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A surprisingly simple and explicit expression for the waiting time distribution of
the M X0D0c batch arrival queue is derived by a full probabilistic analysis, requir-
ing neither generating functions nor Laplace transforms+Unlike the solutions known
so far, this expression presents no numerical complications, not even for high traf-
fic intensities+

1. INTRODUCTION

In the M X0D0c queue, batches of customers arrive according to a Poisson process
with rate l+ There are c identical servers, serving each customer on a first-come
first-served basis during a constant time D+ Batch sizes are independently and
identically distributed+ With probability bi , a batch contains i � 0 customers
~(i�1
` bi � 1!+ The average batch size B � (i�1

` ibi + In order to ensure irreduc-
ibility, we assume bi � 0 for at least one such i that c and i have a greatest
common divisor of 1+ We assume the traffic intensity r � lBD0c � 1+

By the use of generating functions, an explicit expression for the waiting time
distribution of the M X0D0c queue was derived by Kuczura @1# + Due to alternating
terms, which are, in general, much larger than their sum, Kuczura’s result is not
really practical for numerical purposes+

As a way to get around the problem of round-off errors, a recursion scheme is
described in Tijms @2# + However, “for increasing c and r this recursion scheme
~too! will ultimately be hampered by round off errors,” for which case an asymp-
totic expansion is recommended+
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This article presents an alternative probabilistic approach, leading to a simple
formula for the waiting time distribution, which is numerically stable for all r� 1+
The analysis does not require generating functions or Laplace transforms+

2. NUMBER OF CUSTOMERS PRESENT IN THE SYSTEM

Let rj~T ! denote the probability that exactly j new customers arrive during an arbi-
trary time interval of length T+ Given that in such a time interval, n batch arrivals
take place, the probability Cj~n! of these n batches containing j new customers can
be derived by recursion from the convolution formula:

Cj ~n! �(
i�1

j�1

biCj�i ~n � 1!,

Cj ~1! � bj +

Since the number of batches arriving during an arbitrary time interval of length T is
Poisson distributed, the following expression holds for rj~T !:

rj ~T ! � (
n�1

`

Cj ~n!
~lT !n

n!
e�lT +

Our next objective will be to derive a set of equations for pi~t !, the probability of
the system holding i customers at time t+ Observe that all customers in service at
time t will have left the system at time t � D+ Consequently, customers present at
time t � D either arrived during the time interval ~t, t � D# or were already waiting
for service at time t+ Hence, by conditioning on the number of customers present at
time t, we find

pi ~t � D! � (
j�0

c

pj ~t !ri ~D!� (
j�c�1

i�c

pj ~t !ri�c�j ~D!, for all i � N0 + (2.1)

The stationary distribution pi � limtr`pi~t ! is found by letting tr ` in ~2+1!:

pi � (
j�0

c

pj ri ~D!� (
j�c�1

i�c

pj ri�c�j ~D! for all i � N0 + (2.2)

Together with the normalization equation and the capacity utilization equation, ~2+2!
constitutes an infinite system of linear equations with a unique solution ~due to the
irreducibility of the system! that can be calculated in several ways+ In Tijms @2# , a
fast Fourier transform method and a geometric tail approach to solving ~2+2! are
described, both of which are quite efficient+

3. THE WAITING TIME DISTRIBUTION

Customers arriving in ~m � 1!st position within their batch will not be served until
the first m customers of their batch are being served+ This type of customers will be

346 G. J. Franx

https://doi.org/10.1017/S0269964805050199 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050199


called customers of the m-class+ Let Wm denote the waiting time of an arbitrary
m-class customer in the stationary system+ The corresponding m-class waiting time
distribution is denoted by Fm~x!:

Fm~x! � P $Wm � x%+

In order to find an expression for Fm~x!, we assume that an arbitrary m-class cus-
tomer enters the stationary system+We define t � 0 at the arrival of this customer,
which will be called the “marked customer+” Let u � D be some positive time lapse+
Due to the memoryless property of the arrival process, the system receives, with
probability rn~u!, exactly n new customers during the time interval ~�u,0!, just
prior to the arrival of our marked customer+

We will focus on the queuing position of our marked customer at t � D � u � 0,
given that n new customers arrive during the time interval ~�u,0!+ Together with
the m customers of higher priority, from t � �u onward there will be m � n new
customers that entered the system with higher priority than the marked customer+
Another group of customers with higher priority are those who were already wait-
ing for service at t � �u+ Therefore, we introduce the following definitions:

Lq~t ! :� the queue length at time t

qi ~t ! :� P $Lq~t !� i %

qi :� lim
tr`

qi ~t !� lim
tr`

P $Lq~t !� i %+

Let j � Lq~�u! denote the number of customers waiting for service at t � �u+ All
customers in service at t � �u will have left the system at t � D � u+ Consequently,
at t � D � u, the system contains exactly j � m � n customers with a higher priority
than the marked customer+ If j � m � n � kc, the service initiation of the marked
customer will take place no later than t � kD � u, implying Wm � kD � u+ On the
other hand, if j � m � n � kc, the service start of the marked customer will take
place after t � kD � u, implying Wm � kD � u+ Thus, by conditioning on n, we find

P $Wm � kD � u 6 n new customers arrive during ~�u,0!%� P $Lq~�u! � kc � n � m%+

(3.1)

According to PASTA, as proven by Wolff @3,4# , it is possible to find the time-
average probability of any state of the system by sampling the system at the jump
times of some Poisson process A[ $A~t !, t � 0% + The crux of Wolff ’s central theo-
rem is that the Poisson process need not necessarily be the arrival process+ In fact,
any Poisson process will do, provided that it satisfies the Lack of Anticipation
Assumption ~LAA!, implying that its increments A~t � Dt !� A~t ! and the evolu-
tion of the system $U~s!, 0 � s � t % are independent for any fixed t � 0+ Therefore,
we can also apply PASTA to the Poisson process Am [ $Am~t !, t � 0% , which is
counting the arrivals of all batches containing more than m customers+Another Pois-
son process satisfying LAA is Am

u [ $Am~t � u!, t � 0% for any positive u+ Here, all
jumps are taking place exactly u time units before the corresponding jumps of Am+
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Thus, by applying PASTA to Am
u in the M X0D0c system, we find for the right-hand

side of equation ~3+1!,

P $Lq~�u! � kc � n � m%� lim
tr`

P $Lq~t ! � kc � n � m%

� lim
tr`
(
i�0

kc�n�m�1

qi ~t !� (
i�0

kc�n�m�1

qi +

Now, by defining the cumulative probability Qj :� (i�0
j qi � (i�0

j�c pi , we can
rewrite equation ~3+1! as

P $Wm � kD � u 6 n new customers arrive during ~�u,0!%� Qkc�n�m�1+

Since negative queue lengths are impossible, we sum over all n � kc � m � 1 in
order to obtain the ~unconditional! waiting time distribution of m-class customers:

P $Wm � kD � u%� (
n�0

kc�m�1

Qkc�n�m�1 P $n new customers arrive during ~�u,0!%

� (
n�0

kc�m�1

Qkc�n�m�1 rn~u!+

Substituting x � kD � u, this result can be formulated in terms of x:

P $Wm � x%� (
n�0

kc�m�1

Qkc�n�m�1 rn~kD � x! for ~k � 1!D � x � kD+ (3.2)

Since this expression contains only a finite number of positive terms and since
Qkc�n�m�1 and rn~kD � x! can be calculated as described in Section 2, ~3+2! does
not present any numerical complications, regardless of the traffic intensity r+

Our next objective will be to derive an expression for the general waiting time
distribution F~x! � P $W � x% for an arbitrary customer of unknown class+ With
probability jbj 0(i�1

` ibi � jbj 0B, the marked customer arrives in a batch containing
j customers+ Given that a customer arrives in a batch of j customers, there is a prob-
ability of 10j that this customer is of the m-class, for m � 0, + + + , j � 1+ ~Here, m � j
is not possible since m is the number of customers with higher priority that arrived
in the same batch as the marked customer+! By conditioning on the batch size j, we
find the probability am of an arbitrary customer being m-class:

am � (
j�m�1

` 1

j
P $arrival takes place in batch of size j %�

1

B (j�m�1

`

bj +

Using these constants am, we can write the following expression for the general
waiting time distribution:

P $W � x%� (
m�0

`

am (
n�0

kc�m�1

Qkc�n�m�1 rn~kD � x! for ~k � 1!D � x � kD+

(3.3)
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