
THE JOURNAL OF NAVIGATION (2018), 71, 749–768. c© The Royal Institute of Navigation 2018
doi:10.1017/S0373463317000881

A DDF-based IMM-TFS Approach for
the Accuracy Evaluation Problem of

Rapid Transfer Alignment
Dapeng Zhou1 and Lei Guo2

1(School of Instrumentation Science and Opto-electronics Engineering, Beihang
University, Beijing, China)

2(Science and Technology on Aircraft Control Laboratory, Beihang University,
Beijing, China)

(E-mail: zdp_buaa@163.com)

This study aims to address the accuracy evaluation problem for rapid transfer alignment with
the coexistence of large misalignment angles and uncertain observation noises. For the require-
ment of accuracy evaluation, complete information in terms of misalignment angles should
be estimated during the alignment process. Thus, a fixed-interval smoothing approach is the
core of solving this problem. In this paper, a new Divided Difference Filter (DDF)-based
an Interacting Multiple Model Two-Filter Smoother (IMM-TFS) is developed to estimate the
misalignment angles. The proposed DDF-based IMM-TFS releases the restriction of inverse
nonlinearity by using the weighted statistical linearization regression method, and the resulting
pseudo-linear model can be used for backward-time IMM filtering. The smoothing step takes
into account the merging of estimations and the interaction of multiple models simultaneously.
The new smoother is compared with the previous well-known methodologies in simulations.
The results show that the DDF-based IMM-TFS can achieve better accuracy for misalignment
angles estimation, and has a high efficiency for detecting the changes in a model.
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1. INTRODUCTION. Transfer alignment has become one of the most important nav-
igation technologies for the application of Inertial Navigation Systems (INS), such as the
missions in terms of guiding weapons, flexure estimation of ships, initial alignment for
carrier-borne aircraft, etc. (Kain and Cloutier, 1989; Wang et al., 2013; Wei and Gao, 2012).
For the integration system consisting of a Slave INS (SINS) and a Main INS (MINS),
rapid transfer alignment was originally proposed to shorten the alignment time and reduce
the requirement for vehicle manoeuvring (Kain and Cloutier, 1989). Since the alignment
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performance directly affects the speed of response and follow-on navigation accuracy of
an INS, accuracy evaluation is an important issue for rapid transfer alignment. In gen-
eral, the measure indicators, such as the alignment precision and time to become stable,
are evaluated based on the benchmark information in terms of misalignment angles, which
are time-variant due to the existence of vibration and vehicle flexure. However, the com-
plete information of misalignment angles during the alignment process cannot be measured
directly in real-time. Thus, an offline smoothing approach is necessary (Yang et al., 2014).
For accuracy evaluation, all sampling points should be estimated during the alignment pro-
cess. Hence, the fixed-interval smoother is the most appropriate approach to address such
problems (Simon, 2006; Liu et al., 2010; Gong and Qin, 2014).

It is often hoped that the SINS will be aligned with small initial errors, and the linear
Kalman Filter (KF)-based smoother can then be used to address the smoothing issue appro-
priately (Yang et al., 2014). However, the SINS could be aligned without a coarse alignment
procedure in some urgent situations (Wei and Gao, 2012). Consequently, the nonlinearity of
the error model will increase significantly, and it is necessary to consider the nonlinear char-
acter of the accuracy evaluation issue (Särkkä, 2013). In addition, the single-model-based
fixed-interval smoothing approaches assume that the observations provided by MINS are
perfectly known during the alignment process, which is not necessarily true in practice.
For instance, the existence of random data transmission delay and unpredictable vehicle
vibration will easily affect the observations (Lim and Lyou, 2001; Pehlivanoǧlu and Ercan,
2013). In other words, the statistics of the observation noise may be time-variant, and the
estimation accuracy of the single-model-dependent smoother will be degraded.

For the smoothing problem with the coexistence of nonlinearity and the uncertainty
of observation noise, the Interacting Multiple Model (IMM) smoother has been proven
to be an effective approach (Blom and Bar-Shalom, 1988). There are two types of IMM
smoother: the Rauch-Tung-Striebel (RTS) type and the two-filter-type. The structure of
the IMM-RTS Smoother (IMM-RTSS) is more like the standard IMM filter, which means
that it is easily realised. In contrast, the IMM Two-Filter-Smoother (IMM-TFS) utilises the
observations more effectively, and has better performance for solving nonlinear smooth-
ing problems (Malleswaran et al., 2013). Hence, IMM-TFS is used in this paper due to
its advantages. The Extended Kalman Filter (EKF)-based IMM-TFS has been proposed
for solving nonlinear target tracking problems (Helmick et al., 1995; Mazor et al., 1998).
However, the first-order Taylor series expansion neglects the high-order error terms, which
further leads to poor performance for a highly nonlinear system (Simon, 2006). To avoid
this, the Unscented Kalman Filter (UKF)-based IMM-TFS was developed to achieve better
estimation accuracy, since the Unscented Transform (UT) can approximate the posterior
mean and covariance up to the third order. Nevertheless, the UKF cannot guarantee the
positive definiteness of the covariance, and the accumulation of errors caused by the matrix
operations may induce instability or even divergence (Brunke and Campbell, 2004). The
Stirling interpolation formula-based Divided Difference Filter (DDF), which was directly
developed in the square root form, maintains a positive semi-definiteness of the covariance
matrix (Nørgaard et al., 2000). Thus, we use the DDF as the nonlinear filter module of our
IMM-TFS to account for the nonlinearity.

An inherent drawback of IMM-TFS is that it needs the existence of an inverse model,
which is either predefined or obtained from trivial derivations in previously published
literatures (Helmick et al., 1995; Malleswaran et al., 2013). This restriction limits the
application of IMM-TFS in practice. A promising forward-backward sigma-point Kalman
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smoother was developed to avoid the inverse model restriction by means of the Weighted
Statistical Linearization Regression (WSLR) method, and the resulting linearization param-
eters are more accurate than that of the first-order linearization method in statistical sense
(Paul and Wan, 2008; Gong et al., 2015). However, this approach is only available for the
single-model-based smoothing problem, and few published literatures have suggested the
combination of the IMM-TFS and the WSLR method.

In this paper, a DDF-based IMM-TFS is proposed to address the accuracy evaluation
problem of rapid transfer alignment. The WSLR method is performed in a Forward-time
IMM Filter (FIF) to form the pseudo-linear system model for a Backward-time IMM Filter
(BIF). The simulations show that this new smoother can achieve better estimation accuracy
compared with previously reported approaches, and has a high efficiency for detecting the
changes in a model.

This paper is organised in six sections. In Section 2, the DDF with WSLR is introduced.
The DDF-based IMM-TFS approach is presented in Section 3. In Section 4, the nonlinear
model of rapid transfer alignment with large misalignment angles is described. In Section 5,
an accuracy evaluation approach using the DDF-based IMM-TFS is implemented. The per-
formance of the proposed smoother is verified by simulation tests, and compared with the
EKF-based IMM-TFS, DDF-based TFS and DDF-based IMM-RTSS in terms of estimation
accuracy. The paper is concluded in Section 6.

2. DDF WITH WSLR. In this section, the DDF with WSLR is discussed. The lineariza-
tion parameters are obtained during the prediction and filtering steps of the DDF, and
they lay the groundwork for the backward-time IMM filter. Here, we mainly discuss the
second-order DDF since it has a better estimation performance than the first-order version
(Nørgaard et al., 2000).

Consider a nonlinear discrete-time system model:⎧⎨
⎩

xk = f (xk−1,ωk−1)

zk = g(xk, vk)
(1)

where xk is the state vector; ωk−1 is the process noise with covariance Qωk−1
, zk is the

observation vector, vk is the observation noise with covariance Rvk and f (·) and g(·) stand
for the process model and observation model, respectively.

The WSLR aims to obtain the linearized model of Equation (1) by using the weighted
statistically linearized approach, which can be described as (Paul and Wan, 2008):⎧⎨

⎩
xk = Af ,k−1xk−1 + bf ,k−1 + Gf ,k−1ωk−1 + Gf ,k−1εf ,k−1

zk = Ag,kxk + bg,k + Gg,kvk + Gg,kεg,k

(2)

where Af ,k−1, Ag,k, bf ,k−1, and bg,k are the statistical linearization parameters. Gf ,k−1 and
Gg,k denote the noise distribution matrix of the process model and observation model,
respectively. εf ,k−1 and εg,k are the linearization error terms of the process model and
observation model with covariance Pε,f ,k−1 and Pε,g,k, respectively. Note, the linearization
error covariance is increasing with the higher degree of nonlinearity and the uncertainty
region of the state.

The second-order DDF with WSLR can be summarised as follows.
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2.1. Initialisation. The initial state vector is defined as x0. The filtered covariance,
process noise covariance, observation noise covariance and their corresponding square root
decompositions are defined as:

Pk−1|k−1 = Sxx,k−1|k−1(Sxx,k−1|k−1)T, Qωk−1
= Sωk−1 (Sωk−1 )T, Rvk = Svk (Svk )

T (3)

2.2. Prediction step. For the prediction step, the predicted mean is given by:

x̂k|k−1 =
h2 − nx − nω

h2 f
(
x̂k−1|k−1

)
+

1
2h2

nx∑
p=1

[
f
(
x̂k−1|k−1 + hsx,p

)
+ f

(
x̂k−1|k−1 − hsx,p

)]

+
1

2h2

nω∑
p=1

[
f
(
x̂k−1|k−1, ω̄k−1 + hsω,p

)
+ f

(
x̂k−1|k−1, ω̄k−1 − hsω,p

)]
(4)

where h is the selection of interval length, and h =
√

3 when the estimation errors are
assumed to be Gaussian. nx and nω stand for the dimension of state and process noise,
respectively, ω̄k−1 is the mean of process noise and sx,p and sω,p denote the p-th columns
of matrix Sxx,k−1|k−1 and Sωk−1 , respectively. Then, the updated square root of the predicted
covariance is obtained as follows:

S̄xx,k|k−1 = H
{[

S(1)
xx̂,k|k−1 S(1)

xω,k|k−1 S(2)
xx̂,k|k−1 S(2)

xω,k|k−1

]}
(5)

where H{·} is a Householder transformation of the argument matrix. The four matrices
related to S̄xx,k|k−1 are omitted, and they can be found in previously reported literature
(Nørgaard et al., 2000).

The weighted statistical linearization parameters of the process model are given by:

Af ,k−1 = S(1)
xx̂,k|k−1

(
Sxx,k−1|k−1

)−1 (6)

bf ,k−1 = x̂k|k−1 − Af ,k−1x̂k−1|k−1 (7)

Pε,f ,k−1 = S̄xx,k|k−1
(
S̄xx,k|k−1

)T − S(1)
xx̂,k|k−1

(
S(1)

xx̂,k|k−1

)T
(8)

Gf ,k−1 =
∂f (xk−1,ωk−1)

ωk−1

∣∣∣∣
xk=x̂k−1|k−1,ωk−1=ω̄k−1

(9)

2.3. Filtering step. The predicted observation and square root of its covariance are
calculated as:

ẑk|k−1 =
h2 − nx − nv

h2 g
(
x̂k|k−1

)
+

1
2h2

nx∑
p=1

[
g
(
x̂k|k−1 + hs̄x,p

)
+ g

(
x̂k|k−1 − hs̄x,p

)]

+
1

2h2

nv∑
p=1

[
g
(
x̂k|k−1, v̄k + hsv,p

)
+ g

(
x̂k|k−1, v̄k − hsv,p

)]
(10)

Szz,k|k−1 = H
{[

S(1)
zx̂,k|k−1 S(1)

zv,k|k−1 S(2)
zx̂,k|k−1 S(2)

zv,k|k−1

]}
(11)

where nv is the dimension of the observation noise, s̄x,p and sv,p are the p-th columns of
S̄xx,k|k−1 and Svk , respectively and v̄k is the mean of observation noise. For brevity, the four
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matrices related to Szz,k|k−1 are omitted, they can be found in previously reported literature
(Nørgaard et al., 2000).

Now, we can obtain the gain matrix, filtered mean of state and updated square root of its
covariance as follows:

K k|k = S̄xx,k|k−1

(
S(1)

zx̂,k|k−1

)T [
Szz,k|k−1

(
Szz,k|k−1

)T
]−1

(12)

x̂k|k = x̂k|k−1 + K k|k
(
zk − ẑk|k−1

)
(13)

Sxx,k|k = H
{[

S̄xx,k|k−1 − K k|kS(1)
zx̂,k|k−1 K k|kS(1)

zv,k|k−1 K k|kS(2)
zx̂,k|k−1 K k|kS(2)

zv,k|k−1

]}
(14)

The weighted statistical linearization parameters of the observation model are given by:

Ag,k = S(1)
zx̂,k|k−1

(
S̄xx,k|k−1

)T
[
S̄xx,k|k−1

(
S̄xx,k|k−1

)T
]−1

(15)

bg,k = ẑk|k−1 − Ag,kx̂k|k−1 (16)

Pε,g,k = Szz,k|k−1
(
Szz,k|k−1

)T − S(1)
zx̂,k|k−1

(
S̄xx,k|k−1

)T (
Ag,k

)T (17)

Gg,k =
∂g (xk, vk)

vk

∣∣∣∣
xk=x̂k|k−1,vk=v̄k

(18)

The resulting linearization parameters can be used for the backward-time KF to estimate
the states for the statistically linearized state-space model in Equation (2). The backward-
time KF is formulated using the linearization error vectors of the forward-time filter state,
which is different from the standard KF. The smoothing accuracy is improved since the
WSLR method fully considers the linearization errors of the nonlinear model. For brevity,
we only present the DDF with WSLR in terms of the forward-time filter in this section. The
conclusions can be directly applied to the multiple-model situation.

3. DDF-BASED IMM-TFS.
3.1. Forward-time IMM Filter. In this subsection, we review the forward-time IMM

filtering algorithm briefly, and the notations defined in this subsection will be used
extensively in the derivations of the backward-time IMM filter and two-filter-type IMM
smoother.

Consider a nonlinear discrete-time system with multiple models:⎧⎪⎨
⎪⎩

xk = f mi
k

k−1

(
xk−1,ωmi

k
k−1

)
zk = gmi

k
k

(
xk, vmi

k
k

) (19)

where f mi
k

k−1(·) and gmi
k

k (·) are the process model and observation model matched to mi
k, xk

is the state vector and zk is the observation vector. The process noise ωmi
k

k−1 and observation

noise vmi
k

k are subject to Gaussian distributions. The system is assumed to switch among
a known model set following the Markov process with a transition probability matrix
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Ppro = [p f , ji
k|k−1]n×n, where n denotes the number of known models; p f , ji

k|k−1 = p(mi
k|m j

k−1) are
the transition probabilities with i, j = 1, 2, . . . , n.

In the forward-time filter, the estimates of xk can be inferred from the density p(xk|Z1:k),
where Z1:k denotes the observation sequence from time step 1 to k. This density can be
written as a mixture of Gaussian densities by using the total probability theorem. That is:

p (xk|Z1:k) =
∑ n

j =1
μ

f , j
k|k p

(
zk|xk, m j

k , Z1:k−1

)
p
(

xk|m j
k , Z1:k−1

)/
c (20)

where μ f , j
k|k = p(m j

k |Z1:k) is the filtered model probability of FIF, p(zk|xk, m j
k , Z1:k−1) is

model-conditioned likelihood, c = p(zk|m j
k , Z1:k−1) is a constant value and p(xk|m j

k , Z1:k−1)
is the model-conditioned density given the past observations.

The Gaussian mixture expression of density p(xk|m j
k , Z1:k−1) can be obtained by using

the total probability theorem, that is:

p
(

xk|m j
k , Z1:k−1

)
=
∑ n

i=1
μ

f ,i|j
k−1|k−1p

(
xk|mi

k−1, m j
k , Z1:k−1

)
(21)

where μ f ,i|j
k−1|k−1 = (p f ,ij

k|k−1μ
f ,i
k−1|k−1)/(

∑ n
i=1 p f ,ij

k|k−1μ
f ,i
k−1|k−1) is the conditional model prob-

ability for switching from model m j
k to model mi

k−1, μ f ,i
k−1|k−1 = p(mi

k−1|Z1:k−1) is the

filtered model probability matched to mi
k−1 and p f ,ij

k|k−1 is obtained from the known matrix
Ppro. p(xk|mi

k−1, m j
k , Z1:k−1) is the filtered density of the state matched to models m j

k and
mi

k−1 and Z1:k−1 can be approximated by the set of model-conditioned estimates, that
is, {x̂ f ,r

k−1|k−1, P f ,r
k−1|k−1} n

r=1. x̂ f ,r
k−1|k−1 denotes the estimates of FIF matched to mr

k−1 with

covariance P f , j
k|k . This can also be written as:

p
(

xk|mi
k−1, m j

k , Z1:k−1

)
= p

(
xk|m j

k , x̂ f ,i
k−1|k−1, P f ,i

k−1|k−1

)
(22)

Now, the density p(xk|m j
k , Z1:k−1) can be rewritten as:

p
(

xk|m j
k , Z1:k−1

)
=
∑ n

i=1
μ

f ,i|j
k−1|k−1p

(
xk|m j

k , x̂ f ,i
k−1|k−1, P f ,i

k−1|k−1

)
(23)

The forward-time filtered model probability in Equation (20) can be expressed as:

μ
f , j
k|k =

[
�

f , j
k|k p

(
m j

k |Z1:k−1

)]/ [∑ n

j =1
�

f , j
k|k p

(
m j

k |Z1:k−1

)]
(24)

where � f , j
k|k = N (zk; ẑ j

k|k−1, P j
zz,k|k−1) is the likelihood of the forward-time filter matched to

m j
k , p(m j

k |Z1:k−1) =
∑ n

i=1 p f ,ij
k|k−1μ

f ,i
k−1|k−1 is the model-conditioned density given the past

observations and ẑ j
k|k−1 denotes the predicted observation matched to m j

k with covariance
P j

zz,k|k−1.
The forward-time IMM filtering algorithm can be summarised as follows.
1) Initialisation: The beginning time step is k = 1. For n models, the initial forward-

time estimations and probabilities are set to x̂ f ,i
0|0 = 0nx×1, P f ,i

0|0 = 0nx×nx and μ f ,i
0|0 = 1/n,

respectively, where i = 1, 2, . . . , n.
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2) Calculation of conditional model probabilities:

μ
f ,i|j
k−1|k−1 =

(
p f ,ij

k|k−1μ
f ,i
k−1|k−1

)/(∑ n

i=1
p f ,ij

k|k−1μ
f ,i
k−1|k−1

)
, i, j = 1, 2, . . . , n (25)

3) Mixing:

x̂ f ,0j
k−1|k−1 =

∑ n

i=1
μ

f ,i|j
k−1|k−1x̂ f ,i

k−1|k−1 (26)

P f ,0j
k−1|k−1 =

∑ n

i=1
μ

f ,i|j
k−1|k−1

[
P f ,i

k−1|k−1 +
(

x̂ f ,i
k−1|k−1 − x̂ f ,0j

k−1|k−1

) (
x̂ f ,i

k−1|k−1 − x̂ f ,0j
k−1|k−1

)T
]

(27)

where j = 1, 2, . . . , n; x̂ f ,0j
k−1|k−1 and P f ,0j

k−1|k−1 are the mixed mean and covariance matched
to m j

k−1, respectively.
4) Model-matched prediction and filtering: For model m j

k , the prediction step and
filtering step can be expressed as:

[
x̂ f , j

k|k−1, P f , j
k|k−1, A j

f ,k−1, b j
f ,k−1, P j

ε,f ,k−1

]
= DDFp

(
x̂ f ,0j

k−1|k−1, P f ,0j
k−1|k−1, f j

k−1 (·) , Q j
ωk−1

)
(28)[

x̂ f , j
k|k , P f , j

k|k , A j
g,k, b j

g,k, P j
ε,g,k

]
= DDFu

(
x̂ f , j

k|k−1, P f , j
k|k−1, zk, g j

k (·) , R j
vk

)
(29)

where j = 1, 2, . . . , n; the notations DDFp (·) and DDFu(·) denote the prediction step (see
Equations (3)–(9)) and filtering step (see Equations (10)–(18)) of DDF with WSLR; x̂ f , j

k|k−1

and P f , j
k|k−1 are the predicted estimates; x̂ f , j

k|k and P f , j
k|k stand for the filtered estimates.

Note that the predicted and filtered covariance matrices can be easily obtained from their
corresponding square root decompositions (Nørgaard et al., 2000). The model likelihood
functions are given by:

�
f , j
k|k = N

(
zk; ẑ j

k|k−1, P j
zz,k|k−1

)
, j = 1, 2, . . . , n (30)

where ẑ j
k|k−1 and P j

k|k−1 are the predicted observation and its covariance, respectively.
5) Model probabilities update:

μ
f , j
k|k =

(
�

f , j
k|k

∑ n

i=1
p f , ji

k|k−1μ
f ,i
k−1|k−1

)/(∑ n

j =1
�

f , j
k|k

∑ n

i=1
p f , ji

k|k−1μ
f ,i
k−1|k−1

)
, j = 1, 2, . . . , n

(31)

Note, the linearization parameters of each estimation period are restored during the
forward-time IMM filter (see Equations (28) and (29)), and they can further be used to
form the pseudo-linear model of the nonlinear model for BIF.

3.2. Backward-time IMM filter. In this subsection, the Backward-time IMM Filter
(BIF) is briefly introduced (Helmick et al, 1995). The estimates of BIF can be inferred
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from the density p(xk|Z k:N ), which can be written as:

p (xk|Z k:N ) =
∑ n

j =1
μ

b,j
k|kp

(
xk|m j

k , Z k:N

)
(32)

where μ
b,j
k|k = p(m j

k |Z k:N ) is the filtered model probability of BIF matched to m j
k .

p(xk|m j
k , Z k:N ) denotes the density of BIF matched to m j

k , which can be written as:

p
(

xk|m j
k , Z k:N

)
= p

(
zk|xk, m j

k , Z k+1:N

)
p
(

xk|m j
k , Z k+1:N

)
/c1 (33)

where p(zk|xk, m j
k , Z k+1:N ) is the model-conditioned likelihood, p(xk|m j

k , Z k+1:N ) represents
the model-conditioned density of the state for BIF given the future observation sequence
and c1 = p(zk|m j

k , Z k+1:N ) is a constant value. Again, by using the total probability theorem,
the density p(xk|m j

k , Z k+1:N ) can be expressed as:

p
(

xk|m j
k , Z k+1:N

)
=
∑ n

i=1
μ

b,i|j
k+1|k+1p

(
xk|m j

k , mi
k+1, Z k+1:N

)
(34)

where μb,i|j
k+1|k+1 = (pb,ij

k|k+1μ
b,i
k+1|k+1)/(

∑ n
i=1 pb,ij

k|k+1μ
b,i
k+1|k+1) is the conditional model probability

of BIF for switching from model m j
k to model mi

k+1, pb,ij
k|k+1 = [p f , ji

k+1|kjip(m j
k )]/c2 denotes

the backward transition probability, which still obeys the Markov property, and c2 =∑ n
j =1 p f , ji

k+1|kp(m j
k ). p(m j

k ) =
∑ n

i=1 p f ,ij
k|k−1p(mi

k−1) is the prior model probability. The calcu-
lation of prior model probabilities for BIF is only in terms of the forward-time transition
probabilities, which means that these densities can be calculated offline.

The density p(xk|m j
k , mi

k+1, Z k+1:N ) is the filtered density of the state for BIF matched
to the models m j

k and mi
k+1 given the future observations, and Z k+1:N can be approximated

by the set of one-step predicted estimates of BIF, i.e., {x̂b,r
k|k+1, Pb,r

k|k+1} n
r=1. x̂b,r

k|k+1 denotes the
predicted estimates of BIF matched to mr

k+1 with covariance Pb,r
k|k+1. In other words:

p
(

xk|m j
k , mi

k+1, Z k+1:N

)
= p

(
xk|m j

k , x̂b,i
k+1|k+1, Pb,i

k+1|k+1

)
(35)

Thus, Equation (34) can be rewritten as a Gaussian mixture expression, that is:

p
(

xk|m j
k , Z k+1:N

)
=
∑ n

i=1
μ

b,i|j
k+1|k+1p

(
xk|m j

k , x̂b,i
k+1|k+1, Pb,i

k+1|k+1

)
(36)

The updated backward-time model probability μb,j
k|k in Equation (32) is:

μ
b,j
k|k = �b,j

k|kp
(

m j
k |Z k+1:N

)
/c3 (37)

where �b,j
k|k = p(zk|m j

k , Z k+1:N ) is the model likelihood matched to m j
k given the future

observations, c3 =
∑ n

j =1�
b,j
k|kp(m j

k |Z k+1:N ) is a constant value and p(m j
k |Z k+1:N ) denotes

the model probability matched to m j
k given the future observations, which can be written

as:
p
(

m j
k |Z k+1:N

)
=
∑ n

i=1
pb,ij

k|k+1p
(
mi

k+1|Z k+1:N
)

(38)

where p(mi
k+1|Z k+1:N ) is the filtered model probability of BIF matched to mi

k+1.
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The backward-time IMM filtering algorithm can be summarised as follows:
1) Initialisation: The beginning time step is k = N . For n models, the initial backward-

time filtered estimations and probabilities are set to x̂b,i
N |N = x̂ f ,i

N |N , Pb,i
N |N = P f ,i

N |N and
μ

b,i
N |N = 1/n, respectively, where i = 1, 2, . . . , n. Note, the initial backward-time filtered

probabilities guarantee the total uncertainty of the single model at the beginning of BIF.
2) Calculation of backward-time model transition probabilities:

p(m j
k ) =

∑ n

i=1
p f , ji

k+1|kp(mi
k−1), j = 1, 2, . . . , n

pb,ij
k|k+1 =

[
p f , ji

k+1|kp
(

m j
k

)]/[∑ n

j =1
p f , ji

k+1|kp
(

m j
k

)]
, i, j = 1, 2, . . . , n (39)

3) Calculation of conditional model probabilities:

μ
b,i|j
k+1|k+1 =

(
pb,ij

k|k+1μ
b,i
k+1|k+1

)/(∑ n

i=1
pb,ij

k|k+1μ
b,i
k+1|k+1

)
, i, j = 1, 2, . . . , n (40)

4) Model-matched prediction:

x̂b,i
k|k+1 =

(
Ai

f ,k

)−1 (
x̂b,i

k+1|k+1 − bi
f ,k

)
(41)

Pb,i
k|k+1 =

(
Ai

f ,k

)−1 [
Pb,i

k+1|k+1 + Gi
kQi

ω,k

(
Gi

k

)T + P i
ε,f ,k

] [(
Ai

f ,k

)−1
]T

(42)

where i = 1, 2, . . . , n; x̂b,i
k|k+1 and Pb,i

k|k+1 are the one-step backward-time predicted mean and
covariance, respectively. Note that the linearization error term and its covariance does not
appear in the prediction step of the standard KF algorithm.

5) Mixing:

x̂b,0j
k|k+1 =

∑ n

i=1
μ

b,i|j
k+1|k+1x̂b,i

k|k+1 (43)

Pb,0j
k|k+1 =

∑ n

i=1
μ

b,i|j
k+1|k+1

[
Pb,i

k|k+1 +
(

x̂b,i
k|k+1 − x̂b,0j

k|k+1

) (
x̂b,i

k|k+1 − x̂b,0j
k|k+1

)T
]

(44)

where j = 1, 2, . . . , n; x̂b,0j
k|k+1 and Pb,0j

k|k+1 denote the mixed model-conditioned mean and
covariance, respectively.

6) Model-matched filtering:

K b,j
k|k = Pb,0j

k|k+1

(
A j

g,k

)T
[

A j
g,kPb,0j

k|k+1

(
A j

g,k

)T
+ R j

v,k + P j
ε,g,k

]
(45)

Pb,j
k|k =

(
I − K b,j

k|kA j
g,k

)
Pb,0j

k|k+1 (46)

x̂b,j
k|k = x̂b,0j

k|k+1 + K b,j
k|k
(

zk − b j
g,k − A j

g,kx̂b,0j
k|k+1

)
(47)

where j = 1, 2, . . . , n; K b,j
k|k is the gain matrix of BIF matched to m j

k ; x̂b,j
k|k and Pb,j

k|k are the
filtered estimates of BIF matched to m j

k , respectively. Again, the linearization error term
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and its covariance does not appear in the filtering step of the standard KF algorithm. The
model likelihood functions are given by:

�
b,j
k|k = N

(
z̃b,j

k|k+1; 0, Sb,j
k|k+1

)
, j = 1, 2, . . . , n (48)

where z̃b,j
k|k+1 = zk − g(x̂b,j

k|k+1) denote the residual with covariance Sb,j
k|k+1.

7) Model probabilities update:

μ
b,j
k|k =

(
�

b,j
k|k
∑ n

i=1
pb,ij

k|k+1μ
b,i
k+1|k+1

)
/
(∑ n

j =1
�

b,j
k|k
∑ n

i=1
pb,ij

k|k+1μ
b,i
k+1|k+1

)
(49)

where j = 1, 2, . . . , n.
Note, the prediction step and the filtering step in the BIF are different from the backward-

time filter of an EKF-based IMM-TFS. The linearization error and its covariance are used
to improve the accuracy of the BIF, while the state-of-the-art backward-time filter of IMM-
TFS does not take into account the linear error terms.

3.3. Two-filter-type IMM smoother. The two-filter-type IMM smoother takes into
account the models over two consecutive estimation periods. The smoothing estimates
can be inferred from the density p(xk|Z1:N ), which is conditioned on the multiple model
hypothesis. The Gaussian mixture expression of this smoothing density can be written as:

p (xk|Z1:N ) =
∑ n

j =1
μ

s,j
k|N p

(
xk|m j

k , Z1:N

)
(50)

where μs,j
k|N = p(m j

k |Z1:N ) is the smoothed model probability matched to m j
k . The Gaussian

mixture expression of density p(xk|m j
k , Z1:N ) can be written as:

p
(

xk|m j
k , Z1:N

)
=
∑ n

i=1
μ

s,i|j
k+1|N p

(
xk|mi

k+1, m j
k , Z1:N

)
(51)

where μ
i|j
k+1|N = (�s,ji

k|kp f , ji
k+1|k)/(

∑ n
i=1�

s,ji
k|kp f , ji

k+1|k) denotes the smoothed conditional model
probability and �

s,ji
k|k = p(Z k+1:N |mi

k+1, m j
k , Z1:k) represents the smoothed likelihood

matched to models mi
k+1 and m j

k . Note that Z k+1:N can be approximated by the set of model-
conditioned one-step predicted estimates of BIF, that is, {x̂b,r

k|k+1, Pb,r
k|k+1} n

r=1. Thus, the density
p(xk|m j

k , mi
k+1, Z1:N ) and �s,ji

k|k can be expressed as (Helmick et al, 1995):

p
(

xk|m j
k , mi

k+1, Z1:N

)
= N

(
xk; x̂b,i

k|k+1, Pb,i
k|k+1

)
N
(

xk; x̂ f , j
k|k , P f , j

k|k
)/

p
(

Z k+1:N |m j
k , Z1:k

)
(52)

�
s,ji
k|k = p

(
x̂b,i

k|k+1|mi
k+1, m j

k , x̂ f , j
k|k
)

(53)

where N (·) represents the normal distribution function of state.
The smoothed model probability in Equation (50) can be represented as:

μ
s,j
k|N = p

(
Z k+1:N |m j

k , Z1:k

)
μ

f , j
k|k /c4 (54)

where p(Z k+1:N |m j
k , Z1:k) =

∑ n
i=1�

s,ji
k|kp f , ji

k+1|k, c4 =
∑ n

j =1 p(Z k+1:N |m j
k , Z1:k)μ f , j

k|k .
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The two-filter-type IMM smoother can be summarised as follows:
1) Initialisation: For n models, the initial smoothed estimations are set to x̂s,i

N |N = x̂ f ,i
N |N ,

Ps,i
N |N = P f ,i

N |N , respectively, where i = 1, 2, . . . , n.
2) Model-matched smoothing:

x̂s,ji
k|N = Ps,ji

k|N

[(
P f , j

k|k
)−1

x̂ f , j
k|k +

(
Pb,i

k|k+1

)−1
x̂b,i

k|k+1

]
(55)

Ps,ji
k|N =

[(
P f , j

k|k
)−1

+
(

Pb,i
k|k+1

)−1
]−1

(56)

where i, j = 1, 2, . . . , n; x̂s,ji
k|N and Ps,ji

k|N are the associated mean and covariance for density
p(xk|m j

k , mi
k+1, Z1:N ), respectively.

3) Calculation of the likelihood functions:

�
s,ji
k|k = N

((
x̂b,i

k|k+1 − x̂ f , j
k|k
)

; 0,
(

Pb,i
k|k+1 + P f , j

k|k
))

, i, j = 1, 2, . . . , n (57)

4) Calculation of conditional model probabilities:

μ
s,i|j
k+1|N =

(
�

s,ji
k|kp f , ji

k+1|k
)
/
(∑ n

i=1
�

s,ji
k|kp f , ji

k+1|k
)

, i, j = 1, 2, . . . , n (58)

5) Mixing:

x̂s,j
k|N =

∑ n

i=1
μ

s,i|j
k+1|N x̂s,ji

k|N (59)

Ps,j
k|N =

∑ n

i=1
μ

s,i|j
k+1|N

[
Ps,ji

k|N +
(

x̂s,j
k|N − x̂s,ji

k|N
) (

x̂s,j
k|N − x̂s,ji

k|N
)T
]

(60)

where j = 1, 2, . . . , n; x̂s,j
k|N and Ps,j

k|N are the mixed mean and covariance for the smoothing
step matched to m j

k , respectively.
6) Model probabilities update:

μ
s,j
k|N =

(
μ

f , j
k|k

∑ n

i=1
�

s,ji
k|kp f , ji

k+1|k
)
/
(∑ n

j =1
μ

f , j
k|k

∑ n

i=1
�

s,ji
k|kp f , ji

k+1|k
)

(61)

where j = 1, 2, . . . , n.
7) Estimate:

x̂s
k|N =

∑ n

j =1
μ

s,j
k|N x̂s,j

k|N (62)

Ps
k|N =

∑ n

j =1
μ

s,j
k|N

[
Ps,j

k|N +
(

x̂s
k|N − x̂s,j

k|N
) (

x̂s
k|N − x̂s,j

k|N
)T
]

(63)

where j = 1, 2, . . . , n, x̂s
k|N and Ps

k|N are the smoothed mean and covariance.
The block diagram of the IMM-TFS for two models is shown in Figure 1. This dia-

gram illustrates the principle of the FIF, the BIF and the two-filter-type IMM smoother in
two consecutive estimation periods. Both the FIF and BIF algorithms consist of n filters,
and the smoothing step consists of n2 smoothers that operate in parallel. For simplicity,
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Figure 1. Block diagram of the IMM-TFS for two models.
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we define μf
k|k and μb

k|k as the vectors consisting of the filtered model probabilities for FIF

and BIF, respectively; μ f ,i|j
k−1|k−1 and μb,i|j

k+1|k+1 denote the matrices consisting of conditional
model probabilities for FIF and BIF, respectively; μs,i|j

k+1|N represents the matrix consisting
of smoothed conditional model probabilities and μs

k|N stands for the vector consisting of
smoothed model probabilities. The statistical linearization parameters of the nonlinear sys-
tem model are obtained from the FIF, and further used to form the pseudo-linear model for
the BIF. In addition, this diagram demonstrates the difference of the mixing steps between
the FIF and the BIF. In the FIF, the previous filtered estimates are effective at time step
k − 1. Thus, they can be mixed and predicted to model m j

k directly. In contrast, the previ-
ous filtered estimates of the BIF are effective at time step k + 1, which implies that these
estimates should be mixed after the one-step prediction step of the BIF. The smoothing
step inherits the merits of the previously reported IMM-TFS approach, which allows for
the merging of estimations and the mixing of different models. Consequently, the accuracy
of estimation is improved.

Compared with previously well-known fixed-interval smoothing approaches, the main
features of the DDF-based IMM-TFS are as follows: First, this approach is applicable
for solving the smoothing problem with uncertain model parameters in comparison to
the single-model-based smoother. Second, the WSLR method performed in the DDF-
based IMM-TFS sufficiently considers the uncertainty of the state and linearization error,
whereas the first-order linearization-based inverse Jacobian in the EKF-based IMM-
TFS can degrade the estimation performance or even divergence. Third, the proposed
approach maintains the principle of the two-filter-type IMM smoother, which uses the
estimates from both the FIF and BIF to calculate the smoothed model-conditioned esti-
mates and smoothed model probabilities. In contrast, the recursion step of the RTS-type
IMM smoother is only in terms of linearization parameters from the FIF, the structure of
which is more similar to that of a standard IMM filter (Nadarajah et al., 2012). Conse-
quently, the proposed smoother utilises the observations more effectively, but has a larger
computational burden than the RTS-type IMM smoother. Fortunately, the real-time perfor-
mance is not the first consideration compared with the estimation accuracy for an offline
smoothing issue.

4. NONLINEAR MODEL FOR RAPID TRANSFER ALIGNMENT. The error model
for INS is the foundation of the rapid transfer alignment. For some quick-response mis-
sions, the INS could be aligned with large misalignment angles, which motivates the study
of the nonlinear error model. In this section, the nonlinear model of rapid transfer alignment
is reviewed briefly.

The coordinate frames used in this section are listed as follows (Kain and Cloutier,
1989). The body frame of the MINS (m-frame), actual body frame of the SINS (sr-frame),
calculated body frame of the SINS (sc-frame), inertial frame (i-frame), local navigation
frame (n-frame) and Earth-centred Earth fixed frame (e-frame). Some notations in terms of
angular velocity and attitude transformation matrix are utilised for the description of the
system model for rapid transfer alignment. For convenience, the notation Cb

a is defined as
the Direction Cosine Matrix (DCM) from the a-frame to the b-frame, and ωz

xy is defined as
the angular velocity of the y-frame relative to the x-frame projected in the z-frame.

4.1. Attitude error model. The attitude error model enables the nonlinear propagation
of the measurable MINS/SINS coordinate frame misalignment angles as a function of the
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actual physical misalignment angles and the constant bias of the gyroscope. That is (Wei
and Gao, 2012):

ψ̇m = Ξ
[(

I − Csc
mCm

sr

)
ωsc

nsc
+ Csc

mCm
sr
εsr
]

+ wm (64)

where the matrix Ξ is defined as:

Ξ =

⎡
⎢⎣

cosψmy 0 sinψmy

sinψmy tanψmx 1 − cosψmy tanψmx

− sinψmy/ cosψmx 0 cosψmy/ cosψmx

⎤
⎥⎦ (65)

and ψm = [ψmx ψmy ψmz]T is the measurable misalignment angles vector, I is the unit
matrix with the appropriate dimension, εsr is the constant drift of the gyroscope and wm is
the noise term of the attitude error equation. Note the corresponding state vectors related to
Cm

sr
are actual physical misalignment angles, i.e., ψa = [ψax ψay ψaz]T.

4.2. Velocity error model. We assume that the acceleration induced by the lever-arm
effect has been compensated, and the velocity error model for rapid transfer alignment is
given by (Wei and Gao, 2012):

δV̇ n = C n
sc

(
I − Csc

mCm
sr

)
f sr

isr
− (

2ωn×
ie + ωn×

en

)
δV n + C n

sr
∇sr + wv (66)

where δV n is the velocity error term considering the lever-arm effect compensation, f sr
isr

is
the specific force sensed by SINS projected in the sr-frame, ∇sr is the constant bias of the
accelerometer and wv is a noise term, which contains the acceleration caused by flexure
deformation and the random error of acceleration.

4.3. Design of the nonlinear model for rapid transfer alignment. The measurable
misalignment angles ψm, velocity error δV n, gyro drift εsr , accelerometer bias ∇sr and
actual physical misalignment anglesψa are selected as the estimate state vector. We assume
that both the gyro drift and accelerometer bias are constant values. The actual physical mis-
alignment angles represent the angle errors between the m-frame and the sr-frame, and a
white noise process is used to represent the disturbance acting on ψa (Kain and Cloutier,
1989). Thus, the process model for rapid transfer alignment can be written as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ̇m = Ξ
[(

I − Csc
mCm

sr

)
ωsc

nsc
+ Csc

mCm
sr
εsr
]

+ wm

δV̇ n = C n
sc

(
I − Csc

mCm
sr

)
f sr

isr
− (

2ωn×
ie + ωn×

en

)
δV n + C n

sr
∇sr + wv

ε̇sr = 0
∇sr = 0
ψ̇a = ηa

(67)

where ηa is a white noise term with covariance Qa.
The measurable misalignment angles ψm and velocity error δV n are selected as

observations. The observation model can be described as:

zk = H kxk + vk (68)

where vk is the observation noise; the coefficient matrix H k is given in:

H k =

[
I 3×3 03×3 03×3 03×3 03×3

03×3 I 3×3 03×3 03×3 03×3

]
(69)
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Figure 2. Trajectory of the simulation.

The observation ψm can be obtained by using the multiplication operation between the
attitude DCM of the MINS and SINS. Note that the observations provided by the MINS suf-
fer from random time delay and unpredictable vibration, which can induce the observation
mismatch problem. Consequently, the statistics of the observation noise are uncertain.

5. SIMULATION AND DISCUSSION. In this section, a series of simulations are car-
ried out to validate the performance of the DDF-based IMM-TFS. The simulated data of
MINS and SINS are obtained through a common trajectory of aircraft. Then, the proposed
approach is compared with the EKF-based IMM-TFS, DDF-based TFS and DDF-based
IMM-RTSS.

5.1. Simulation parameters. In this subsection, a typical flight trajectory with a S
manoeuvre is designed, as shown in Figure 2. The aircraft flies for 50 s in a straight line
at first, then, an S-manoeuver of the aircraft is achieved with an 80◦ decrease and increase
in heading direction. Finally, the aircraft flies straight for 70 s again. The rapid transfer
alignment procedure is started at A point (40 s), and ended at point B (140 s).

The initial position of the aircraft is Latitude 40◦N, Longitude 116◦E and 800 m in
height. The velocity of the aircraft is 100 m/s. The initial heading angle of the air-
craft is 330◦ and the initial pitch angle and roll angle are set to 0◦. The gyro bias of
the SINS is 10◦/h, and the gyro white noise is 1◦/h. The accelerometer bias of the
SINS is 200 µg, and the accelerometer white noise is 100 µg. The attitude and veloc-
ity observations can be obtained from the measurement of the MINS. The precision of
attitude observation and velocity observation are 0.1◦ and 0.02 m/s, respectively. The
initial attitude errors are set to Ψ a = [5◦; 5◦; 10◦]. The covariance of Ψ a is set to Qa =
diag{(0.01◦/h)2, (0.01◦/h)2, (0.01◦/h)2}. The covariance of observation noise changes
twice during the flight: at 20 s and 60 s, and each period lasts 20 s. We define the model with
the normal observation noise level as model 1 and the model with three times observation
noise as model 2. The initial state vector and model probability vectors for the FIF are set to
x̂i

0|0 = 0, i = 1, 2 and μf
0|0 = [0.5 0.5]. The initial estimates for the BIF are obtained from

the final estimates of the FIF, and the model probabilities are set to μb
N |N = [0.5 0.5]. The

transition probability matrix is given by:

Ppro =

[
0.95 0.05
0.05 0.95

]
(70)
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Figure 3. Estimated error of Ψax and Ψay .

Figure 4. Estimated error of Ψaz .

5.2. Results and Discussions. The DDF-based IMM-TFS, DDF-based IMM-RTSS,
EKF-based IMM-TFS and DDF-based TFS were executed to estimate the actual physi-
cal misalignment angles of the SINS during the simulated flying trajectory. Figure 3 and
Figure 4 show the estimated errors of the different approaches. DDF-based TFS1 and DDF-
based TFS2 denote the results of the DDF-based TFS in terms of model 1 and model 2,
respectively.

As shown in Figure 3 and Figure 4, both the DDF-based IMM-TFS and DDF-based
IMM-RTSS approaches perform better than the DDF-based TFS for the different mod-
els. The estimation accuracies of DDF-based IMM-TFS and DDF-based IMM-RTSS are
indistinguishable in terms of Ψax and Ψay , and the former approach has a better estima-
tion result than the latter in terms of Ψaz. Note that the results obtained by DDF-based
IMM-RTSS are smoother than that of the DDF-based IMM-TFS in terms of all misalign-
ment angles. The EKF-based IMM-TFS obviously has the worst performance. The reasons
for the results can be summarised as follows. First, the mismatch problem decreases the
performance of the single-model-dependent DDF-based TFS. Moreover, the DDF-based
IMM-TFS combines the estimates of the FIF and BIF, that is, it uses the observations more
effectively. In contrast, the recursion step of DDF-based IMM-RTSS is only in terms of the
linearization parameters from the FIF, and the lower computation smoother corresponds to
a lower estimation accuracy with relatively smooth estimations. The WSLR used in DDF-
based IMM-TFS also improves the linearization accuracy of the nonlinear system model,
whereas the accumulated error that arises from the first-order Taylor expansion method in
the EKF-based IMM-TFS distinctly degrades the estimation accuracy.
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Table 1. Statistics of RMSE for 100 Monto Carlo simulations (◦).

EKF-based DDF-based DDF-based DDF-based DDF-based
IMM-TFS TFS1 TFS2 IMM-RTSS IMM-TFS

Ψax Mean 0.1843 0.0670 0.0578 0.0468 0.0507
STD 0.0948 0.0468 0.0280 0.0207 0.0230

Ψay Mean 0.1755 0.0599 0.0444 0.0271 0.0286
STD 0.0531 0.0362 0.0121 0.0102 0.0115

Ψaz Mean 0.3716 0.2992 0.2593 0.1676 0.1287
STD 0.2199 0.0942 0.0553 0.0499 0.0409

Figure 5. Average smoothed model probability of model 1 and model 2.

To make a general comparison of the performance, the four algorithms were performed
over 100 Monte Carlo simulations. The simulations of DDF-based TFS for two models
were separately executed to compare the performance of these approaches. The initial sim-
ulation parameters were set identical to the aforementioned case. In addition, we used
the time-average and Standard Deviation (STD) values of the Root Mean Square Errors
(RMSE) to evaluate the performances of different approaches. The resulting statistics of
the RMSE for 100 Monto Carlo simulations are shown in Table 1. The average smoothed
model probabilities in terms of different IMM-type smoothers are presented in Figure 5.

Table 1 shows that the DDF-based IMM-TFS gives superior results to the other
approaches in terms of the statistics of RMSE values. Although the estimation accuracy
of DDF-based IMM-TFS is close to that of DDF-based IMM-RTSS in terms of Ψax and
Ψay , the former approach gives better results for the estimation of Ψaz. However, the STD
values of DDF-based IMM-TFS are larger than the DDF-based IMM-RTSS, since the com-
bination of the estimations from FIF and BIF degrade the smoothness of the results. The
DDF-based TFS approaches perform worse than the DDF-based IMM smoothers because
of the observation mismatch problem. The EKF-based IMM-TFS obviously gives the worst
estimation accuracy for all three misalignment angles.

As shown in Figure 5, the probabilities estimated by different IMM smoothers rapidly
switch, which indicates that they efficiently detect the changes of the model, and show an
explicit variation of the changes with respect to different models. The priority of probability
weight shows higher values than the related model according to the simulated situation.
The simulation shows that the two-filter-type IMM smoother has comparable results to the
smoothed model probabilities of the R-T-S-type IMM smoother.

The mean value of the computing time for the implementation of these four methods are
listed as follows. The required time for EKF-based IMM-TFS is 5.49 s; the required time
for DDF-based TFS is 14.53 s; the required time for DDF-based IMM-RTSS is 27.58 s

https://doi.org/10.1017/S0373463317000881 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000881


766 DAPENG ZHOU AND LEI GUO VOL. 71

Figure 6. The statistics of RMSE for Ψax and Ψay in different cases.

Figure 7. The statistics of RMSE for Ψaz in different cases.

and the required time for DDF-based IMM-TFS is 29.42 s. The results agree well with
the theoretical analysis in Section 2, that is, the high estimation accuracy of DDF-based
IMM-TFS comes at the cost of a larger computation load.

To validate the ability to handle an increasing degree of nonlinearity, the DDF-based
IMM-TFS is compared with other smoothers, and different cases of initial error for Ψaz are
designed. The initial errors for Ψaz are set to 10◦ − 30◦ with 5◦ intervals, and the initial
errors of Ψax and Ψay are set to 5◦ for these cases. Then, the aforementioned four smooth-
ing approaches were performed using the data simulated by the trajectory generator, and
each approach was executed 100 times for each different case. The results in terms of the
statistics of the RMSE for different approaches are displayed in Figure 6 and Figure 7.

As shown in Figure 6 and Figure 7, the estimation errors of the EKF-based IMM-
TFS increase distinctly with the growth of the initial error of Ψaz, which illustrates that
the first-order Taylor expansion method severely decreases the performance of this esti-
mator. There is no significant difference between the results of the DDF-based TFS in
terms of different models for these cases, and they have poor performance because they
suffer from observation mismatch. Simultaneously, the performances of DDF-based IMM-
RTSS and DDF-based IMM-TFS are stable with the increasing initial error of Ψaz. For the
estimation results of Ψax and Ψay , the precision of the DDF-based IMM-RTSS is close
to that of DDF-based IMM-TFS, and the latter approach performs better than the for-
mer in terms of the estimation accuracy of Ψaz. The results illustrate that the DDF-based
IMM-TFS can prevent the divergence and achieve a higher estimation accuracy than other
approaches.
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6. CONCLUSIONS. In this paper, we investigated a DDF-based IMM-TFS approach
to address the accuracy evaluation issue of rapid transfer alignment with the coexistence
of a high degree of nonlinearity and uncertain observation noise. The proposed approach
inherits the basic structure of the two-filter-type IMM smoother, which includes a DDF-
based FIF with WSLR, a standard KF-based BIF, and a two-filter-type IMM smoother. The
WSLR method performed in the FIF escapes the restriction of the required inversion of
the nonlinear system model, and the resulting linearization parameters are used to form the
pseudo-linear model for BIF. Compared with the RTS-type IMM smoother, the DDF-based
IMM-TFS benefits from the combination of two independent solutions obtained from FIF
and BIF, which implies that it contains more error information during the alignment proce-
dure. In addition, the mixing step of the proposed smoother takes into account the model
switching situation, thus, better accuracy can be achieved compared with the single-model
based smoother. Besides, the DDF-based IMM-TFS can effectively detect the changes
of the model, and the simulation results show that the estimation performance of model
probability is at least comparable to those of the EKF-based IMM-TFS and DDF-based
IMM-RTSS. In conclusion, with the improved estimation accuracy, the DDF-based IMM-
TFS can be considered as a candidate approach to address the accuracy evaluation issue of
rapid transfer alignment.
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