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Abstract. We improve a recent construction of Andrés Navas to produce the first examples
of C2-undistorted diffeomorphisms of the interval that are C1+α-distorted (for every
α < 1). We do this via explicit computations due to the failure of an extension to class
C1+α of a classical lemma related to the work of Nancy Kopell.
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1. Introduction
We start by recalling the terminology introduced by Gromov [6]. Given a finitely generated
group �, we fix a finite system of generators, and we denote ‖ · ‖ the corresponding word
length. An element f ∈ � is said to be distorted if

lim
n→∞

‖f n‖
n

= 0.

(Notice that this condition does not depend on the choice of the finite generating system.)
Given an arbitrary group G, an element f ∈ G is said to be distorted if there exists a finitely
generated subgroup � ⊂ G containing f so that f is distorted in � in the sense above.

Examples of ‘large’ groups for which this notion becomes interesting are groups of
diffeomorphisms of compact manifolds M. Very little is known about distorted elements
therein. In particular, the following question from [14] is widely open: Given r < s, does
there exist an undistorted element f ∈ Diffs+(M) that is distorted when considered as an
element of Diffr+(M)? In [14], Andrés Navas proves that this is the case for M the closed
interval, r = 1 and s = 2. Actually, undistortion holds in the larger group Diff1+bv+ ([0, 1])
of C1 diffeomorphisms with derivative of bounded variation.
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In this Note, we give an extension of this result from C1 to C1+α regularity.

THEOREM 1.1. There exist C∞ diffeomorphisms of [0, 1] that are distorted in
Diff1+α+ ([0, 1]) for all α ∈ (0, 1) yet undistorted in Diff1+bv+ ([0, 1]).

The groups we consider are variations of those introduced in [14]. One of the new
contributions consists in improving the regularity of some elements, which is not at all
straightforward. Indeed, the construction of [14] uses a well-known lemma that ensures
C1 regularity of maps built by pasting together infinitely many diffeomorphisms that
are defined on disjoint intervals and satisfy certain equivariance relations. This idea
comes from the thesis of Kopell [9], and has been systematically used in the study of
codimension-1 foliations [4] and centralizers of diffeomorphisms [1]. Nevertheless, such
a lemma is unavailable in C1+α regularity and, as we show in the Appendix, it cannot
hold without imposing extra hypotheses. Hence we are forced to go into more explicit
constructions and very long computations, which are however interesting by themselves.
To do this, we use a classical technique of Dennis Pixton (later extended by Tsuboi [17])
to produce commuting diffeomorphisms and control their C1+α norms.

To close this Introduction, let us point out that our main result is a step forward in
the understanding of the large-scale structure of the groups Diffs+([0, 1]) with respect to
the regularity parameter s [16]. This may be compared with a recent result of Kim and
Koberda [7] (see also [10]), who showed that the local algebraic structure of such groups
is sensibly different. It seems reasonable to expect for a general theory that combines these
two approaches and (hopefully) extends to higher dimensional manifolds.

2. On a family of C1+bv-undistorted diffeomorphisms
Here and in what follows, all maps we consider are supposed to preserve the orientation.

Recall that for a C1+bv diffeomorphism f of a compact 1-manifold, the asymptotic
distortion was defined by Navas in [13] as

dist∞(f ) := lim
n→∞

var(log Df n)
n

.

By the subadditivity of var(log D(·)), if f is a distorted element of the group of C1+bv
diffeomorphisms, then dist∞(f ) = 0.

The family of diffeomorphisms with positive asymptotic distortion studied in [14] is as
follows: Start with a C1+bv diffeomorphism of [0, 1] with vanishing asymptotic distortion
and no fixed point in ]0, 1[. Let I be a fundamental domain for the action of f, that is,
an open interval with endpoints x0 and x1 := f (x0) for a certain x0 ∈ ]0, 1[. Let g be any
non-trivialC1+bv diffeomorphism of ]0, 1[ supported on I. Then the diffeomorphism f̄ :=
fg has positive asymptotic distortion and, in particular, it is undistorted in Diff1+bv+ ([0, 1])
(hence in Diff2+([0, 1]) if f and g are of class C2). This fact follows from [5] (see Lemmas
2.2 and 7.2 therein) by using the relation between the asymptotic distortion and the Mather
invariant. For the reader’s convenience, below we present a short and direct argument based
on Kopell’s like estimates [9, 11].

Let us consider the product f̄ nf−n. Since f has vanishing asymptotic distortion, if we
show that var(log D(f̄ nf−n)) has linear growth, the same will hold for var(log Df̄ n).
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f

�
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Now, notice that

f̄ nf−n = (fgf−1)(f 2gf−2)(f 3gf−3) · · · (f ngf−n)

has support in the union of the intervals f (I), f 2(I ), . . . , f n(I ), and equals f kgf−k on
each such interval f k(I ). In particular, its derivative at the endpoints xk , xk+1 of each of
these intervals equals 1. We claim that there is a constant λ > 1 such that, for all k ≥ 1,
there is a point yk ∈ f k(I ) satisfying D(f kgf−k)(yk) ≥ λ. Assuming this, we conclude

var(log D(f̄ nf−n)) ≥
n∑
k=1

|log D(f kgf−k)(yk)− log D(f kgf−k)(xk)| ≥ n log(λ),

which yields the desired linear growth.
Now, to check the existence of λ and the points yk , let V := var(log Df ), and let

N ≥ 1 be such that DgN(z) > e2V holds for some z∈I . We claim that λ := eV/N works.
Assume otherwise. Then, for a certainK ≥ 0, one would have ‖D(fKgf−K)‖∞ ≤ eV/N ,
which by the chain rule would yield ‖D(fKgNf−K)‖∞ ≤ eV . However, at the point
zK :=fK(z), we have D(fKgNf−K)(zK) > eV . Indeed,

log(D(f KgNf−K)(zK)) = log DfK(gN(z))+ log DgN(z)− log DfK(z)

≥ log DgN(z)− |log DfK(gN(z))− log DfK(z)|

> 2V −
K−1∑
k=0

|log Df (f k(gN(z)))− log Df (f k(z))|.

Since both z and gN(z) lie in the fundamental domain I of f,

K−1∑
k=0

|log Df (f k(gN(z)))− log Df (f k(z))| ≤ var(log Df ) ≤ V .

We thus conclude that log(D(f KgNf−K)(zK)) > V , as announced.

3. Distortion in class C1+α for α < 1/2
In this section, we start by briefly recalling the construction of the group � with a distorted
element f̄ considered in [14]. Next, we proceed to smooth the action of � in order to
achieve any differentiability class C1+α for α < 1/2. Upgrading α to any number less than
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1 will require the introduction of an extra element plus a tricky new computation, and will
be carried out in the next section.

Start with the vector fields X̂ and X on the real line whose time-1 maps are, respectively,

F̂ := X̂ 1 : x 	→ 2x and F := X 1 : x 	→ x + 1.

Let ϕ: R → ]0, 1[ be a C∞ diffeomorphism such that Ŷ := ϕ∗(X̂ ) and Y := ϕ∗(X )
extend to the endpoints of [0, 1] as infinitely flat vector fields. Denote f̂ := Ŷ1 and f :=
Y1, which we view as diffeomorphisms of [−1, 2] that coincide with the identity outside
[0, 1]. The affine relation f̂ f f̂−1 = f 2 yields that ‖f n‖ = O(log(n)); in particular, f has
vanishing asymptotic distortion.

Let x0 := ϕ(0) and, for each k∈Z, let xk := f k(x0) = ϕ(k). Denote also x−1/2 :=
ϕ(−1/2) and x−3/4 := ϕ(−3/4). Let ϕ0 be the affine diffeomorphism sending I :=
[x0, x1] onto [0, 1], and let g := ϕ−1

0 f ϕ0. This can be extended to [−1, 2] by the identity
outside I.

We next define two diffeomorphisms ĥ and h as follows.
(i) They act by the identity outside [0, 1].

(ii) On each interval Ik := f k(I ), the diffeomorphism ĥ (respectively h) coincides with
the sk-time map (respectively tk-time map) of the flow of the vector field f k∗ (ϕ∗

0 (Ŷ))
(respectively f k∗ (ϕ∗

0 (Y))).
Here, sk and tk are sequences of real numbers such that as follows.

(iii) If 2i−1 ≤ k < 2i for a certain positive even integer i, then

sk := log2

(
1 − 1√

�i/2

)
and tk := 1√

�i/2
,

where �j is a prescribed sequence of positive integers diverging to infinity to be
fixed below.

(iv) Otherwise, sk = tk := 0.
Finally, we let ψ be a C∞ diffeomorphism of [−1, 2] such that:

(v) ψ coincides with the identity on [x−1/2, x0];
(vi) ψ(x−3/4) = 0 and ψ(x1) = 1.
The group we consider is � := 〈f̂ , f , g, ĥ, h, ψ〉. The computations of [14] show the
following relation for certain powers of f̄ := fg (which justifies the construction):

(f̄ )2
i−1 = f 1+n/2f̂ i[f̂−if−nhf nf̂ i , ψf̂−if−nĥf nf̂ iψ−1]�i/2 f̂−if−1, (3.1)

where i is an even (positive) integer and n := 2i . Roughly, this works as follows: set

an := f̂−if−nhf nf̂ i and bn := ψf̂−if−nĥf nf̂ iψ−1.

One easily checks that

supp(an) ⊂ [0, x−3/2] ∪ [x−1/2, x0] ∪ [x1, 1] and

supp(bn) ⊂ [−1, 0] ∪ [x−1/2, x0] ∪ [1, 2].

Thus, the commutator cn := [an, bn] = anbna
−1
n b−1

n is supported on [x−1/2, x0], so
the conjugate f̂ icnf̂

−i is supported on [x−2i−1 , x0]. Besides, on each [xk , xk+1] ⊂
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[x−2i−1 , x0], this conjugate f̂ icnf̂−i coincides with the time-1/�i/2 map of the flow of
f k∗ (ϕ∗

0 (Y)). Moreover, the restriction of the map

hn/2 := (f−n/2gf n/2) · · · (f−2gf 2)(f−1gf ) = f−n/2(f−1f̄ n/2f )

to each [xk , xk+1] ⊂ [x−2i−1 , x0] equals the time-1 map of the flow of f k∗ (ϕ∗
0 (Y)). This

implies that

hn/2 = (f̂ icnf̂
−i )�i/2 ,

which corresponds to identity (3.1).
Since ‖f n‖ = O(log(n)), identity (3.1) implies that ‖(f̄ )2i−1‖ = O(i �i/2). Therefore,

f̄ is distorted provided �j grows to infinity in such a way that

lim
n→∞

log(n) �i
n

= lim
i→∞

i �i

2i
= 0. (3.2)

The maps f̂ , f , g, ψ above are obviously smooth. However, regularity for ĥ, h is more
subtler. Indeed, their C1 smoothness is ensured by the conditions sn → 0 and tn → 0 as
|n| → ∞ (which are equivalent to �j → ∞ as j → ∞) together with the next lemma.
This is strongly inspired on the work of Kopell (a proof together with a discussion appears
in the Appendix of [14]). Below, by C1+Lip we refer to maps with Lipschitz derivative.

LEMMA 3.1. Let f ∈ Diff1+Lip
+ ([0, 1]) be such that f (x) �= x for all x ∈ (0, 1). Fix

x0 ∈ (0, 1), and let xn := f n(x0). Let (gn)n∈Z be a sequence of C1 diffeomorphisms
of the interval of endpoints x0, x1 such that Dgn(x0) = Dgn(x1) = 1 for all n ∈ Z. Let
g : (0, 1) → (0, 1) be the diffeomorphism whose restriction to each interval of endpoints
xn, xn+1 coincides with f ngnf−n. If gn → Id in C1 topology as n → ∞, then g extends
to a C1 diffeomorphism of [0, 1] by letting f (0) = 0 and f (1) = 1.

Unfortunately, as we will see in the Appendix, this fails to extend to classC1+α . Because
of this, we need to go into more explicit computations for our example. Although these are
difficult to handle, the following key elementary lemma taken from the work of Pixton [15]
and Tsuboi [17] will be enough for us.

LEMMA 3.2. Given a C2 vector field X on an interval [0, a], denote C1 := ‖DX‖ and
C2 := ‖D2X‖. If f t denotes its flow, then, for all t ≥ 0,

‖D log Df t‖ ≤ C2

C1
(eC1t − 1).

Proof. Taking derivatives on the equality df t/dt = X ◦ f t , we deduce

d

dt
Df t = DX (f t ) ·Df t ,

so

d

dt
log Df t = (d/dt)Df t

Df t
= DX (f t ).
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Since f 0 = Id, we conclude

log Df t =
∫ t

0
DX (f s) ds.

Since ‖DX‖ ≤ C1, this yields |log Df t | ≤ C1t , so |Df t | ≤ eC1t . Moreover,

D log Df t = D

( ∫ t

0
DX (f s) ds

)
=

∫ t

0
D2X (f s) ·Df s ds.

Since ‖D2X‖ ≤ C2, we conclude

|D log Df t | ≤ C2

∫ t

0
|Df s | ds ≤ C2

∫ t

0
eC1sds = C2

C1
(eC1t − 1),

as announced.

We now turn to very long computations that will allow us to ensure that the resulting
maps h, ĥ built via the procedure above are C1+α diffeomorphisms for well chosen ϕ and
�i that respect all the properties we have imposed. This will close the proof of our theorem.

In order to simplify these computations, let us remind the chain rules for different
derivatives of maps between one-dimensional spaces, namely logarithmic (L), affine (A),
and Schwarzian (S):

L(f ) := log Df , A(f ) := DL(f ) = D2f

Df
,

S(f ) := DA(f )− A(f )2

2
= D3f

Df
− 3

2

(
D2f

Df

)2

.

These are listed below:

L(fg) = L(g)+ L(f ) ◦ g, (3.3)

A(fg) = A(g)+ A(f ) ◦ g ·Dg, (3.4)

S(fg) = S(g)+ S(f ) ◦ g · (Dg)2. (3.5)

We let ϕ: (0, 1) → R be a C∞ diffeomorphism such that, for a sufficiently small δ > 0,

ϕ(x) =
{

−exp(exp(1/x)) if 0 < x � δ,

exp(exp(1/(1 − x))) if 1 − δ � x < 1.

If we denote Z := ϕ∗
0 (Ŷ), then we need to control f n∗ (Z).

3.1. An estimate for lengths of fundamental domains. Let us come back to the group
� = 〈f̂ , f , g, ĥ, h, ψ〉. Recall that I denotes the interval [x0, x1]. We claim that, for a
certain constant C > 0,

|f n(I )| = O

(
C

n log(n) (log(log(n)))2

)
. (3.6)
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This is checked via a direct computation. Namely, for a sufficiently large n,

|f n(I )| = ϕ−1(n+ 1)− ϕ−1(n) = 1
log log(n)

− 1
log log(n+ 1)

.

Since the derivative of x 	→ 1/ log log(x) is 1/[x log(x) (log log(x))2], a direct applica-
tion of the mean value theorem yields the desired estimate (3.6).

3.2. Estimates for the vector field and its derivative. Notice that

f n∗ (Z)(x) = [Df n(f−n(x))] Z(f−n(x)), x ∈ In := f n(I ).

Taking derivatives, we obtain

D(f n∗ (Z))(x) = D2f n(f−n(x))
Df n(f−n(x))

Z(f−n(x))+DZ(f−n(x)).

Now, using the chain rule (3.4), this yields

D(f n∗ (Z))(x) =
n−1∑
i=0

(
D2f (f i−n(x))
Df (f i−n(x))

)
Df i(f−n(x)) Z(f−n(x))+DZ(f−n(x)).

Thus, letting

C′ :=
∥∥∥∥D2f

Df

∥∥∥∥‖Z‖, C′′ := ‖DZ‖,

we obtain

|D(f n∗ (Z))(x)| ≤ C′
n−1∑
i=0

Df i(f−n(x))+ C′′.

We claim that the sum above is uniformly bounded (independently of n and x ∈ In), so
that

|D(f n∗ (Z))(x)| ≤ C (3.7)

for a certain constant C. Indeed, a standard control of distortion argument yields that
Df i(f−n(x)) is of the order of |Ii |/|I0|, so

n−1∑
i=0

Df i(f−n(x)) ∼
n−1∑
i=0

|Ii | ≤ 1.

3.3. Estimates for the second derivative. We now claim that, for a certain constant
C > 0 and all x ∈ In,

|D2(f n∗ (Z))(x)| ≤ C n log(n) (log log(n))2. (3.8)

To show this, notice that, from

D(f n∗ (Z))(x) = A(f n)(f−n(x)) Z(f−n(x))+DZ(f−n(x)),
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we obtain

D2(f n∗ (Z))(x) = [DA(f n) · Z + A(f n) DZ +D2Z] ◦ f−n(x) ·Df−n(x).

which is equal to[(
S(f n)+ 1

2A(f
n)2

) · Z + A(f n) DZ +D2Z] ◦ f−n(x) ·Df−n(x).

Let us analyze each term entering in this expression. First, by equation (3.6) and the
control of distortion argument above,

Df−n(x) = 1/Df n(f−n(x)) = O(n log(n) (log log(n))2).

We next claim that A(f n) is uniformly bounded on I0. Indeed, letting C := ‖A(f )‖,
the chain rule (3.4) yields

A(f n) =
n−1∑
i=0

A(f ) ◦ f i ·Df i ≤ C

n−1∑
i=0

Df i .

The control of distortion argument above shows that the last sum is bounded from above
by a constant, which is the claim.

Since Z , DZ and D2Z are obviously uniformly bounded, to show equation (3.8), it
remains to check that S(f n)(f−n(x)) is uniformly bounded. To see this, we use the chain
rule (3.5) to obtain

Sf n(f−n(x)) =
n−1∑
i=0

Sf (f i−n(x))(Df i(f−n(x)))2.

This implies

|Sf n(f−n(x))| ≤ C

n−1∑
i=0

(Df i(f−n(x)))2,

and the last sum can be estimated as it was done before. (The sum here is even smaller
since it involves the squares of the derivatives.)

3.4. Estimates for the maps. We are now in a position to check that the group � is made
of C1+α diffeomorphisms for α < 1/2 and �i of order n/ log(n)2. (Notice that, according
to equation (3.2), the element f̄ is distorted in � for this choice.) Notice that this is obvious
for all the generators except h and ĥ. The estimates for these two elements are similar, so
that we only deal with h. Besides, we may deal with log Dh instead of Dh, since the
condition ‘Dh is of class Cα’ is equivalent to that ‘log Dh is of class Cα’.

We need to check that there exists a uniform bound B for expressions of type

|log Dh(y)− log Dh(x)|
|y − x|α

for all points x < y in the same interval In. Indeed, having such an estimate, one can easily
treat the case of arbitrary pairs x < y just by noticing that at each endpoint of an interval
of the form above, the derivative of h equals 1. Namely, letting z1 (respectively z2) be such
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an endpoint that is immediately to the right of x (respectively to the left of y), one has

|Dh(y)−Dh(x)|
|y − x|α ≤ |Dh(y)−Dh(z)|

|y − x|α + |Dh(z)−Dh(x)|
|y − x|α

≤ |Dh(y)−Dh(z)|
|y − z|α + |Dh(z)−Dh(x)|

|z− x|α
≤ 2 B.

Now, for all z ∈ In (with n ≥ 0), Lemma 3.2 and estimate (3.7) yield, for tn small
enough,

D(log Dh)(z) ≤ 2 ‖D2f n∗ (Z)‖ tn.

By estimate (3.8), this implies, for a certain constant C > 0,

D(log Dh)(z) ≤ 2 C n log(n) (log(log(n)))2 tn. (3.9)

Moreover, for x, y in In,

|log Dh(y)− log Dh(x)|
|y − x|α = |log Dh(y)− log Dh(x)|

|y − x| |y − x|1−α

= D(log Dh(z)) |y − x|1−α

for a certain point z ∈ In. By equation (3.9), this yields

|log Dh(y)− log Dh(x)|
|y − x|α

≤ 2 C n log(n) (log(log(n)))2 tn

[
C

n log(n)(log(log(n)))2
,
]1−α

. (3.10)

Since tn = 1/
√
�i/2 ≤ C log(n)/

√
n, we finally obtain

|log Dh(y)− log Dh(x)|
|y − x|α

≤ 2 C′ n log(n) (log(log(n)))2
log(n)
n1/2

1
[n log(n)(log(log(n)))2]1−α .

To get the desired upper bound B, it suffices that the total exponent of n in the expression
above is negative. Since this exponent equals 1 − 1/2 − (1 − α) = α − 1/2, this condition
reduces to α < 1/2, which is our hypothesis.

4. Distortion in class C1+α for α < 1
It is unclear whether the previous action can be smoothed beyond the class C3/2 (compare
[2, 3, 8, 12]). To achieve a larger differentiability class, we will need to accelerate the
distorted behavior of f̄ , which will allow us to consider smaller integration times for the
flows of vector fields (in concrete terms, we will increase the sequence �i). This will be
crucial to improve the regularity from α < 1/2 to any α < 1.

4.1. Adding an extra element. We consider the map h̃ acts by the identity outside the
intervals Ik , and that each such interval coincides with the rk-time of the time flow of the
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vector field f k∗ (ϕ∗
0 (Ŷ)), where rk := 1/

√
�i/2 for 2i−1 ≤ k < 2i and rk := 0 otherwise.

Notice that h̃ is very similar to ĥ. (Actually, we could perform the computations that follow
using ĥ instead of h̃, but this would become much harder.)

Then we let dn := f̂−if−nh̃f nf̂ i for n = 2i , where i is an even integer. We have
supp(dn) ⊂ [0, x−3/2] ∪ [x−1/2, x0] ∪ [x1, 1]. Since supp(cn) ⊂ [x−1/2, x0], for every
integer Li ≥ 1, the support of dLin cnd

−Li
n is also contained in [x−1/2, x0], thus the

support of

f̂−idLin cnd−Li
n f̂ i = (f̂−idLin f̂ i)(f̂−icnf̂ i)(f̂−id−Li

n f̂ i)

is contained in [x−2i−1 , x0].
Now recall that, on each [xk , xk+1] ⊂ [x−2i−1 , x0], the conjugate f̂ icnf̂−i coincides

with the time-1/�i/2 map of the flow of f k∗ (ϕ∗
0 (Y)). Moreover, by construction, on the

same interval, the conjugate f̂ idnf̂−i coincides with the time-1/
√
�i/2 map of the flow

of f k∗ (ϕ∗
0 (Ŷ)). By the affine relation, still on the same interval, the map f̂−idLin cnd−Li

n f̂ i

lies in the flow of f k∗ (ϕ∗
0 (Y)), and arises at time

2(Li/
√
�i/2)

�i/2
.

If Li := √
�i/2 log2(�i/2) (which will be chosen to be an integer number), then this

quantity equals 1. Therefore, for this choice, f̂−idLin cnd−Li
n f̂ i coincides with hn/2.

4.2. The distortion estimate. The identity hn/2 = f̂−idLin cnd−Li
n f̂ i implies that, in the

new group �̃ := 〈f̂ , f , g, ĥ, h, h̃, ψ〉, we have the estimate

‖hn/2‖ � 2‖f̂ i‖ + 2 Li‖dn‖ + ‖cn‖ � 2i + 2 Li (2i + 1 + 2‖f n‖)+ 8 (1 + i + ‖f n‖).
Since ‖f n‖ = O(log(n)) = O(i), we conclude that

‖hn/2‖ = O(i
√
�i/2 log(�i/2)).

Since hn/2 = f−n/2(f−1f̄ n/2f ) and ‖f n/2‖ = O(log(n)), this yields

‖f̄ n/2‖ = 2 + ‖f n/2‖ + ‖hn/2‖ = O(i
√
�i/2 log(�i/2)).

Notice that the last estimate is much better than what we had in the group � of the
previous section. There, ‖f̄ n/2‖ was of the orderO(i �i/2), so f̄ was distorted provided the
growth of �j was smaller than exponential. In the new setting, that is, in the modified group
�̃, the diffeomorphism f̄ is distorted whenever the condition below is satisfied (recall that
n = 2i):

lim
n→∞

i
√
�i/2 log(�i/2)

2i
= 0. (4.1)

4.3. Checking regularity. We thus choose a new sequence �i so that condition (4.1)
holds and

√
�i/2 log2(�i/2) is an integer number. This can be achieved for a sequence
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of type √
�i/2 ∼ n

log(n)3

that we fix from now on. With such a choice, we claim that �̃ is a group of C1+α
diffeomorphisms. Again, this is obvious for all generators except h, ĥ, h̃, and for these three
elements the computations are the exact same, because each of the sequences rn, sn, tn is
equivalent to 1/

√
�i/2. We thus write everything only for h. Remind estimate (3.10):

|log Dh(y)− log Dh(x)|
|y − x|α

≤ 2 C n log(n) (log(log(n)))2 tn

[
C

n log(n)(log(log(n)))2
,
]1−α

.

With the new estimate for tn, this becomes

|log Dh(y)− log Dh(x)|
|y − x|α

≤ 2 C n log(n) (log(log(n)))2
log(n)3

n

[
C

n log(n)(log(log(n)))2
,
]1−α

.

The expression on the right is of order

O

(
log(n)3+α (log log(n))2α

n1−α

)
,

which converges to 0 as n goes to infinity. This allows us to show that h is a C1+α
diffeomorphism as it was done in the previous section.
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Andrés Navas during this work. They also thank Cristóbal Rivas for organizing the seminar
on group actions where the problem treated in the paper was presented, as well as all the
participants of the seminar. The first author was funded by the Fondecyt Project 1200114,
and the second author by the Fondecyt Project 1181548.

A. Appendix. No Strong Kopell’s Lemma in Class C1+α
The goal of this appendix is to give an example of the phenomenon announced just after
Lemma 3.1. Namely, there exist:
• a C∞ diffeomorphism of [0, 1] such that f (x) > x for all x ∈ (0, 1) with a fundamen-

tal domain [x0, x1] (where x1 := f (x0));
and
• a sequence (gn)n∈Z of C∞ diffeomorphisms of [x0, x1];
such thatDgn(x0) = Dgn(x1) = 1 for all n, one has the convergence gn → Id as |n| → ∞
in C∞ topology, but the C1 diffeomorphism g: [0, 1] → [0, 1] defined as

g|f n([x0,x1]) := f ngnf
−n|f n([x0,x1]) (A.1)

is not C1+α for any α ∈ (0, 1).
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Our diffeomorphism f is

f (x) = 2x
x + 1

.

Notice that

f n(x) = 2nx
(2n − 1)x + 1

.

Hence, for all x, y,

|f n(x)− f n(y)| =
∣∣∣∣ 2nx
(2n − 1)x + 1

− 2ny
(2n − 1)y + 1

∣∣∣∣
= 2n|x − y|

[(2n − 1)x + 1] · [(2n − 1)y + 1]
,

which yields

|f n(x)− f n(y)| ≤ C

2n
(A.2)

for a certain universal constant C > 0 provided that x, y are uniformly bounded away from
zero.

Now consider the points x0 := 1/2 and x1 := f (x0) = 2/3. Notice that x1 − x0 = 1/6.
Then let

a := 1
2

+ 1
30

= 8
15

, b := 1
2

+ 2
30

= 17
30

,

b′ := 1
2

+ 3
30

= 3
5

, b′′ := 1
2

+ 4
30

= 19
30

.

Let 	: [a, 2/3] → [−1/2, 1/2] be a C∞ function such that

	(a) = 	(b′) = 	(2/3) = 0, 	(b) = 1
2 , 	(b′′) = − 1

2 .

Assume also that 	 is strictly increasing on [a, b] and [b′′, 3/2], strictly decreasing on
[b, b′′], infinitely flat at a and 3/2, and its graph is symmetric with respect to the point
(b′, 0). Let ρn: [1/2, 2/3] → R be the function that is identically equal to 1 on [1/2, a]
and whose restriction to [a, 2/3] coincides with 1 + 	/n See Figure A.1.

By the symmetry property of 	, we have∫ x1

x0

ρn(s) ds = x1 − x0,

so ρn is the derivative of a diffeomorphism gn of [x0, x1]. Since ρn is C∞, the
diffeomorphism gn is of class C∞. We claim that gn converges to the identity in the Ck

topology for every integer k. (Hence, by definition, the convergence holds inC∞ topology.)
Indeed, for k ≥ 2, as n goes to infinity, we have

‖Dk(gn)‖C0 = ‖Dk−1(ρn)‖C0 = 1
n
‖Dk−1	‖C0 −→ 0.

We will next show that the corresponding diffeomorphism g obtained via equation (A.1)
is not C1+α for any α > 0.
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1
2

−1
2

a b b′ b′′ 2
3

1

a b b′ b′′
2
3

�n

FIGURE A.1. The construction of ρn.

Since gn(a) = a and Dgn(a) = 1, we have

Dg(f n(a)) = D(f ngnf
−n)(f n(a)) = Df n(gn(a))

Df n(a)
·Dgn(a) = 1.

To compute Dg(f n(b)), first notice that

Df n(x) = 2n

[(2n − 1)x + 1]2 .

We compute

Dg(f n(b)) = Df n(gn(b))

Df n(b)
·Dgn(b) =

[
(2n − 1)b + 1

(2n − 1)gn(b)+ 1

]
·
(

1 + 1
n

)
.

Since

gn(b) = gn(a)+
∫ b

a

ρn(s) ds = gn(a)+
∫ b

a

(
1 + 	

n

)
(s) ds

= a + (b − a)+
∫ b

a

	

n
ds = b + I

n
,

where

I :=
∫ b

a

	(s) ds > 0,

this yields

Dg(f n(b)) =
[

(2n − 1)b + 1
(2n − 1)(b + I/n)+ 1

]
·
(

1 + 1
n

)
,

so

|Dg(f n(b))−Dg(f n(a))| = 1
n

[
(2n − 1)b + 1

(2n − 1)(b + I/n)+ 1

]

−
[

I

n (2n − 1)(b + I/n)+ 1

]
.
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Therefore, for a certain constant C′ > 0,

|Dg(f n(b))−Dg(f n(a))| ≥ C′

n
. (A.3)

Finally, putting equations (A.2) and (A.3) together, we obtain

|Dg(f n(b)−Dg(f n(a)))|
|f n(b)− f n(a)|α ≥ C′

Cα
· 2nα

n
,

which diverges to infinite as n → ∞ provided α > 0. This shows that g is not of class
C1+α .

Remark A.1. It is not hard to modify the preceding example so that the map f has a
parabolic fixed point. In this framework, the divergence in the last step above is much
slower, but still holds.

REFERENCES

[1] C. Bonatti and É. Farinelli. Centralizers of C1-contractions of the half line. Groups Geom. Dyn. 9(3) (2015),
831–889.

[2] G. Castro, E. Jorquera and A. Navas. Sharp regularity for certain nilpotent group actions on the interval.
Math. Ann. 359(1–2) (2014), 101–152.

[3] B. Deroin, V. Kleptsyn and A. Navas. Sur la dynamique unidimensionnelle en régularité intermédiaire. Acta
Math. 199(2) (2007), 199–262.

[4] S. Druck and S. Firmo. Periodic leaves for diffeomorphisms preserving codimension one foliations. J. Math.
Soc. Japan 55(1) (2003), 13–37.

[5] H. Eynard-Bontemps and A. Navas. Mather invariant, conjugates, and distortion for diffeomorphisms of the
interval. J. Funct. Analysis 281(9) (2021), 109–149.

[6] M. Gromov. Asymptotic invariants of infinite groups. Geometric Group Theory (Sussex, 1991) (London
Mathematical Society Lecture Notes Series, 182). Vol. 2. Cambridge University Press, Cambridge, 1993,
pp. 1–295.

[7] S. H. Kim and T. Koberda. Diffeomorphism groups of critical regularity. Invent. Math. 221(2) (2020),
421–501.

[8] V. Kleptsyn and A. Navas. A Denjoy type theorem for commuting circle diffeomorphisms with derivatives
having different Hölder differentiability classes. Mosc. Math. J. 8(3) (2008), 477–492.

[9] N. Kopell. Commuting diffeomorphisms. Global Analysis (Berkeley, CA, 1968) (Proceedings of Symposia
in Pure Mathematics, XIV). American Mathematical Society, Providence, RI, 1970, pp. 165–184.

[10] K. Mann and M. Wolff. Reconstructing maps out of groups. Ann. Sci. Éc. Norm. Supér. (4), to appear.
[11] A. Navas. Groups of Circle Diffeomorphisms (Chicago Lectures in Mathematics). University of Chicago

Press, Chicago, IL, 2011.
[12] A. Navas. On centralizers of interval diffeomorphisms in critical (intermediate) regularity. J. Anal. Math.

121 (2013), 1–30.
[13] A. Navas. On conjugates and the asymptotic distortion of 1-dimensional C1+bv diffeomorphisms. Preprint,

2021, arXiv:1811.06077.
[14] A. Navas. (Un)distorted diffeomorphisms in different regularities. Israel J. Math., doi: 10.1007/

s11856-021-2188-z. Published online 21 August 2021.
[15] D. Pixton. Nonsmoothable, unstable group actions. Trans. Amer. Math. Soc. 229 (1977), 259–268.
[16] C. Rosendal. Coarse Geometry of Topological Groups. Unpublished book.
[17] T. Tsuboi. Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle.

J. Math. Soc. Japan 47 (1995), 1–30.

https://doi.org/10.1017/etds.2021.87 Published online by Cambridge University Press

https://arxiv.org/abs/1811.06077
https://doi.org/10.1007/s11856-021-2188-z
https://doi.org/10.1007/s11856-021-2188-z
https://doi.org/10.1017/etds.2021.87

	1 Introduction
	2 On a family of C1+bv-undistorted diffeomorphisms
	3 Distortion in class C1+α for α< 1/2
	3.1 An estimate for lengths of fundamental domains
	3.2 Estimates for the vector field and its derivative
	3.3 Estimates for the second derivative
	3.4 Estimates for the maps

	4 Distortion in class C1+α for α< 1
	4.1 Adding an extra element
	4.2 The distortion estimate
	4.3 Checking regularity

	Acknowledgements
	References

