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This paper is part of the ongoing effort to study high-dimensional permutations. We prove the ana-
logue to the Erdős–Szekeres theorem: For every k � 1, every order-n k-dimensional permutation
contains a monotone subsequence of length Ωk(

√
n), and this is tight. On the other hand, and un-

like the classical case, the longest monotone subsequence in a random k-dimensional permutation
of order n is asymptotically almost surely Θk(n

k/(k+1)).

2010 Mathematics subject classification: Primary 05B15

1. Introduction

The study of monotone subsequences in permutations began with the famous Erdős–Szekeres
theorem [5]. Since then numerous proofs and generalizations have emerged (see Steele’s survey
[14]). We recall the theorem.

Theorem 1.1. Every permutation in Sn contains a monotone subsequence of length at least
�√n�, and this is tight: for every n there exists some permutation in Sn in which all monotone
subsequences are of length at most �√n�.

In order to derive a high-dimensional analogue of Theorem 1.1 we need to define high-
dimensional permutations and their monotone subsequences. If we view a permutation as a
sequence of distinct real numbers, it is suggestive to consider sequences of points in R

k, with
coordinatewise monotonicity. The following argument is attributed by Kruskal [9] to de Bruijn:
repeatedly apply Theorem 1.1 to conclude that every sequence x1,x2, . . . ,xn ∈ R

k must have a
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70 N. Linial and M. Simkin

coordinatewise monotone subsequence of length n1/2k
, and this is tight up to an additive constant.

In [9] Kruskal considers projections of the points to a line and defines the length of the longest
monotone subsequence according to the line with the longest such subsequence. Szabó and
Tardos [15] consider sequences in R

k that avoid at least one of the 2k coordinatewise orderings.
Here we adopt the perspective of [11] of a high-dimensional analogue of permutation matrices,

and monotone subsequences are defined by strict coordinatewise monotonicity. We show (The-
orem 2.1) that every k-dimensional permutation of order n has a monotone subsequence of length
Ωk(

√
n), and this is tight up to the implicit multiplicative constant.

A related question, posed by Ulam [16] in 1961, concerns the distribution of H1
n , the length of

the longest increasing subsequence in a random member of Sn. In 1972 Hammersley [6] showed
that there exists some C > 0 such that H1

n n−1/2 converges to C in probability. In 1977 Logan and
Shepp [12] showed that C � 2 and Vershik and Kerov [17] demonstrated that C � 2. This yields
the next theorem.

Theorem 1.2. Let H1
n be the length of the longest increasing subsequence in a uniformly ran-

dom member of Sn. Then limn→∞ H1
n n−1/2 = 2 in probability.

This result was famously refined in 1999 by Baik, Deift and Johansson [1], who related the
limiting distribution of H1

n to the Tracy–Widom distribution.
Using coordinatewise monotonicity, Bollobás and Winkler [3] extended Theorem 1.2 to show

that the longest increasing subsequence among n independently random points in [0,1]k is typ-
ically of length ckn1/k for some ck ∈ (0,e). We show (Theorem 4.1) that the longest mono-
tone subsequence of a typical k-dimensional permutation of order n has length Θk(n

k/(k+1)). A
k-dimensional permutation can be viewed as a set of nk points in [0,1]k, and it is interesting to
note this asymptotic match with Bollobás and Winkler’s result.

2. Definitions and main results

Note. Throughout the paper all asymptotic expressions are in terms of n → ∞ and k fixed.

As discussed in [11] and [10], we equate a permutation with the corresponding permutation
matrix, that is, an n× n (0,1)-matrix in which each row or column (henceforth, line) contains
a single 1. We correspondingly define an order-n k-dimensional permutation as an [n]k+1 (0,1)-
array in which each line contains precisely one 1. A line in an [n]k+1 array comprises all the
positions obtained by fixing k coordinates and varying the remaining coordinate. We denote the
set of order-n k-dimensional permutations by Lk

n.
For a given A ∈ Lk

n and α ∈ [n]k, there is a unique t ∈ [n] such that A(α, t) = 1. Since t is
uniquely defined by α , we can write t = fA(α). The function fA has the property that if we fix
k− 1 coordinates and vary the remaining coordinate, the result is a permutation of [n]. In fact,
the mapping A �→ fA is a bijection between Lk

n and the family of [n]k arrays in which every line
is a permutation of [n]. In dimension one this is exactly the identification between permutation
matrices and permutations. This shows in particular that two-dimensional permutations, that is,
members of L2

n, are order-n Latin squares.
We let GA denote the support of A ∈ Lk

n, that is, the set of α ∈ [n]k+1 such that A(α) = 1.
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The next definition generalizes monotonicity to higher dimensions.

Definition 1. A length-m monotone subsequence in A ∈ Lk
n is a sequence α1,α2, . . . ,αm ∈ GA

such that for every 1 � j � k +1 the sequence α1
j ,α2

j , . . . ,αm
j is strictly monotone.

In dimension one this clearly coincides with the definition of a monotone subsequence in a
permutation π ∈ Sn.

We are now ready to state a high-dimensional analogue of the Erdős–Szekeres theorem.

Theorem 2.1. Every member of Lk
n contains a monotone subsequence of length Ωk(

√
n). The

bound is tight up to the implicit multiplicative constant: for every n and k there exists some A∈ Lk
n

such that every monotone subsequence in A has length Ok(
√

n).

The next theorem is a high-dimensional analogue of Theorem 1.2.

Theorem 2.2. Let Hk
n be the length of the longest monotone subsequence in a uniformly random

element of Lk
n. Then E[Hk

n ] = Θk(n
k/(k+1)) and Hk

n = Θk(n
k/(k+1)) a.a.s.

Remark 1. Aside from strong monotonicity as in Definition 1, it is interesting to consider weak
monotonicity. A sequence of pairwise distinct α1,α2, . . . ,αm in [n]k+1 is called weakly monotone
if it is weakly monotone in every coordinate. In the spirit of the Hales–Jewett theorem one may
also consider the case where every coordinate is either strictly monotone or constant.

We strive throughout to deal with the harder of the two cases, namely to prove large lower
bounds for strongly monotone subsequences and small upper bounds for the weakly monotone
case. The one exception is that the proof of the upper bound in Theorem 2.1 applies only to the
strongly monotone case. It remains an interesting open problem to determine the correct upper
bound for weakly monotone subsequences.

Remark 2. Note the following symmetries of high-dimensional permutations.

(1) Sk+1 acts on Lk
n by permuting the coordinates.

(2) For each 1 � i � k +1, the group Sn acts on Lk
n by permuting the values of the ith coordinate

of each A ∈ Lk
n. Actions on different coordinates commute, and so this defines an Sk+1

n -action
on Lk

n.
(3) A special case of (2) is reversal, that is, applying the map a �→ n+1−a on the ith coordinate.

Note that actions (1) and (3) preserve monotonicity.

3. A high-dimensional analogue of the Erdős–Szekeres theorem

We begin by proving Theorem 2.1. Due to the Erdős–Szekeres theorem it suffices to consider the
case k � 2.

We define two partial orders on [n]k+1. Let α,β ∈ [n]k+1. We write α <1 β if, for all 1 � i �
k+1, αi < βi, and we write α <2 β if, for all 1 � i � k, αi < βi and αk+1 > βk+1. For α,β ∈ [n]k

we write α < β if, for all 1 � i � k, αi < βi.
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Recall that the height h(P) of a poset P is the size of the largest chain in P and its width w(P)
is the size of its largest antichain. The next lemma is an easy consequence of Dilworth’s theorem
[4] or Mirsky’s theorem [13].

Lemma 3.1. For every finite poset P there holds h(P) ·w(P) � |P|.

We use Lemma 3.1 to show that if A has no long monotone subsequences, then there is a large
S ⊆ GA that is an anti-chain in both <1 and <2. On the other hand, the next two lemmas give an
upper bound on the size of anti-chains common to <1 and <2. This yields the theorem.

Lemma 3.2. Let X be an M ×N matrix in which every two entries in the same column are
distinct. Let S be a set of positions in X such that Xa = Xb for every a,b ∈ S with a to the left and
above b. Then |S| � M +2N.

Proof. If either M = 1 or N = 1, this is obvious. We prove the claim inductively by showing
that either S has at most two positions in the rightmost column of X or at most one element in
the topmost row of X . Indeed, if S has at least three entries in the rightmost column, then at least
two of them, say a and b, are not in the top row. But there are no repetitions in the same column,
so Xa 
= Xb. It follows that the only element S may have in the top row is at the top-right corner,
for any other such element must equal both Xa and Xb, which is impossible.

We are now ready to prove Theorem 2.1.

Proof. For the lower bound, let A ∈ Lk
n and consider the n× n matrix X defined by Xa,b =

fA(a,b,b, . . . ,b). We define two partial orders on [n]2. Let α,β ∈ [n]2. We write α <1 β if αi <

βi, i = 1,2 and Xα < Xβ . We write α <2 β if αi < βi, i = 1,2 and Xα > Xβ . Clearly, a sequence

α1 <1 α2 <1 · · · <1 αm corresponds to a monotone subsequence in A, and similarly for <2.
Assume [n]2 contains no <1-monotone subsequences of length r = �√n/3�. By Lemma 3.1

there is an <1-anti-chain S1 ⊆ [n]2 of size at least n2/r. Order S1 by <2 and let S ⊆ S1 be an
anti-chain. S is an anti-chain with respect to both <1 and <2, hence if α ∈ S is above and to the
left of β ∈ S we have Xα = Xβ . Every column in X is a permutation of [n], so X and S satisfy the
conditions of Lemma 3.2 and therefore |S| � 3n. This is true for every anti-chain in S1 and so
w(S1) � 3n. Applying Lemma 3.1 again we conclude that

h(S1) � |S1|
w(S1)

� n2

3nr
� r =

⌊√
n

3

⌋
.

The height of S1 is realized by a monotone subsequence of length h(S1) in A, yielding the lower
bound.

For the second part of the theorem, for every n and k we construct A ∈ Lk
n with all monotone

subsequences having length O(
√

n). We first assume n is prime, and use a simple construction
similar to one that shows the tightness of the Erdős–Szekeres theorem. We later modify the
construction to deal with composite n. Assuming n is prime, let M = �

√
n/(k +1)�, and define
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A as follows:

A(α1,α2, . . . ,αk+1) = 1 ⇐⇒ M
k

∑
i=1

αi +αk+1 = 0 (mod n).

Since n is prime it follows easily that A is a k-dimensional permutation.
We will show that if α,β ∈GA differ in every coordinate then ‖α−β‖1 � M. This is sufficient,

since if α1,α2, . . . ,αm ∈GA is a monotone subsequence, then for every 1 � j < m, α j,α j+1 differ
on every coordinate and so

M(m−1) �
m−1

∑
j=1

‖α j+1 −α j‖1.

On the other hand, by monotonicity we have

m−1

∑
j=1

‖α j+1 −α j‖1 = ‖αm −α1‖1 � (k +1)n.

It follows that

m �
√

(k +1)n+1 = O(
√

n).

Assume α,β ∈ GA differ in every coordinate. We have

M
k

∑
i=1

(αi −βi)+(αk+1 −βk+1) = 0 (mod n).

Now Mx + y = 0 (mod n) implies either |y| � M, |x| � n/M − 1 � M or x = y = 0. Setting
x = ∑k

i=1(αi − βi) and y = (αk+1 − βk+1), we have by assumption y 
= 0 and so ‖α − β‖1 �
|x|+ |y| � M.

In this construction we need M and n to be relatively prime. For composite n this is not
necessarily the case, and we offer two remedies. The first is an appeal to number theory to
produce M ≈

√
n/(k +1) coprime to n. It is known [2] that for large x, there is always a prime

in the interval [x− x0.525,x]. Therefore, we can find three distinct primes in an interval[√
n

k +1
,(1+o(1))

√
n

k +1

]
.

At least one of these must be coprime to n, since their product exceeds n for large n. This implies
that all monotone subsequences have length � (2+o(1))

√
(k +1)n.

The second approach is easy to generalize, as is done in the proof of Theorem 3.4. Take
M = �

√
n/(k +1)� as before. Let g = gcd(M,n) and define the permutation π ∈ Sn as follows

(all values are taken modulo n):

π =
(

M,2M, . . . ,
n
g

M,1+M, . . . ,1+
n
g

M, . . . ,g−1+M, . . . ,g−1+
n
g

M

)
.

Set

fA(α1,α2, . . . ,αk) = −π
( k

∑
i=1

αi

)
.
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Note that if gcd(M,n) = 1, this coincides with the construction above. As before, we show that
if α,β ∈ GA differ on all coordinates then ‖α −β‖1 � M, which is enough.

Assume α,β ∈ GA differ on all coordinates. We then have

M
k

∑
i=1

(αi −βi)+(αk+1 −βk+1) = r (mod n)

for some |r| < g � M. If r = 0 we have the same situation as before, and we may conclude
‖α −β‖1 � M. Otherwise, by definition of π , we must have either

‖α −β‖1 �
∣∣∣∣ k

∑
i=1

(αi −βi)
∣∣∣∣ � n

g
−1 � n

M
−1 � M

or else |αk+1 −βk+1| � M.

Most proofs of Theorem 1.1 actually yield the following, more general statement.

Theorem 3.3. Let r, s and n be positive integers with rs < n. Then every permutation in Sn

contains either an increasing subsequence of length r +1 or a decreasing subsequence of length
s + 1. The bound is tight: if rs � n then there is a permutation in Sn with neither an increasing
subsequence of length r +1 nor a decreasing subsequence of length s+1.

It is possible to extend Theorem 2.1 in a similar fashion. To this end we refine our notion of
monotonicity. In dimension one we distinguish between ascending and descending subsequences,
and we need something similar in higher dimensions.

Definition 2. A vector�c ∈ {0,1}k+1 induces a partial order x <�c y on R
k+1 as follows: x <�c y if

for every 1 � i � k +1 such that ci = 1, xi < yi, and yi < xi otherwise.

Theorem 3.4. Let�c, �d ∈ {0,1}k+1 differ in exactly one coordinate. Let rs < n/(3(k−1)). Then
every A ∈ Lk

n, contains either a <�c-monotone subsequence of length r or a <�d
-monotone sub-

sequence of length s.
The bound is tight up to the multiplicative constants: If r,s � 9(k + 10) and rs > 5kn, then

there exists A ∈ Lk
n with neither a <�c-monotone subsequence of length r nor a <�d

-monotone
subsequence of length s.

Proof. Using the symmetries from Remark 2 we may assume without loss of generality that
�c = (1,1, . . . ,1) and �d = (1,1, . . . ,1,0).

The proof of the lower bound is similar to the proof of the lower bound in Theorem 2.1, and
we provide only a sketch. As in the proof of Theorem 2.1, consider the matrix X and the partial
orders <1,<2. Lemma 3.2 gives an upper bound of 3n on the size of any anti-chain under both
<1 and <2. Two applications of Lemma 3.1 yield the lower bound.

For the upper bound, assume without loss of generality that r � s. We construct π ∈ Sn and
A ∈ Lk

n as before, with M = �s/2k�. Let α1,α2, . . . ,αm ∈ GA be a <�c-monotone subsequence.
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Then the sequence is increasing in every coordinate. For all j, if α j+1
k+1

−α j
k

< M then

k

∑
i=1

(α j+1
i −α j

i ) � n
g

� n
M

.

Thus

m � n
M

+
kn

n/M
+1 =

n
M

+ kM +1 � 2kn
s

(
1+

2k
s

)
+

s
2

+1.

Using the assumptions that r/5k > n/s and r � s � 9(k +10), we have

m � r

(
2
5

(
1+

2
9

)
+

1
2

+
1
r

)
� r.

Now, let α1,α2, . . . ,αm ∈ GA be a <�d
-monotone subsequence. For 1 � j � m define

s j = M
k

∑
i=1

α j
i .

This is an increasing sequence and s j+1−s j � M for all j. By definition of A, α j
k+1

= s j (mod n)+
r j for some 0 � r j < M. Because α1

k+1,α2
k+1, . . . ,αm

k+1 is decreasing, if for some j, s j and s j+1

fall in the same interval of the form [dn+1,(d +1)n] (for d ∈ Z), then

s j + r j > s j+1 =⇒ s j+1 − s j < r j < M,

a contradiction. Therefore the s j fall into distinct intervals of the form [dn+1,(d +1)n]. But for
every j, 0 < s j � Mkn. Since [0,Mkn] contains only �(Mkn)/n� � Mk +1 intervals of length n,
we have m � Mk +1 � s/2+1 < s.

4. Monotone subsequences in random high-dimensional permutations

As mentioned in the Introduction, the longest monotone subsequence of a random permutation
is typically of length 2

√
n. In view of the Erdős–Szekeres theorem this means that the random

case and the worst case are of the same order of magnitude and differ by only a constant factor.
In higher dimensions this is no longer the case. The longest monotone subsequence of a typical
element in Lk

n has length Θk(n
k/(k+1)).

We define the random variable Hk
n – the length of the longest monotone subsequence in a

uniformly random element of Lk
n – and prove the next theorem.

Theorem 4.1. For every k ∈ N:

(1) for every ε > 0,

Hk
n n−k/(k+1) ∈

[
1

k +1
,e+ ε

]

asymptotically almost surely,
(2)

1− lnk +1
k +1

−ok(1) � E[Hk
n n−k/(k+1)] � e+ok(1).
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There are 2k+1 distinct order types of monotone subsequences, indexed by binary vectors�c ∈
{0,1}k+1. By reversing some of the coordinates (operation (3) in Remark 2) we see that the
distribution of the longest <�c-monotone subsequence in a random element of Lk

n is independent
of�c. Thus it suffices to prove Theorem 4.1 for <(1,1,...,1)-monotone subsequences. For brevity of
notation we write < in place of <(1,1,...,1).

The following lemmas are useful in dealing with uniformly random elements of Lk
n.

Lemma 4.2. Given A∈ Lk
n and π = (π1,π2, . . . ,πk+1)∈ Sk+1

n , let π(A)∈ Lk
n be the k-dimensional

permutation given by

π(A)(x1,x2, . . . ,xk+1) = A(π1(x1),π2(x2), . . . ,πk+1(xk+1))

(equivalently, π(A) is obtained by permuting the ith coordinate of GA according to π−1
i ). If A

is chosen uniformly at random from Lk
n and π is independently chosen from any distribution on

Sk+1
n , then π(A) is uniformly distributed in Lk

n.

Proof. This follows immediately from the fact that Sk+1
n acts on Lk

n in the way described.

Lemma 4.3. Let α1,α2, . . . ,αm ∈ [n]k+1 be a weakly monotone sequence of positions. For a
uniformly drawn A ∈ Lk

n,

P[A(α1) = A(α2) = · · · = A(αm) = 1] � (n−m)!
n!

.

Proof. Assume without loss of generality that the sequence is weakly monotone according
to <.

We define a distribution D on Sk+1
n such that if π ∼ D and A is drawn independently and

uniformly from Lk
n, then

P[π(A)(α1) = π(A)(α2) = · · · = π(A)(αm) = 1] � (n−m)!
n!

.

The conclusion follows from Lemma 4.2.
In order to define D we construct distributions D1,D2, . . . ,Dm on Sk+1

n , and we let π = πmπm−1 ·
. . . ·π1 where for each i, πi is drawn independently from Di. We then define π(A) via

A → A1 = π1(A) → A2 = π2(A1) → ·· · → Am = πm(Am−1) = π(A).

We will define the distributions Di such that the following properties hold.

• For all 1 � i < j � m, Aj(α i) = Ai(α i), so the value at position α i remains fixed from stage i
onward.

• For 1 � i � m,

P[Ai(α
1) = Ai(α

2) = · · · = Ai(α
i) = 1] � (n− i)!

n!
.

Let D1 be uniformly distributed on Sn ×{I}k, where I ∈ Sn is the identity element. There is a
unique x such that A(x,α1

2 , . . . ,α1
k+1) = 1, and therefore

P[A1(α
1) = 1] = P[A(π1(α

1
1 ),α1

2 , . . . ,α1
k+1) = 1] = P[π1(α

1
1 ) = x] =

1
n
.
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Now suppose that D1,D2, . . . ,Di are already defined and have the properties above. The se-
quence α1,α2, . . . ,αm is weakly increasing so there exists some coordinate 1 � j � k + 1 such
that α i

j < α i+1
j . Let T ⊆ Sn be the set of permutations that fix {α1

j ,α2
j , . . . ,α i

j}, and let Di+1 be
the uniform distribution on {I} j−1×T ×{I}k+1− j. We write πi+1 = (I, . . . , I,τ, I, . . . , I) and verify
the properties above.

• For 1 � � � i, by definition

Ai+1(α
�) = Ai(α

�
1, . . . ,α�

j−1,τ(α�
j ),α�

j+1, . . . ,α�
k+1).

But τ fixes α�
j , so Ai+1(α�) = Ai(α�) = A�(α�), where the last equality follows by induction.

• We have

P[Ai(α
1) = Ai(α

2) = · · · = Ai+1(α
i+1) = 1]

= P[Ai+1(α
i+1) = 1|Ai+1(α

1) = Ai+1(α
2) = · · · = Ai+1(α

i) = 1]

×P[Ai+1(α
1) = Ai+1(α

2) = · · · = Ai+1(α
i) = 1].

By the inductive assumption,

P[Ai+1(α
1) = Ai+1(α

2) = · · · = Ai+1(α
i) = 1]

= P[Ai(α
1) = Ai(α

2) = · · · = Ai(α
i) = 1] � (n− i)!

n!
.

Now, α j
i+1

/∈ {α j
1
,α j

2
, . . . ,α j

i
}, so that τ(α j

i+1
) is distributed uniformly on a set of cardinality

� n− i, and is independent of Ai+1(α1),Ai+1(α2), . . . ,Ai+1(α i). Thus

P[Ai+1(α
i+1) = 1|Ai+1(α

1) = Ai+1(α
2) = · · · = Ai+1(α

i) = 1] � 1
n− i

.

We conclude that

P[Ai(α
1) = Ai(α

2) = · · · = Ai+1(α
i+1) = 1] � 1

n− i
(n− i)!

n!
=

(n− (i+1))!
n!

,

as desired.

We first prove the upper bounds in Theorem 4.1.

Proposition 4.4.

(1) For every ε > 0 there holds P[Hk
n n−k/(k+1) > e+ ε] = o(1).

(2) E[Hk
n ]n−k/(k+1) � e+o(1).

Proof. We bound the expected number of length-m (weakly) monotone subsequences in a ran-
dom k-dimensional permutation. For any increasing sequence of positions α = α1,α2, . . . ,αm ∈
[n]k+1 and A ∈ Lk

n, we define

Xα(A) =

{
1 A(α1) = A(α2) = · · · = A(αm),

0 otherwise.

By Lemma 4.3,

E[Xα(A)] = P[Xα(A) = 1] � (n−m)!
n!
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for a uniform A ∈ Lk
n. Let S be the set of all length-m increasing sequences of positions in [n]k.

Clearly,

|S| �
(

n+m−1
m

)k+1

,

so by linearity of expectation,

P[Hk
n � m] = P

[
∑
α∈S

Xα(A) > 0

]
� E

[
∑
α∈S

Xα(A)
]

�
(

n+m−1
m

)k+1 (n−m)!
n!

�
(

e(n+m)
m

)(k+1)m 1
(n−m)m

.

Let c = e+ ε for some ε > 0, and let m = �cnk/(k+1)�. Then

P[Hk
n n−k/(k+1) > c] = P[Hk

n � m] �
(

(1+o(1))ek+1 nk

mk+1

)m

�
(

(1+o(1))
e
c

)(k+1)cnk/(k+1)

= o(1),

proving the first claim in the proposition. Further,

E[Hk
n ]n−k/(k+1) � (mP[Hk

n < m]+nP[Hk
n � m])n−k/(k+1)

� c+n1/(k+1)
(

e
c

)(k+1)cnk/(k+1)

+o(1) = c+o(1),

which proves the second claim.

The proof of the lower bounds is more intricate. Fix some C > 0 and let m = �Cn1/(k+1)�. For
1 � i � �n/m�, let Di = [(i−1)m+1, im]k+1 be the diagonal subcubes of [n]k+1. For a uniformly
random A ∈ Lk

n, let Zi be the indicator random variable of the event that A is not all zero on Di.
Clearly, Hk

n � ∑1�i�n/m Zi, since α < β if α ∈ Di,β ∈ Dj, and i < j. Indeed we prove lower

bounds on Hk
n by bounding ∑1�i�n/m Zi. It is convenient to express everything in terms of the

random variable

Yn = n−k/(k+1) ∑
1�i�n/m

Zi.

We show that for an appropriate choice of C (see below), Yn converges in probability to a constant
in (0,1). These are our main steps.

(1) Note that Yn � 1/C +o(1) (trivially).
(2) Prove that E[Yn] � Ck/(Ck+1 +1)−o(1) (Proposition 4.6).
(3) Show that if C < 1, then P[Yn > Ck+1 + ε] = o(1) for every ε > 0 (Corollary 4.9).
(4) By letting 1 > C > 0 be the unique solution to Ck/(1+Ck+1) = Ck+1, conclude that P[Yn <

Ck+1 − ε] = o(1) for every ε > 0 (Proposition 4.10). Hence limn→∞ Yn = Ck+1 in probability.

In step (1) we assume only that C > 0. The claim in step (2) applies to all C > 0, and we optimize
the bound on E[Yn] by a particular choice of C. Step (3) applies to all 1 >C > 0. Finally in step (4)
we assign a value to C to derive the conclusion that Yn converges in probability to Ck+1.

We start with step (2), a lower bound on E[Yn].
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Lemma 4.5. For 1 � i � n/m,

P[Zi = 1] � Ck+1

Ck+1 +1
−o(1).

Proof. Let Xi = ∑α∈Di
A(α) be the number of non-zero entries in Di. Note that Xi > 0 ⇐⇒ Zi =

1. We prove a lower bound on the probability of this event by a second moment argument.
Clearly,

E[Xi] =
|Di|

n
= Ck+1 +o(1),

since P[A(α) = 1] = 1/n for every α ∈ [n]k+1.
We next seek an upper bound on E[X2

i ]:

E[X2
i ] = ∑

α,β∈Di

E[A(α)A(β )] = ∑
α,β∈Di

P[A(α)A(β ) = 1].

There are mk+1 terms with α = β , each being 1/n. For α 
= β , Lemma 4.3 gives

P[A(α)A(β ) = 1] � 1
n(n−1)

.

There are fewer than m2(k+1) such pairs α,β ∈ Di, so

E[X2
i ] = ∑

α,β∈Di

P[A(α)A(β ) = 1] � mk+1

(
1
n

+
mk+1

n(n−1)

)
=

mk+1

n

(
1+

mk+1

n−1

)
.

Noting that

E[Xi] =
mk+1

n
= Ck+1 +o(1),

we have

E[X2
i ] � E[Xi]

(
1+

n
n−1

E[Xi]
)

= Ck+1

(
1+

n
n−1

Ck+1

)
+o(1).

The second moment method yields

P[Zi = 1] = P[Xi > 0] � E[Xi]
2

E[X2
i ]

=
Ck+1

Ck+1 +1+o(1)
� Ck+1

Ck+1 +1
−o(1).

Proposition 4.6. E[Yn] � Ck/(Ck+1 +1)−o(1), and consequently

E[n−k/(k+1)Hk
n ] � 1− lnk +1

k +1
−o(1).

Proof. As observed earlier,

E[Yn] = E

[
n−k/(k+1) ∑

1�i�n/m

Zi

]
= n−k/(k+1)

⌊
n
m

⌋
P[Zi = 1].
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So, by Lemma 4.5,

E[Yn] � Ck

Ck+1 +1
−o(1).

For all C, E[n−k/(k+1)Hk
n ] � E[Yn]. The optimal bound is attained when C = k1/(k+1), yielding

E[n−k/(k+1)Hk
n ] � kk/(k+1)

k +1
−o(1) � 1− lnk +1

k +1
−o(1).

To prove the lower bound in Theorem 4.1 part (1), we apply a Chernoff bound to the events
{Zi = 1}1�i�n/m. To overcome the dependencies among these events we utilize the following
version of the Chernoff inequality from [7] (Theorem 1.1).

Theorem 4.7. Let 0 � α � β � 1 and let {Xi}i∈[N] be Boolean random variables such that for
all S ⊆ [N],

P

[
∏
i∈X

Xi = 1

]
� α |S|.

Then

P

[
∑

i∈[N]
Xi � βN

]
� e−ND(β‖α),

where

D(β ‖ α) = β ln

(
β
α

)
+(1−β ) ln

(
1−β
1−α

)

is the relative entropy function.

Lemma 4.8. Assume C < 1. Let S ⊆ {1,2, . . . ,�n/m�}. Then

P

[
∏
i∈S

Zi = 1

]
� α |S|

for all Ck+1 < α < 1 and large enough n.

Proof. Note that Zi = 1 for all i ∈ S if and only if there exist positions {β i}i∈S such that β i ∈ Di

for all i ∈ S and Aβ i = 1 for all i. We bound the probability of this occurrence using a union
bound.

Let {β i}i∈S be positions such that β i ∈ Di for all i ∈ S. If the indices in S are taken in order
this is a monotone subsequence, and so by Lemma 4.3

P[∧i∈SA(β i) = 1] � (n−|S|)!
n!

.

There are m(k+1)|S| such coordinate sequences, and so, by a union bound,

P

[
∏
i∈S

Zi = 1

]
� m(k+1)|S| (n−|S|)!

n!
�

(
mk+1

n−|S|

)|S|
.
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We have

|S| � n
m

=
1
C

nk/(k+1) +o(1).

Thus

P

[
∏
i∈S

Zi = 1

]
�

(
(1+o(1))

Ck+1n

n− (1/C)nk/(k+1)

)|S|
= ((1+o(1))Ck+1)|S|,

and the result follows.

Lemma 4.8 allows us to apply Theorem 4.7 to the variables {Zi}1�i�n/m to obtain the next
corollary.

Corollary 4.9. For all β > Ck+1, for large enough n we have

P[Yn > β ] � exp(−nk/(k+1)γ)

for some γ > 0.

We are now ready to complete the proof of Theorem 4.1.

Proposition 4.10. Let 1 > C > 0 be the unique solution to the equation C(1+Ck+1) = 1. Then
P[Yn < 1/(k +2)] = o(1).

Proof. By Proposition 4.6,

E[Yn] �
Ck

Ck+1 +1
−o(1) = Ck+1 −o(1). (4.1)

For an integer n and 0 < x < Ck+1, let pn = P[Yn � x]. Since Yn � 1/C +o(1) for every ε > 0,

E[Yn] � pnx+(1− pn)(Ck+1 + ε)+
(

1
C

+o(1)
)

P[Yn � Ck+1 + ε]. (4.2)

Corollary 4.9 yields

P[Yn � Ck+1 + ε] = o(1).

Combining inequalities (4.1) and (4.2) and rearranging,

pn(Ck+1 − x) � ε(1− pn)+o(1).

But this holds for all ε > 0, so limn→∞ pn = 0.
The result follows by taking x = 1/(k +1) < Ck+1.

5. Concluding remarks and open problems

(1) As mentioned in Section 2, we do not know what the analogous statement of Theorem 2.1 is
for weakly monotone subsequences.
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(2) What are the best constant factors in Theorems 2.1 and 3.4? For the sake of clarity we have
neglected to optimize the constants, and our bounds can certainly be somewhat improved with
some additional effort. However, we suspect that getting the correct bounds would require some
new ideas. While we find the correct exponent of n in the problems addressed here, we are still
unable to determine the dependency of the relevant coefficients on the dimension k. Perhaps the
most pressing question of this sort is to derive a sharp result on the existence of long monotone
subsequences in Latin squares.

(3) For A ∈ Lk
n and�c ∈ {0,1}k+1, let ��c(A) be the length of the longest <�c-monotone subsequence

in A. Let

�(A) = (��c(A))
�c∈{0,1}k+1 .

We seek a better description of the set �k
n = {�(A) : A ∈ Lk

n}. By Theorem 2.1 we know that
minx∈�k

n
‖x‖∞ = Θ(

√
n). Theorem 3.4 gives fairly tight sufficient conditions under which we can

conclude that x�c � r∨ x�d
� s for�c, �d ∈ {0,1}k+1 that differ in precisely one coordinate.

(4) The proof of Theorem 4.1 uses only a very limited amount of randomness. Recall that Lk
n

splits into isotopy classes where permutations are reachable from each other by applications of
symmetries (2) in Remark 2. That theorem applies even when the high-dimensional permutation
is drawn uniformly from a particular isotopy class, rather than from all of Lk

n. Beyond the
randomness inherent in these symmetries, we have little insight concerning the structure of
random high-dimensional permutations. In our view, it is a major challenge in this field to
understand (fully) random high-dimensional permutations. In particular, we do not know how
to uniformly sample elements of Lk

n. Even for Latin squares, the best known method is Jacobson
and Matthews’ Markov chain [8], which is not known to be rapidly mixing.

(5) We believe that Theorem 4.1 can be strengthened, and there exist constants ck such that
Hk

n n−k/(k+1) → ck in probability. This is borne out by numerical experiments, which indicate that
H2

n n−2/3 is concentrated in a small interval. We do not know how to prove this, but perhaps an
approach based on super-additive ergodic theorems à la Hammersley [6] may apply. If these
constants ck do in fact exist, their dependence on k is of interest. We note that analogous results
for random points in [0,1]k are known [3].
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