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SUMMARY
This paper presents a persistent method for the identification problem of open-chained robotic
systems. Based on the Projection Equation, a new, direct method to collect the dynamic and
friction parameters in linear form is worked out. However, in this form, linear dependencies in
the parameters occur and they are canceled out with the help of the QR algorithm. The obtained
linear independent parameters are the base parameters of the system. To ensure a good excitation,
the identification is improved by using optimized trajectories defined by Fourier-series, taking also
physical constraints into account. The evaluation of the dynamic robot parameters is realized with
a least squares error optimization. Furthermore, the result strongly depends on a special choice of
weighting matrices for the error. Experimental results for a seven-axes robotic system (standard
six-axes industrial manipulator mounted on a linear axis) are presented in detail. Additionally, the
influence of temperature effects to base parameter changes is discussed.
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1. Introduction
In modern industry the applications are getting faster and faster and therefore the desire for fast robots
without a loss of accuracy arises. To handle the high dynamic movements, conventional linear control
concepts often fail, this leads to nonlinear model-based control strategies, for instance, computed-
torque or model predictive control. Essential for the design and evaluation of the controller is an
accurate dynamic model of the system. Clearly, the containing parameters are very important and
thus an identification is indispensable.

The derivation of the dynamic model of rigid body systems is a well-known topic and can be found
in several classical robotic publications, such as refs. [3], [7], [19] and [18]. All of these methods
have in common, that a reformulation of the dynamic model to a linear form in the parameter
range is required. Unfortunately, not all of the parameters can be individually separated nor uniquely
identified. Thus a classification in independent, linear-dependent, and unidentifiable parameters has to
be worked out. A manual classification is possible but is time consuming and not universal applicable.
Other researchers have presented routines to automatically evaluate the identifiable parameters, like
those of ref. [13], who discussed a reformulation of a Lagrangian dynamic model or of ref. [14], who
published a procedure based on the Newton–Euler formulation. In contrary to these contributions,
we present a direct method for deriving the dynamic model by using the Projection Equation, see
ref. [5], and getting a linear system with respect to the dynamic parameters. With a succeeding QR
decomposition, linear independent base parameters of the robot can be calculated automatically.
These parameters can be identified with a least squares minimization, as discussed widely in ref. [12]
or [15]. Still, the identification can be done in various ways; especially the collection of measurements
is an important and challenging task. The publication of ref. [1] depicts the benefits of a single-axis
identification. However, the focus there was to identify the parameters of a flexible robot including
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joint stiffness parameters. Nevertheless, disassembling a robot is often unwanted or even impossible.
An alternative solution is a stepwise identification of each axis, discussed accurately in the book, in
ref. [15]. Contrary to these stepwise techniques, their exist several publications dealing with a system
identification at once, e.g., ref. [21]. A comparison between a stepwise and overall identification is
addressed in ref. [4]. Also a splitting of the identification, by pre-computing the friction parameters
using an integral model is possible, see ref. [16]. In this context, also different strategies for the
trajectory generation arise. For instance, the paper in ref. [17] calculates trajectories according to the
gradient of the covariance matrix of the succeeding least squares optimization, or refs. [10] and [2],
discuss the calculation of optimal identification points followed by a fitting procedure in order to get
joint trajectories. However, in this contribution a method presented in ref. [8], [21] or [6], where a
parameterization of the joint trajectories by Fourier series and a nonlinear optimization in order to
calculate optimal trajectories is used. Regarding the parameter evaluation, new scientific findings are
achieved by introducing a weighting of the error according to characteristic parameters of the robot.
Thus, the identification with least squares minimization, which fails for the tested scenario without a
weighting, can be applied and reliable parameters are obtained.

Hence, Section 2 discusses the derivation of the dynamic model with special emphasis regarding
the requirements of the identification process. Thereafter, the robot, on which the identification is
applied, is introduced. Subsequently, linear dependencies between the parameters are eliminated by a
QR decomposition and thus the independent base parameters of the system are calculated. Section 4
deals with the identification of the parameters using least squares optimization and optimal excitation
trajectories. Thereafter, the resultant parameters are discussed and verified by experimental results.
Also, temperature changes, which appear during the start up of the robot, are analyzed and there
effects on the dynamic behavior are shown. Finally, the reduction of the computation time, achieved
by using base parameters for model-based feed-forward control is presented.

2. Modeling
Throughout this paper we consider rigid body systems with n number of bodies. To obtain the
equations of motion the Projection Equation

n∑
i=1

[(
∂vc

∂q̇

)T (
∂ωωωc

∂q̇

)T
]

i

[
ṗ + ω̃ωωIB p − fe

L̇ + ω̃ωωIB L − Me

]
i

= 0, (1)

see ref. [5], is used. The vector q describes the generalized coordinates and the linear p and angular
momenta L are given by (

p
L

)
=
[

m I 0
0 Jc

] (
vc

ωωωc

)
, (2)

with mass m, identity matrix I, and the inertia tensor Jc. Note, the index c represents the center of
gravity and the cross product for vectors a × b is denoted by ã b. Furthermore, the vectors which
belong to body i are represented in their body fixed coordinate system B (ωωωIB—rotational velocity of
the coordinate system B). In general, the Projection Equation allows arbitrary coordinate systems for
each body, but for our purpose a body fixed frame is used. Thus, ωωωIB = ωωωc and the skew-symmetric
matrix ω̃ωωIB follows to

ω̃ωωIB = ω̃ωωc =
⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦. (3)

Vectors fe and Me describe the impressed forces and torques. Substituting Eq. (2) into Eq. (1) we get

n∑
i=1

FT
c,i

{[
m I 0
0 Jc

] (
v̇c

ω̇ωωc

)
+
[
ω̃ωωIB m 0

0 ω̃ωωIB Jc

] (
vc

ωωωc

)
−
(

fe

Me

)}
i

= 0, (4)
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Fig. 1. Sketch of body i.

where

FT
c,i =

[(
∂vc

∂q̇

)T (
∂ωωωc

∂q̇

)T
]

i

(5)

is the appropriate Jacobian for the projection in the minimal space. Because the measurements for
the identification are taken in the joints, Eq. (4) has to be reformulated. Therefore, we define the
velocities of the center of gravity w.r.t. the joint velocities leading to

(
vc

ωωωc

)
i

=
[

I r̃T
c

0 I

]
i

(
vo

ωωωo

)
i

, (6)

with vo the translational and ωωωo the angular velocity of the connecting point of the link. Note, because
only rigid bodies are considered, ωωωo = ωωωc. The vector rc describes the center of gravity w.r.t. the
connecting point (see Fig. 1). Hence, Eq. (5) follows to

Fc,i =

⎡
⎢⎣

∂vc

∂q̇
∂ωωωc

∂q̇

⎤
⎥⎦

i

=
[

I r̃T
c

0 I

]
i

⎡
⎢⎣

∂vo

∂q̇
∂ωωωo

∂q̇

⎤
⎥⎦

i︸ ︷︷ ︸
Fo,i

.
(7)

Substituting Eqs. (6) and (7) into (4), we get

n∑
i=1

FT
o,i

{[
m I m r̃T

c

m r̃c Jo

] (
v̇o

ω̇ωωo

)
+
[

ω̃ωωo m ω̃ωωo r̃T
c m

r̃c ω̃ωωo m ω̃ωωo Jo

] (
vo

ωωωo

)
−
[

I 0
r̃c I

] (
m g
0

)}
i

= Qo,

(8)

where Jo = Jc + m r̃c r̃T
c describes the inertia tensor w.r.t. the connecting point and Qo the generalized

forces except the already included gravitational force fe = m g. Note, the gravitational force is
represented in the body fixed frame B. In order to extract the dynamic parameters we rearrange the
vector Jo ωωωo and get

Jo ωωωo =
⎡
⎣ A −F −E

−F B −D

−E −D C

⎤
⎦
⎛
⎝ωx

ωy

ωz

⎞
⎠ =

⎡
⎢⎢⎢⎢⎢⎣

ωx 0 0
0 ωy 0
0 0 ωz︸ ︷︷ ︸

���

∣∣∣∣ 0 −ωz −ωy

−ωz 0 −ωx

−ωy −ωx 0︸ ︷︷ ︸
−�̂��

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

A

B

C

D

E

F

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
j

.
(9)
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Parameter vector j contains the moments of inertia. Similar to Eq. (9), also the other dynamic
parameters (m, m rc) of Eq. (8) are isolated, leading to

n∑
i=1

FT
o,i

⎧⎨
⎩
[

v̇o
˙̃ωωωo 0

0 − ˙̃vo (�̇��| − ˙̂
���)

] ⎛⎝ m

m rc

j

⎞
⎠+

[
ω̃ωωo vo ω̃ωωo ω̃ωωo 0

0 −(ω̃ωωo vo )̃ ω̃ωωo (���| − �̂��)

] ⎛⎝ m

m rc

j

⎞
⎠

−
[

g 0 0
0 −g̃ 0

] ⎛⎝ m

m rc

j

⎞
⎠
⎫⎬
⎭

i

= Qo . (10)

Thus, we get a linear system of equations w.r.t. the parameter vector pi = [m m rT
c jT ]Ti of each

body i. Furthermore, in combination with the projection matrix Fo,i and the succeeding summation,
we obtain the equations of motion for our multi-body system

n∑
i=1

FT
o,i ���i︸ ︷︷ ︸
���i

pi = Qo . (11)

For simplicity, we only consider inertia matrices with principal axes, thus D, E, and F are canceled
(see Eq. (9)) leading to

���i =
[

v̇o + ω̃ωωo vo − g ˙̃ωωωo + ω̃ωωo ω̃ωωo 0

0 −(v̇o + ω̃ωωo vo − g)̃ �̇�� + ω̃ωωo ���

]
. (12)

Hence, all inertia and gravitational forces of a rigid body system are included. To model joint friction,
additional forces Qv for viscous friction and Qc for Coulomb friction are introduced. Viscous friction
is considered by

Qv = −���v

⎛
⎜⎝ dv,1

...
dv,n

⎞
⎟⎠

︸ ︷︷ ︸
pv

���v = diag
i=1...n

{q̇i}

(13)

and Coulomb friction by

Qc = −���c

⎛
⎜⎝ dc,1

...
dc,n

⎞
⎟⎠

︸ ︷︷ ︸
pc

���c = diag
i=1...n

{
tanh

(
q̇i

εc

)}
.

(14)

Note, the sign function which is typically used for modeling Coulomb friction is approximated by a
tan h with a εc of 0.01. Now substituting Qo in Eq. (11) by

Qo = Qv + Qc + Qm (15)
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Fig. 2. Degrees of freedom of the robot.

with Qm as the remaining generalized forces, we finally get

[���1 . . . ���n ���v ���c]

⎛
⎜⎜⎜⎜⎝

p1
...

pn

pv

pc

⎞
⎟⎟⎟⎟⎠ = Qm

��� (q, q̇, q̈) p = Qm .

(16)

Thus far, we have found a method for deriving the equations of motion which lead to a linear system
w.r.t. the dynamic parameters p. Besides, each body is represented by nine parameters, seven according
to inertia and two to model friction. Furthermore, we assumed that the geometric parameters, like
lix , liy , and liz which appear in the connection vector ri = [lix liy liz]

T (see Fig. 1) for each body, are
known.

3. Industrial Robot
Now the general method of Section 2 is applied to our specific robot to discuss the details for a
physical robotic system. The used robot consists of an ordinary six-axes industrial manipulator from
Stäubli (TX90L) and is mounted on top of a linear axis. Figure 2 shows the robot with the generalized
coordinates q = [q1 q2 q3 q4 q5 q6 q7]T and the orientation of the inertial frame I . Because
of 7 degrees of freedom, also seven rigid bodies are considered. Overall 49 parameters according to
inertia forces and 14 parameters for viscous and Coulomb friction are introduced. Thus far, the inertia
of the motors are not included. For simplicity and because the inertia of the motors are assumed to
be small, only the term

QI,m = ���I,m pI,m

���I,m = diag
k=1...7

{q̈k}

pT
I,m = [i2

G1 CM,1 . . . i2
G7 CM,7

] (17)

with the gear ratios iGk and the moment of inertia of the motor shafts CM,k for k = 1, . . . , 7 are
added. Note, other terms for the motors are not considered since they are of magnitudes smaller and
do therefore not influence the dynamics. Doing so, another seven parameters are introduced and by
adding Eqs. (17) to (16) we get

[
���1 . . . ���7 ���v ���c ���I,m

]
⎛
⎜⎜⎜⎜⎜⎜⎝

p1
...

p7

pv

pc

pI,m

⎞
⎟⎟⎟⎟⎟⎟⎠ = Qm

��� (q, q̇, q̈) p = Qm .

(18)

https://doi.org/10.1017/S0263574714001465 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001465


1104 Parameter identification of a seven-axes manipulator

The generalized forces Qm are given by

QT
m = [ iG1 M1 . . . iG7 M7

]
, (19)

where Mk for k = 1, . . . , 7 are the motor torques. Finally, 70 unknown parameters describe the
dynamic system of our robot. Almost always, and here as well, not all the parameters in p are
independent, and thus Eq. (18) has to be reformulated. In general there exist symbolic or numerical
approaches to obtain the independent parameters. A symbolic method for tree structured robots is
provided by ref. [13]. The two main numerical approaches are based on a singular value decomposition
(SVD) or a QR decomposition and are discussed in ref. [9]. To achieve a quick and automatically
calculated solution, we use a QR decomposition. Therefore, ��� is evaluated 25 times with random
joint values (position, velocity, and acceleration) and stacked into a new matrix called ���QR . Then the
QR decomposition is carried out leading to

���QR = Q R

Q
T

���QR = R
(20)

with the orthonormal matrix Q ∈ R
25×7,70 and the upper triangular matrix R ∈ R

70,70. Every
parameter l, where the element of Rl,l is zero is not identifiable and the corresponding column l

of ��� is collected in �̂��2, the rest is combined in �̂��1. Now we obtain

[
�̂��1 �̂��2

] (p1

p2

)
= Qm, (21)

with p1 the independent and p2 the dependent parameters. By substituting �̂��2 = �̂��1 κκκ (parameters
are linear dependent) the identification problem follows to

�̂��1 (p1 + κκκ p2)︸ ︷︷ ︸
pB

= Qm,
(22)

where pB are the identifiable base parameters. �̂��1 contains the linear independent part from ���.
For our robot, 44 identifiable parameters are found and we finally get

�̂��1
(
q(k), q̇(k), q̈(k)

)︸ ︷︷ ︸
���

(k)
B

pB = Qm︸︷︷︸
Q(k)

,
(23)

with ���
(k)
B ∈ R

7,44, pB ∈ R
44, and Q(k) ∈ R

7. The introduced superscript (k) denotes the used values
for the evaluation and will become important in the next section. Exemplarily, for our robot the first
two base parameters are

pB(1) = m1 + m2 + m3 − 1

l3z

(m4 rc,4z
) + i2

G1 CM,1,

pB(2) = m2 rc,2x
+ l2x

m3 − l2x

l3z

(m4 rc,4z
),

(24)

where m2 rc,2x
represents the x-component of the vector m rc of the 2nd body and similarly m4 rc,4z

is
the z-component of m rc of the 4th body. Also worth mentioning is that all parameters of the viscous
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and Coulomb friction appear as base parameters, e.g.,

pB(27) = dv,1,

pB(28) = dv,2,

pB(34) = dc,1,

pB(35) = dc,2.

To get the base parameters in a symbolic notation like Eq. (24), after using a numerical method to
calculate κκκ in Eq. (22), a manual and thus time-consuming analysis of the base parameters is needed.
But, since a symbolic representation is not required for the identification, the manual classification
can be canceled, and thus it is not a notable drawback of the presented procedure.

4. Identification
In this section the evaluation of the parameters is shown. Basis for the identification process are
measurements of the joint angles, velocities, accelerations, and the corresponding motor torques.
Because only the joint angles are measured, the velocities and accelerations have to be calculated.
The time derivatives of the joint values are approximated by a filter with the transfer function

G(s) = s
s

ωf
+ 1

. (25)

Note, the discrete version of G(s) is used with ωf = 1200 rad/s for obtaining the joint velocities.
To calculate the accelerations, we set ωf = 100 rad/s and applied the filter in forward and reverse
directions to obtain a zero-phase filtered signal, see ref. [12]. For every sample value of the trajectory,
Eq. (23) is evaluated and stacked leading to⎛

⎜⎝���
(1)
B
...

���
(N)
B

⎞
⎟⎠

︸ ︷︷ ︸
���B

pB =

⎛
⎜⎝ Q(1)

...
Q(N)

⎞
⎟⎠

︸ ︷︷ ︸
Q

(26)

with N is the number of samples.

4.1. Least squares optimization
Due to measurement as well as modeling errors and because of the overdeterminacy of Eq. (26), an
error e is introduced and defined to

e = ���B pB − Q. (27)

According to refs. [12] and [20] the parameter vector pB can be calculated by solving a minimum
least squares optimization with the cost functional

L(pB) = 1

2
eT e . (28)

For our robot this cost functional yields to an unsatisfying solution, because each element of the error
e is treated equally. Due to the construction of our robot, the maximum torque of each axis is quite
different, e.g., the maximum motor torque M1,max = 69 N m and M7,max = 2.2 N m. Hence, the error
has to be weighted. Therefore we enhance Eq. (27) with a weighting matrix W leading to

ê = W (���B pB − Q)︸ ︷︷ ︸
e

, (29)
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where W is a block-diagonal matrix, defined as

W = diag
k=1,...,N

{
W(k)

}
,

W(k) = diag
j=1,...,7

{
1

iGj Mj,max

}
, k = 1, . . . , N,

(30)

with Mi,max as the maximum motor torque of the ith motor. Substituting Eq. (29) into Eq. (28) we
get the new cost functional

L(pB) = 1

2
eT WT W e . (31)

Now the unknown parameters are calculated by

{
∂L(pB)

∂pB

}T

= ���T
B WT W Q − ���T

B WT W���B pB = 0, (32)

leading to

pB = (���T
B WT W���B

)−1
���T

B WT W Q . (33)

Further information concerning experimental results is presented in Section 5.
Clearly, the trajectory which is used for the identification influences the result substantially. For a

good excitation of the parameters we will obtain reliable parameters. Information about the excitation
is supplied by the covariance matrix ��� = ���T

B ���B . Hence, we assume to get a good solution by
calculating a trajectory where the condition number of ��� (cond(���)) is as low as possible. Note, by
a bad choice of the trajectory also the rank of the matrix ��� can decrease and thus the identification
process cannot be carried out.

4.2. Optimal identification trajectory
The calculation of optimal trajectories is based on the work of ref. [21]. Each joint trajectory is
defined by a Fourier series. Thus the trajectory of the ith joint is given by

qi(t) =
Ni∑
l=1

(
ai,l

ω l
sin(ω l t) − bi,l

ω l
cos(ω l t)

)
, (34)

and is characterized by the order Ni , the ground frequency ω, the joint offset qi,0, and the Fourier
coefficients ai,l and bi,l . For simplicity, the ground frequency as well as the order Ni are predefined
and identical for all seven joints. Besides, the coefficients ai,l are represented by the vector

aT = [a1,1 · · · a1,Ni
· · · a7,Ni

]T
and coefficients bi,l are combined in

bT = [b1,1, . . . , b1,Ni
, . . . , b7,Ni

]T
.

Note, ���B and Q are evaluated for discrete values of q, q̇, and q̈, see Eq. (26). Thus Eq. (34) is
discretized, leading to

qi(k) =
Ni∑
l=1

(
ai,l

ω l
sin(ω l k Ts) − bi,l

ω l
cos(ω l k Ts)

)
, (35)
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Fig. 3. End-effector path of the calculated optimal trajectory.

where k denotes the discrete time index and Ts the sampling time. Now the optimization problem
follows to

min
a,b

cond(���(q, q̇, q̈)),

subject to:

qmin ≤ q ≤ qmax,

|q̇| ≤ q̇max,

|q̈| ≤ q̈max,

no collisions,

(36)

with the mechanical joint limits qmin and qmax, the maximum joint velocities q̇max and maximum
joint acceleration q̈max. The solution of the optimization problem is calculated with the Matlab-
Optimization-Toolbox (fmincon). Besides, for the computation the parameters Ni = 5, ω = 0.8 rad/s
and k = 800 are used. Also a calculation using a genetic algorithm as published in ref. [6] is possible. In
Fig. 3 the end-effector path for the optimal trajectory is shown. Along the path, end-effector velocities
of up to 2.7 m/s and accelerations up to 11.3 m/s2 appear. The corresponding joint trajectories are
depicted in Fig. 4. As pointed out at the beginning of this section, the joint velocities and accelerations
for the identification procedure are calculated by a filter. Hence, Fig. 5 shows a comparison of the
desired and calculated joint velocities and accelerations for q3.

5. Experimental Results
Apart from the theoretical discussion, in this section the results of the identification are presented
and the addressed reliability of the dynamic parameters is highlighted. As mentioned in Section 4 the
weighting of the cost functional is very important. To emphasize this, Fig. 6 shows the measured as
well as the simulated motor torques for the axis 1, 5, and 7. In this figure, the simulation results are
obtained by using parameters from an identification without any weighting (W = I). In comparison,
Fig. 7 shows the same measurements but with simulation results, obtained with parameters from an
identification with the introduced weighting of Eq. (30). Obviously, there is an evident improvement
of the matching between simulation and measurement by weighting the error e appropriate. Most
important, without any weighting, the mass matrix is not positive definite and thus the parameters
represent a non-physical system. Using parameters evaluated with the weighting matrix W the mass
matrix is as expected positive definite. In order to verify the dynamic model, the real and simulated
motor torques are compared for a verification trajectory, see Fig. 9. The end-effector path of the
verification trajectory is defined in the EN ISO NORM 9283, see ref. [11] and is shown in Fig. 8.

To evaluate the quality of the identification the average feed-forward torque error

e = [ e1, . . . , e7
]

(37)
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Fig. 4. Joint trajectories of the optimal trajectory.

Fig. 5. Comparison of the desired and filtered joint velocities and accelerations of q3.

with ei the average error of êi (see Eq. (29)), whereby i indicates that only the error according to
the ith axis is considered, is calculated. Figure 10 shows the error e evaluated for the identification
trajectory and the verification trajectory. Of course the average error of the verification trajectory is a
bit higher, since, for example, stiction is not included in the model.

Nevertheless, the average error between the feed-forward calculation and the actual motor torque
stays beneath 1% of the maximum motor torque. Thus, the identification worked well and an accurate
model of the robot has been found.
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Fig. 6. Motor torque measured and simulated with the identified parameters—without weighting and for the
identification trajectory.

6. Temperature Dependency of the Base Parameters
Thus far, the modeling of rigid body systems and the following identification of reliable parameters
was presented. In this section, the influence of temperature changes on the dynamics and thus on
the base parameters is discussed. Therefore, two identifications are performed. One for a cold robot
right after start-up and one after about half an hour of high dynamic movements when the robot has
reached its operating temperature. To illustrate the effects, some of the identified parameters for the
cold robot are compared to the parameters identified at the operating temperature, denoted by the
superscript c and w, respectively. So we get:

pc
B(1) = 273.40 kg, pw

B (1) = 273.62 kg,

pc
B(2) = 1.68 kg m, pw

B (2) = 1.65 kg m,

pc
B(27) = 248.41 Ns/m, pw

B (27) = 90.19 Ns/m,

pc
B(28) = 41.26 N m s, pw

B (28) = 25.65 N m s,

pc
B(34) = 312.50 N, pw

B (34) = 233.00 N,

pc
B(35) = 18.24 N m, pw

B (35) = 15.07 N m.

As expected, base parameters which contain effects according to inertia (e.g. pB(1), pB(2)) remain
almost the same, but the change in the friction parameters (e.g. pB(27) – pB(35))) is unexpectedly
high. For example, the viscous friction of the linear axis decreases drastically, to 36 % of the parameter
identified for the cold robot. This is due to the fact that the behavior of the used lubricant changes
significantly w.r.t. temperature. Nevertheless, the results reaffirm the identification method, because
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Fig. 7. Motor torque measured and simulated with the identified parameters—with weighting and for the
identification trajectory.

Fig. 8. End-effector path of the verification trajectory.

all parameters which are assumed to be independent from the temperature stay constant and the other
ones change according to the temperature.

7. Computation Time
A side benefit of using base parameters is the reduction of the required computation time for
the evaluation of the feed-forward torque (inverse dynamics). To demonstrate the benefit of base
parameters w.r.t. computation time, two implementations of feed-forward calculations are compared
on the real-time system of our robot. The first implementation relies on

Qm,d = M(qd ) q̈d + h(qd, q̇d ), (38)
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Fig. 9. Motor torque measured and simulated for the verification trajectory.

Fig. 10. Average feed-forward torque error for the identification trajectory and the verification trajectory.

with the whole set of 70 parameters. Note, M(qd ) is the mass matrix and h(qd, q̇d ) are the
nonlinear terms of our dynamic model for a desired trajectory, denoted by the index d. The second
implementation uses the linear equation in the parameter range, which is also used for the parameter
identification

Qm,d = ���B(qd, q̇d, q̈d ) pB, (39)

with the base parameters pB . The calculation time for Eq. (39) was maximally 11.928 μs. In contrary,
the calculation of Eq. (38) requires 15.243 μs. So, using a base parameter representation to calculate
the feed-forward torque leads to a reduction of computation time of 22 %. Both feed-forward
calculations were implemented on an industrial PC with 2.16 GHz.
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8. Conclusion
In this contribution we presented a direct method, based on the projection equation, for deriving
a dynamic model which fulfills the requirements of the parameter identification. Furthermore, the
identification and the calculation of optimal trajectories were discussed in detail and demonstrated for
a seven-axes robot. The theoretical discussion was verified by experimental results and new scientific
findings regarding the identification of a positive definite mass matrix were found. There the key was
the enhancement of the cost functional by a weighting matrix in order to obtain physical reliable
parameters. Concerning the reliability, also a verification by additional trajectories is included in this
contribution. Furthermore, practical problems like temperature effects were addressed as well as the
reduction of the computation time by using base parameters for a model-based feed-forward control.
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