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In this study, we continue our study of the Cauchy problem associated with the
Brinkman equations [see (1.1) and (1.2) below] which model fluid flow in certain
types of porous media. Here, we will consider the flow in the upper half-space

R
3
+ =

{
(x, y, z) ∈ R

3 |z � 0
}

,

under the assumption that the plane z = 0 is impenetrable to the fluid. This means
that we will have to introduce boundary conditions that must be attached to the
Brinkman equations. We study local and global well-posedness in appropriate
Sobolev spaces introduced below, using Kato’s theory for quasilinear equations,
parabolic regularization and a comparison principle for the solutions of the problem.
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1. Introduction

In this article, we continue our study of the Brinkman equations (see [1, 23]) and
the references therein). This time we will consider the system

∂tρ+ div (ρv) = F (t, ρ) ,

(1 − Δ) v = −∇P (ρ) ,

(ρ (0) , v (0)) = (ρ0, v0) ,

(1.1)

ρ = ρ (t, x, y, z) , v = v (t, x, y, z) , (1.2)
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in R
3
+. We assume that the horizontal plane, that is, z = 0, to be impenetrable to the

fluid. Thus, we must impose a boundary condition at z = 0, compatible with this
assumption. This means that the fluid flow must be zero in the horizontal plane.

Now, if S is a C1 surface (say), and n a continuous unit normal to S. This
orients the surface and determines the sign of the fluid flow, which is defined by the
component of the velocity in the direction of n, that is, v • n. where • denotes the
usual inner product in Euclidian spaces. Since we expect (1 − Δ) to be invertible,1

we must have

v = − (1 − Δ)−1 ∇P (ρ) . (1.3)

Let S be the plane z = 0. We choose

n = (0, 0,−1). (1.4)

In view of the condition at z = 0, we have

v • n = − (1 − Δ)−1 ∇P (ρ) • n = 0. (1.5)

So,

∂

∂z
P (ρ) = P ′ (ρ)

∂ρ

∂z
= 0. (1.6)

If P ′(ρ) �= 0 for all ρ �= 0 (as we will assume later) it follows that we must have

∂ρ

∂z
= 0 at z = 0. (1.7)

Thus, ρ must satisfy a Neumann boundary condition at z = 0.
According to [14] ‘the Brinkman equations account for fast-moving fluids in

porous media with the kinetic potential from fluid velocity, pressure, and gravity
driving the flow. These equations extend Darcy’s law to describe the dissipation
of the kinetic energy by viscous shear, similar to the Navier–Stokes equations.
Therefore, the Brinkman Equations interface is well suited for modelling fast flow
in porous media, including transitions between slow flow in porous media governed
by Navier–Stokes equations. The Brinkman Equations interface computes both the
velocity and pressure’. There are many applications of these equations.

For more information on the Brinkman equations and some of its variants includ-
ing numerical studies see [21, 34], [3, Brinkman’s original paper], [1, 2, 7, 8, 22,
25, 32, 33].

This paper is organized as follows. In § 2 we define the operator −Δ, mentioned
above, and the Sobolev spaces associated with it. In § 3 we establish local well-
posedness for the Cauchy problem in question. Section 4 deals with the comparison
principle for the solutions of the problem, which in turn is used in § 5 to establish
global results.

1Whatever Δ means. This will be explained along the article. See also the remark at the end of
§ 2.
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2. Distributions and Sobolev spaces

Let S(R3
+) = S(R2 × [0,∞))2 denote the set of all C∞ functions f : R3

+ −→ C such
that

‖f‖α,β = sup
R3

+

∣∣wαDβf (w)
∣∣ <∞. (2.1)

where α, β, are (tridimensional) multi-indexes, w = (x, y, z) ∈ R3
+, D = 1

i∇ (see [6,
chap. 1, p. 8], [10, chap. 7, p. 323] and [30, chap. 1, p. 2]). Moreover, the derivatives
with respect to z at z = 0, are taken from above.

This defines a countable collection of seminorms in S(R3
+), which turns this

vector space into a Frèchet space (see [27]). Let S′(R3
+) denote the topological

dual of S(R3
+) that is f ∈ S′(R3

+) if and only if f : S(R3
+) −→ C is linear and is

continuous in the following sense,3 for any convergent net fλ ∈ Λ we have

fλ
Λ−→ f ⇐⇒ fλ (ϕ) C−→ f (ϕ) ∀ ϕ ∈ S

(
R

3
+

)
. (2.2)

Now, let L2(R3
+) = L2(R2 × [0,∞)). It is not difficult to show that

S
(
R

3
+

)
↪→ L2

(
R

3
+

)
↪→ S′ (

R
3
+

)
, (2.3)

where the symbol ↪→, in the remainder of this article, will always mean that the
inclusion is continuous and dense with respect to the relevant topologies involved.
Next consider the following operator

D
(
Δ̃
)

=
{
ϕ ∈ S

(
R

3
+

) ∣∣∣∂̃zϕ (x, y, 0) = 0
}
,

−Δ̃ϕ (x, y, z) =
(
∂2

x + ∂2
y + ∂̃2

z

)
ϕ (x, y, z) .

(2.4)

However, it is necessary to explain what the z derivative means. Define d̃2
z by the

equations,

D
(
d̃2

z

)
= {f ∈ S([0,∞)) |f ′ (0) = 0}

−d̃2
zf =

d2f

dz2
, f ∈ D

(
d̃2

z

)
,

(2.5)

where the derivative at zero is taken from above. Using the Fourier cosine transform
and its Inversion formula (see [4, § 54]),

(Fcf) (α) =
∫ ∞

0

f (x) cos (αx) dx, x, α ∈ [0,∞) ,

(
F−1

c g
)
(x) =

2
π

∫ ∞

0

g (α) cos (αx) dα,
(2.6)

and the fact that

(Fcf
′′) (α) = −α2 (Fcf) (α) − f ′ (0) , (2.7)

2See [30, chap. 2, p. 33].
3Which is general, because nets define the topology of a space. See [27].
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it is easy to see that d̃2
z is essentially self-adjoint. Let d2

z denote its unique self-adjoint
extension. Next, if (x, y) ∈ R

2 is fixed and ϕ ∈ S(R3
+) then ψ(z) = ϕ(x, y, z) ∈

S([0,∞)) so we may define

∂̃2
zϕ (x, y, z) = d̃2

zϕ (x, y, z) = d2
zϕ (x, y, z) . (2.8)

Once again, it is easy to show that (−Δ̃) is essentially self-adjoint. We will denote its
unique self-adjoint extension by (−Δ). Now, it is necessary to introduce a Fourier
transform associated with the operator (−Δ). This can be done noting that

Θ (x, y, z) = exp (ixξ) exp (iyη) cos (αz) , (2.9)

satisfies,

(−Δ) Θ (x, y, z) =
(
ξ2 + η2 + α2

)
Θ (x, y, z) . (2.10)

So if ϕ ∈ L1(R3
+), we define

ϕ̂ (ξ, η, α) = (Fϕ) (ξ, η, α)

=
(

1
2π

)∫
R3

+

ϕ (x, y, z) Θ (x, y, z) dxdy dz. (2.11)

Employing the usual methods [10, 12, 28], we can extend this operator as an
unitary map from L2(R3

+) into itself. Its inverse is given by

∨
ω (x, y, z) =

(
F−1ω

)
(x, y, z)

=
(

1
π

)2 ∫
R3

+

ω (ξ, η, α) Θ (x, y, z) dξ dη dα. (2.12)

The usual methods employed to extend the transform Fourier in R
n can be used in

this case to define F in L2(R3
+) and S′(R3

+). Note that

− Δf = F−1ΦFf (2.13)

where Φ denotes (with a little abuse of notation) the maximal operator of
multiplication by

Φ (ξ, η, α) =
(
ξ2 + η2 + α2

)
(2.14)

in L2(R3
+). It deserves remark that the Fourier transform F is a topological iso-

morphism from S(R3
+) into itself, so that by the usual duality argument, it has

the same property in S′(R3
+). Moreover, it is a unitary operator in L2(R3

+).4 We

4Note that Fc, the Fourier cosine transform is an unitary operator in L2 (R+) , R+ = [0,∞).
See [5].
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are now in position to introduce the resolvent z −→ R(z) of (−Δ) and the Sobolev
spaces associated with it. To begin with, it is not difficult to see that∑

(−Δ) = [0,∞) , (2.15)

and that the function z −→ R(z) defined by,

R (z) f = (−Δ − z)−1
f,

= F−1
(
ξ2 + η2 + α2 − z

)−1
Ff,

z ∈ C\ [0,∞) , f ∈ L
(
R

3
+

)
, (2.16)

satisfies,

R (z) (−Δ − z) f = f∀f ∈ D (−Δ) ,

(−Δ − z)R (z) g = g∀g ∈ L2
(
R

3
+

)
.

(2.17)

Next, let s ∈ R and denote by Hs(R3
+) the Sobolev space of order s, that is,

Hs
(
R

3
+

)
=
{
f ∈ S′ (

R
3
+

) ∣∣∣(1 − Δ)s/2
f ∈ L2

(
R

3
+

)}
. (2.18)

These spaces have the same properties as the Sobolev spaces in R
n, that is,

SB1: Hs(R3
+) are Hilbert spaces when endowed with the inner product

(f |g )s =
(
(1 − Δ)s/2

f
∣∣∣(1 − Δ)s/2

g
)
, ∀f, g ∈ Hs

(
R

3
+

)
. (2.19)

SB2: If s �  then Hs(R3
+) ↪→ H�(R3

+) for all s,  ∈ R.

SB3: (Sobolevś lemma.) Let s > 3
2 . Then Hs(R3

+) ↪→ C0(R3
+) where C0(R3

+)
denotes the set of all continuous functions that tend to zero at infinity.

SB4: Let f, g ∈ Hs(R3
+), s > 3

2 . Then the pointwise product5 fg ∈ Hs(R3
+) and

‖fg‖s � C ‖f‖s ‖g‖s (2.20)

where C > 0 is a constant. Note that this turns Hs(R3
+) into a Banach algebra.

The proofs of these properties are exactly the same as the corresponding ones in
the case of R

n, and will be omitted. The interested reader can consult [6, 10, 28],
for example.

Remark 2.1. Let Ω ⊆ R
n be an open set. The Dirichlet Laplacian and the

Neumann Laplacian, denoted ΔΩ
D and ΔΩ

N are the unique self-adjoint operators
associated with the quadratic form

q (f, g) =
∫

Ω

∇f • ∇g dx (2.21)

with domains C∞
0 (Ω) and H1(Ω) where ∇ denotes the distributional gradi-

ent. (See [29].) This is a very elegant, but rather abstract definition. In many

5The product is well defined in view of SB3.
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applications one must find the self-adjoint operator in order to deal with actual com-
putations. The Laplacian defined above is the Neumann Laplacian corresponding
to Ω = R

3
+\{(x, y, z) |z = 0}, that is, the interior of R

3
+.

3. Local well-posedness

We begin reminding the reader of our definition of well-posedness. The Cauchy
problem

∂tu = G (t, u) ∈ X,

u (0) = u0 ∈ Y,
(3.1)

Y ↪→ X, t ∈ [0, T0], G : [0, T0] × Y −→ X is (at least continuous6 ) is said to be
locally well-posed if there exists a T ∈ (0, T0] and a function u : [0, T ] −→ Y such
that u(0) = u0 and satisfies the differential equation with respect to the norm of X,

lim
h−→0

∥∥∥∥u (t+ h) − u (t)
h

−G (t, u (t))
∥∥∥∥

X

= 0 (3.2)

Moreover, the solution must depend continuously on the initial data (and on any
other relevant parameters occurring in the equation), in appropriate topologies. In
what follows, we will consider only the initial data. In that case what we mean
is: assume that u(j)

0 ∈ Y, j = 1, 2, 3, . . . ,∞, let u(j) be the corresponding solutions.
Suppose that

lim
j→∞

∥∥∥u(j)
0 − u

(∞)
0

∥∥∥
Y

= 0. (3.3)

Then, for all T ′ ∈ (0, T ) we have,

lim
j→∞

sup
t∈[0,T ′]

∥∥∥u(j) (t) − u(∞) (t)
∥∥∥

Y
= 0. (3.4)

If any of these properties fail, we say that the problem is ill-posed.7 In case G is
defined for all t ∈ R and the preceding properties are valid for all T > 0, we say
that the problem is globally well-posed.

Using the definitions and notations of the previous section we can solve for v
as indicated in (1.3) and inserting this formula into the first equation of (1.1), we

6In fact, some kind of Lipschitz condition must be introduced since Peano’s theorem for ODE’s

does not hold in infinite dimensions.
7It deserves to mention that there are examples that show that any of these properties may fail.

Moreover, note that the definition we adopted above includes the notion of permanence, that is,
the solution ‘lives’ in the same space to which the initial condition belongs. There are striking
examples where this does not hold (see [9] and the references therein).
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obtain the Cauchy problem

∂tρ = div
(
ρ (1 − Δ)−1 ∇P (ρ)

)
+ F (t, ρ)

ρ (0) = ρ0. (3.5)

Moreover, the compatibility condition

v0 = − (1 − Δ)∇P (ρ0) (3.6)

must be satisfied. Note also that the boundary conditions are inserted in the
definition of the operators appearing in (3.5).

Now, there are several ways to solve (3.5). We mention our favourites, namely

• Katoś theory of quasilinear Equations

• Parabolic regularization.

3.1. Application of Katoś theory

A very large class of relevant evolution equations can be written in quasilinear
form, that is, {

∂tu+A (t, u)u = F (t, u) ∈ X,

u (0) = φ ∈ Y.
(3.7)

Here, X and Y are Banach spaces, as before with Y ↪→ X and A(t, u) is bounded
from Y into X (for fixed t) and is the (negative) generator of a C0 semigroup for
each (t, u) ∈ [0.T ] ×W, W open in Y . In its most general formulation, X and Y
may be non-reflexive [18].8 Since we will deal exclusively with reflexive spaces, we
restrict ourselves to a simpler version, which can be found in [19]. (See also [12].)
The essential assumption of the theory is the existence of an isomorphism S from
Y onto X such that

SA (t, u)S−1 = A (t, u) +B (t, u) (3.8)

where B(t, u) ∈ B(X), with the strict domain relation implied by the equation.
This is, in fact, a condition on the commutator [S,A(t, u)] because (3.8)9 can be
rewritten as

[S,A (t, u)]S−1 = B (t, u) . (3.9)

There are also lower requirements, involving Lipschitz conditions on the operators
in question. For example, A(t, u) must satisfy

‖A (t, w) −A (t, w̃)‖B(Y,X) � θ ‖w − w̃‖X , θ > 0, constant (3.10)

for all pairs (t, w), (t, w̃) in [0.T ] ×W. Both B(t, u) and F (t, u) must satisfy similar
conditions. Once these assumptions are satisfied, Kato tells you that (3.7) is locally
well-posed.

8This result is very important because it can be used to show that, as in the linear case,

continuous dependence follows from existence and uniqueness. See [18].
9A condition on a commutator is to be expected. See [12].
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Now we must write the integrodifferential equation (3.5) in quasilinear form.
Consider the linear operator:

f �−→ A (ρ) f = − div
(
f (1 − Δ)−1 ∇P (ρ)

)
. (3.11)

Thus the equation in (3.5) can be written in the form presented in (3.7). Next we
choose our function spaces. Due to certain technical estimates needed to control
the commutator mentioned above, we take Y = Hs(R3

+), s > 5/2, X = L2(R3
+) and

W an arbitrary open ball centred at zero in Y.
Now assume

• P maps Hs(R) into itself, P (0) = 0 and is Lipschitz in the following sense:

‖P (ρ) − P (ρ̃)‖s � Ls (‖ρ‖s , ‖ρ̃‖s) ‖ρ− ρ̃‖s (3.12)

• F : [0, T0] × Hs(R) −→ Hs(R), F (t, 0) = 0 and satisfies the following Lipschitz
condition:

‖F (t, ρ) − F (t, ρ̃)‖s � Ms (‖ρ‖s , ‖ρ̃‖s) ‖ρ− ρ̃‖s . (3.13)

where Ls,Ms : [0,∞) × [0,∞) → [0,∞) are continuous and monotone non-
decreasing functions with respect to each of its arguments.

If T is a linear operator and belongs to the class G(X, 1, 0), that is, if (−T )
generates a contraction semigroup, we say that T is maximally accretive (or m-
accretive). If T ∈ G(X, 1, β), that is, T generates a semigroup U(t) such that
‖U(t)‖B(X) � M e−tβ , T is said to be quasi-maximally accretive (or quasi m-
accretive). Since X is a Hilbert space, it suffices to prove, in our case, that T = A(ρ)
is maximally accretive in X. (See [15, 26, 27]).

〈A(ρ)f, f〉 � −β‖f‖2, ∀f ∈ D(A(ρ)) = Y ; ρ ∈W ⊂ Y (3.14)

Let

Θ(ρ) = (1 − Δ)−1 ∇P (ρ), (3.15)

Integrating by parts and applying Sobolev lemma, we obtain

〈A(ρ)f, f〉 = 〈−div (f Θ(ρ)), f〉 = −
3∑

i=1

∫
f∂xi

(f Θi(ρ)) dx

=
3∑

i=1

∫
f∂xi

f Θi(ρ) dx =
1
2

3∑
i=1

∫
∂xi

(f2)Θi(ρ) dx

= −1
2

3∑
i=1

∫
f2∂xi

Θi(ρ) dx = −1
2

∫
(div �Θ(ρ))f2 dx

� − ‖div Θ(ρ)‖L∞

2︸ ︷︷ ︸
β

‖f‖2 (3.16)

R(A(ρ) + λ) = X = L2(R3
+), ∀λ > β
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The fact that A(ρ) is a closed operator combined with inequality (3.16) shows that
(A(ρ) + λ) has closed range for all λ > β.

Thus it suffices to show that (A(ρ) + λ) has dense range for λ > β. For this, is
sufficient to prove that R(A(ρ) + λ)⊥ = {0}, because A(ρ) is a linear operator.

Let g ∈ L2(R3
+) satisfy,

〈(A(ρ) + λ)f, g〉 = 0, ∀f ∈ D(A(ρ)) = Hs(R3
+). (3.17)

Integrating by parts, yields

〈(A(ρ) + λ)f, g〉 = 0 ⇒ 〈A(ρ)f, g〉 + 〈λf, g〉 = 0

⇒ 〈f,∇gΘ(ρ)〉 + 〈λf, g〉 = 0

⇒ 〈f,∇gΘ(ρ) + λg〉 = 0, ∀f ∈ D(A(ρ)) = Hs(Rn)

⇒ ∇gΘ(ρ) + λg = 0 (3.18)

Therefore, multiplying by g, integrating by parts, and using (3.16) we have:

g∇gΘ(ρ) + λg2 = 0 ⇒ 1
2

∫
∇(g2)Θ(ρ) dx+ λ‖g‖2 = 0

⇒ −1
2

∫
g2div Θ(ρ) dx︸ ︷︷ ︸

=〈A(ρ)g,g〉

+λ‖g‖2 = 0

⇒ 〈A(ρ)g, g〉 + λ‖g‖2 = 0

⇒ 0 � −β‖g‖2 + λ‖g‖2 = (λ− β)‖g‖2

⇒ g = 0 (3.19)

Finally, we choose the isomorphism S : D(S) = hs(R3
+) −→ L2(R3

+) to be

S = (1 − Δ)s/2
. (3.20)

Then the proof of (3.8) is exactly the same of the corresponding fact in R
n (see [23]).

In view of these remarks, Kato’s quasilinear theory implies the following result.

Theorem 3.1. The Cauchy problem (3.5) is locally well-posed in Hs(R3
+) in the

sense described at the beginning of this section for all s > 5/2.

3.2. Parabolic regularization

Considering F (t, ρ) = 0 in (3.5), for simplicity, it is easy to see that if we integrate
with respect to time we obtain

ρ (t)︸︷︷︸
Hs(R3

+)

= φ︸︷︷︸
Hs(R3

+)

+
∫ t

0

div
(
ρ (1 − Δ)−1 ∇P (ρ)

)
(t′) dt′︸ ︷︷ ︸

Hs−1(R3
+)

. (3.21)

so we cannot apply Banach’s fixed point theorem and Gronwall’s inequality to
establish local well-posedness. However, we can introduce an artificial viscosity
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μ > 0 to obtain the regularized Cauchy problem{
∂tρμ = div

(
ρμ (1 − Δ)−1 ∇P (ρμ)

)
+ μΔρμ

ρμ (0) = ρ0.
(3.22)

which is equivalent to the integral equation

ρμ (t) = Uμ (t) ρ0 +
∫ t

0

Uμ (t− t′) [A (ρμ (t′)) ρμ (t′)] dt′, (3.23)

where Uμ(t) is the infinitely smoothing C0 semigroup

Uμ (t) f = exp (μtΔ) f = F−1 e−μt(ξ2+η2+α2)Ff. (3.24)

Then we can show that (see [1, 23])

Theorem 3.2. Assume that μ > 0 and that P satisfy (3.12) for all (fixed) s > 3/2.
Then (3.23) is locally well-posed in Hs(R3

+). Moreover, if (0, Tμ] is an interval of
existence, then ρμ ∈ C((0, Tμ];H∞(R3

+)), where H∞(R3
+) = ∩s∈R3

+
Hs(R3

+) provided
with its natural Frechet space topology.

Proof. It should be noted that the proof (even in R
3) relies heavily on the inequality

‖Uμ (t)φ‖r+λ � Kλ

[
1 +

(
1

2μt

)λ
]1/2

‖φ‖r (3.25)

where Kλ > 0 depends only on λ and holds for all φ ∈ Hr(R3
+), r ∈ R, λ � 0, and

μ, t > 0. (See [1, 10, 13, 23] e.g.).
The next step, is to employ a bootstrapping argument combining (3.23) and

(3.25) (with λ fixed in the interval (1, 2)), to show that ρμ ∈ C((0, Tμ];H∞(R3
+)).

Let t ∈ (θ,∞], θ > 0 be fixed (but arbitrary). Then

‖ρμ (t)‖s+λ � ‖Uμ (t) ρ0‖s+λ +
∥∥∥∥∫ t

0

Uμ (t− t′) [A (ρμ (t′)) ρμ (t′)]
∥∥∥∥

s+λ

dt′,

� ‖Uμ(t)ρ0‖s+λ +
∫ t

0

‖Uμ (t− t′) [A (ρμ (t′)) ρμ (t′)]‖s+λ dt′

� Kλ

[
1 +

(
1

2μt

)λ
]1/2

‖ρ0‖s

+
∫ t

0

Kλ

[
1 +

(
1

2μt

)λ
]1/2

‖A (ρμ (t′)) ρμ (t′)‖s dt′

� Kλ

[
1 +

(
1

2μt

)λ
]1/2

‖ρ0‖s

+KλLs

∫ t

0

[
1 +

(
1

2μt

)λ
]1/2

‖ρμ (t′)‖s dt′
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Since t is bounded away from 0 in function

f (t) =

[
1 +

(
1

2μt

)λ
]1/2

,

is bounded in any interval (θ,∞] so that,

‖ρμ (t)‖s+λ � Kλ sup f (t) ‖ρ0‖ +KλLs

∫ t

0

[
1 +

(
1

2μt

)λ
]1/2

‖ρμ (t′)‖s dt

Now, the integral on the left-hand side contributes with a term containing

1
t1+λ/2

,

which is finite in every interval (θ, T ′], θ > 0, T ′ > 0. Therefore, Gronwall’s inequal-
ity implies that

ρμ ∈ C
(
(θ, Tμ];H∞ (

R
3
+

))
�

Next, the, usual limiting process involved in the method of parabolic regular-
ization (see [10, 13]) we are able to show existence and uniqueness of solutions
in AC([0, T ];Hs−1(R3

+)) ∩ L∞([0, T ];Hs(R3
+)). Due to technical reasons (lack of

invariance under certain changes of variables, see [12, 13, 20]), so far we were
unable to prove that the solution we obtained in this way actually belongs to
C([0, T ];Hs(R3

+)) ∩ C1([0, T ];Hs−1(R3
+)), s > 3/2 as we would have liked. How-

ever, combining what we already have, with the results in theorem 3.1, proved
using Kato’s theory when s > 5/2, we see that the solutions must coincide, due to
uniqueness, if s > 5/2.

4. Comparison principle

To simplify the notation we will write

Bf = R(−1)f = F−1
(
ξ2 + η2 + α2 + 1

)−1
Ff, f ∈ L2

(
R

3
+

)
.

In order to state our results, we define of the fractional power spaces associated with
Neumann Laplacian −Δ. Following the arguments found in [16, 31]. For α > 0 and
f ∈ L2(R3

+), define10

Rα(−1) f = (1 − Δ)−α
f =

1
Γ(α)

∫ +∞

0

tα−1 e−t et Δf dt.

Then (1 − Δ)−α is a bounded, one-to-one operator on L2(R3
+). We let Jα = (1 −

Δ)α be the inverse of (1 − Δ)−α. For s > 0, the Hilbert space Hs(R3
+) is the range

10Of course we could also have used the Fourier transform defined above to introduce these
operators.
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of (1 − Δ)−s/2 with the inner product

〈f, g〉Hs =
∫

L2(R3
+)

Js/2f Js/2g dx. (4.1)

Consider the initial value problem (3.5) with F (t, ρ) = 0,11 P (ρ) = ρ2k, k =
1, 2, 3 . . .. ⎧⎨⎩

∂tρ+ div (ρ v) = 0, x ∈ R
3
+, t ∈ (0, T0]

v = −B∇ρ2k = −�Θ(ρ2k)
(ρ(0), v(0)) = (ρ0, v0)

(4.2)

Theorem 4.1 (Comparison principle). Let (ρ, v) and (η, w) be solutions of
(3.5) with P (ρ) = ρ2k, P (η) = η2k, k = 1, 2, 3 . . .;12 and initial values (ρ0, v0) and
(η0, w0) respectively. Then

0 � η0(x) � ρ0(x) in Ω ⇒ 0 � η(x, t) � ρ(x, t) in Ω × [0, T0] (4.3)

Proof. In this proof, we use the same idea employed by Alarcon, Iorio and Del Sol
in the study of Brinkman flow in R

n [23]. Let

R(t, y) = ρ(φ(t, y), t);S(t, y) = η(ψ(t, y), t) (4.4)

and

Q(t, y) = R(t, y) − S(t, y) (4.5)

where φ(t, y) and ψ(t, y) satisfy the following ordinary differential equations,⎧⎨⎩
∂φ

∂t
(t, y) = v(φ(t, y), t) φ(t, y) = (φ1(t, y), φ2(t, y), φ3(t, y))

φ(0, y) = y vi = −∂xi
B(ρ2k)

, (4.6)

⎧⎨⎩
∂ψ

∂t
(t, y) = w(ψ(t, y), t) ψ(t, y) = (ψ1(t, y), ψ2(t, y), ψ3(t, y))

ψ(0, y) = y wi = −∂xi
B(η2k)

, (4.7)

Now, ⎧⎨⎩
dR
dt

= −R div v
dS
dt

= −S div w

R(0, y) = ρ0(y) S(0, y) = η0(y)
(4.8)

Solving (4.8), we obtain:

R(t) = R(0) exp
[
−
∫ t

0

div v(φ(s, y), s) ds
] ρ0(y)�0︷︸︸︷⇒ R(t) � 0 (4.9)

11For the sake of simplicity. It is not very difficult to include the external force in the result.
12A motivation for this choice can be found in [1].
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Analogously, we have that:

S(t) = S(0) exp
[
−
∫ t

0

div w(ψ(s, y), s) ds
] η0(y)�0︷︸︸︷⇒ S(t) � 0 (4.10)

On the other hand, differentiating Q(t):

dQ
dt

=
dR
dt

− dS
dt

= (−div v)R(t) + (div w)S(t)

= −ρdiv v + η div w

= −(ρ− η)div v + η(div w − div v)

= −Q(t)(div v) + S(t)(div w − div v) (4.11)

where

div v = ρ2k − B(ρ2k), div w = η2k − B(η2k) (4.12)

Substituting (4.12) in (4.11), we obtain a new ordinary differential equation for
Q(t), ⎧⎨⎩

dQ
dt

= − [div v + S(t)P (R(t), S(t))]Q(t) +B(t,Q(t))

Q(0) = ρ0(y) − η0(y)
(4.13)

with

P (R(t), S(t)) = P (ρ, η) =
2k−1∑
i=0

ρ2k−1−iηi (4.14)

and

B(t,Q(t)) = S(t)(1 − Δ)−1 [Q(t)P (R(t), S(t))] . (4.15)

Thus,

Q(t) = U(t, 0)Q(0) +
∫ t

0

U(t, s)B(s,Q(s)) ds (4.16)

where

U(t, s) = exp
[
−
∫ t

s

[div (v(φ(τ, y), τ)) + S(τ)P (R(τ), S(τ))] dτ
]
. (4.17)

In view of conditions for ρ0 and η0, we have that R(t) � 0 and S(t) � 0.
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Consider the sequence

Qn(t) =

{
U(t, 0)Q(0) +

∫ t

0
U(t, s)B(s,Qn−1(s)) ds, se n = 1, 2, . . . ;

ρ0(y) − η0(y), se n = 0.

If Q(0) � 0, then Qn(t) � 0, for all n. Therefore,

Q(t) = ρ (φ(t, y), t) − η (ψ(t, y), t) = lim
n→∞Qn(t) � 0 (4.18)

To complete the proof we need to show the functions y ∈ Ω → φ(t, y) ∈ Ω and
y ∈ Ω → ψ(t, y) ∈ Ω are onto. To do this, we analyse in detail the map y ∈ Ω →
φ(t, y) ∈ Ω.

The Neumann boundary condition ρz = 0 for z = 0 and Brinkman’s condition
v = −∇B(ρ2k),13 implies that

v3((x1, x2, 0), t) = 0, ∀(x1, x2) ∈ R
2 and t ∈ [0, T ], (4.19)

then φ3(t, (x1, x2, 0) = 0 for all (x1, x2) ∈ R
2 and t ∈ [0, T ].

We will show that Ω it is invariant under the flow φ(t, y), that is,

φ (Ω) ⊂ Ω. (4.20)

By (4.19), the plane Π = {(x1, x2, x3) ∈ R
3 : x3 = 0} is invariant under the flow

φ(t, y), i.e. φ(Π) ⊂ Π. Next we show that (4.20) holds. To this end, it is enough to
verify that

φ(t, x1, x2, x3) ∈ Ω, ∀(x1, x2) ∈ R
2, x3 > 0. (4.21)

If (4.21) does not hold, there is a w = (w1, w2, w3) with w3 > 0 and 0 < t1 < t2 � T
such that φ(t1, w) ∈ Π and φ(t2, w) /∈ Ω. But (4.19) implies that

φ(t2, w) = φ(t1, w) +
∫ t2

t1

v(φ(s, w), s) ds, (4.22)

so that φ3(t2, w) = 0. This contradiction proves (4.20). From (4.6), integrating from
0 to t, we get:

φi(t) − yi =
∫ t

0

vi(φ(τ, y), τ) dτ ; i = 1, 2, 3, (4.23)

so that

|φi(t) − yi| �
∫ t

0

|vi(φ(τ, y), τ)|dτ � ai(‖ρ0‖s, t), i = 1, 2, 3, s >
5
2
, (4.24)

yi − ai(‖ρ0‖s, t) � φi(t, y) � yi + ai(‖ρ0‖s, t), ∀y = (y1, y2, y3) ∈ Ω. (4.25)

Let (z1, z2, z3) ∈ R
3
+. Taking y

(1)
i � 0 for i = 1, 2; y(2)

i � 0 for i = 1, 2, 3, such
that zi ∈ (y(1)

i , y
(2)
i ) for i = 1, 2 and 0 < z3 < y

(2)
3 we have:

y
(1)
i + ai(‖ρ0‖s, t) < zi < y

(2)
i − ai(‖ρ0‖s, t) (4.26)

13See (1.3).
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and

0 < z3 < φi(t, y
(2)
3 ). (4.27)

Therefore

φi(t, y
(1)
i ) < zi < φi(t, y

(2)
i ), for i = 1, 2, 3. (4.28)

Applying the intermediate value theorem to φi implies that there exists yi ∈
(y(1)

i , y
(2)
i ) satisfying φi(t, yi) = zi. For z3 = 0 the proof is analogous, since the plane

x3 = 0 is invariant by the flow φ(t, y), a consequence of (4.19). �

5. Global results in Hs(R3
+), s > 5/2

In this section, we obtain the global Hs-estimate for the solution of the Brinkman
flow equation. This will be a consequence of global well-posedness of the regularized
problem.

First, we introduce the following estimates

Lemma 5.1. If s > 0, then∥∥∥∥∥
n∑

k=1

[∂xk
Js(g∂xk

f) − ∂xk
f(∂xk

Jsg)]

∥∥∥∥∥
L2(R3

+)

� c
(
‖J2f‖L∞(R3

+)‖Jsg‖L2(R3
+)+ ‖Js+2f‖L2(R3

+)‖g‖L∞(R3
+)

)
(5.1)

Proof. The proof of this lemma is similar to that of lemma X1 in [17], is based on
the following result due to R. R. Coifman and Y. Meyer (lemma A.1.2). See lemma
A.1.3 in [24]. �

Lemma 5.2. If s > 0, then Hs(R3
+) ∩ L∞(R3

+) is a Banach algebra. Moreover

‖fg‖s � c(‖f‖L∞(R3
+)‖g‖L2(R3

+) + ‖f‖L2(R3
+)‖g‖L∞(R3

+)) (5.2)

Proof. See [17]. �

Lemma 5.3. Let f ∈ Xs(R3
+), s > 5

2 , k = 1, 2, . . .. Then

‖f2k‖s � ‖f‖2k−1
L∞(R3

+)
‖f‖s,

where A � B means that exist a constant c > 0 such that A � cB.

Now, we are ready to establish the following result.

Theorem 5.4 (Global solution). Let s > 5/2, P (ρ) = ρ2k, F ≡ 0 and ρ0 ∈ Hs(R3
+)

with 0 � ρ0(x) � 1 in R
3
+. Then (4.2) is globally well-posed in the sense described

in § 3 and satisfies 0 � ρ(x, t) � 1, ∀t � 0.
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Proof. The comparison principle implies that 0 � ρ(x, t) � 1. Using the regularized
initial value problem, with the simplified notations ρμ(t) ≡ ρ̃, vμ(t) ≡ v.⎧⎨⎩

∂tρ̃− μΔN ρ̃+ div [ρ̃v] = 0
v = −B∇ ρ̃2k

(ρ̃(0),v(0)) = (ρ̃0,v0)
. (5.3)

Applying Js to regularized equation:

d
dt

(Jsρ̃) − μ(JsΔN ρ̃) + Jsdiv (ρ̃ v) = 0. (5.4)

Multiplying (5.4) by Jsρ̃ and integrating over R
3
+ we get,

1
2

d
dt

∫
(Jsρ̃)2 dx = μ

∫
(Jsρ̃)Js(ΔN ρ̃) dx−

∫
(Jsρ̃)(Jsdiv (ρ̃ v)) dx, (5.5)

so that

1
2

d
dt

∫
(Jsρ̃)2 dx = μ

∫
(Jsρ̃)ΔN (Jsρ̃) dx︸ ︷︷ ︸

�0

−
3∑

i=1

∫
(Jsρ̃)∂xi

Js(ρ̃ vi) dx. (5.6)

Using the commutator [∂xi
Js, vi]ρ̃ = ∂xi

Js(ρ̃ vi) − vi∂xi
Jsρ̃, we obtain:

1
2

d
dt

∫
(Jsρ̃)2 dx � −

3∑
i=1

∫
(Jsρ̃)[∂xi

Js, vi]ρ̃ dx−
3∑

i=1

∫
(Jsρ̃)vi∂xi

Jsρ̃dx. (5.7)

Integration by parts in (5.7) yields,

1
2

d
dt

∫
(Jsρ̃)2 dx � −

3∑
i=1

∫
(Jsρ̃)[∂xi

Js, vi]ρ̃ dx+
1
2

∫
(Jsρ̃)2div v dx. (5.8)

Taking (4.12) into (5.8) we obtain,

1
2

d
dt

∫
(Jsρ̃)2 dx � −

3∑
i=1

∫
(Jsρ̃)[∂xi

Js, vi]ρ̃ dx+
1
2

∫
(Jsρ̃)2ρ̃2k dx

− 1
2

∫
(Jsρ̃)2J−1/2(ρ̃2k) dx. (5.9)

From the second equation in (5.3) we have vi = −∂xi
Bi(ρ̃2k). Substituting it in (5.9)

d
dt

∫
(Jsρ̃)2 dx �

∫
(Jsρ̃)2ρ̃2k dx−

�0︷ ︸︸ ︷∫
(Jsρ̃)2J−1/2ρ̃2k dx

+ 2
∫

(Jsρ̃)

(
3∑

i=1

[∂xi
Js, ∂xi

Bi

(
ρ̃2k
)
]ρ̃

)
dx. (5.10)
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Noting that the third term in (5.10) is non-negative, and applying Cauchy Schwartz
inequality in the fourth term we get,

d
dt

∫
(Jsρ̃)2 dx � ‖ρ̃2k‖L∞(R3

+)

∫
(Jsρ̃)2 dx

+ 2‖Jsρ̃‖L 2(R3
+)

∥∥∥∥∥
3∑

i=1

[
∂xi

Js, ∂xi
J−1/2ρ̃2k

]
ρ̃

∥∥∥∥∥
L2(R3

+)

(5.11)

Using lemma 5.1 in (5.11), with f = J−1/2ρ̃2k and g = ρ̃, we obtain:

d
dt

‖ρ̃‖2
s � ‖ρ̃2k‖L∞(R3

+)‖ρ̃‖2
s + 2c‖ρ̃‖s

[
‖ρ̃2k‖L∞(R3

+)‖ρ̃‖s + ‖ρ̃2k‖s‖ρ̃‖L∞(R3
+)

]
(5.12)

Applying lemma 5.3 in the term ‖ρ̃‖2
s, in (5.12):

d
dt

‖ρ̃‖2
s � ‖ρ̃‖2k

L∞(R3
+)‖ρ̃‖2

s (5.13)

Now, we need to estimate ‖ρ̃‖L∞(R3
+). Applying the comparison principle for ρ

together with Sobolev’s lemma we have

‖ρ̃‖L∞(R3
+) � ‖ρ̃− ρ‖L∞(R3

+) + ‖ρ‖L∞(R3
+) � 1 + ‖ρ̃− ρ‖s (5.14)

Since ‖ρ̃− ρ‖s = sup‖ϕ‖s=1 |〈ρ̃− ρ, ϕ〉s| we proceed as follows: in the analysis of the
weak convergence of sequence ρμ (see the proof of theorem 4.2 in [23]) we obtained

|〈ρμ(t) − ρη(t), ϕ〉s| � ‖ρμ(t) − ρη(t)‖s‖ϕ− ϕε‖s + ‖ρμ(t) − ρη(t)‖L2(R3
+) ‖ϕε‖2s

� 2Mε+ ‖ρμ(t) − ρη(t)‖L2(R3
+) ‖ϕε‖2s (5.15)

Taking the limit as η → 0 in (5.15), it follows that,

|〈ρμ(t) − ρ(t), ϕ〉s| � 2Mε+ ‖ρμ(t) − ρ(t)‖L2(R3
+) ‖ϕε‖2s (5.16)

Noting that ‖ρμ(t) − ρν(t)‖L2(R3
+) � 2M

√
nT̃s|μ− ν| eT̃sL0(M,M) (see the proof of

theorem 4.2 in [23]) and taking the limit as ν → 0, it follows that,

‖ρμ(t) − ρ(t)‖L2(R3
+) � 2M

√
n T̃s μ eT̃sL0(M,M) = C̃(n,M, T̃s)

√
μ (5.17)

Substituting (5.17) in (5.16) and noting that ‖ϕε‖2s � ε−s‖ϕ‖s with ϕε constructed
as in [11, lemma 2.6, p. 900], yields

|〈ρμ(t) − ρ(t), ϕ〉s| � 2Mε+ C̃(n,M, T̃s)
√
μ ε−s‖ϕ‖s (5.18)

Then

‖ρ̃− ρ‖s = sup
‖ϕ‖s=1

|〈ρ̃− ρ, ϕ〉s| � 2Mε+ C̃(n,M, T̃s)
√
μ ε−s (5.19)
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and

‖ρ̃‖L∞(R3
+) � 1 + 2Mε+ C̃(n,M, T̃s)

√
μ ε−s, ∀ε > 0 (5.20)

Since r(τ) = τ2k is a non-decreasing function, it follows that:

d
dt

‖ρ̃‖2
s � r(1 + 2Mε+ C̃(n,M, T̃s)

√
μ ε−s)‖ρ̃‖2

s (5.21)

Integrating from 0 to t in (5.21)

‖ρ̃‖2
s � ‖ρ0‖2

s + r(1 + 2Mε+ C̃(n,M, T̃s)
√
μ ε−s)

∫ t

0

‖ρ̃(τ)‖2
s dτ (5.22)

Applying Gronwall’s inequality to (5.22), we obtain a priori-estimate in
Hs(R3

+); s > 5/2

‖ρ̃‖2
s � ‖ρ0‖2

s er(1+2Mε+C̃(n,M,T̃s)
√

μ ε−s)T̃s , ∀T̃s > 0, ∀ε > 0 (5.23)

Finally, applying [35, theorem 1, p. 120] in (5.23) we obtain the final estimate

‖ρ(t)‖2
s � lim inf

μ→0
‖ρμ(t)‖2

s

� lim inf
μ→0

‖ρ0‖2
s er(1+2Mε+C̃(n,M,T̃s)

√
μ ε−s)T̃s

= lim
μ→0

‖ρ0‖2
s er(1+2Mε+C̃(n,M,T̃s)

√
μ ε−s)T̃s

= ‖ρ0‖2
s er(1+2Mε)T̃s ∀ε > 0 (5.24)

Therefore, taking the limit as ε tends to zero, follows the final estimate

‖ρ(t)‖2
s � ‖ρ0‖2

s eT̃s , ∀t ∈ [0, T̃s], (5.25)

and the proof is complete. �
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