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In the reliability context, the geometric distribution is a natural choice to model the
lifetimes of some equipment and components when they are measured by the number of
completed cycles of operation or strokes, or in case of periodic monitoring of continuous
data. This paper aims at investigating how the heterogeneity among the parameters affects
some characteristics such as the distribution and hazard rate functions of spacings arising
from independent heterogeneous geometric random variables. First, refined representations
of the distribution functions are provided for both the second spacing and sample range
from heterogeneous geometric sample. Second, stochastic comparisons are carried out on
the second spacings and sample ranges for two sets of independent and heterogeneous
geometric random variables in the sense of the usual stochastic and hazard rate orderings.
The results established here not only fill the gap on the study of stochastic properties of
spacings from heterogeneous geometric samples, but also are expected to be applied in
the fields of statistics and reliability.

Keywords: geometric distribution, hazard rate ordering, majorization, sample range, second
spacing, usual stochastic ordering

1. INTRODUCTION

As the discrete counterpart of the exponential distribution, the geometric random variable
X with parameter 0 < q < 1, is given by the probability mass function

P(X = k) = pqk−1, k = 1, 2, . . . ,

where p = 1 − q. This model is characterized by the lack of memory and the constant hazard
rate properties. It is well known that the exponential distribution is widely referenced
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probability law as the simplest choice used in reliability and life testing for continuous
data. When the lifetimes of some equipment and components are measured by the number
of completed cycles of operation or strokes, or in case of periodic monitoring of continuous
data, the geometric distribution is a natural choice instead of exponential distribution. In
the literature, the geometric random variable plays a special role in stochastic modeling
and has received much attention. For instance, [7] modeled the fatigue failure of aircraft
wing by geometric distribution. [9] studied the order statistics from geometric distribution
and their relation to inverse sampling and reliability of redundant systems. [2] pointed out
the maximum order statistics from heterogenous geometric samples could be used in the
engineering models, such as wireless broadcast transmission systems.

Let X1, . . . , Xn be independent random variables with possible different distributions.
Denote the ith order statistic by Xi:n, and the ith spacing by Xi:n −Xi−1:n, i = 1, . . . , n,
with X0:n ≡ 0, and the sample range by Xn:n −X1:n. Spacings and their functions are of
great interest in many areas. For instance, the sample range plays an important role as one
of the criteria for comparing variabilities among distributions in statistics, while spacings are
used in goodness-of-fit tests, outlier detection and characterization of distributions. In the
context of reliability, spacings correspond to times elapsed between failures of components
in a system, etc. Therefore, it is important to study the stochastic properties of spacings
under different models. In the past decades, a surge of research has appeared on stochastic
comparisons of spacings and sample ranges arising from independent exponential samples.
Especially, considerable attention has been paid recently to studying how the heterogeneity
affects some distribution characteristics of exponential spacings and ranges, including their
distribution functions and the (reversed) hazard rate functions. Interested readers may
refer to [5,6] for an elaborate review. However, if the random sample comes from discrete
variables, the distribution theory of spacings becomes very complicated due to the existence
of ties, and few literature was devoted to studying this topic.

For ease of reference, let us recall some stochastic orderings for discrete random variables
and the notion of majorization that will be used in the sequel. Let X and Y be two non-
negative discrete random variables taking values on the set of natural numbers N. Let
N+ = N \ {0}, R = (−∞,+∞) and R− = (−∞, 0]. The notation “

sgn
= ” is used to express that

the both sides of the equity have the same sign. Throughout this paper, the term increasing
is used for monotone non-decreasing and decreasing for monotone non-increasing.

Definition 1.1: X is said to be greater than Y in:

(i) the usual stochastic ordering (denoted by X ≥st Y ) if P(X ≥ k) ≥ P(Y ≥ k) for all
k ∈ N;

(ii) the hazard rate ordering (denoted by X ≥hr Y ) if P(X ≥ k)/P(Y ≥ k) is increasing
in k ∈ N;

(iii) the reversed hazard rate ordering (denoted by X ≥rh Y ) if P(X ≤ k)/P(Y ≤ k) is
increasing in k ∈ N;

(iv) the likelihood ratio ordering (denoted by X ≥lr) if P(X = k)/P(Y = k) is increasing
in k ∈ N.

It is well known that both of the hazard rate ordering and reversed hazard rate ordering
imply the usual stochastic ordering. For comprehensive details on the theory of stochastic
orderings and their applications, one may refer to [12]).
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The concept of majorization, which is quite useful in establishing various inequalities,
will be also employed to describe the difference in parameter vectors of random geomet-
ric samples in our discussion. Let x1:n ≤ · · · ≤ xn:n be the increasing arrangement of the
components of the vector x = (x1, . . . , xn).

Definition 1.2: A vector x is said to majorize another vector y = (y1, . . . , yn) (denoted

by x
m� y), if

∑n
i=1 xi:n =

∑n
i=1 yi:n and

∑j
i=1 xi:n ≤∑j

i=1 yi:n for j = 1, . . . , n− 1.

Recall that a function ϕ : Rn �→ R is said to be Schur-convex [Schur-concave] if ϕ(x) ≥
[≤]ϕ(y) whenever x

m� y for x and y in Rn. For a comprehensive exposition on theory and
application of the majorization order as well as Schur-convex (Schur-concave) function, one
may refer to [10].

The following two lemmas concerning majorization and Schur-convex functions are quite
useful in developing our main results in the sequel.

Lemma 1.3: [10] Let φ(x) be symmetric and have continuous partial derivatives for x =
(x1, · · · , xn) ∈ Dn, D is an open interval. Then φ : Dn �→ R is Schur-convex [Schur-concave],
if and only if

(xi − xj)
(
∂φ(x)
∂xi

− ∂φ(x)
∂xj

)
≥ [≤]0,

for x ∈ Dn such that xi 
= xj with 1 ≤ i < j ≤ n.

Lemma 1.4: [3] If I ⊂ R is an interval and g : I → R is a convex function, then φ(x) =∑m
i=1 g(xi) is a Schur-convex function of x = (x1, . . . , xm) on In.

To the best of our knowledge, there are few papers in the literature handling the
stochastic properties of order statistics arising from heterogeneous geometric samples such
as [1,8,13], but none of their work exists for spacings. To fill this gap, this paper focuses
on providing refined representations of the distribution functions of the second spacing
and sample range arising from heterogeneous geometric sample, and then investigating how
the heterogeneity affects some characteristics such as the corresponding distribution and
hazard rate functions. Let X1, . . . , Xn be a sequence of independent geometric variables
with respective parameters q1, . . . , qn, and let Y1, . . . , Yn be another sequence of indepen-
dent geometric variables with respective parameters q∗1 , . . . , q

∗
n. Denote q = (q1, . . . , qn) and

log q = (log q1, . . . , log qn). For the case that both samples are heterogeneous, we prove
that the majorization order between log q and log q∗ implies the usual stochastic order-
ing between X2:n −X1:n and Y2:n − Y1:n, and the majorization order between q and q∗

implies the usual stochastic ordering between Xn:n −X1:n and Yn:n − Y1:n. Let

q̃ =

⎛
⎝ 1
n

n∑
i=1

n∏
j �=i

qj

⎞
⎠

1/(n−1)

and q̄ =
1
n

n∑
i=1

qi.

Under the assumption that q∗1 = · · · = q∗n = q, it is further shown that, in the sense of
hazard rate ordering, X2:n −X1:n is larger than Y2:n − Y1:n if q ≤ q̃, whereas X2:n −X1:n is
smaller than Y2:n − Y1:n if q ≥ qmax = max1≤i≤n qi, and Xn:n −X1:n is larger than Yn:n −
Y1:n according to the usual stochastic ordering if q ≤ q̄.

The remainder of the paper is rolled out as follows. Section 2 discusses the ordering
properties of the second spacing from independent heterogeneous geometric variables in the
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sense of the hazard rate and usual stochastic orderings. In Section 3, sufficient conditions are
provided for the usual stochastic ordering between the sample ranges arising from two sets
of independent and heterogenous/homogeneous geometric variables. Section 4 concludes the
paper.

2. SECOND SPACING

In this section, stochastic comparisons are carried out on the second spacings arising from
independent heterogeneous geometric samples. We start our discussion by presenting the
explicit representation of survival function of second spacing arising from independent
heterogeneous geometric sample.

Proposition 2.1: Let X1, . . . , Xn be a sequence of independent geometric random vari-
ables with respective parameters q1, . . . , qn. Then, it follows that, for k ∈ N+

P(X2:n −X1:n ≥ k) =
∏n

i=1 q
k
i

1 −∏n
i=1 qi

n∑
i=1

1 − qi
qk
i

,

and

P(X2:n −X1:n = 0) = 1 −
∏n

i=1 qi
1 −∏n

i=1 qi

n∑
i=1

1 − qi
qi

.

Proof: Note that, for k ∈ N+,

P(X2:n −X1:n ≥ k) = P(X2:n −X1:n ≥ k,X2:n −X1:n > 0)

=
n∑

i=1

P(X2:n −X1:n ≥ k,X2:n −X1:n > 0,X1:n = Xi)

=
n∑

i=1

P(X2:n −X1:n ≥ k|X2:n −X1:n > 0,X1:n = Xi)

× P(X2:n −X1:n > 0,X1:n = Xi). (1)

First, it can be observed that, for any fixed i ∈ {1, . . . , n}
P(X2:n −X1:n > 0,X1:n = Xi) = P(Xj > Xi, j 
= i)

=
∞∑

k=1

P(Xj > Xi = k, j 
= i)

=
∞∑

k=1

(1 − qi)qk−1
i

n∏
j �=i

qk
j

=
1 − qi
qi

∞∑
k=1

n∏
j=1

qk
j

=
1 − qi
qi

∏n
j=1 qj

1 −∏n
j=1 qj

. (2)

Notice that the random variable Z [i] := [X2:n −X1:n|X2:n −X1:n > 0,X1:n = Xi] is the
smallest order statistic from the independent random variables Z [i]

j := [Xj −Xi|Xj > Xi]
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for j = 1, . . . , n and j 
= i. From the memoryless property of the geometric distribution, it
is known that Z [i]

j has the same distribution as Xj for j = 1, . . . , n and j 
= i. Let X [i]
j:n−1

be the jth order statistic from {X1, . . . , Xn} \ {Xi}. Therefore, Z [i] has the same survival
function as X [i]

1:n−1, that is,

P(Z [i] ≥ k) = P(X [i]
1:n−1 ≥ k) =

n∏
j �=i

qk−1
j . (3)

For k = 1, 2, . . ., substituting (2) and (3) into (1), we get

P(X2:n −X1:n ≥ k) =
n∑

i=1

∏
j �=i

qk−1
i

1 − qi
qi

∏n
i=1 qi

1 −∏n
i=1 qi

=
∏n

i=1 q
k
i

1 −∏n
i=1 qi

n∑
i=1

1 − qi
qk
i

.

On the other hand,

P(X2:n −X1:n = 0) = 1 − P(X2:n −X1:n ≥ 1)

= 1 −
∏n

i=1 qi
1 −∏n

i=1 qi

n∑
i=1

1 − qi
qi

.

Thus, the proof is completed. �

Now, we are ready to state the first main result of this section.

Theorem 2.2: Let X1, . . . , Xn be a sequence of independent geometric random variables
with respective parameters q1, . . . , qn, and let Y1, . . . , Yn be another sequence of independent
geometric random variables with respective parameters q∗1 , . . . , q

∗
n. Then,

log q
m� log q∗ =⇒ X2:n −X1:n ≥st Y2:n − Y1:n.

Proof: By making the transformations λi = log qi and λ∗i = log q∗i for i = 1, . . . , n, we have
λ �m λ∗. It is trivial that P(X2:n −X1:n ≥ 0) = P(Y2:n − Y1:n ≥ 0) = 1. Then, for any k ∈
N+, the survival functions of X2:n −X1:n and Y2:n − Y1:n can be written, respectively, as

P(X2:n −X1:n ≥ k) =
ek
∑n

i=1 λi

1 − e
∑n

i=1 λi

n∑
i=1

1 − eλi

ekλi

and

P(Y2:n − Y1:n ≥ k) =
ek
∑n

i=1 λ∗
i

1 − e
∑n

i=1 λ∗
i

n∑
i=1

1 − eλ∗
i

ekλ∗
i
.

We need to show the inequality

n∑
i=1

1 − eλi

ekλi
≥

n∑
i=1

1 − eλ∗
i

ekλ∗
i
.

As a result, it is enough to show that

φ1(λ) =
n∑

i=1

1 − eλi

ekλi
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Figure 1. Ratio of the survival functions of X2:3 −X1:3 and Y2:3 − Y1:3.

is Schur-convex in λ ∈ Rn
−. Note that, for all x ∈ R−,

d2(1 − ex)e−kx

dx2
= k2e−kx − (k − 1)2e(1−k)x ≥ 0,

which means (1 − ex)e−kx is convex in x ∈ R−. Now, upon using Lemma 1.4, the desired
result follows. �

As the illustration of Theorem 2.2 above, the next example shows that the result in
Theorem 2.2 cannot be strengthened to the hazard rate ordering.

Example 2.3: Let X1, X2, and X3 be independent geometric random variables with param-
eters (q1, q2, q3) = (0.15, 0.2, 0.6), and let Y1, Y2, and Y3 be another set of independent
geometric variables with parameters (q∗1 , q

∗
2 , q

∗
3) = (0.15, 0.3, 0.4). Clearly, it can be veri-

fied that (log(0.15), log(0.2), log(0.6)) �m (log(0.15), log(0.3), log(0.4)). The ratio of survival
functions of X2:3 −X1:3 and Y2:3 − Y1:3 is plotted in Figure 1, from which it can be seen that
the ratio is always larger than 1, but the corresponding curve is firstly increasing and then
decreasing in k ∈ N+. This implies that there is usual stochastic ordering but no hazard
rate ordering between X2:3 −X1:3 and Y2:3 − Y1:3.

However, the hazard rate ordering between the second spacings can be established in
the case wherein one random sample is heterogeneous and the other is homogeneous. They
are presented in the following two results.

Theorem 2.4: Let X1, . . . , Xn be a sequence of independent geometric random variables
with respective parameters q1, . . . , qn, and let Y1, . . . , Yn be another sequence of independent
and identically distributed (i.i.d.) geometric random variables with a common parameter q.
Then, if q ≤ q̃, we have X2:n −X1:n ≥hr Y2:n − Y1:n, here q̃ = ((1/n)

∑n
i=1

∏n
j �=i qj)

1/(n−1).
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Proof: Denote by λX(k) and λY (k) the hazard rate functions of X2:n −X1:n and Y2:n −
Y1:n, respectively. Then, from Proposition 2.1 we have

λX(0) =
P(X2:n −X1:n = 0)
P(X2:n −X1:n ≥ 0)

= 1 −
∏n

i=1 qi
1 −∏n

i=1 qi

n∑
i=1

1 − qi
qi

,

and for k ∈ N+,

λX(k) =
P(X2:n −X1:n ≥ k) − P(X2:n −X1:n ≥ k + 1)

P(X2:n −X1:n ≥ k)

= 1 −
∏n

i=1 qi
∑n

i=1
1−qi

qk+1
i∑n

i=1
1−qi

qk
i

= 1 −
∑n

i=1
1−qi

qk
i

∏n
j �=i qj∑n

i=1
1−qi

qk
i

.

Similarly, it can be observed that

λY (0) = 1 − n
1 − q

q

qn

1 − qn = 1 − n
qn−1 − qn

1 − qn
,

and for k ∈ N+, λY (k) = 1 − qn−1. To establish the desired result, it needs to prove that
λX(k) ≤ λY (k) for k ∈ N, which is equivalent to showing that

∑n
i=1

1−qi

qk
i

∏n
j �=i qj∑n

i=1
1−qi

qk
i

≥ qn−1, for k ≥ 1, (4)

and ∏n
i=1 qi

1 −∏n
i=1 qi

n∑
i=1

1 − qi
qi

≥ n
qn−1 − qn

1 − qn . (5)

We first prove the inequality (4). Without loss of generality, it is assumed that q1 ≥ · · · ≥ qn.
By noticing that (1 − t)/tk is decreasing in t ∈ (0, 1) for any k ∈ N+, we have

1 − q1
qk
1

≤ 1 − q2
qk
2

≤ · · · ≤ 1 − qn
qk
n

.

Further, based on the fact
n∏

j �=1

qj ≤
n∏

j �=2

qj ≤ · · · ≤
n∏

j �=n

qj

and the Čebyšev’s sum inequality (see [4]), it then follows that

n∑
i=1

1 − qi
qk
i

n∏
j �=i

qj ≥
n∑

i=1

1 − qi
qk
i

⎛
⎝ 1
n

n∑
i=1

n∏
j �=i

qj

⎞
⎠ .

Hence, it suffices to show that

1
n

n∑
i=1

n∏
j �=i

qj ≥ qn−1,

which is readily guaranteed by the assumption.
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Next, we prove the inequality (5). From the well-known MacLaurin’s inequalities (see
[4]), we have q̃ ≥ (

∏n
i=1 qi)

1/n, or equivalently, q̃n ≥∏n
i=1 qi. For any fixed 0 < α ≤ 1, one

can see that the function α−t
1−t is decreasing in t ∈ (0, 1). Then, the left-hand side of inequality

(5) satisfies

∏n
i=1 qi

1 −∏n
i=1 qi

n∑
i=1

1 − qi
qi

=
∏n

i=1 qi
1 −∏n

i=1 qi

n∑
i=1

(
1
qi

− 1
)

= n
q̃n−1 −∏n

i=1 qi
1 −∏n

i=1 qi
≥ n

q̃n−1 − q̃n

1 − q̃n
.

From the assumption q ≤ q̃, inequality (5) follows immediately by observing the function
(xn−1 − xn)/(1 − xn) is increasing in x ∈ (0, 1). Thus, the proof is completed. �

The following corollary, easily seen from the proof of Theorem 2.4, can be used to
compare the second spacings arising from two sets of homogeneous geometric samples in
the sense of the hazard rate order.

Corollary 2.5: Let X1, . . . , Xn and Y1, . . . , Yn be two sets of i.i.d. geometric variables
with respective parameters q and q∗ such that q > q∗. Then, X2:n −X1:n ≥hr Y2:n − Y1:n.

Theorem 2.6: Let X1, . . . , Xn be a sequence of independent geometric variables with
respective parameters q1, . . . , qn, and let Y1, . . . , Yn be another sequence of i.i.d. geomet-
ric variables with a common parameter q. Then, if q ≥ qmax, we have X2:n −X1:n ≤hr

Y2:n − Y1:n, here qmax = max1≤i≤n qi.

Proof: According to the proof of Theorem 2.4, it suffices for us to show

∑n
i=1

1−qi

qk
i

∏n
j �=i qj∑n

i=1
1−qi

qk
i

≤ qn−1, for k ≥ 1 (6)

and ∏n
i=1 qi

1 −∏n
i=1 qi

n∑
i=1

1 − qi
qi

≤ n
qn−1 − qn

1 − qn . (7)

The inequality in (6) is apparent, and hence we only need to show the inequality in (7).
Let

Δ(q1, . . . , qn) =
∏n

i=1 qi
1 −∏n

i=1 qi

n∑
i=1

1 − qi
qi

.

In the following, we will prove that Δ(q1, . . . , qn) is increasing in each component qi ∈ (0, 1),
for i = 1, . . . , n, which in turn implies that

Δ(q1, . . . , qn) ≤ Δ(q, . . . , q) = n
qn−1 − qn

1 − qn .
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Upon taking the partial derivative of Δ(q1, . . . , qn) with respect to q1, we have

∂Δ(q1, . . . , qn)
∂q1

=
∏n

i=2 qi(1 −∏n
i=1 qi) +

∏n
i=1 qi

∏n
i=2 qi

(1 −∏n
i=1 qi)

2

n∑
i=1

1 − qi
qi

−
∏n

i=1 qi
1 −∏n

i=1 qi
× 1
q21

=
∏n

i=2 qi

(1 −∏n
i=1 qi)

2

n∑
i=1

1 − qi
qi

−
∏n

i=2 qi
q1(1 −∏n

i=1 qi)

sgn
=

n∑
i=1

1 − qi
qi

− 1 −∏n
i=1 qi
q1

=
n∑

i=2

1 − qi
qi

+
n∏

i=2

qi − 1

=
n∑

i=2

1
qi

+
n∏

i=2

qi − n.

Let

Ψ(q2, . . . , qn) =
n∑

i=2

1
qi

+
n∏

i=2

qi − n.

It suffices to show Ψ(q2, . . . , qn) ≥ 0 for all 0 ≤ qj ≤ 1, j = 2, . . . , n. For any index j ∈
{2, 3, . . . , n}, we have

∂Ψ(q2, . . . , qn)
∂qj

= − 1
q2j

+
n∏

i�=1,j

qi ≤ 0.

Therefore, Ψ(q2, . . . , qn) is decreasing in qj ∈ (0, 1), j = 2, . . . , n. Then, it holds that

Ψ(q2, . . . , qn) ≥ Ψ(1, . . . , 1) = 0.

Thus, we know that Δ(q1, . . . , qn) is increasing in q1. The proof of the increasing of
Δ(q1, . . . , qn) in qi, i = 2, . . . , n− 1, is similar. Thus, we complete the proof. �

As a direct consequence of Theorems 2.4 and 2.6, we can obtain an upper and lower
bounds on the hazard rate function of the second spacing from any heterogeneous geometric
sample in terms of that from i.i.d. geometric variables. We now present a numerical example
to illustrate this fact.

Example 2.7: Let X1, X2, and X3 be independent geometric variables with parameters
(q1, q2, q3) = (0.5, 0.6, 0.7). Then

q̃ =

√√√√1
3

3∑
i=1

3∏
j �=i

qj = 0.5972.

Now, Let Y1, Y2, and Y3 be a set of i.i.d. geometric variables with common parameter
q = 0.59, and Z1, Z2, and Z3 be another set of i.i.d. geometric variables with common
parameter qmax = 0.7. Figure 2 plots the hazard rate functions of X2:3 −X1:3, Y2:3 − Y1:3,
and Z2:3 − Z1:3, that is, λX(k), λY (k), and λZ(k), k ∈ N. It can be seen that, λX(k) ranges
between λY (k) and λZ(k), and λY (k) is always above λX(k) and λZ(k). This implies Z2:3 −
Z1:3 ≥hr X2:3 −X1:3 ≥hr Y2:3 − Y1:3.
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Figure 2. Hazard rate functions of X2:3 −X1:3, Y2:3 − Y1:3, and Z2:3 − Z1:3.

3. SAMPLE RANGE

This section carries out stochastic comparisons of sample ranges arising from heterogeneous
or homogeneous geometric samples. In what follows, we let Nn = {1, 2, . . . , n} and denote
the cardinality of some finite set I ⊂ Nn by |I|. LetX1, . . . , Xn be a sequence of independent
geometric variables with respective parameters q1, . . . , qn. Denote by L the length of the
first tie, that is, L := |{1 ≤ i ≤ n,Xi = X1:n}|. Define the event EI as

EI := {Xj = X1:n < min
l∈Nn\I

Xl, j ∈ I}.

Besides, the event {Xj = X1:n = i < min
l∈Nn\I

Xl, j ∈ I} is abbreviated to {EI = i} for some

i ∈ N+. The following result provides an explicit representation for the distribution function
of sample range from a sequence of independent and heterogeneous geometric variables.

Proposition 3.1: Let X1, . . . , Xn be a sequence of independent geometric random vari-
ables with respective parameters q1, . . . , qn. Then, it follows that

P(Xn:n −X1:n ≤ k) =

∏n
j=1(1 − qk+1

j ) −∏n
j=1(qj − qk+1

j )
1 −∏n

j=1 qj
, k ∈ N. (8)

Proof: For some fixed |I| = m, we have

P(Xn:n −X1:n ≤ k, L = m,EI) =
∞∑

i=1

P(Xn:n −X1:n ≤ k, L = m,EI = i)

=
∞∑

i=1

∏
j∈I

(1 − qj)qi−1
j

∏
j∈Nn\I

P(i+ 1 ≤ Xj ≤ k + i)

=
∞∑

i=1

∏
j∈I

(1 − qj)qi−1
j

∏
j∈Nn\I

(qi
j − qk+i

j )
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=
∏
j∈I

1 − qj
qj

∏
j∈Nn\I

(1 − qk
j )

∞∑
i=1

n∏
j=1

qi
j

=

∏n
j=1 qj

1 −∏n
j=1 qj

∏
j∈I

1 − qj
qj

∏
j∈Nn\I

(1 − qk
j )

=

∏n
j=1(1 − qj)

1 −∏n
j=1 qj

∏
j∈Nn\I

qj − qk+1
j

1 − qj
.

Consequently, the distribution of Xn:n −X1:n can be written as

P(Xn:n −X1:n ≤ k) =
n∑

m=1

P(Xn:n −X1:n ≤ k, L = m)

=
n∑

m=1

∑
I⊆Nn,|I|=m

P(Xn:n −X1:n ≤ k, L = m,EI)

=
n∑

m=1

∑
I⊆Nn,|I|=m

∞∑
i=1

P(Xn:n −X1:n ≤ k, L = m,EI = i)

=

∏n
j=1(1 − qj)

1 −∏n
j=1 qj

n∑
m=1

∑
I⊆Nn,|I|=m

∏
j∈Nn\I

qj − qk+1
j

1 − qj
(9)

=

∏n
j=1(1 − qj)

1 −∏n
j=1 qj

⎛
⎝ n∏

j=1

(
1 +

qj − qk+1
j

1 − qj

)
−

n∏
j=1

qj − qk+1
j

1 − qj

⎞
⎠

=

∏n
j=1(1 − qj)

1 −∏n
j=1 qj

⎛
⎝ n∏

j=1

1 − qk+1
j

1 − qj
−

n∏
j=1

qj − qk+1
j

1 − qj

⎞
⎠

=

∏n
j=1(1 − qk+1

j ) −∏n
j=1(qj − qk+1

j )
1 −∏n

j=1 qj
.

Thus, the proof is completed. �

Now, we present a result stating that more heterogeneity among the geometric random
variables will result in larger sample range in the sense of the usual stochastic ordering.

Theorem 3.2: Let X1, . . . , Xn be a sequence of independent geometric variables with
respective parameters q1, . . . , qn, and let Y1, . . . , Yn be another sequence of independent
geometric variables with respective parameters q∗1 , . . . , q

∗
n. Then,

q
m� q∗ =⇒ Xn:n −X1:n ≥st Yn:n − Y1:n.

Proof: In light of Proposition 3.1, it suffices to prove that

Φ(q) =
∏n

l=1(1 − qk+1
l ) −∏n

l=1(ql − qk+1
l )

1 −∏n
l=1 ql
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is Schur-concave in q = (q1, . . . , qn) ∈ (0, 1)n. From Lemma 1.3, we need to prove

(qi − qj)
(
∂Φ(q)
∂qi

− ∂Φ(q)
∂qj

)
≤ 0, for any 1 ≤ i 
= j ≤ n.

Note that, for i 
= j,(
1 −

n∏
l=1

ql

)2(
∂Φ(q)
∂qi

− ∂Φ(q)
∂qj

)

=

[
n∏

l=1

(1 − qk+1
l ) −

n∏
l=1

(ql − qk+1
l )

]
(qj − qi)

∏
l �=i,j

ql

+

⎡
⎣(k + 1)qk

j

n∏
l �=j

(1 − qk+1
l ) +

(
1 − (k + 1)qk

j

) n∏
l �=j

(ql − qk+1
l )

−(k + 1)qk
i

n∏
l �=i

(1 − qk+1
l ) − (1 − (k + 1)qk

i

) n∏
l �=i

(ql − qk+1
l )

⎤
⎦(1 −

n∏
l=1

ql

)

= Δ1(k) + (k + 1)

(
1 −

n∏
l=1

ql

)
Δ2(k),

where

Δ1(k) =

[
n∏

l=1

(1 − qk+1
l ) −

n∏
l=1

(ql − qk+1
l )

]
(qj − qi)

∏
l �=i,j

ql

+

⎡
⎣ n∏

l �=j

(ql − qk+1
l ) −

n∏
l �=i

(ql − qk+1
l )

⎤
⎦(1 −

n∏
l=1

ql

)

and

Δ2(k) = qk
j

n∏
l �=j

(1 − qk+1
l ) − qk

j

n∏
l �=j

(ql − qk+1
l ) − qk

i

n∏
l �=i

(1 − qk+1
l ) + qk

i

n∏
l �=i

(ql − qk+1
l ).

Without loss of generality, assume that qi ≤ qj . Then, we need to show that Δ1(k) ≥ 0 and
Δ2(k) ≥ 0. First, it is easy to check that Δ1(0) =

∏n
l=1(1 − ql)(qj − qi) ≥ 0. For k ∈ N+,

from the observation
n∏

l=1

(1 − qk+1
l ) −

n∏
l=1

(ql − qk+1
l ) =

n∏
l=1

(1 − qk+1
l ) −

n∏
l=1

ql

n∏
l=1

(1 − qk
l ) ≥ (1 −

n∏
l=1

ql)
n∏

l=1

(1 − qk
l ),

we have

Δ1(k) ≥
(

1 −
n∏

l=1

ql

)
n∏

l=1

(1 − qk
l ) (qj − qi)

∏
l �=i,j

ql

+

⎡
⎣ n∏

l �=j

(ql − qk+1
l ) −

n∏
l �=i

(ql − qk+1
l )

⎤
⎦(1 −

n∏
l=1

ql

)
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sgn
=

n∏
l=1

(1 − qk
l ) (qj − qi)

∏
l �=i,j

ql +

⎡
⎣ n∏

l �=j

(ql − qk+1
l ) −

n∏
l �=i

(ql − qk+1
l )

⎤
⎦

=
n∏

l �=i,j

(ql − qk+1
l )(1 − qk

i )(1 − qk
j )(qj − qi) +

n∏
l �=i,j

(ql − qk+1
l )(qi − qk+1

i − qj + qk+1
j )

sgn
= (1 − qk

i )(1 − qk
j )(qj − qi) + qi − qk+1

i − qj + qk+1
j

= qk
j qi − qk+1

i qk
j + qk

i q
k+1
j − qk

i qj

= qiqj
[
qk−1
j (1 − qk

i ) − qk−1
i (1 − qk

j )
] ≥ 0.

Next, we prove Δ2(k) ≥ 0, which can be acquired from

Δ2(k) =
[
qk
j (1 − qk+1

i ) − qk
i (1 − qk+1

j )
] n∏

l �=i,j

(1 − qk+1
l )

− [qk
j (qi − qk+1

i ) − qk
i (qj − qk+1

j )
] n∏

l �=i,j

(ql − qk+1
l )

≥ [qk
j (1 − qk+1

i ) − qk
i (1 − qk+1

j )
] n∏

l �=i,j

(ql − qk+1
l )

− [qk
j (qi − qk+1

i ) − qk
i (qj − qk+1

j )
] n∏

l �=i,j

(ql − qk+1
l )

sgn
= qk

j (1 − qk+1
i ) − qk

i (1 − qk+1
j ) − qk

j (qi − qk+1
i ) + qk

i (qj − qk+1
j )

= qk
j (1 − qi) − qk

i (1 − qj) ≥ 0.

Thus, we finish the proof. �

Here is an example as the illustration of Theorem 3.2

Example 3.3: Let (X1,X2,X3) be a vector of independent geometric variables with param-
eter vector (q1, q2, q3) = (0.8, 0.6, 0.2) and let (Y1, Y2, Y3) be another vector of independent

geometric variables with parameter vector (q∗1 , q
∗
2 , q

∗
3) = (0.6, 0.6, 0.4). Clearly, (q1, q2, q3)

m�
(q∗1 , q

∗
2 , q

∗
3). The distribution functions of X3:3 −X1:3 and Y3:3 − Y1:3 are plotted in Figure 3,

from which it is seen that the distribution function of Y3:3 − Y1:3 is always larger than that
of X3:3 −X1:3. Hence, X3:3 −X1:3 ≥st Y3:3 − Y1:3.

In what follows, we turn to investigate the case wherein one sample is homogeneous
and the other is heterogeneous. Before proceeding to the main result, we recall a very useful
lemma due to [11].

Lemma 3.4: Let Θ ⊂ R be a subset of a real line and U be a nonnegative random variable
having a cumulative distribution function belonging to a stochastically ordered family P =
{H(·|θ), θ ∈ Θ}; that is, for θ1, θ2 ∈ Θ, H(·|θ1) ≥st H(·|θ2), whenever θ1 < θ2. Suppose a real
function ψ(u, θ) on R · Θ is measurable in u for each θ such that Eθ[ψ(U, θ)] exists. Then,
Eθ[ψ(U, θ)] is decreasing in θ, if ψ(u, θ) is decreasing in θ and increasing in u.
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Figure 3. Distribution functions of X3:3 −X1:3 and Y3:3 − Y1:3.

First, the monotonicity of the distribution function of sample range from i.i.d. geometric
sample is investigated with respect to the parameter q. This reveals that the usual stochastic
ordering of geometric random variables is closed under the formation of ranges, and hence
is independent of interest.

Lemma 3.5: Let X1, . . . , Xn and Y1, . . . , Yn be two sets of i.i.d. geometric variables with
respective parameters q and q∗ such that q > q∗. Then, Xn:n −X1:n ≥st Yn:n − Y1:n.

Proof: According to Equation (9) in the proof of Proposition 3.1, the distribution function
of the sample range arising from X1, . . . , Xn can be written as, for k ∈ N,

P(Xn:n −X1:n ≤ k) =
n∑

m=1

P(Xn:n −X1:n ≤ k, L = m)

=
n∑

m=1

∑
I⊆Nn,|I|=m

P(Xn:n −X1:n ≤ k, L = m,EI)

=
n∑

m=1

⎡
⎣ ∑
I⊆Nn,|I|=m

qn

1 − qn

(
1 − q

q

)m
⎤
⎦ (1 − qk)n−m

=
n∑

m=1

[(
n

m

)
qn

1 − qn

(
1 − q

q

)m]
(1 − qk)n−m.

Denote by P(L = m|q) the probability of the event {L = m} (the length of the first tie
equals m) when the underlying geometric random samples have common parameter q.
Observing that the distribution function of the random variable L belongs to the family
P = {H(·|q), q ∈ (0, 1)} with probability mass function

P(L = m|q) =
(
n

m

)
qn

1 − qn

(
1 − q

q

)m

,
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Figure 4. Ratio of the distribution functions of X3:3 −X1:3 and Y3:3 − Y1:3.

such that
∑n

m=1 P(L = m|q) = 1, we get

P(Xn:n −X1:n ≤ k) =
n∑

m=1

P(L = m|q)(1 − qk)n−m

= Eq [ψ(L, q)] ,

here, ψ(L, q) = (1 − qk)n−L. On the one hand, for any 1 > q1 > q2 > 0, it holds that

P(L = m|q1)
P(L = m|q2) =

(
n
m

) qn
1

1−qn
1

(
1−q1

q1

)m

(
n
m

) qn
2

1−qn
2

(
1−q2

q2

)m =
qn
1 (1 − qn

2 )
qn
2 (1 − qn

1 )
·
[
q2(1 − q1)
q1(1 − q2)

]m

is decreasing in m ∈ Nn. Thus, we know that H(·|q1) ≤lr H(·|q2), which in turn implies that
H(·|q1) ≤st H(·|q2). On the other hand, it is plain that ψ(m, q) = (1 − qk)n−m is decreasing
in q ∈ (0, 1) and increasing in m ∈ Nn for any k ∈ N. Upon applying Lemma 3.4, we know
that Eq [ψ(L, q)] is decreasing in q ∈ (0, 1). Hence, the proof is completed. �

Combining Theorem 3.2 and Lemma 3.5, the following result can be obtained.

Theorem 3.6: Let X1, . . . , Xn be a sequence of independent geometric variables with
respective parameters q1, . . . , qn, and let Y1, . . . , Yn be another sequence of i.i.d. geometric
variables with a common parameter q. Then, if q ≤ q̄, we have Xn:n −X1:n ≥st Yn:n − Y1:n.

Proof: Let Z1, . . . , Zn be a sequence of i.i.d. geometric variables with a common parameter
q̄. From Theorem 3.2, it holds that Xn:n −X1:n ≥st Zn:n − Z1:n. On the other hand, the
result of Lemma 3.5 implies that Zn:n − Z1:n ≥st Yn:n − Y1:n since q ≤ q̄. Thus, Xn:n −
X1:n ≥st Yn:n − Y1:n. �

At the end, we illustrate the result in Theorem 3.6 by one example, which also give a
negative answer for the question whether the result can be improved to the reversed hazard
rate ordering.
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Example 3.7: Let X1,X2,X3 be a sequence of independent geometric variables with
respective parameters (q1, q2, q3) = (0.1, 0.6, 0.8), and let Y1, Y2, Y3 be another sequence of
independent geometric variables with parameters (q∗1 , q

∗
2 , q

∗
3) = (0.5, 0.5, 0.5). It is easy to see

that (0.1, 0.6, 0.8) �m (0.5, 0.5, 0.5) and q = q∗1 = q∗2 = q∗3 = 0.5 = (q1 + q2 + q3)/3. Figure 2
plots the ratio of distribution functions of X3:3 −X1:3 and Y3:3 − Y1:3, which indicates that
the ratio is smaller than 1 but not monotone in k ∈ N. Hence, Xn:n −X1:n �rh Yn:n − Y1:n,
while Xn:n −X1:n ≥st Yn:n − Y1:n.

It is still an open problem whether Xn:n −X1:n ≥hr Yn:n − Y1:n holds.

4. CONCLUDING REMARKS

Spacings are of great interest in many areas such as statistics and reliability. Due to the
complex distribution theory of spacings for discrete random variables, few work has been
done on the stochastic properties of spacings from geometric random variables. To fill this
gap, this paper studies the ordering properties of the second spacings and the sample ranges
arising from independent and heterogeneous geometric variables in the sense of the usual
stochastic and hazard rate orderings.

To conclude the paper, it is also of interest to study the ordering properties of the
general spacings Xi:n −X1:n and the simple spacings Xi:n −Xi−1:n from a heterogeneous
geometric sample X1, . . . , Xn, for i = 1, . . . , n, which are worth further investigating and
left as open problems.
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