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Abstract

We derive asymptotic theory for the extremogram and cross-extremogram of a bivariate
GARCH(1, 1) process. We show that the tails of the components of a bivariate
GARCH(1, 1) process may exhibit power-law behavior but, depending on the choice
of the parameters, the tail indices of the components may differ. We apply the theory
to five-minute return data of stock prices and foreign-exchange rates. We judge the fit
of a bivariate GARCH(1, 1) model by considering the sample extremogram and cross-
extremogram of the residuals. The results are in agreement with the independent and
identically distributed hypothesis of the two-dimensional innovations sequence. The
cross-extremograms at lag zero have a value significantly distinct from zero. This fact
points at some strong extremal dependence of the components of the innovations.
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1. The extremogram and the cross-extremogram

In this paper we conduct an empirical study of extremal serial dependence in a bivariate
return series. Our main tools for describing extremal dependence will be the extremogram and
the cross-extremogram. For the sake of argument and for simplicity, we restrict ourselves to
the bivariate series Xt = (X1,t , X2,t )

�, t ∈ Z. We assume that (Xt ) has the structure

Xt = �tZt , t ∈ Z, (1.1)

where (Zt ) constitutes an independent and identically distributed (i.i.d.) bivariate noise sequence
and

�t = diag(σ1,t , σ2,t ), t ∈ Z,

with σi,t the (nonnegative) volatility of Xi,t . We will assume that (Xt ) and (�t ) constitute
strictly stationary sequences, and that �t is predictable with respect to the filtration gener-
ated by (Zs)s≤t . We also assume that Zt = (Z1,t , Z2,t )

� has mean 0 and covariance matrix
(standardized to correlations)

P =
(

1 ρ

ρ 1

)
, (1.2)

where ρ = corr(Z1,t , Z2,t ). Later, we will choose parametric models for (Xt ), such as
univariate GARCH(1, 1) models for both Xi,t , i = 1, 2, or a vector GARCH(1,1) model;
see Section 2.2 for model descriptions. In the context of these parametric models, the choice of
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the covariance matrix P as a correlation matrix is a matter of identifiability of the model since
one can always swap a positive constant multiplier between �t and Zt .

The extremogram and cross-extremogram for a stationary sequence (Xt ) were introduced
by Davis and Mikosch [13] and further developed by Davis et al. [14], [15]. These quantities
can be defined in different ways: they are proportional to each other (such as the covariance
function and the correlation function of a stationary process). In this paper we define the
extremogram and cross-extremogram of a bivariate sequence (Xt ) in standardized form such
that they assume values in [0, 1]:(

ρ11(h) ρ12(h)

ρ21(h) ρ22(h)

)
, h = 0, 1, 2, . . . ,

where ⎛
⎜⎜⎝

ρ11(h)

ρ22(h)

ρ12(h)

ρ21(h)

⎞
⎟⎟⎠ = lim

x→∞

⎛
⎜⎜⎝

P(X1,h ∈ xA | X1,0 ∈ xA)

P(X2,h ∈ xB | X2,0 ∈ xB)

P(X2,h ∈ xB | X1,0 ∈ xA)

P(X1,h ∈ xA | X2,0 ∈ xB)

⎞
⎟⎟⎠ . (1.3)

Here A and B are sets bounded away from 0, and we assume that these limits exist. Typically,
we choose intervals (1,∞) and (−∞,−1) for A and B, and we also suppress the dependence on
A and B in the ρij notation. Note that xA = {xy : y ∈ A} has interpretation as an extreme event
if x is sufficiently large. Thus, the extremogram ρii(h) describes the likelihood of an extreme
event at lag h given there is an extreme event in the ith component at time 0. Correspondingly,
the cross-extremogram ρij (h) for i �= j describes the likelihood of an extreme event at time
lag h in the j th component given there is an extreme event at time 0 in the ith component. In
general, ρ12(h) �= ρ21(h). The limits ρij can be understood as generalizations of the (upper) tail
dependence coefficient ρ = limq↑1 P(Y > F←Y (q) | X > F←X (q)) for a bivariate vector (X, Y )

to the time series context. Here F←X (q) and F←Y (q) are the q-quantiles of the distributions of
X and Y , respectively. The tail-dependence coefficients have been proposed for measuring
extremal dependence in a bivariate vector in the context of quantitative risk management; see,
e.g. [25].

Moreover, each of the quantities ρij (h) has interpretation as a limiting covariance or cross-
covariance function. For example,

ρ11(h) = lim
x→∞

cov(1(X1,0 ∈ xA), 1(X1,h ∈ xA))+ [P(X1,0 ∈ xA)]2
P(X1,0 ∈ xA)

= lim
x→∞

cov(1(X1,0 ∈ xA), 1(X1,h ∈ xA))

P(X1,0 ∈ xA)

= lim
x→∞P(X1,h ∈ xA | X1,0 ∈ xA).

The limits ρij (h) in (1.3) do not automatically exist. A convenient theoretical assumption
for their existence is the condition of regular variation of the time series (Xt ). This notion is
explained in Section 2.1. Its close relationship with GARCH models is investigated in
Section 2.2. Return series are often heavy tailed and, therefore, it is attractive to model them by a
regularly varying model. For example, under mild conditions, the GARCH model automatically
ensures that sufficiently high moments of the series are infinite. In particular, univariate and
multivariate GARCH models exhibit power-law tails. This will be explained in Section 2.2. In
Section 3 we investigate the tail behavior of a bivariate GARCH(1, 1) process. Exploiting
Kesten’s [21] theory for stochastic recurrence equations, we find that these processes have
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power-law tail behavior, possibly with distinct tail indices in each component. In Section 4
we apply this theory to the extremogram and cross-extremogram of bivariate GARCH(1, 1)

processes. In particular, we show that these processes have exponentially decaying extremo-
grams and, in this sense, ‘short serial extremal dependence’. In Section 5 we apply the results to
the empirical (cross-)extremograms for simulated bivariate GARCH(1, 1) processes. Assuming
that bivariate return data have GARCH(1, 1) structure, we also apply the empirical (cross-)
extremograms to the data and their residuals. While the data exhibit some serial extremal
dependence, the (cross-)extremograms of the residuals (after fitting an AR-GARCH(1, 1)

model) are in agreement with the i.i.d. hypothesis. However, the noise variables show some
clear extremal dependence between the components.

2. Some preliminaries

2.1. Regularly varying time series

We say that an R
d -valued strictly stationary time series (Xt ) is regularly varying with index

α > 0 if its finite-dimensional distributions are regularly varying in the following sense. For
every h ≥ 0, the following limits in distribution exist:

P(x−1(X0, . . . ,Xh) ∈ · | |X0| > x)
W−→ P((Y0, . . . ,Yh) ∈ ·) as x →∞,

where the limit vector (Y0, . . . ,Yh) has the same distribution as |Y0|(�0, . . . , �h), the dis-
tribution of |Y0| is given by P(|Y0| > y) = y−α, y > 1, and |Y0| and (�0, . . . , �h) are
independent. Of course, the distribution of �0, the spectral measure, is concentrated on the
unit sphere S

d−1 = {x ∈ R
d : |x| = 1}. The spectral measure describes the likelihood of the

directions of extreme values of the lagged vector X0. Here ‘
W−→’ denotes weak convergence and

| · | denotes any norm in R
d ; from now on we choose the Euclidean norm. The aforementioned

definition of a regularly varying time series is based on work by Basrak and Segers [1] which
yields a convenient description of the topic. Davis and Hsing [12] introduced the notion of a
regularly varying time series which is attractive for describing serial extremal dependence in
the presence of heavy tails. They used an alternative definition of multivariate regular variation
which is equivalent to the definition above.

A direct consequence of the regular variation of a time series is that

P(|X0| > x) = x−αL(x), x > 0, for a slowly varying function L, (2.1)

i.e. L is a positive function on (0,∞) such that L(cx)/L(x) → 1 as x → ∞ for any c > 0.
Then we also have

P

(
X0

|X0| ∈ ·
∣∣∣∣ |X0| > x

)
W−→ P(�0 ∈ ·) as x →∞. (2.2)

Regular variation of the marginal distribution of the time series is equivalent to the set of
relations (2.1) and (2.2). A further consequence is that P(s′X0 > x)/P(|X0| > x) → eα(s)

as x → ∞ for any choice of s ∈ S
d−1 and some function eα such that eα(s0) �= 0 for some

s0 ∈ S
d−1 and eα(ts) = t−αeα(s), t > 0. For proofs of the aforementioned properties and

further reading on regular variation, we refer the reader to Bingham et al. [4] and Resnick [28],
[29] in the univariate and multivariate cases, respectively.

A particular consequence of the property of regular variation of a time series (Xt ) is the
fact that the limits in (1.3), leading to the extremogram and cross-extremogram, are well
defined. For this reason, we will assume that (Xt ) is regularly varying or we will assume that
a deterministic monotone-increasing transformation of the components Xi,t , i = 1, 2, of Xt
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results in a regularly varying time series. Such transformations can be necessary, for example,
if both components are not regularly varying or if both components have rather different tail
behavior. These cases are relevant for real-life time series. As an example, assume that (Xt ) is
a bivariate strictly stationary Gaussian time series. This is not a regularly varying time series.
However, the extremogram and cross-extremogram of this sequence exist for various sets A

and B, for example, if A = B = (1,∞) (a corresponding remark applies if A or B is the set
(−∞,−1)). Denote the marginal distribution functions of the components Xi,t , i = 1, 2, by
FXi,0 , respectively. If G denotes the distribution function of a t-distribution with α degrees of
freedom then calculation shows that

(G←(FX1,0(X1,t )), G
←(FX2,0(X2,t ))), t ∈ Z, (2.3)

has G-distributed marginals and one can indeed show that the transformed time series is
regularly varying with index α. The same transformation arguments apply to a non-Gaussian
time series, but, in contrast to a Gaussian time series, in general one cannot ensure that the
resulting time series is regularly varying in the sense defined above. Given that a transformation
of the type (2.3) yields a regularly varying time series, one can modify the cross-extremogram,
e.g. for the sets A = B = (1,∞), in the following way:

ρ12(h) = lim
q↑1

P(X2,h > F←X2,0
(q) | X1,0 > F←X1,0

(q))

= lim
x→∞P(G←(FX2,0(X2,h)) > x | G←(FX1,0(X1,0)) > x).

For practical purposes, we will replace the high quantiles F←Xi,0
(q), i = 1, 2, by their empirical

versions, such as the 97%, 98%, . . . componentwise empirical quantiles, depending on the
sample size available.1

Regular variation of a time series is a convenient theoretical property, but it cannot be tested
on data. In what follows, we will assume a GARCH model for (Xt ). This model ensures
regular variation of the sequence.

2.2. Univariate GARCH(1, 1) models

From Bollerslev [5], recall the notion of a univariate GARCH(1, 1) model:

Xt = σtZt , t ∈ Z. (2.4)

Here (Zt ) is an i.i.d. unit-variance mean-zero sequence and (σt ) is a positive volatility sequence
whose dynamics are given by the causal nonzero solution to the stochastic recurrence equation

σ 2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 = α0 + (α1Z

2
t−1 + β1)σ

2
t−1, t ∈ Z, (2.5)

where α0 > 0, α1 > 0, and β1 ≥ 0 are constants. The probabilistic structure of (σ 2
t ) can be

investigated in the context of solutions to the general stochastic recurrence equation

Yt = AtYt−1 + Bt , t ∈ Z, (2.6)

where (At , Bt ), t ∈ Z, constitutes an R
2+-valued i.i.d. sequence. Indeed, (σ 2

t ) satisfies this
equation with Bt = α0 and At = α1Z

2
t−1 + β1. Based on the theory for these equations

(see [8]), we conclude that a strictly stationary positive solution (σ 2
t ) to (2.5) exists if and

1We also experimented with the corresponding high quantiles underlying the theoretical (in the case of simulations)
or fitted (in the case of real-life data) GARCH models. The results for the empirical (cross-)extremograms were
essentially the same as for using the empirical quantiles, but the computational effort involved in calculating the
theoretical quantiles were substantial.
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only if
E log(α1Z

2
0 + β1) < 0 and α0 > 0. (2.7)

In view of Jensen’s inequality and since EZ2
0 = 1, E log(α1Z

2
0 + β1) ≤ log E(α1Z

2
0 + β1) =

log(α1 + β1). Therefore, the condition α1 + β1 < 1 ensures strict stationarity as well as
second-order stationarity of (σt ) and (Xt ), but condition (2.7) is much more general and also
allows for certain choices of α1 and β1 such that α1 + β1 ≥ 1; see [8] and [27]. In the latter
cases, E[X2

0] = ∞.
The solution to (2.6) has a rather surprising property which was discovered by Kesten [21];

see also Goldie [18]. Under mild conditions, there exists a positive constant c0 such that
P(Y0 > x) ∼ c0x

−α for some α > 0. We apply the aforementioned theory to (2.5) and get the
following result which can be found in Goldie’s [18] paper as regards the marginal distributions.
Mikosch and Stărică [26] proved that (σt ) and (Xt ) are regularly varying time series.

Proposition 2.1. Assume that α0 > 0, Z0 has Lebesgue density, and that there exists α > 0
such that

E(α1Z
2
0 + β1)

α/2 = 1 (2.8)

and E[(α1Z
2
0 + β1)

α/2 log+(α1Z
2
0 + β1)] <∞. Then there exists a unique strictly stationary,

causal nonzero solution to (2.5) and (2.4), and there exists a constant c0 > 0 such that

P(σ0 > x) ∼ c0x
−α as x →∞. (2.9)

Moreover, as x →∞,

P(X0 > x) ∼ E[(Z+0 )α]P(σ0 > x) and P(X0 ≤ −x) ∼ E[(Z−0 )α]P(σ0 > x), (2.10)

where x± = max(0,±x). In addition, the sequences (σt ) and (Xt ) are regularly varying with
index α.

Relation (2.10) is an immediate consequence of (2.9) and a result of Breiman [10] about the
tails of products of independent random variables; cf. Jessen and Mikosch [20].

3. Bivariate GARCH(1, 1) processes and their properties

Our next goal is to consider multivariate extensions of the GARCH(1, 1) model of the type
described in (1.1). A simple way of doing this is by assuming that both component sequences
(Xi,t ), i = 1, 2, constitute univariate GARCH(1, 1) processes, i.e. (Xt ) in (1.1) is specified
via the vector recursion(

σ 2
1,t

σ 2
2,t

)
=

(
α01
α02

)
+

(
α11 0
0 α22

) (
X2

1,t−1
X2

2,t−1

)
+

(
β11 0
0 β22

) (
σ 2

1,t−1
σ 2

2,t−1

)

=
(

α01
α02

)
+

(
α11Z

2
1,t−1 + β11 0

0 α22Z
2
2,t−1 + β22

) (
σ 2

1,t−1
σ 2

2,t−1

)
,

and (Zt ) is an i.i.d. sequence with covariance matrix P given in (1.2). We can apply the
univariate theory to the components (σ 2

i,t ), i = 1, 2. There exist unique strictly stationary
solutions (σ 2

i,t ), i = 1, 2, if and only if α0i �= 0 and E log+(αiiZ
2
i,0 + βii) < 0 for i = 1, 2,

and the resulting unique bivariate processes (�t ) and (Xt ) are strictly stationary. Note that
the dependence structure between the univariate component processes is then completely
determined by the dependence structure of the components of the noise (Zt ). We can also apply
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Proposition 2.1 to get conditions for power-law tails and regular variation of the component
processes of (Xt ).

Remark 3.1. The crucial condition for the componentwise tail behavior is (2.8). Since the
distributions of Zi,0, i = 1, 2, and the parameter sets (αii , βii), i = 1, 2, may be distinct, X1,t

and X2,t will in general have different tail indices α1 and α2, respectively. This fact can be
considered an advantage when studying multivariate return series because there is empirical
evidence that the components of these series have distinct tail indices.

There exist various extensions of a univariate GARCH model to the multivariate case. We
stick here to the constant conditional correlation model of Bollerslev [6] and Jeantheau [19].
It is model (1.1) with specification(

σ 2
1,t

σ 2
2,t

)
=

(
α01
α02

)
+

(
α11 α12
α21 α22

) (
X2

1,t−1
X2

2,t−1

)
+

(
β11 β12
β21 β22

) (
σ 2

1,t−1
σ 2

2,t−1

)

=
(

α01
α02

)
+

(
α11Z

2
1,t−1 + β11 α12Z

2
2,t−1 + β12

α21Z
2
1,t−1 + β21 α22Z

2
2,t−1 + β22

) (
σ 2

1,t−1
σ 2

2,t−1

)
.

(3.1)

Writing

Wt =
(

σ 2
1,t

σ 2
2,t

)
, Bt =

(
α01
α02

)
, and At =

(
α11Z

2
1,t−1 + β11 α12Z

2
2,t−1 + β12

α21Z
2
1,t−1 + β21 α22Z

2
2,t−1 + β22

)
,

we see that we are again in the framework of the stochastic recurrence equation (2.6), but this
time for vector-valued Bt and matrix-valued At :

Wt = AtWt−1 + Bt , t ∈ Z. (3.2)

Kesten [21] also provided the corresponding theory for stationarity and tails in this case. Stărică
[30] dealt with the corresponding problems for vector GARCH(1, 1) processes, making use of
the theory in Kesten [21], Bougerol and Picard [8], and its specialization to the tails of GARCH
models in Basrak et al. [3]. In the bivariate GARCH(1, 1) case the theory in Stărică [30] can
be written in a more compact form due to (3.1); in the case of higher-order GARCH models
(3.1) has to be written as an equation for vectors involving both σ 2- and X2-terms at more than
1 lag.

According to Bougerol and Picard [8], (3.1) has a unique strictly stationary solution if the
top Lyapunov exponent γ associated with the sequence (At ) is negative, i.e.

γ = lim
n→∞ n−1 log‖A1 · · ·An‖ < 0, (3.3)

where ‖ · ‖ denotes the matrix norm and the limit on the right-hand side exists almost surely.
In view of the remark on page 122 of [8], a sufficient condition for γ < 0 is that the matrix

EA1 =
(

α11 + β11 α12 + β12
α21 + β21 α22 + β22

)
=:

(
a11 a12
a21 a22

)
(3.4)

has spectral radius smaller than 1. We assume that all entries of EA1 are positive. Then,
by the Perron–Frobenius theorem (see [22, Section 9.2]), EA1 has a dominant single positive
eigenvalue. Keeping this fact in mind, the largest positive solution to the characteristic equation
det(λI − EA1) = 0 yields the sufficient condition

a11 + a22

2
+

√(a11 − a22

2

)2 + a12a21 < 1. (3.5)
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Next we give sufficient conditions for the regular variation of a bivariate GARCH(1, 1)

process (Xt ). The proof is based on Kesten’s fundamental results [21], in particular Theorem 4.
Stărică [30] gave a similar result, referring to Basrak et al. [3] for a related proof in the situation
of a univariate GARCH(p, q) process (see also [16]). We give a proof by verifying Kesten’s
conditions.

Proposition 3.1. Consider the bivariate GARCH(1, 1) model and assume that the following
conditions hold:

1. condition (3.3);

2. Z0 has Lebesgue density in R
2;

3. there exists p > 0 such that

E[|Z0|p log+|Z0|] <∞ and E

[
min
i=1,2

( 2∑
j=1

(αijZ
2
j,0 + βij )

)p]
≥ 2p/2; (3.6)

4. all entries of A0 are positive almost surely, α0i > 0, i = 1, 2, and not all values
αij , 1 ≤ i, j ≤ 2, vanish.

Then there exists a unique α ∈ (0, 2p] such that

0 = lim
n→∞ n−1 log E[‖A1 · · ·An‖α/2], (3.7)

there exists a strictly stationary, causal nonzero solution (Xt ) to (1.1) with specification (3.1),
and (Xt ) is regularly varying with index α. In particular, for every n ≥ 1, there exists a nonnull
Radon measure μn on R̄

2n\{0}, R̄ = {−∞,∞} ∪ R, such that

xα
P
(
x−1(X1, . . . ,Xn) ∈ ·) V−→ μn(·) as x →∞.

Here ‘
V−→’ denotes vague convergence and the limit measures have the property μn(t ·) =

t−αμn(·), t > 0.

Proof. According to [21, Theorem 4], there exist

• a unique strictly stationary solution (Wt ) to (3.2),

• a positive value α and a nonnegative function eα on S
1 such that

lim
x→∞ xα/2

P(u�W0 > x) = eα(u), u ∈ S
1, (3.8)

and the function eα is positive for u ∈ S
1 such that u ≥ 0,

if the following conditions hold:

1. A0 ≥ 0, B0 ≥ 0, and B0 �= 0, where C ≥ 0 (respectively > 0) means all entries in C

are nonnegative (respectively positive);

2. the additive group generated by the numbers log ρ(a1 · · · an) is dense in R, where the
ai are elements in the support of the distribution of A0 such that a1 · · · an has positive
entries and ρ is the spectral radius;

3. condition (3.3) holds;

4. there exists α > 0 such that (3.7) holds;

5. E[‖A0‖α/2 log+‖A0‖] <∞ and E[|B0|α/2] <∞.
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Condition 1 holds in view of the assumptions that A0 > 0 almost surely and B0 > 0.
To show that condition 2 holds, we assume that A0 > 0 almost surely. Therefore, a1 · · · an >

0 for any n ≥ 1 and any ai in the support of A0. Since we assume a Lebesgue density for Z0,
there exists an open set in R

2 where this density is positive. Therefore, and since not all values
αij vanish, there exists a continuum of values ρ(a1) for a1 in the support of A0.

Conditions 3 and 5 follow from the assumptions.
The existence of such an α in condition 4 follows from the existence of p > 0 such that

(3.6) holds. Then α ≤ 2p.
We can thus apply Kesten’s Theorem 4. In particular, (3.8) holds. Owing to results in [7]

and since W0 is positive, (3.8) implies that W0 is regularly varying with index α/2 in the sense
of Section 2.1.

Next we show that the finite-dimensional distributions of (Wt ) are regularly varying. By
induction,

Wt = 
tW0 +Rt ,

where 
t = At · · ·A1, Rt =∑t−1
i=1 At · · ·At−i+1Bt−i + Bt for t ≥ 1, and all vectors are

interpreted as column vectors. With this interpretation we write

(W1, . . . ,Wt ) = (
1, . . . , 
t )W0 + (R1, . . . ,Rt ), t ≥ 1, (3.9)

where (
1, . . . , 
t ), (R1, . . . ,Rt ) have moments of order 1
2α with respect to the corresponding

matrix norms and are independent of W0. Now an application of the multivariate Breiman
theorem in Basrak et al. [2] yields the regular variation of the finite-dimensional distributions
of the bivariate series (Wt ) with index 1

2α, due to the regular variation of W0 with the same
index. Hence, (�t ) = ((diag(Wt ))

1/2) inherits regular variation with index α. Here x1/2 for
any matrix or vector x refers to taking the square root of all entries.

It remains to show that (Xt ) is regularly varying with index α. We write �̃t = (diag(Wt −
Rt ))

1/2. It is not difficult to see that |(�t − �̃t )Zt | is dominated by c|Rt |1/2|Zt | for some
constant c and this bound has finite α moment. Therefore,

lim
x→∞ xα

P(|(�1Z1, . . . , �tZt )− (�̃1Z1, . . . , �̃tZt )| > x) = 0.

Since W0 is regularly varying with index 1
2α, an application of the multivariate Breiman result

(see [2]) shows that (
1, . . . , 
t )W0 is regularly varying with index 1
2α as well. Combining

these facts, we conclude that

(�̃1Z1, . . . , �̃tZt ) and (�1Z1, . . . , �tZt )

have the same tail behavior and are regularly varying with index α; cf. [20]. In particular, we
have

P(x−1/2((diag(
1W0))
1/2Z1, . . . , (diag(
tW0))

1/2Zt ) ∈ · | |W0| > x)

W−→ P(Y0((diag(
1�0))
1/2Z1, . . . , (diag(
t�0))

1/2Zt ) ∈ ·),
where P(Y0 > x) = x−α for x > 1, Y0 is independent of �0, Z1, . . . ,Zt , and �0 has the
spectral distribution of W0. �
Remark 3.2. In view of Kesten’s result, relation (3.8) holds for any u ∈ S

1 and eα(u) �= 0 for
u ≥ 0. In particular, for u1 = (0, 1) and u2 = (1, 0), we conclude that P(σi,0 > x) ∼ cix

−α

as x →∞, where both constants ci are positive. In turn, Breiman’s result [10] ensures that

P(X±i,0 > x) ∼ E[(Z±i,0)α]P(σi,0 > x), as x →∞ for i = 1, 2.
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This means that the right and left tails of the distribution of X0 are equivalent and they have
the same tail index α. Equivalent tail behavior of the component series is not necessarily
an advantage as regards realistic modeling of the extremes of multivariate return models:
there is statistical evidence that univariate return series have distinct tail indices. This case
is more easily modeled under the assumption that αij = βij = 0 for i �= j (see Remark 3.1),
where the components of Xt may have different tail behavior, providing more flexibility for
componentwise extremes.

The crucial condition in Proposition 3.1 which distinguishes it from Proposition 2.1 is the
assumption that all entries of A0 must be positive and random. This condition is also satisfied
if αii > 0 for i = 1, 2, and αij = 0 and βij > 0 for i �= j , i.e. the off-diagonal elements in the
matrix A0 may be positive constant.

The case when A0 is an upper- or lower-triangular matrix is not covered by Proposition 3.1.
For example, assume that α21 = β21 = 0. Then we have the GARCH(1, 1) equation

σ 2
2,t = α02 + (α22Z

2
2,t−1 + β22)σ

2
2,t−1, t ∈ Z,

which can be solved and, under the conditions of Proposition 2.1, the solution has tail index
1
2α2 > 0. Writing Ct = α01 + (α12Z

2
2,t−1 + β12)σ

2
2,t−1, we obtain

σ 2
1,t = Ct + (α11Z

2
1,t−1 + β11)σ

2
1,t−1, t ∈ Z.

This is again a one-dimensional recurrence equation, but now the coefficients (Ct , α11Z
2
1,t−1+

β11), t ∈ Z, constitute a dependent strictly stationary sequence. Appealing to [9], a unique
causal solution to this equation exists, but its theoretical properties are not straightforward due
to the dependence of the coefficient sequence. However, the tail of σ 2

1,0 is asymptotically at
least as heavy as the tail of σ 2

2,0. Indeed, as x →∞,

P(σ 2
1,t > x) ≥ P(Ct > x)

≥ P((α12Z
2
2,t−1 + β12)σ

2
2,t−1 > x)

∼ E[(α12Z
2
2,t−1 + β12)

α2/2]P(σ 2
2,t > x).

In the last step we applied Breiman’s theorem and used stationarity.

4. The extremogram and cross-extremogram for a bivariate GARCH(1, 1) process

Davis and Mikosch [13] showed that, for a univariate GARCH(1, 1) process under the
conditions of Proposition 2.1,

ρσ (h) = lim
x→∞P(σh > x | σ0 > x)

= lim
x→∞P(σ 2

h > x | σ 2
0 > x)

= E[min(1, 

α/2
h )], h ≥ 1,

where At = α1Z
2
t−1 + β1, t ∈ Z and 
h = Ah · · ·A1. While the value of these quantities is

not known, it is possible to determine their asymptotic order for large h. By convexity of the
function g(h) = E[Ah

0] and since g(α/2) = 1, we have E[Ap
0 ] < 1 for p < 1

2α. Therefore,

ρσ (h) ≤ E[min(1, 

p
h)] ≤ E[
p

h ] = (E[Ap
0 ])h, h ≥ 1,

and the right-hand side converges to 0 exponentially fast. The extremogram of the X-sequence
inherits this rate. Written in the form σ 2

h = α0 + Ahσ
2
h−1 = 
hσ

2
0 + Rh, since R0.5

h Z+h has a
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finite α moment, multiple use of Breiman’s result yields

ρX(h) = lim
x→∞P(σhZh > x | σ0Z0 > x)

= lim
x→∞

P(min(σhZ
+
h , σ0Z

+
0 ) > x)

P(σ0Z
+
0 > x)

≤ lim sup
x→∞

P(σ0 min(
0.5
h Z+h , Z+0 ) > x/2)

P(σ0Z
+
0 > x)

+ lim sup
x→∞

P(R0.5
h Z+h > x/2)

P(σ0Z
+
0 > x)

= const.
E[(min(
0.5

h Z+h , Z+0 ))α]
E[(Z+0 )α]

≤ const. (E[Ap
0 ])h.

This means that ρX(h) inherits the exponential rate from ρσ (h). Both rates indicate that the
σ - and X-sequences have rather ‘short extremal memory’. This fact is in agreement with the
empirical results of Section 5.

Similar calculations can be done in the bivariate case. We restrict ourselves to the
σ -sequences. We assume that the conditions of Proposition 3.1 hold; in this case both compo-
nents σ 2

i,t , i = 1, 2, of the vector Wt in (3.2) have the same tail index. Using relation (3.9), we
see that

ρij (h) = lim
x→∞P(σ 2

j,h > x | σ 2
i,0 > x)

= lim
x→∞

P(σ 2
j,h > x, σ 2

i,0 > x)

P(σ 2
i,0 > x)

≤ lim
x→∞

P(|Wh| > x, |W0| > x)

P(|W0| > x)

P(|W0| > x)

P(σ 2
i,0 > x)

.

The limit of the latter ratio converges to a constant by virtue of regular variation. Thus, the
extremograms ρij are bounded by the extremogram ρ|W | of (|Wt |) times this constant. However,
(3.9) and the independence of W0 and Rh imply that, for p < 1

2α,

ρ|W |(h) = lim
x→∞

P(|Wh| > x, |W0| > x)

P(|W0| > x)

≤ lim sup
x→∞

P(‖
h‖ |W0| > x/2, |W0| > x)

P(|W0| > x)
+ lim

x→∞P
(|Rh| > 1

2x
)

= const. E[min(1, ‖
h‖α/2)]
≤ const. E[min(1, ‖
h‖p)]
≤ const. E[‖
h‖p], h ≥ 1.

The right-hand side converges to 0 at an exponential rate in view of E[‖
h0‖p] < 1 for a
sufficiently large h0.

5. An empirical study of the extremogram and the cross-extremogram

5.1. Estimation of the extremogram and cross-extremogram

Davis and Mikosch [13] and Davis et al. [14] proposed estimators of the quantities ρij (h),

h ∈ Z, for given sets A and B bounded away from 0:

ρ̂ij (h) =
∑n−h

t=1 1(Xj,t+h ∈ F̂←Xj,0
(1− 1/m)× B, Xi,t ∈ F̂←Xi,0

(1− 1/m)× A)∑n
t=1 1(Xi,t ∈ F̂←Xi,0

(1− 1/m)× A)
(5.1)
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for some sequence m = mn → ∞ such that m = o(n) as n → ∞. In order to ensure stan-
dard asymptotic properties such as consistency and asymptotic normality, Davis and Mikosch
[13] and Davis et al. [14] assumed the strong mixing condition and regular variation for the
sequence (Xt ), possibly after a monotone transformation of its components as explained in
Section 2.1. The aforementioned growth conditions on the sequence (mn) are standard in
extreme-value statistics and cannot be avoided. They ensure that sufficiently high thresholds
F←Xi,0

(1− 1/m), i = 1, 2, are chosen. These thresholds guarantee that a certain fraction of
the data is taken which may be considered extreme as regards distance from the origin. For
practical purposes, we take the corresponding empirical (1−1/m)-quantiles of the components.
Although we do not have a theoretical justification for this replacement, we have simulation
evidence that this approach works. In the GARCH(1, 1) case the theoretical quantiles can
be determined by Monte Carlo simulation using estimated GARCH(1, 1) parameters for the
model. The results for the sample extremogram based on the theoretical and empirical quantiles
were essentially the same, where we neglect the uncertainty of estimating parameters.

Although central limit theory can be shown for ρ̂ij at a finite number of lags h, the asymptotic
covariance structure is not tractable. Davis et al. [14] proposed two methods for the construction
of credible confidence bands: the stationary bootstrap and random permutations. In this paper,
we stick to the latter procedure. It is based on the simple idea that if the sample X1, . . . ,Xn were
i.i.d., random permutations of the sample would not change its dependence structure; hence,
the distributions of the empirical extremogram and cross-extremogram would not change under
permutations. In what follows, we calculate the (cross-)extremograms based on 100 random
permutations of the sample. First we calculate the 100 extremogram values at each lag. Then
we choose the 96% empirical quantile at each lag and finally take the maximum of empirical
quantiles over the lags of interest. This value is shown as a solid horizontal line in the figures
below. This procedure is quick and clean: if the sample (cross-)extremogram at a given lag is
above the horizontal line, this is an indication of disagreement with the i.i.d. hypothesis.2

5.2. Simulated GARCH(1, 1) data

We provide a brief study of the sample (cross-)extremograms of simulated bivariate
GARCH(1, 1) processes and their residuals. We choose bivariate GARCH(1, 1) models with
i.i.d. bivariate t-distributed innovations (Zt ) with 10 degrees of freedom and covariance matrix
P given in (1.2). We simulate from model (3.1) with parameters (α01, α02) = (10−6, 10−6)

(the magnitude of these parameters is in agreement with values estimated from return data),
and specified matrices and correlations(

α11 α12
α12 α22

)
,

(
β11 β12
β12 β22

)
, ρ. (5.2)

We start by considering two examples with respective symmetric parameter matrices (5.2).

Example 1.

(
0.1 0
0 0.1

)
,

(
0.8 0
0 0.8

)
, 0.

Example 2.

(
0.1 0.02

0.02 0.1

)
,

(
0.8 0.04

0.04 0.8

)
, 0.7.

2 Alternatively, one could plot the curve connecting the 96% empirical quantiles at each lag. However, this line
could vary from lag to lag. We prefer to choose the line representing the maximum of all lag-wise 96% empirical
quantiles, which presents a conservative confidence band.
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Figure 1: Cross-extremograms of Example 1 (left 2 × 2 graphs; see (5.3)) and Example 2 (right 2 × 2
graphs). In both cases we observe serial extremal dependence in extremograms, whereas extremal
dependence in cross terms is observed only in Example 2. The reason is that Example 1 exhibits
componentwise independence, while Example 2 does not by virtue of the setting αij , βij �= 0 for i �= j ,

and ρ �= 0. In the latter case, we also observe large spikes at lag 0 caused by ρ �= 0.

Here we always choose small α-values while the diagonal β-values are close to 1. This is in
agreement with estimated parameters on return data. We generate samples of size n = 50 000,
using the R package ccgarch3, and calculate the (cross-)extremograms ρ̂ij (h) in (5.1) with
A = B = (1,∞). The simulation results for Examples 1 and 2 are given in Figure 1, where
the (cross-)extremograms are given by 2× 2 graphs as functions of the time lag h:(

ρ̂11(h) ρ̂12(h)

ρ̂21(h) ρ̂22(h)

)
. (5.3)

Figure 1 indicates that small changes in the α- or β-values may lead to major changes in
the extremal dependence structure. In Example 2 we also observe large spikes in the cross-
extremograms at lag 0 due to ρ �= 0. This is in contrast to Example 1 with ρ = 0.

Our next goal is to show (cross-)extremograms of the residuals of simulated bivariate
GARCH(1, 1) models. Although we know the innovations sequence in this case, we want to
illustrate how standard maximum-likelihood estimation (MLE) techniques work. In particular,
we expect that the empirical extremograms of the residuals should be close to 0. The estimation
is done in two ways: (i) we fit componentwise univariate GARCH(1, 1) models, applying MLE
and assuming Student t-distributions for the innovations; (ii) following Ling and McAleer [23]
(see also Francq and Zakoïan [17]), we apply bivariate Gaussian quasi-MLE (QMLE). We
consider model (3.1) with given parameter (α01, α02) = (10−6, 10−6) and parameter matrices
(5.2) as follows.

Example 3.

(
0.1 0
0.05 0.1

)
,

(
0.8 0.03
0 0.8

)
, 0.7.

3Note that estimation with ccgarch requires choosing initial values. In most cases, we first examine
componentwise univariate GARCH(1, 1) fits using the R package fGarch and then we choose these estimates as
initial values. If the univariate estimation does not converge, we try several initial values on a grid of size 0.1. In
this case, the estimates sometimes differ by attaining local minima. Judging from the residuals, the eigenvalues of the
estimated parameters (3.4) and the values of the likelihood functions, we choose an ‘optimal’ estimator. Except for
one case of stock-return data (see Section 5.4), this procedure works.
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Figure 2: Left 2 × 2 graphs (see (5.3)): (cross-)extremogram of residuals based on a bivariate QMLE
fit. Right 2 × 2 graphs: (cross-)extremogram of residuals from componentwise MLE fits. There is no

difference in both cases, where serial extremal dependencies have been removed except for lag 0.

Componentwise univariate MLE and bivariate QMLE respectively yield the following
estimation results:

i α̂i β̂i Degree for t

1 0.137 0.831 9.81
2 0.169 0.802 10.00

(
0.130 0
0.056 0.125

)
,

(
0.778 0.025
0.039 0.790

)
, 0.7.

Despite the misspecification of a bivariate GARCH(1, 1) model, univariate estimation leads
to reasonable estimation results. (Cross-)extremograms of residuals in Figure 2 indicate that
extremal cross-serial dependence is not present in the residuals of both a bivariate GARCH(1, 1)

fit (see the left 2 × 2 graphs in Figure 2) and componentwise univariate fits (see the right
2× 2 graphs in Figure 2). However, another example in Matsui and Mikosch [24] shows that
univariate fits do not remove all cross dependencies from the residuals (in this case the degrees
of freedom were not correctly estimated). In [24] we experimented with distinct parameter
sets close to the true sets and we also replaced univariate MLE by univariate Gaussian QMLE.
In all cases, one cannot remove all cross dependencies of the residuals. Therefore, bivariate
GARCH(1, 1) fitting is recommended if one suspects dependence in the noise sequence.

5.3. An analysis of foreign exchange rates

We analyze a bivariate high-frequency time series, consisting of 35 135 five-minute returns of
USD-DEM and USD-FRF foreign exchange rates. Throughout this subsection, we choose the
98% componentwise sample quantiles as the threshold for the sample (cross-)extremograms.
In each plot the horizontal line shows the 96% quantile obtained from 100 random permutations
of the data.

The data exhibit rather strong cross-correlations and autocorrelations (see [24, Figure 5]).
So it is not unexpected that we also observe dependence of the extreme values of the two
series. This is apparent in the extremograms of Figure 3 (left 2 × 2 graphs). After fitting a
bivariate vector AR model of order 19 to the data (chosen by the Schwarz criterion or Bayesian
information criterion; see, e.g. [11, Section 9.3]), we fit a bivariate GARCH(1, 1) model to the
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Figure 3: Five-minute returns of USD-DEM and USD-FRF foreign exchange rates. Left 2 × 2 graphs
(see (5.3)): (cross-)extremograms of the original data. The extremograms oscillate strongly while the
cross-extremograms show little extremal serial dependence. Right 2 × 2 graphs: (cross-)extremograms
of the residuals after an AR-GARCH fit. Except for lag 0, serial extremal dependence has been removed.

residuals, by employing bivariate QMLE. The estimated matrices (5.2) are(
0.214 0.013
0.110 0.223

)
,

(
0.697 0.008
0.280 0.663

)
, 0.372,

which satisfy the sufficient condition for stationarity of a bivariate GARCH(1, 1) model; see
(3.5). After the AR fit, the cross-extremograms of the residuals do not vanish, although their
values are small. After fitting a bivariate GARCH(1, 1) model to the residuals of the AR
model, the residuals of the resulting AR-GARCH model exhibit extremal cross-dependence
only at time-lag 0; see Figure 3 (right 2 × 2 graphs). This means that the components of the
innovations Zt exhibit extremal dependence. QQ-plots for the residuals of the vector AR and
AR-GARCH models show that t-distributions with 2.5 and 3 degrees of freedom (respectively),
give a good fit to the residuals.

5.4. An analysis of stock returns

We consider log-return series of three stock prices from the NY Stock Exchange: ‘Caterpillar
Inc.’, ‘FedEx Corporation’, and ‘Exxon Mobil Corporation’ (‘cat’, ‘fdx’, and ‘xom’ for short).4

In each series, the raw tick-by-tick trade data have been processed into five-minute grid data by
taking the last realized trade price in each interval. Prices have been restricted to the exchange
trading hours 9:30 a.m. to 4:00 p.m., Monday to Friday, so that 78 data per day have been
collected in the time period from 2009-02-18, 9:30, to 2013-12-31, 16:00.

The sample (cross-)extremograms of the log-returns of the stock prices are shown in Figure 4,
where we choose the empirical 0.99 quantiles of the returns as the threshold. Although we
observe typical GARCH(1, 1) (cross-)extremograms close to lag 0, there is a clear seasonal
component in these plots, appearing as spikes at lag 78, corresponding to the beginning and end
of the days. A GARCH(1, 1) model (bivariate or componentwise univariate) cannot explain the
seasonal extremal components in the data. However, the (cross-)extremograms of the residuals
after a bivariate GARCH(1, 1) fit show that most of the serial dependence has been removed
from the data, although the seasonal component is also present in the residuals; see Figure 5.
The extremograms of the log-returns are shown in Figure 4, where the thresholds are chosen
as the componentwise sample quantiles.

4We would like to thank Martin Anders Jönsson for providing the stock price data.
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Figure 4: (Cross-)extremograms of log-return series of three stock prices (cat, fdx, xom). Graphs show
strong serial extremal dependence in each series together with strong extremal dependence between the
three series. Other than large spikes at lag 0 in cross-extremograms, we observe spikes at lag 78, which
show seasonal fluctuation in a day. Moreover, extremal data around the beginning, 9:30 a.m., and the end,

4:00 p.m., may exhibit strong dependence.

We fit a bivariate GARCH(1, 1) model to each pair of stock prices, i.e. (cat, fdx), (fdx, xom)
and (cat, xom). The estimated values of the bivariate QMLE (5.2) for (cat, fdx), (fdx, xom),
(cat, xom) are, respectively,(

0.215 0.210
0.029 0.287

)
,

(
0.666 0.144
0.002 0.668

)
, 0.55,

(
0.178 0.000
0.006 0.250

)
,

(
0.712 0.115
0.007 0.666

)
, 0.484,(

0.094 0.153
0.009 0.278

)
,

(
0.789 0.094
0.007 0.650

)
, 0.567.

The estimators of the combination (cat, fdx) are unstable and take the boundary value5 of
the sufficient condition (3.5), while the estimates for (fdx, xom) and (cat, xom) satisfy (3.5).
The obvious seasonal component of the data (corresponding to the end of a trading day at lag
78) probably violates the stationary condition. Nevertheless, the standardized residuals appear

5In this case, the univariate GARCH(1, 1) fit does not converge. Therefore we examine several initial values
for ccgarch on a grid of size 0.1 and choose an ‘optimal’ value based on their likelihoods. We also tried several
optimization methods included in ccgarch. Then we calculated the eigenvalues of (3.4) from the estimates, including
the ‘optimal’ estimates. However, the largest eigenvalues are very close to 1 in all cases. Since ccgarch finds the
optimal value under the sufficient condition (3.5), the real optima would certainly violate (3.5).
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Figure 5: (Cross-)extremograms for residuals of bivariate GARCH(1, 1) fits to combinations (cat, fdx),
(fdx, xom), and (xom, cat), so that we have two extremograms in each row, i.e. cat-f and cat-x are those for
residuals of cat components respectively from bivariate QMLE of (cat, fdx) and (xom, cat). Other elements
are cross-extremograms for residuals of (cat, fdx, xom) against (cat, fdx, xom). Although residuals show
less extremal dependence except for large spikes at 0, we could not remove the seasonal component at

lag 78.

‘de-volatilized’ in all (cross-)extremograms modulo the fact that the seasonal component is
always present.
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