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A surprisingly simple and explicit expression for the waiting time distribution of
the MX/D/c batch arrival queue is derived by a full probabilistic analysis, requir-
ing neither generating functions nor Laplace transforms. Unlike the solutions known
so far, this expression presents no numerical complications, not even for high traf-
fic intensities.

1. INTRODUCTION

In the M*/D/c queue, batches of customers arrive according to a Poisson process
with rate A. There are c¢ identical servers, serving each customer on a first-come
first-served basis during a constant time D. Batch sizes are independently and
identically distributed. With probability b;, a batch contains i > 0 customers
(22, b; = 1). The average batch size B = X2, ib;. In order to ensure irreduc-
ibility, we assume b; > 0 for at least one such i that ¢ and i have a greatest
common divisor of 1. We assume the traffic intensity p = ABD/c < 1.

By the use of generating functions, an explicit expression for the waiting time
distribution of the M*/D/c queue was derived by Kuczura [1]. Due to alternating
terms, which are, in general, much larger than their sum, Kuczura’s result is not
really practical for numerical purposes.

As a way to get around the problem of round-off errors, a recursion scheme is
described in Tijms [2]. However, “for increasing ¢ and p this recursion scheme
(too) will ultimately be hampered by round off errors,” for which case an asymp-
totic expansion is recommended.
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This article presents an alternative probabilistic approach, leading to a simple
formula for the waiting time distribution, which is numerically stable for all p < 1.
The analysis does not require generating functions or Laplace transforms.

2. NUMBER OF CUSTOMERS PRESENT IN THE SYSTEM

Let r;(T) denote the probability that exactly j new customers arrive during an arbi-
trary time interval of length 7. Given that in such a time interval, n batch arrivals
take place, the probability W;(n) of these n batches containing j new customers can
be derived by recursion from the convolution formula:

‘If](n) = Ji biq’j—i(”l -1,
i=1
¥ (1) = b,.

Since the number of batches arriving during an arbitrary time interval of length 7'is
Poisson distributed, the following expression holds for r,(7'):

(A T)"

ri(T) = E W;(n) e M.
n=1

Our next objective will be to derive a set of equations for p,(¢), the probability of
the system holding i customers at time ¢. Observe that all customers in service at
time ¢ will have left the system at time ¢ + D. Consequently, customers present at
time ¢ + D either arrived during the time interval (z, ¢ + D] or were already waiting
for service at time 7. Hence, by conditioning on the number of customers present at
time ¢, we find

i+c

pi(t+ D)= 2 pi(t)r;(D) + > pi(t)risc—;(D), foralli € N,. 2.1)

Jj=0 Jj=c+1

The stationary distribution p; = lim,_, ., p;(¢) is found by letting r — oo in (2.1):

i+c
E p;iri(D) + > Dilisve—j(D) foralli € Ny. 2.2)
j=0 Jj=c+1

Together with the normalization equation and the capacity utilization equation, (2.2)
constitutes an infinite system of linear equations with a unique solution (due to the
irreducibility of the system) that can be calculated in several ways. In Tijms [2], a
fast Fourier transform method and a geometric tail approach to solving (2.2) are
described, both of which are quite efficient.

3. THE WAITING TIME DISTRIBUTION

Customers arriving in (m + 1)st position within their batch will not be served until
the first m customers of their batch are being served. This type of customers will be
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called customers of the m-class. Let W,, denote the waiting time of an arbitrary
m-class customer in the stationary system. The corresponding m-class waiting time
distribution is denoted by F,,(x):

F,(x) = P{W,, = x}.

In order to find an expression for F,,(x), we assume that an arbitrary m-class cus-
tomer enters the stationary system. We define r = 0 at the arrival of this customer,
which will be called the “marked customer.” Let u = D be some positive time lapse.
Due to the memoryless property of the arrival process, the system receives, with
probability r,(u), exactly n new customers during the time interval (—u,0), just
prior to the arrival of our marked customer.

We will focus on the queuing position of our marked customeratt=D —u =0,
given that n new customers arrive during the time interval (—u,0). Together with
the m customers of higher priority, from + = —u onward there will be m + n new
customers that entered the system with higher priority than the marked customer.
Another group of customers with higher priority are those who were already wait-
ing for service at t = —u. Therefore, we introduce the following definitions:

L,(t) := the queue length at time ¢
qi(t) := P{L,(¢) = i}
g; = lim ¢,(r) = lim P{L,(t) = i}.
t—o0 t—o0

Let j = L,(—u) denote the number of customers waiting for service at t = —u. All
customers in service at t = —u will have left the system at t = D — u. Consequently,
atr = D — u, the system contains exactly j + m + n customers with a higher priority
than the marked customer. If j + m + n < kc, the service initiation of the marked
customer will take place no later than t = kD — u, implying W,, = kD — u. On the
other hand, if j + m + n = kc, the service start of the marked customer will take
place after t = kD — u, implying W,, > kD — u. Thus, by conditioning on n, we find

P{W,, = kD — u | n new customers arrive during (—u,0)} = P{L,(—u) < kc —n — m}.
3.1)

According to PASTA, as proven by Wolff [3,4], it is possible to find the time-
average probability of any state of the system by sampling the system at the jump
times of some Poisson process A ={A(r), t = 0}. The crux of Wolff’s central theo-
rem is that the Poisson process need not necessarily be the arrival process. In fact,
any Poisson process will do, provided that it satisfies the Lack of Anticipation
Assumption (LAA), implying that its increments A(z + Az) — A(¢) and the evolu-
tion of the system {U(s), 0 = s =< ¢} are independent for any fixed r > 0. Therefore,
we can also apply PASTA to the Poisson process A,, = {A,,(r), t = 0}, which is
counting the arrivals of all batches containing more than m customers. Another Pois-
son process satisfying LAA is A%, ={A,, (¢ + u), t = 0} for any positive u. Here, all
jumps are taking place exactly u time units before the corresponding jumps of A,,,.
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Thus, by applying PASTA to A% in the M*/D/c system, we find for the right-hand
side of equation (3.1),

P{L,(—u) <kc —n—m}=1lim P{L,(t) < kc —n —m}

ke—n—m—1 ke—n—m—1
=lm > q= X q.
=e =0 i=0

Now, by defining the cumulative probability Q; := X/_,q; = >/2(p;, we can
rewrite equation (3.1) as

P{W,, = kD — u | n new customers arrive during (—u,0)} = Q. p—m—1-
Since negative queue lengths are impossible, we sum over all n = kc —m — 1 in
order to obtain the (unconditional) waiting time distribution of m-class customers:

ke—m—1

> Qw-n-m_1 P{n new customers arrive during (—u,0)}
n=0

P{W, < kD — u}

ke—m—1

2 Qkanfmfl rn(u)-

n=0

Substituting x = kD — u, this result can be formulated in terms of x:

ke—m—1
PW,=xt= 2 OQu-nmitakD—x)  for(k—1)D=x<kD. (3.2)
n=0
Since this expression contains only a finite number of positive terms and since
Ote—n-m—1 and r,(kD — x) can be calculated as described in Section 2, (3.2) does
not present any numerical complications, regardless of the traffic intensity p.

Our next objective will be to derive an expression for the general waiting time
distribution F(x) = P{W = x} for an arbitrary customer of unknown class. With
probability jb; /22 | ib; = jb; /B, the marked customer arrives in a batch containing
Jj customers. Given that a customer arrives in a batch of j customers, there is a prob-
ability of 1/; that this customer is of the m-class, form =0,...,j — 1. (Here, m = j
is not possible since m is the number of customers with higher priority that arrived
in the same batch as the marked customer.) By conditioning on the batch size j, we
find the probability a,, of an arbitrary customer being m-class:

o 1 . . . 1 &
a,= > - P{arrival takes place in batch of size j} = — > b;.
j=m+1] Bl

Using these constants a,,, we can write the following expression for the general
waiting time distribution:

ke—m—1

PW=x}=Da, > Qw-nm1r(kD—x) for(k—1)D=x<kD.

m=0 n=0

(3.3)
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