much further downstream than the region where the
viscous triple-deck instability emerges from the vortically generated unsteady boundary
layer flow. But, as shown in § 8, this instability emerges too far downstream to be
of interest when scaled up to actual flight conditions for the small incidence angle
disturbances considered in this paper. However, the inviscid instability, which first
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appears at an O(ε−(4+2r)) distance downstream when 1θ is reduced to O(ε1−r) with
1/3 6 r < 1, can be of considerable importance when scaled to flight conditions.
It is therefore appropriate to compare the vortically generated instabilities with
the instabilities generated by oblique acoustic disturbances with obliqueness angles
in this range as is done in this paper. These acoustic disturbances generate slow
boundary layer disturbances which eventually develop into oblique stable disturbances
with inviscid triple-deck structure in a region that lies downstream of the viscous
triple-deck region. The acoustically generated oblique F/K disturbances are therefore
likely to be insignificant compared to the vortically generated Lam–Rott instabilities.
The paper shows that both of these instabilities eventually develop into modified
Rayleigh-type instabilities (which can either grow or decay) further downstream.

The global Lam–Rott instabilities are low frequency disturbances that occur when
the scaled frequency parameter 1/β

†
is less than the critical value 1/0.978 and the

global F/K instabilities are high frequency disturbances that occur when 1/β = 1/εr,
1/3 6 r < 1. Since ε1/3 could easily be equal to 0.978 numerically and since the
leading edge shock wave can convert acoustic disturbance into convected disturbances,
this may explain the results given in Fedorov (2003) which show that the F/K solution
significantly underpredicts the experimental data of Maslov et al. (2001) in the vicinity
of the critical angle.
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Appendix A. Rescaling of F/K solution for 1θ� 1

Inserting
˜̃x2 ≡

x2

(1θ)a(1ϕ)a1
=O(1) (A 1)

and
˜̃y2 ≡

y2

(1θ)b(1ϕ)b1
=O(1), k̃≡ k1ϕ (A 2a,b)

into (4.12)–(4.15) yields

1
(1θ)2b(1ϕ)2b1

∂2p2

∂ ˜̃y
2

2

=
2iα̃(M2

∞
− 1)

(1ϕ)a1(1θ)a+1

∂p2

∂ ˜̃x2

, (A 3)

1
(1ϕ)b1(1θ)b−1

∂p2

∂ ˜̃y2

=−iα̃v1(∞), p2 = p1(x2) at y2 = 0, (A 4)

v1(∞)=
iα̃k̃(1θ)a/2(1ϕ)a1/2

1ϕ1θ cos2 θ


√

2 ˜̃x2

α̃λ

2/3 √
˜̃x2p2. (A 5)
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These equations will therefore remain unchanged if we put

2b= a+ 1, 2b1 = a1, b1 = 1− a1/2, b− 1= 1− a/2 (A 6a−d)

and it follows that

a= 3
2 , b= 5

4 , b1 =
1
2 , a1 = 1 (A 7a−d)

and therefore that ˜̃x2 and ˜̃y2 are given by (4.28).

Appendix B. Solution for the 1θ =O(ε2/3) viscous wall layer

The solution in the main boundary layer is given by (4.22) and (4.26). The solution
in wall layer where

η̃≡
η

1ϕ
=

y

ε31ϕTw

√
2x
=

y

Twε15/8(1θ)27/16

√
2 ˜̃x2

=O(1), (B 1)

Y ≡
y

ε3[1θ/ε2/3]27/16
(B 2)

expands like

{u, v,w, p} =
1θλη

Tw

√
2 ˜̃x2

+
δ̂

1θ

{
U( ˜̃x2, η̃),

[
ε3

(1θ)1/2

]7/8

V( ˜̃x2, η̃),W( ˜̃x2, η̃),

1θp1( ˜̃x2)

}
ei(αx+βz−t). (B 3)

Inserting (B 3) along with (4.19) into the Navier–Stokes equations shows that U( ˜̃x2, η̃),
V( ˜̃x2, η̃), W( ˜̃x2, η̃) satisfy

iα̃U +
∂V
∂Y
+ iβ̃W = 0, (B 4)

−i

1− α̃
λY

Tw

√
2 ˜̃x2

U +
λ

Tw

√
2 ˜̃x2

V =−iαTwp1 +µwTw
∂2U
∂Y2

, (B 5)

−i

1− α̃
λY

Tw

√
2 ˜̃x2

W =−iβ̃Twp1 +µwTw
∂2W
∂Y2

, (B 6)

subject to the boundary conditions

U→−
λA
Tw
+

T2
w

√
2 ˜̃x2β̃

2p1

α̃2λY
, W→−

β̃p1T2
w

√
2 ˜̃x2

α̃λY
as Y→∞, (B 7a,b)

U(0), V(0),W(0)= 0, (B 8)
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which upon introducing the variable

ξ ≡ ξ0 + ξ, (B 9)

where

ξ ≡ Y

 iλα̃Tw

µw

√
2 ˜̃x2

1/3

(B 10)

and

ξ0 =−i1/3


√

2 ˜̃x2

α̃λ

2/3 (
Tw

µw

)1/3

, (B 11)

becomes

ξW = β̃Twξ0p1 +
∂2W
∂ξ 2

, (B 12)

ξ
∂U
∂ξ
=
β̃

α̃
W +

∂3U
∂ξ 3

, (B 13)

U = 0, W = 0,
∂2U
∂ξ 2
=−α̃Twξ0p1 at ξ = ξ0. (B 14a−c)

The solution to this problem, which is now pretty standard, is

W =−πβ̃Twξ0p1Gi(ξ0)

[
Ai(ξ)
Ai(ξ0)

−
Gi(ξ)
Gi(ξ0)

]
, (B 15)

U =
πβ̃2Twξ0p1

α̃
Gi(ξ0)

[
Ai(ξ)
Ai(ξ0)

−
Gi(ξ)
Gi(ξ0)

]
− p1Tw

(α̃2
+ β̃2)ξ0

α̃Ai′(ξ0)

∫ ξ

ξ0

Ai(q) dq, (B 16)

where Ai and Gi denote the Airy function and Airy function integral defined in
Abramowitz & Stegun (1964, pp. 446 and 448).

Matching with (4.22) and (4.23) shows that

Ãλ= p1T2
w
(α̃2
+ β̃2)ξ0

α̃Ai′(ξ0)

∫
∞

ξ0

Ai(ξ) dξ (B 17)

and, therefore, that the wall normal velocity v( ˜̃x2, ∞) ≡ limη→∞ v1( ˜̃x2, η) is given
by (4.29).

Appendix C. Asymptotic solution to the diffraction region problem

Since the dominant contribution to the sum

ln an =

n∑
j=1

ln
Γ (4j/3+ 1/2)
Γ (4j/3+ 1)

(C 1)
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(obtained by taking the logarithm of (4.43)) comes from the terms with j > j0 where
16 j0 6 n when n� 1, it follows from Abramowitz & Stegun (1964, equation (6.1.40))
that

ln an ∼

n∑
j=j0

ln
Γ (4j/3+ 1/2)
Γ (4j/3+ 1)

∼−
1
2

n∑
j=j0

ln
(

4j
3

)
∼−

1
2

∫ n

j0

ln
(

4η
3

)
dη

∼ −
n
2

[
ln
(

4n
3

)
− 1
]

(C 2)

and, therefore, that

an ∼ A
(

3e
4n

)n/2

, (C 3)

where A is a constant. Then since the main contribution to the series (4.41)
comes from its infinite tail when Z →∞, it follows that (Bender & Orszag 1999,
pp. 376–379)

p1 =

∞∑
n=0

anZn
∼

A
(2π)1/4

∞∑
n=N

(e1/2Z)n

(4n/3)n/2
∼

A
(2π)1/4

∫
∞

T

(
Z

√
3e
4t

)t

dt

∼
3AZ2

4(2π)1/4

∫
∞

4T/3Z2

( e
τ

)3τZ2/8
dτ ∼

3AZ2

4(2π)1/4

∫
∞

0
e−(3τZ2/8)(ln τ−1) dτ . (C 4)

Then since the dominant contribution to this integral comes from the saddle point at
ln τ = 0, applying the method of steepest descent shows that p1 behaves like

p1 ∼
3A

4(2π)1/4

√
4π

Z2
Z2e3Z2/8

=
3AZ

2

(π

2

)1/4
e3Z2/8. (C 5)

Appendix D. Comparison with Ricco–Wu (2007) solution

Ricco & Wu (2007) show that∫
∞

ξ0

Ai(q) dq= (iα)−1/3

[
F′′(0)
√

2x̃1

]5/3 (
µw

T7
w

)1/3
[1− (M2

∞
− 1)(α1ŝ)2]1/2

1+ (α1ŝ)2
Ai′(ξ0), (D 1)

x̃1 =
k3x
k1

√
k1

R∆
, ξ0 =−i1/3

[ √
2x̃1

α1F′′(0)

]2/3 (
Tw

µw

)1/3

(D 2a,b)

and

ŝ≡
k5/4

1 R1/4
∆

k3/2
3

, k1 ≡
ω∗∆∗

U∗
∞

, (D 3a,b)

where ∆∗ denotes their spanwise scale factor, k3 denotes a scaled spanwise
wavenumber and it follows from (2.13) and (2.14) that

R∆ ≡
U∗
∞
∆∗

ν∗
∞

→
k1

ε6
. (D 4)
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Comparing (D 2)–(D 4) with (3.6), (4.6), and (5.12) of Ricco & Wu (2007) shows that

k3

k1
→
β

ε
, α1→

√
βκ0. (D 5a,b)

And it therefore follows that

ŝα1→
κ0

β
, x̃1→ βx1. (D 6a,b)

REFERENCES

ABRAMOWITZ, M. & STEGUN, I. A. 1964 Handbook of Mathematical Functions, Nat. Bureau Stand.
Appl. Math. Ser., vol. 55. National Bureau of Standards, US Department of Commerce.

BENDER, M. & ORSZAG, S. A. 1999 Advanced Mathematical Methods for Scientists and Engineers:
Asymptotic Methods and Perturbation Theory. Springer.

COWLEY, S. J. & HALL, P. 1990 On the instability of hypersonic flow past a wedge. J. Fluid Mech.
214, 17–42.

DUCK, P. W., LASSEIGNE, D. G. & HUSSAINI, M. Y. 1997 The effect of three-dimensional freestream
disturbances on the supersonic flow past a wedge. Phys. Fluids 9 (2), 456–467.

FEDOROV, A. V. 2003 Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid
Mech. 491, 101–129.

FEDOROV, A. V. & KHOKHLOV, A. P. 1991 Excitation of unstable modes in a supersonic boundary
layer by acoustic waves. Fluid Dyn. 26 (4), 531–537.

GIL, A., SEGURA, J. & TEMME, N. M. 2002 Computing complex Airy functions by numerical
quadrature. Numer. Algorithms 30 (1), 11–23.

GLAUERT, M. B. 1956 The laminar boundary layer on oscillating plates and cylinders. J. Fluid
Mech. 1, 97–110.

GOLDSTEIN, M. E. 1976 Aeroacoustics. McGraw-Hill.
GOLDSTEIN, M. E. 1983 The evolution of Tollmien–Schlichting waves near a leading edge. J. Fluid

Mech. 127, 59–81.
GOLDSTEIN, M. E. 2003 A generalized acoustic analogy. J. Fluid Mech. 488, 315–333.
GOLDSTEIN, M. E., SOCKOL, P. M. & SANZ, J. 1983 The evolution of Tollmien–Schlichting waves

near a leading edge. Part 2. Numerical determination of amplitudes. J. Fluid Mech. 129,
443–453.

GULYAEV, A. N., KOZLOV, V. E., KUZENETSOV, V. R., MINEEV, B. I. & SEKUNDOV, A. N. 1989
Interaction of a laminar boundary layer with external turbulence. Fluid Dyn. 24 (5), 700–710
(translated from Izv. Akad. Navk. SSSR Mekh. Zhid. Gaza 6 5, 55–65).

HEALEY, J. J. 2006 A new convective instability of the rotating-disk boundary layer with growth
normal to the disk. J. Fluid Mech. 560, 279–310.

KOVASZNAY, L. S. G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20 (10), 657–682.
LAM, S. H. & ROTT, N. 1960 Theory of Linearized Time-Dependent Boundary Layers. Cornell

University Graduate School of Aeronautical Engineering Report AFOSR TN-60-1100.
MACK, L. M. 1984 Boundary-layer linear stability theory. Special Course on Stability and Transition

of Laminar flow. AGARD Rep. 709. pp. 1–81.
MASLOV, A. A., SHIPLYUK, A. N., SIDORENKO, A. A. & ARNAL, D. 2001 Leading-edge receptivity

of a hypersonic boundary layer on a flat plate. J. Fluid Mech. 426, 73–94.
PRANDTL, L. 1938 Zur Berechnung der Grenzschichten. Z. Angew. Math. Mech. J. Appl. Math.

Mech. 18 (1), 77–82.
RESHOTKO, E. 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8 (1), 311–349.
RICCO, P. & WU, X. 2007 Response of a compressible laminar boundary layer to free-stream vortical

disturbances. J. Fluid Mech. 587, 97–138.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.889


Leading edge receptivity at supersonic Mach numbers 477

SMITH, F. T. 1989 On the first-mode instability in subsonic, supersonic or hypersonic boundary
layers. J. Fluid Mech. 198, 127–153.

STEWARTSON, K. 1964 The Theory of Laminar Boundary Layers in Compressible Fluids. Clarendon
Press.

WANDERLEY, J. B. V. & CORKE, T. C. 2001 Boundary layer receptivity to free-stream sound on
elliptic leading edges of flat plates. J. Fluid Mech. 429, 1–21.

WU, X. 1999 Generation of Tollmien–Schlichting waves by convecting gusts interacting with sound.
J. Fluid Mech. 397, 285–316.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.889

	Non-localized boundary layer instabilities resulting from leading edge receptivity at moderate supersonic Mach numbers
	Introduction
	Formulation
	Boundary layer disturbances generated by free-stream vorticity
	Leading edge region
	Asymptotic eigensolutions

	Boundary layer disturbances generated by the Fedorov/Khokhlov mechanism for obliqueness angles close to critical angle
	The triple-deck region
	Matching with the Lam–Rott solution
	Matching with the small-Δθ Fedorov/Khokhlov solution

	The next stage of evolution
	Numerical procedures
	Results and discussion
	Concluding remarks
	Acknowledgements
	Appendix A. Rescaling of F/K solution for Δθ1
	Appendix B. Solution for the Δθ= O(ε2/3) viscous wall layer
	Appendix C. Asymptotic solution to the diffraction region problem
	Appendix D. Comparison with Ricco–Wu (2007) solution
	References


