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THE MAGNETIC FIELD ABOUT A THREE-DIMENSIONAL
BLOCK NEODYMIUM MAGNET

GRAHAM WEIR ) 1, GEORGE CHISHOLM 2 and JEROME LEVENEUR 2

Abstract

Neodymium magnets were independently discovered in 1984 by General Motors and
Sumitomo. Today, they are the strongest type of permanent magnets commercially
available. They are the most widely used industrial magnets with many applications,
including in hard disk drives, cordless tools and magnetic fasteners. We use a vector
potential approach, rather than the more usual magnetic potential approach, to derive the
three-dimensional (3D) magnetic field for a neodymium magnet, assuming an idealized
block geometry and uniform magnetization. For each field or observation point, the 3D
solution involves 24 nondimensional quantities, arising from the eight vertex positions
of the magnet and the three components of the magnetic field. The only unknown in
the model is the value of magnetization, with all other model quantities defined in terms
of field position and magnet location. The longitudinal magnetic field component in
the direction of magnetization is bounded everywhere, but discontinuous across the
magnet faces parallel to the magnetization direction. The transverse magnetic fields
are logarithmically unbounded on approaching a vertex of the magnet.
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1. Introduction
Neodymium magnets (also called NdFeB, NIB or Neo magnets) are the most widely
used type of rare-earth magnets. Their strong magnetic fields offer ideal industrial
applications, where size and weight are important issues in device design. They are
formed from an alloy of the lanthanoid neodymium [3] with atomic number 60, iron
and boron, to form the Nd2Fe14B tetragonal crystalline structure. Neodymium magnets
are the strongest type of permanent magnets commercially available.

Neodymium is an antiferromagnetic metal which can be magnetized to become a
magnet, but it has a low Curie temperature of 19 K. However, forming compounds
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from neodymium and transition metals can produce Curie temperatures above 300 ◦C
and these are used to make neodymium magnets. The strength of neodymium magnets
is temperature dependent. The permanent magnetic fields produced by neodymium
magnets result from micro-crystalline grains, often of around 10–20 µm across.
These grow and align with a powerful external magnetic field during manufacture.
The crystal lattice has a high resistance to altering its magnetization direction and
so produces a high resistance to being demagnetized. Because of the importance
of grain structure, the magnetic properties of neodymium magnets depend on alloy
composition, micro-structure and manufacturing techniques employed.

In addition, the neodymium atom has a large magnetic dipole moment because
of its four unpaired electrons, allowing it to store large amounts of magnetic energy
of around 500 kJ m−3. These properties allow many applications, including use in
ring magnets, hard drives in computers and many other applications where powerful
permanent magnets are required.

Neodymium magnets are prone to destructive corrosion, especially along the
crystalline grain boundaries. To stop corrosion, and for cosmetic appeal, neodymium
batteries are often nickel plated, making them a bright silver colour.

Neodymium magnets are typically shaped as cylinders or rectangular prisms
(blocks). In this paper, we focus wholly on the block geometry, which allows many
magnets to be packed together to generate strong magnetic fields. Because Maxwell’s
equations are linear, it will be sufficient to derive the magnetic field from one block
magnet. We assume that the magnetic field arises from a block of material uniformly
magnetized in the vertical direction and the block faces are all vertical or horizontal.
We use Maxwell’s equations to derive the corresponding magnetic field and show that
the field is described in terms of elementary functions of position.

The two main motivations for this paper are to use the vector potential approach
to derive the steady magnetic field from a block magnet, and to show how this three-
dimensional (3D) solution collapses to the well-known point dipole solution in the
far field. A surprising implication is that, while the steady magnetic field from an
idealized circular current loop cannot be expressed in terms of elementary functions,
the steady magnetic field from a uniformly magnetised block can be expressed in terms
of a finite sum of elementary functions. Therefore, in terms of elementary functions,
the simplest current source does not produce the simplest magnetic field.

2. Maxwell’s equations

Maxwell’s equations in SI units in a stationary medium are

∇ · D = ρ, ∇ · B = 0,

∇ × E +
∂B
∂t

= 0, ∇ ×H −
∂D
∂t

= J. (2.1)

The main symbols used in this paper, and their units, are given in Table 1.
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Table 1. Notation used in this paper.

A is the vector potential for the magnetic field in webers per metre
B is the magnetic induction in webers per square metre
Bres is the residual flux density of magnetic induction in teslas
D is the electric displacement in coulombs per square metre
er is the nondimensional unit vector from a source to the field location
E is the electric field intensity in volts per metre
f are eight nondimensional vertex functions defining Bx

F is the pull force in newtons
g are eight nondimensional vertex functions defining By

h are eight nondimensional vertex functions defining Bz

H is the magnetic field intensity in amperes per square metre
J is the current density in amperes per square metre
m is the magnetic dipole moment in amperes metres squared
M is the magnetization vector in a magnetic material in ampere turns per metre
n is the nondimensional outward unit normal to a magnet surface
P is the polarization vector in a dielectric material in coulombs per square metre
rm is the distance from the field point to the mid point of a magnet in metres
x is the 3D field location in metres
xa is an extreme x value of the magnet in metres
x′ is the 3D source location in metres
xm is the 3D location of the magnet’s mid point in metres
yb is an extreme y value of the magnet in metres
zc is an extreme z value of the magnet in metres
ε0 is the permittivity of the vacuum (8.854 × 10−12) in farads per metre
µ0 is the permeability of the vacuum (4π × 10−7) in henries per metre
∇ is the gradient operator in inverse metres
∇· is the divergence operator in inverse metres
∇× is the curl operator in inverse metres
ρ is the free charge density in coulombs per cubic metre
Φ is the electrical potential in volts

The 3D vectors D and H are redefined as

D = ε0E + P, H =
1
µ0

B −M.

The vectors M and P account for effects arising from the presence of matter at a
point. Away from matter, these two vectors are zero. Within matter, empirical relations
are often suggested connecting them to the fields B and E. For example, in a linear
conductor obeying Ohm’s law J = σE, where σ is the conductivity of the medium in
mhos per metre; for a linear isotropic medium D = Keε0E and H = B/(Kmµ0), where
Ke is the dielectric coefficient and Km is the relative permeability.

G. Weir, G. Chisholm and J. Leveneur

https://doi.org/10.1017/S1446181120000097 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000097


The permeability µ of a linear isotropic material is defined as

µ = Kmµ0, B = µH, M =

( 1
µ0
−

1
µ

)
B.

It is often useful to replace the field variables B and E by the vector potential A and
the electrical potential Φ, respectively,

B = ∇ × A, E = −
∂A
∂t
− ∇Φ, (2.2)

allowing (2.1) to be rewritten as

µ0ε0
∂2A
∂t2 − ∇

2A + ∇

(
µ0ε0

∂Φ

∂t
+ ∇ · A

)
= µ0

(
J + ∇ ×M +

∂P
∂t

)
. (2.3)

Then, in the Lorentz gauge, ∇ · A + µ0ε0∂tΦ = 0, since we are considering only
steady magnetic fields,

E = 0, P = 0, J = 0, Φ = 0, ∂t = 0,

which leads to
∇2A = −µ0∇ ×M, ∇ · A = 0. (2.4)

The solution of (2.4) is

A(x) =
µ0

4π

∫
dV ′

(∇ ×M)(x′)
|x − x′|

, (2.5)

where the volume integral extends over all space, x is the observation or field point, x′
is the location of a magnetization source and Cartesian coordinates are implied in (2.5).

We will proceed by considering a block-shaped magnet of constant magnetization
aligned along the positive z-direction, and the edges aligned along the coordinate
directions of a Cartesian coordinate system. The concept of a magnet with constant
magnetization is an idealization, which cannot be realized exactly in nature, because
of the different sizes and orientations of magnetic domains, and compositional and
structural variations within each magnetic domain. However, if the sides of the magnet
are large relative to that of the magnetic domains, then much of this variation will
average out at the macroscopic scale, supporting the concept of a magnet with constant
magnetization.

It is not unusual for standard texts on electromagnetism [1, page 288] to assume
magnets with constant magnetization. Then, within the magnet, ∇ ×M = 0 and so the
contribution to A arises from horizontal current flows around the vertical surfaces of
the magnet, in the direction M × n, where n is the outward normal to the magnet. We
find that

A(x) =
µ0

4π

∫
dS ′

(M × n)(x′)
|x − x′|

. (2.6)

The surface increment dS ′ passes over all of the vertical sides of the magnet.
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The term M × n is the mathematical equivalent of a surface current, while the
term ∇ ×M is the mathematical equivalent of a current density, arising when the
magnetization is spatially variable. Note that these equivalent currents arise from
electron spin and the motion of electrons in bound orbitals and so they produce no
energy losses or heating, since they do not involve electron drift or the scattering
processes associated with conduction currents.

Sometimes, magnet problems are derivable from a magnetic potential ΦM , where
H = −∇ΦM . Analysis of this scalar magnetic potential identifies an equivalent surface
magnetic charge density, M · n, which develops when the magnetization vector M
points in or out of a surface of the magnet. Of course magnetic charges do not exist,
but sometimes mathematical expressions arise which are equivalent to the existence of
magnetic charges on the surface of the magnet. We do not follow this approach here,
because the vector potential approach is more general, giving results valid inside and
outside the magnet.

From (2.2) and (2.6),

B(x) = ∇ × A(x) =
µ0

4π

∫
dS ′

((M × n) × er)(x′)
|x − x′|2

, (2.7)

where er is the unit vector from an element of the surface of the magnet to the field or
observation point, and

(M × n) × er = n(M · er) −M(n · er). (2.8)

The magnetic field of an idealized magnet, therefore, results from taking solid-angle-
type surface integrals over the sides of the magnet.

If the body is not uniformly magnetized, then a volume integral contribution will
result from ∇ ×M, and the magnetic field will not originate wholly from the surface
contribution of an equivalent current.

3. Conceptual model for magnetization

The magnetization M of magnetic materials is not usually given directly. Instead,
the residual flux density Bres is typically given. They are related through

|M| =
Bres

µ0
. (3.1)

However, in any application, the shape of the magnet will modify the engineering
estimate in (3.1) (see, for example, (6.24)).

The Bres values for sintered neodymium magnets are 1.0T–1.4T, whereas bonded
neodymium magnets have 0.6T–0.7T. From (3.1), the magnetization of well-bonded
neodymium magnets is therefore around 5.6 × 105 A m−1, that is,

|M| ' 5.6 × 105 A m−1. (3.2)
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Magnetization can also be estimated from the pull force F, which is needed to
separate a block magnet from a mild steel plate,

F =
AB2

2µ0
, B =

√
2µ0F

A
, (3.3)

where A is the area of the magnet and B is the magnetic field. The manufacturer’s
web site gives the pull force of some 2 mm × 6.25 mm × 6.25 mm bonded neodymium
block magnets as 1.2 kg or 1.2 × 9.8 = 11.8 N.

From (3.3), the implied magnetic field B is 0.86 T. From (3.1), the implied
magnetization is around 6.8 × 105 A m−1,

|M| ' 6.8 × 105 A m−1,

which can be compared with (3.2).
The compound Nd2Fe14B consists of mostly iron, with its three unpaired and

aligned electrons, and neodymium with its four unpaired and aligned electrons. The
atomic weights of neodymium, iron and boron are 144.2, 55.8 and 10.8, respectively.
Therefore, Nd2Fe14B has mass fractions of 0.267 for Nd, 0.723 for Fe and 0.01 for
B. The densities of Nd, Fe and B are 6800 kg m−3, 7870 kg m−3 and 2460 kg m−3,
respectively.

The magnetic moment for each unpaired electron is called the Bohr magneton µB,

µB =
e~

2me
= 9.27 × 10−24 J K−1.

If the magnetization arises essentially from the spin of unpaired electrons, then we
have the maximum estimate

MNd =
6800 × 4 × 9.27 × 10−24

144.2 × 1.67 × 10−27 ' 106 A m−1

for neodymium, whereas for iron we have the maximum estimate

MFe =
7870 × 3 × 9.27 × 10−24

55.8 × 1.67 × 10−27 ' 2.3 × 106 A m−1,

provided the magnetization of neodymium magnets largely arises from the spin of
unpaired electrons. The maximum theoretical value of magnetization for a neodymium
magnet is 0.723MFe + 0.267MNd ' 1.93 × 106 A m−1. In practice, magnetic domains
in neodymium magnets do not all align perfectly with the formative applied magnetic
field, and neodymium magnets appear to have an average magnetization of around
106 A m−1.

4. Point dipole magnet

In Section 6, we derive the steady 3D magnetic field from a block magnet. There,
we show that as the sides of the block magnet become sufficiently small, the magnetic
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field tends to that from the corresponding point dipole magnetic source, which we
summarize in this section.

In the limit that all of the edge lengths of the magnet are essentially zero, relative
to the distance between the magnet and the field point, the magnetic field of the
magnet will approach that of an idealized dipole field. Then the vector potential A
and magnetic field B from the point magnetic moment m are

A =
µ0

4π
m × er

r2
m

, B = ∇ × A =
µ0

4πr3
m

[3(m · er)er −m], (4.1)

where rm = |x − xm|, xm = (xm, ym, zm) is the mid point of the point magnet, x = (x, y, z)
are the coordinates for a field point and er = (x − xm)/rm is the unit vector from the
point dipole to the field point.

For the magnetic moment of the magnet aligned along the positive z-axis,

B =
µ0|m|
4πr5

m
(3(z − zm)(x − xm), 3(z − zm)(y − ym), 3(z − zm)2 − r2

m). (4.2)

It may sometimes be useful to resolve this Cartesian solution (Bx, By, Bz) into the
corresponding solution (Br, Bθ, Bφ) in spherical polar coordinates, where Br, Bθ, Bφ are
the components relative to the spherical polar orthonormal frame. The relationships
between the corresponding unit vectors are

ex = sin θ cos φer + cos θ cos φeθ − sin φeφ,
ey = sin θ sin φ er + cos θ sin φeθ + cos φeφ,
ez = cos θer − sin θeθ

and the corresponding inverse relationships are

er =
x
r

ex +
y
r

ey +
z
r

ez, eθ =
xz
rR

ex +
yz
rR

ey −
R
r

ez, eφ = −
y
R

ex +
x
R

ey,

where r2 = x2 + y2 + z2, R2 = x2 + y2 and sin θ = R/r. Also, the components in the
different coordinate systems satisfy

B = Bxex + Byey + Bzez = Brer + Bθeθ + Bφeφ.

The coordinate system is oriented so that z = r cos θ, with θ = 0 aligned along the
direction of magnetization.

Finally, the magnetic pole method [1, page 261] can be used to obtain the finite
magnetic field resulting from the collection of infinitesimal dipoles in (4.1), using
constant M and m = MdV ′:

B = −∇ΦM , ΦM =
µ0

4π

∫
dV ′M · ∇′

(1
r

)
=
µ0

4π

∫
dS ′

M · n′

r
, (4.3)

where ΦM is the magnetic scalar potential. Note that the surface integral in (4.3)
involves only the upper and lower horizontal magnet surfaces, in contrast to (2.7),
which involves only the vertical side surfaces of the magnet.
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5. Ring current source

According to Ampere’s historical model, a permanent magnetic field from a
magnetic body can be imagined to result from a distribution of infinitesimally small
current loops within the magnetic body. In a cylindrical coordinate system, the vector
potential for a horizontal current I in a conducting loop of radius a has only its
azimuthal component Aφ nonzero,

Aφ =
µ0Ia

[
(2 − k2)K(k) − 2E(k)

]
πk2
√

r2 + a2 + 2ar sin θ
, (5.1)

where E(k) and K(k) are the complete elliptic integrals,

K(k) =

∫ π/2

0

dα√
1 − k2 sin2 α

,

E(k) =

∫ π/2

0
dα

√
1 − k2 sin2 α,

k2 =
4ar sin θ

r2 + a2 + 2ar sin θ
.

The corresponding magnetic field B follows from (2.2) and (5.1) and yields results
which depend on the complete elliptic integrals. Given the simplicity of this current
source, it is natural to expect circulating current sources to involve elliptic functions
or more complicated expressions. In the next section, we show that this is not true,
because the magnetic field from a circulating current around the vertical sides of a
rectangle involve only elementary functions. The magnetic field from a rectangular
current source is given in Appendix C.

Perhaps the reason for this apparent anomaly is that there is an unphysical aspect to
the physical model for the current loop above. If the wire’s diameter can be as small
as required, but the radius a of its loop remains constant, then sufficiently close to the
wire the magnetic field will approach that from a long current-carrying wire, whose
magnetic field will be circular about the wire, decreasing inversely with distance about
the wire. Therefore, this magnetic field increases without limit on approaching the
wire as we let the diameter of the wire tend to zero.

This difficulty is largely avoided if the magnetic field arises from a source of
magnetization, rather than from a conduction current. This may be the reason why
the magnetic field from a magnetized block is expressible in terms of elementary
functions, whereas that from a current loop is not.

6. 3D magnet

The magnetic field for a block magnet follows from (2.7)–(2.8). The horizontal
surfaces of the magnet do not contribute to the magnetic field, and it is only the four
vertical surfaces whose normals are normal to the magnetization which contribute. We
now establish some notation to identify the different edges and faces of the magnet.
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We begin by considering a magnet with its magnetization in the positive z-direction
and all of its edges parallel to the coordinates of a Cartesian coordinate system.

On the lower square surface, let the four vertices of the magnet be at the points
(x0, y0, z0), (x1, y0, z0), (x1, y1, z0) and (x0, y1, z0). The four upper vertices of the magnet
are at the points (x0, y0, z1), (x1, y0, z1), (x1, y1, z1) and (x0, y1, z1).

Now consider the vertical face of the magnet with vertices at (x0, y0, z0), (x1, y0, z0),
(x0, y0, z1) and (x1, y0, z1). The outward normal n to this surface equals −ey and so from
(2.8) this surface contributes to the components By and Bz, but not to Bx. From (2.8)
and M = |M|ez,

(M × n) × er =
|M|
r

[(y − Y)ez − (z − Z)ey],

where (X,Y,Z) is an arbitrary point on the surface (subject to Y = y0) and

r =

√
(x − X)2 + (y − Y)2 + (z − Z)2.

The contribution to By from this surface is

By(x) =
µ0|M|

4π

∫ x1

x0

dX
∫ z1

z0

dZ
(Z − z)

r3 , Y = y0. (6.1)

The integration over Z is trivial:∫ z1

z0

dZ
(Z − z)

r3 =

∫ z0

z1

d(Z − z)
∂

∂(Z − z)
1
r

=
1
r

∣∣∣∣∣z0

z1

=
1√

(x − X)2 + (y − y0)2 + (z − z0)2

−
1√

(x − X)2 + (y − y0)2 + (z − z1)2
.

The X integral in (6.1) can now be performed by writing, for example,

X2
00 = (y − y0)2 + (z − z0)2, X − x = X00 p, p = sinh θ, (6.2)

giving the contribution to By from this surface as

By(x) =
µ0|M|

4π

[
arcsinh

( (x1 − x)√
(y − y0)2 + (z − z0)2

)
− arcsinh

( (x0 − x)√
(y − y0)2 + (z − z0)2

)
+ arcsinh

( (x0 − x)√
(y − y0)2 + (z − z1)2

)
− arcsinh

( (x1 − x)√
(y − y0)2 + (z − z1)2

)]
, (6.3)

where the inverse sinh function, arcsinh, can be written as

arcsinh(t) ' ln(2t) + 1/(4t2) + (O(t−4)) as t→∞. (6.4)
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Note that the By component (6.3) is of order r−3 at a large distance r from the magnet,
because all the lower-order terms from (6.4) cancel out.

When the field point lies along a magnet edge, one of the X00 in (6.2) is zero and
the arcsinh function in (6.3) is replaced by ln |x − xa|. Consequently, By diverges
logarithmically about a magnet vertex. However, when the surface has a bounded
curvature of R−1, the magnet field will be bounded above by µ0I/(2πR) ' µ0|M| or
around 1 T. (Note that we expect the magnetic domains to be less pinned on the edges
and vertices, and the value of the magnetization there to be correspondingly reduced.)

The contribution to Bz from the magnet surface through Y = y0 is

Bz(x) =
µ0|M|(y − y0)

4π

∫ z1

z0

dZ
∫ x1

x0

dX
r3 , Y = y0. (6.5)

The integral over X can be performed by defining

R2
0 = (y − y0)2 + (z − Z)2, X − x = R0 p, p = sinh θ

and, noting an equation in the work of Gradshteyn and Ryzhik [2, (2.423.10)], allows
(6.5) to be rewritten as

Bz(x) =
µ0|M|(y − y0)(x1 − x)

4π

∫ z1

z0

dZ

R2
0

√
(x1 − x)2 + R2

0

−
µ0|M|(y − y0)(x0 − x)

4π

∫ z1

z0

dZ

R2
0

√
(x0 − x)2 + R2

0

. (6.6)

The first integral in (6.6) can be performed by writing

R2
1 = (x − x1)2 + (y − y0)2, Z − z = R1 p, p = sinh θ,

∫
dθ

(y − y0)2 + R2
1 sinh2 θ

=
−1

(x − x1)(y − y0)

× arctan
( (x − x1)(z − Z)

(y − y0)
√

(x − x1)2 + (y − y0)2 + (z − Z)2

)
,

(6.7)

where we have noted equation (2.458.1) in [2]. Evaluating (6.7) at the limits, Z = z1

and Z = z0, and cancelling the factors (x − x1)(y − y0), yields the first integral in (6.6).
The remaining integrals for Bz from this vertical surface through Y = y0 can be
obtained similarly.

Having discussed the magnetic field components from the vertical face of the
magnet through Y = y0, we now consider the total magnetic field from all four vertical
surfaces. Moving anticlockwise around the vertical faces of the magnet as seen

The magnetic field about a three-dimensional block neodymium magnet[10] 395

https://doi.org/10.1017/S1446181120000097 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000097


from outside the magnet, in the direction of the effective surface current, we have
on successive surfaces:

Y = y0, n = −ey, (M × n) × er =
|M|
r

[
(y − Y)ez − (z − Z)ey

]
,

X = x1, n = ex, (M × n) × er =
|M|
r

[(z − Z)ex − (x − X)ez],

Y = y1, n = ey, (M × n) × er =
|M|
r

[−(y − Y)ez + (z − Z)ey],

X = x0, n = −ex, (M × n) × er =
|M|
r

[−(z − Z)ex + (x − X)ez]

and the resultant magnetic field components are

Bx =
µ0|M|

4π

∫ y1

y0

dY
∫ z1

z0

(z − Z) dZ
( 1
r3

∣∣∣∣∣
X=x1

−
1
r3

∣∣∣∣∣
X=x0

)
, (6.8)

By =
µ0|M|

4π

∫ x1

x0

dX
∫ z1

z0

(z − Z) dZ
( 1
r3

∣∣∣∣∣
Y=y1

−
1
r3

∣∣∣∣∣
Y=y0

)
, (6.9)

Bz =
µ0|M|

4π

∫ x1

x0

dX
∫ z1

z0

dZ
( (y − Y)

r3

∣∣∣∣∣
Y=y0

−
(y − Y)

r3

∣∣∣∣∣
Y=y1

)
+
µ0|M|

4π

∫ y1

y0

dY
∫ z1

z0

dZ
( (x − X)

r3

∣∣∣∣∣
X=x0

−
(x − X)

r3

∣∣∣∣∣
X=x1

)
. (6.10)

We showed above how each of these integrals can be evaluated in terms of elementary
functions. In Appendix A, we show that (6.8)–(6.10) reduce to the correct dipole
expressions when the magnet dimensions are small relative to the distance between
the magnet and observation point.

Each integral, for each of the components of B, involves sums of terms with specific
values of one of x0 or x1; y0 or y1; z0 or z1 and these terms enter the integrals in
the form of x − x0 or x − x1; y − y0 or y − y1; z − z0 or z − z1. Consequently, there
are eight combinations arising from these binary possibilities, with each possibility
corresponding to a vertex of the block magnet.

From (6.8),

Bx =
µ0|M|

4π

∫ y1

y0

[ dY
r(X = x1,Z = z1)

−
dY

r(X = x1,Z = z0)

−
dY

r(X = x0,Z = z1)
+

dY
r(X = x0,Z = z0)

]
(6.11)

and so the component Bx arises from four line integrals along the horizontal edges of
the magnet, aligned in the Y-direction.

We write the first integral in (6.11) as∫ y1

y0

dY
r(X = x1,Z = z1)

= f [101] − f [111], (6.12)
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where f [101] is evaluated at X = x1, Y = y0, Z = z1, while f [111] is evaluated at
X = x1,Y = y1,Z = z1. From (6.12) and (6.11),

Bx =
µ0|M|

4π

1∑
a=0

1∑
b=0

1∑
c=0

(−1)a+b+c f [abc]

=
µ0|M|

4π
[ f [000] − f [001] − f [010] − f [100]

+ f [011] + f [101] + f [110] − f [111]] (6.13)

with

f [abc] = arcsinh
( (y − yb)√

(x − xa)2 + (z − zc)2

)
, (6.14)

where each of a, b, c ranges over the binary values of 0, 1; and f [abc] follows from
(6.12) and (6.3). The triple sum in (6.13) ranges over the eight vertices of the block
magnet, each vertex of the magnet having the sign (−1)a+b+c. The choice of sign here
follows from the aim to write expressions as functions of x − xa, y − yb, z − zc, which
introduces an additional negative sign. The [abc] vertex is at position

x[abc] = x0 + (a(x1 − x0), b(y1 − y0), c(z1 − z0)).

The treatment for By is similar to that for Bx. From (6.9), we can write

By =
µ0|M|

4π

∫ x1

x0

[ dX
r(Y = y1,Z = z1)

−
dX

r(Y = y1,Z = z0)

−
dX

r(Y = y0,Z = z1)
+

dX
r(Y = y0,Z = z0)

]
(6.15)

and so the component By arises from four line integrals along the horizontal edges of
the magnet, aligned in the X-direction.

We write the first integral in (6.15) as∫ x1

x0

dX
r(Y = y1,Z = z1)

= g[011] − g[111], (6.16)

where g[011] is evaluated at X = x0, Y = y1, Z = z1 and g[111] is evaluated at X =

x1,Y = y1,Z = z1. From (6.14), (6.15) and (6.16),

By =
µ0|M|

4π

1∑
a=0

1∑
b=0

1∑
c=0

(−1)a+b+cg[abc], (6.17)

g[abc] = arcsinh
( (x − xa)√

(y − yb)2 + (z − zc)2

)
, (6.18)

while (6.18) follows from (6.16) and (2.3).
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The solution for Bz is similar to that for Bx and By, but involves a double count over
the magnet vertices. From (6.10), the integration over Z can be performed, followed
by separate integrations over X and Y , yielding

Bz =
µ0|M|

4π

1∑
a=0

1∑
b=0

1∑
c=0

(−1)a+b+c{G1[abc] + G2[abc]}, (6.19)

where

G1[abc] = arctan
( (y − yb)(z − zc)

(x − xa)
√

(x − xa)2 + (y − yb)2 + (z − zc)2

)
,

G2[abc] = arctan
( (x − xa)(z − zc)

(y − yb)
√

(x − xa)2 + (y − yb)2 + (z − zc)2

)
.

Writing

h = arctan(G) = G1 + G2, G =
(z − zc)

√
(x − xa)2 + (y − yb)2 + (z − zc)2

(x − xa)(y − yb)

allows (6.19) to be rewritten as

Bz =
µ0|M|

4π

1∑
a=0

1∑
b=0

1∑
c=0

(−1)a+b+ch[abc] (6.20)

with

h[abc] = arctan
( (z − zc)

√
(x − xa)2 + (y − yb)2 + (z − zc)2

(x − xa)(y − yb)

)
.

The definition of h in (6.20) is nonunique, unlike the definitions of f in (6.14) and g in
(6.18). Care is required in calculating Bz from (6.20), especially about vertices.

The horizontal surface current of magnitude M means that Bz is discontinuous on
crossing a vertical magnet surface. For example, about the surface y = y0, the four
terms h[000], h[100], h[001], h[101] in (6.20) have unbounded arguments and so, for
y = y+

0 (just inside the magnet), these four terms contribute µ0M/(4π) × 4 × (π/2),
whereas these four terms contribute µ0M/(4π) × 4 × (−π/2) for y = y−0 (just outside the
magnet). Hence, Bz undergoes a positive jump of µ0M on crossing a vertical magnet
surface and moving inside the magnet.

Appendix B shows that the triple sum expressions in (6.13), (6.17) and (6.20)
reduce, in the limit of a small magnet, to the correct dipole expressions. The exact
expressions in (6.13), (6.17) and (6.20) are well known in geophysics [4], where these
have been widely used to approximate the magnetic field from block-shaped magnetic
bodies in the Earth.

These geophysical analyses use the magnetic potential method, which produces
different inner and outer solutions, since the magnetic potential is singular on the
magnetic surface. In geophysical applications, the observation point is typically in an
aircraft, flying over a prospective geological mineral deposit, and so the observation
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and source points never approach one another. Thus, only the outer solution arises in
geophysical applications.

In contrast, in industrial applications, the observation and source points may
approach one another and it is then attractive to use the vector potential method, which
produces expressions that are valid both inside and outside the magnet. This is our
justification for the detailed derivations above, and for showing how these expressions
collapse in the far field to the corresponding point dipole solution in Section 4.

The central value, Bz(mid), of Bz on the upper surface follows from (6.20) by setting
x = xm, y = ym and z = z1. Then the upper surface does not contribute, from the term
z − z1 = 0. The four other terms, as a, b range over 0, 1, give equal contributions.
Hence,

Bz(mid) =
µ0|M|
π

arctan
(2(z1 − z0)

√
(x1 − x0)2 + (y1 − y0)2 + 4(z1 − z0)2

(x1 − x0)(y1 − y0)

)
.

For a magnet whose upper surface is square, and height z1 − z0 = λ(x1 − x0) =

λ(y1 − y0),

Bz(mid) =
µ0|M|
π

arctan
(
2
√

2λ
√

1 + 2λ2) (6.21)

and, when λ = 1/3, Bz(mid) ' µ0|M|/4. Note that field values depend on magnet shape,
but not on magnet size.

The vertex value, Bz(vertex), of Bz on the upper surface follows from (6.20) by
setting x = x1, y = y1 and z = z1. Then the upper surface does not contribute, from the
term z − z1 = 0, provided we approach the vertex position from along the upper magnet
surface. The three vertices with (a, b, c) = (0, 1, 0), (1, 0, 0) and (1, 1, 0) contribute π/2
from the arctan term. Hence,

Bz(vertex) =
3µ0|M|

8

[
1 +

2
3π

arctan
( (z1 − z0)

√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

(x1 − x0)(y1 − y0)

)]
.

For a magnet whose upper surface is square, and height z1 − z0 = λ(x1 − x0) =

λ(y1 − y0),

Bz(vertex) =
3µ0|M|

8
+
µ0|M|

4π
arctan

(
λ
√

2 + λ2) (6.22)

and, when λ = 1/3, Bz(vertex) ' µ0|M|/2, or about twice the corresponding value of
Bz(mid).

While the value of Bz is the same at each of the upper vertices, Bz takes on different
values at the mid points of the upper edges. Consider the field value Bz(mid edge) at
the point (x, y, z) = (x−1 , ym, z1), just inside the mid point of an upper edge. Then

Bz(mid edge)

=
µ0|M|

4
+
µ0|M|

2π

[
arctan

( (z1 − z0)
√

4(x1 − x0)2 + (y1 − y0)2 + 4(z1 − z0)2

(x1 − x0)(y1 − y0)

)]
.
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For a magnet whose upper surface is square, and height z1 − z0 = λ(x1 − x0) =

λ(y1 − y0),

Bz(mid edge) =
µ0|M|

4
+
µ0|M|

2π
arctan

(
λ
√

5 + 4λ2) (6.23)

and, when λ = 1/3, Bz(mid edge) ' µ0|M|/3. There is a discontinuity in the values of
Bz on crossing an upper edge.

The value of Bz at the centre of the magnet, Bz(centre), follows from (6.20) by
setting x = xm, y = ym and z = zm, giving

Bz(centre) =
2µ0|M|
π

arctan
( (z1 − z0)

√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

(x1 − x0)(y1 − y0)

)
.

For a magnet whose upper surface is square, and height

z1 − z0 = λ(x1 − x0) = λ(y1 − y0),

Bz(centre) =
2µ0|M|
π

arctan
(
λ
√

2 + λ2).
When λ = 1/3, Bz(centre) ' 0.29µ0|M|.

At the centre of the magnet, (x, y, z) = (xm, ym, zm), both Bx and By are zero. More
generally, on the planes x = xm and z = zm, Bx = 0; while on the planes y = ym and
z = zm, By = 0.

From (6.21)–(6.23), there is not a massive change to the magnitude of Bz, on
moving across the upper face of the magnet, when λ = 1/3. However, we see that (3.1)
underestimates the magnitude of the magnetization |M|. The scaling correction needed
will depend on the method used, since some methods could depend on the magnetic
field, or one of its components, such as Bz, while other methods could depend on the
magnitude of the square of the magnetic field.

In addition, there are eight reflective symmetry points, where the components of B
agree to within a sign. We discuss this in Appendix D.

There are four special planes of view for a vertically magnetized block magnet:
x = x0; x = x1; y = y0 and y = y1. From an observation point on one of these four
planes, one of the vertical edges of the block magnet subtends an edge view for which
n · er = 0. From (2.8), we obtain the following theorem.

Theorem 6.1 (Edge view). The magnetic field contribution from a vertical surface of a
vertically magnetized block magnet, at an edge view position, is normal to that vertical
surface.

Of course, the contribution to any component of B results from at least two surfaces
and, while one surface may not contribute, the opposite surface will.

The general integrals for the magnetic field in (6.8)–(6.10) can be rewritten as
averages of the inverse distance to certain lines and surfaces. From (6.10),

Bz =
µ0|m|

4π

[
∂yδy

(1
r

)
+ ∂xδx

(1
r

)]
,
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where the discrete differences δx and δy are defined through

δx f (x − xa) =
f (x − x0) − f (x − x1)

x1 − x0
, δy f (y − ya) =

f (y − y0) − f (y − y1)
y1 − y0

and the corresponding averages are defined as, for example,

δy

(1
r

)
=

1
(x1 − x0)(z1 − z0)

∫ x1

x0

dX
∫ z1

z0

dZδy

(1
r

)
,

showing that Bz follows from averaging over the vertical surfaces.
Similarly,

Bx =
µ0|m|

4π
δxδz

(1
r

)
, By =

µ0|m|
4π

δyδz

(1
r

)
,

where, for example,

δyδz

(1
r

)
=

1
(x1 − x0)

∫ x1

x0

dXδyδz

(1
r

)
,

showing that Bx and By follow from averaging over specific edges.
The central surface value Bz(mid) of a magnetic field component will be that of Bz

at the observation point (x, y, z) = (xm, ym, z1), that is, on the magnet surface along the
vertical line through the magnet centre. From (6.10),

Bz(mid) =
µ0|m|

2π

( 1
r3

)
, (6.24)

where ( 2
r3

)
=

1
(z1 − z0)

[ 1
(x1 − x0)

∫ x1

x0

dX
∫ z1

z0

dZ
r3 +

1
(y1 − y0)

∫ y1

y0

dY
∫ z1

z0

dZ
r3

]
and so the central surface value of Bz follows from a specific average of r−3, which
will depend on the magnet’s geometry. Therefore, the relationship between the surface
value of the magnetic field and the magnetization depends on the magnet’s geometry,
again showing that (3.1) is only an approximation.

7. Summary

The mathematical model developed here assumes uniform, unidirectional
magnetization, within a perfect block geometry.

The exact expression for the magnetic field from a 3D vertically magnetized block
magnet was derived. Twenty-four nondimensional quantities were needed to define
the solution. These arise from the eight vertex positions of the block magnet, with
each vertex having three nondimensional quantities arising from the three components
of the magnetic field.

The only unknown in the 3D model of the magnetic field is the magnetization
magnitude. All other expressions involve elementary functions of the geometry of
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the block magnet and the field position. The exact nature of this solution could be
useful in predicting the magnetic field in devices consisting of several neodymium
block magnets, in testing the accuracy of software predicting magnetic fields and
in understanding a vector field which transitions from the near field from a block
geometry to a dipole field in the far field.

The actual magnetic field from a physical block magnet will differ from those given
above, because of uncertainties in the homogeneity and magnitude of magnetization
in the magnet, and the accuracy of prescribed lengths for the magnet.

The vector potential approach presented here should be attractive in industrial
applications, because it produces expressions valid both outside and inside the
magnet. Our results clearly show that the magnetic field component in the direction
of magnetization is always bounded, but the corresponding transverse components
become divergent at block vertices.

Appendix A. Dipole limit from (6.8)–(6.10)

In the limit of the sides of the magnet becoming very small, from (6.8),

Bx '
µ0|M|(x1 − x0)(y1 − y0)

4π

∫ z1

z0

dZ(z − Z)∂X
1
r3

∣∣∣∣∣
X=xm

=
3µ0|m|(x − xm)(z − zm)

4πr5
m

, (A.1)

m = M(x1 − x0)(y1 − y0)(z1 − z0),

rm =

√
(x − xm)2 + (y − ym)2 + (z − zm)2,

xm =
(x0 + x1)

2
, ym =

(y0 + y1)
2

, zm =
(z0 + z1)

2
,

where m is the magnetic moment (in the positive z-direction) of the magnet.
Similarly, from (6.9),

By '
3µ0|m|(y − ym)(z − zm)

4πr5
m

and, from (6.10),

Bz '
µ0|M|(x1 − x0)(y1 − y0)(z1 − z0)

4π

[
∂Y

(Y − y)
r3 + ∂X

(X − x)
r3

]
'
µ0|m|[3(z − zm)2 − r2

m]
4πr5

m
.

Consequently, for a vertically magnetized block magnet, the general expressions in
(6.8)–(6.10) simplify to (4.2) when we reduce the size of the magnet effectively to a
point magnet.
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Appendix B. Dipole limit from (6.13), (6.17) and (6.20)

Consider the last sum over c in (6.13) and, assuming an infinitesimally small
magnet,

Bx =
µ0|M|

4π

1∑
a=0

1∑
b=0

(−1)a+b[ f [ab0] − f [ab1]]

'
µ0(z1 − z0)|M|

4π

1∑
a=0

1∑
b=0

(−1)a+b ∂ f [abc]
∂z

∣∣∣∣∣
zc=zm

(B.1)

and continuing in this manner we find the dipole component

Bx(dipole) =
µ0|m|

4π
∂3 f

∂x∂y∂z
(xa = xm; yb = ym; zc = zm)

=
µ0|m|

4π
∂2

∂x∂z
1√

(x − xa)2 + (y − ym) + (z − zc)2

=
µ0|m|

4π
3(x − xm)(z − zm)

[(x − xm)2 + (y − ym) + (z − zm)2]5/2 , (B.2)

consistent with (A.1), and magnet vertices are set to the centre location. Similarly, the
component By(dipole) is correctly obtained.

From (6.20) and (B.2), the dipole expression for Bz(dipole) is

Bz(dipole) =
µ0|m|

4π
∂3h

∂x∂y∂z
(xa = xm; yb = ym; zc = zm)

= −
µ0|m|

4π
∂2

∂z∂y
(y − yb)(z − zc)

[(x − xm)2 + (z − zc)2]
√

(x − xm)2 + (y − yb)2 + (z − zc)2

= −
µ0|m|

4π
∂

∂z
(z − zc)

[
√

(x − xm)2 + (y − ym)2 + (z − zc)2]3

=
µ0|m|[3(z − zm)2 − r2

m]
4πr5

m
,

which agrees with (4.2) and where we have noted that

[(x − xm)2+(y − yb)2 + (z − zc)2](z − zc)2 + (x − xm)2(y − yb)2

= [(x − xm)2 + (z − zc)2][(y − yb)2 + (z − zc)2].

Appendix C. The rectangular current source

From (B.1), the component Bx from a rectangular anticlockwise current source,
I = |M|(z1 − z0), where z1 − z0 is infinitesimally small, is

Bx =
µ0|M|(z1 − z0)

4π

1∑
a=0

1∑
b=0

(−1)a+b ∂ f
∂z
,
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∂ f
∂z

=
−(y − yb)(z − zm)

r[(x − xa)2 + (z − zm)2]
,

where
r =

√
(x − xa)2 + (y − yb)2 + (z − zm)2.

Since f is nondimensional, ∂z f has dimensions of an inverse length, and the
differencing implied from the summations over a and b effectively produces second
derivatives, producing the correct dimensionality for Bx.

Similarly,

By =
µ0|M|(z1 − z0)

4π

1∑
a=0

1∑
b=0

(−1)a+b ∂g
∂z
,

∂g
∂z

=
−(x − xa)(z − zm)

r[(y − yb)2 + (z − zm)2]

and

Bz =
µ0|M|(z1 − z0)

4π

1∑
a=0

1∑
b=0

(−1)a+b ∂h
∂z
,

∂h
∂z

=
(x − xa)(y − yb)[r2 + (z − zm)2]

r[(x − xa)2 + (z − zm)2][(y − yb)2 + (z − zm)2]
.

Appendix D. Symmetry points for the field from a block magnet

From symmetry, the magnetic field is vertical along the vertical line through the
centre of the magnet, since there Bx = 0 = By. Moving slightly away from this vertical
line shows that Bz remains positive, while Bx (By) is positive or negative depending on
whether (x − xm) ((y − ym)) is positive or negative.

From (4.2), for an infinitesimal vertical dipole, the component Bz is zero along
the surfaces cos θ = (z − zm)/rm = 1/

√
3. We expect similar behaviour far from the

block magnet, as the magnetic field lines bend outwards and eventually downwards,
before turning upwards again, to re-enter the magnet. Note that B points vertically
downwards, for points outside the magnet and on the plane z = zm.

From the symmetry of the idealized block magnet, for each observation point
(x, y, z), there are eight symmetry points:

(xm, ym, zm) + (±(x − xm),±(y − ym),±(z − zm)), (D.1)

where the components of B are equal to within a sign.
At each symmetry point, the eight values of x − xa, y − yb and z − zc also agree with

each other to within a sign. To see this, it is sufficient to consider only the terms x − xa.
From (D.1), the two cases are xm + (x − xm) − xa = x − xa and xm − (x − xm) − xa =

−(x − (x0 + x1 − xa)) = −(x − x′a), and similarly for the other symmetry points.
Let us focus on the symmetry point in the region where x − xm, y − ym and z − zm are

all positive. Then the other seven symmetry points are obtained from reflections along
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coordinate axes. Let us denote 〈x〉, 〈y〉, 〈z〉 the symmetry points obtained by reflections
in the x, y, z directions; 〈xy〉, 〈xz〉, 〈yz〉 the symmetry points obtained by two reflections
in the xy, xz, yz directions; and 〈xyz〉 the symmetry points obtained by three reflections
along the x, y, z axes.

If Bx, By, Bz are the magnetic field components on the symmetry point in the
region where x − xm, y − ym and z − zm are all positive, then under 〈x〉, the field
components are −Bx, By, Bz; under 〈y〉, the field components are Bx, −By, Bz; and
under 〈z〉, the field components are Bx, By, −Bz. Similarly, under 〈xy〉, the field
components are −Bx,−By, Bz; under 〈xz〉, the field components are −Bx, By,−Bz; and
under 〈yz〉, the field components are Bx,−By,−Bz. Under 〈xyz〉, the field components
are −Bx,−By,−Bz.

In summary, at the eight symmetry points, the components of the magnetic field
are sgn(x − xm)Bx, sgn(y − ym)By, sgn(z − zm)Bz, where Bx, By, Bz are the magnetic
field components in the positive quadrant and sgn(·) is the sign of the corresponding
expression.
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