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Three-dimensional non-rotating odd viscous liquids give rise to Taylor columns and
support axisymmetric inertial-like waves (J. Fluid Mech., vol. 973, 2023, A30). When
an odd viscous liquid is subjected to rigid-body rotation however, there arise in addition
a plethora of other phenomena that need to be clarified. In this paper, we show that
three-dimensional incompressible or two-dimensional compressible odd viscous liquids,
rotating rigidly with angular velocity Ω , give rise to both oscillatory and evanescent
inertial-like waves or a combination thereof (which we call of mixed type) that can be
non-axisymmetric. By evanescent, we mean that along the radial direction, typically when
moving away from a solid boundary, the velocity field decreases exponentially. These
waves precess in a prograde or retrograde manner with respect to the rotating frame.
The oscillatory and evanescent waves resemble respectively the body and wall-modes
observed in (non-odd) rotating Rayleigh–Bénard convection (J. Fluid Mech., vol. 248,
1993, pp. 583–604). We show that the three types of waves (wall, body or mixed) can
be classified with respect to pairs of planar wavenumbers κ which are complex, real
or a combination, respectively. Experimentally, by observing the precession rate of the
patterns, it would be possible to determine the largely unknown values of the odd viscosity
coefficients. This formulation recovers as special cases recent studies of equatorial or
topological waves in two-dimensional odd viscous liquids which provided examples of the
bulk–interface correspondence at frequencies ω < 2Ω . We finally point out that the two-
and three-dimensional problems are formally equivalent. Their difference then lies in the
way data propagate along characteristic rays in three dimensions, which we demonstrate
by classifying the resulting Poincaré–Cartan equations.
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1. Introduction

Odd viscous liquids are dissipationless in the sense that they do not give rise to viscous
heating (Landau & Lifshitz 1987). They were systematically studied by Avron (1998),
following previous work on the quantum Hall effect (Avron, Seiler & Zograf 1995). Their
constitutive laws, however, were already known in the context of polyatomic gases where
a detailed experimental and theoretical program was performed at Leiden with a terminus
ante quem in the 1960s (Beenakker & McCourt 1970; Hulsman et al. 1970). Recent
experiments established the existence of odd viscosity in active liquids, which acted to
suppress surface undulations in a manner resembling surface tension (Soni et al. 2019). In
addition to the odd viscosity coefficients cited in the above works, there are others that may
appear in materials endowed with discrete symmetries cf. (Rao & Bradlyn 2020; Souslov,
Gromov & Vitelli 2020). The review article by Fruchart, Scheibner & Vitelli (2023)
discusses the above experiments and various physical effects that arise in the presence
of odd viscosity.

A previously observed odd viscosity-induced uncommon physical effect, related to the
corpus of the present paper, is the propagation of inertial-like waves in a three-dimensional
odd viscous liquid. This is the case because such a liquid is endowed with an intrinsic
mechanism that tends to restore a fluid particle back to its equilibrium position. In
addition, a body moving slowly in a quiescent three-dimensional odd viscous liquid will
be accompanied by a liquid cylindrical column whose generators circumscribe the body
(Kirkinis & Olvera de la Cruz 2023a).

The main result of this paper is the determination of wall and body-like modes in a
rigidly rotating odd viscous liquid with angular velocity Ω in a disk or a cylinder of
radius R with no-slip boundary conditions that resemble their non-odd counterparts in
rotating Rayleigh–Bénard convection (Goldstein et al. 1993; Knobloch 1994). We identify
the wall modes with evanescent waves and the body modes with oscillatory inertial-like
waves. Both types can be classified with respect to a single planar wavenumber κ , which
is complex or real, respectively, cf. figure 1. These waves precess in a prograde or
retrograde manner with respect to the rotating frame. Wall modes are prominent close
to a solid boundary and body modes in the interior of the cylinder (or disk). An odd
viscous liquid provides a third case where admissible wavenumbers κ are concurrently
real and imaginary, which we call ‘mixed’ in this paper. The classification of the physical
behaviours according to the character of κ is displayed in table 1.

Following the theory developed by Goldstein et al. (1993) and Knobloch (1994), we
obtain the (exact) fields by satisfying the (no-slip in this paper) boundary conditions. This
method provides the admissible curves in the parameter space spanned by the precession
frequency ω and odd viscosity coefficient νo, giving rise to the aforementioned behaviour.
Thus, it is possible to theoretically determine the largely unknown values of the odd
viscosity coefficients by experimentally observing the frequency ω of the precessing
patterns.

Recent studies on equatorial (Tauber, Delplace & Venaille 2019) and topological waves
(Souslov et al. 2019) in two-dimensional odd viscous liquids provided examples of
the bulk–interface correspondence by establishing the presence of topological waves at
frequencies ω < 2Ω . Our formulation recovers these effects as special cases.

This paper is thus organized as follows. In § 2.1, we formulate the non-axisymmetric
motion of a two-dimensional compressible rigidly rotating odd viscous liquid in a
disk geometry of radius R following the arguments developed earlier for (non-odd)
rotating Rayleigh–Bénard convection (Goldstein et al. 1993; Knobloch 1994) and
by Chandrasekhar (1961). The variable part of the density ρ′ satisfies a scalar
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Evanescent waves

Body mode κ real

Ω Ω Ω Ω

Wall mode κ imaginary Wall mode κ complex Mixed mode κ real/imaginary

(a) (b) (c) (d )

Figure 1. Wall and body modes (or evanescent and oscillatory inertial-like waves, respectively), and mixed
mode of the fields (density or pressure ∼ Jm(κr), where Jm is the Bessel function of the first kind and m an
integer determining periodicity in the azimuthal direction), for a rigidly rotating odd viscous liquid with angular
velocity Ω , in two and three dimensions, satisfying no-slip boundary conditions. Each mode can be classified
according to the character of the planar wavenumber κ , cf. table 1. Body modes: prominent in the interior
of the cylinder. Wall modes: prominent near the side wall. Mixed modes: a combination of the previous two
behaviours.

α2 + β α β Type of root κ Physical effect

+ + two real, two imaginary Mixed modes
+ + − four real Body modes
+ − − four imaginary Wall modes
− − two complex conjugate pairs Wall modes

Table 1. Types of roots κ displayed in figure 3, from (2.12) νoκ
2 = α ±

√
α2 + β according to the sign of

the parameters α = ω2/2Ωo − 2Ω and β = ω2 − (2Ω)2 defined in (2.13a,b). The last column defines the
terminology employed in this paper to describe the physical effect.

Poincaré–Cartan equation which leads to a relation between the planar wavenumber κ ,
material parameters and precession frequency ω in parameter space. Only one of these
wavenumbers κ is however admissible; it can be determined by solving a secular equation
obtained by satisfying the (no-slip here) boundary conditions on the sidewall. Thus, the
density profiles so obtained are precessing with frequency ω in the rotating frame of the
disk and can be exponential or oscillatory in the radial direction. The radially exponential
profiles are evanescent waves and resemble the wall modes obtained in (non-odd) rotating
Rayleigh–Bénard convection (Goldstein et al. 1993; Knobloch 1994), although the wall
modes of the latter system are a consequence of thermal forcing and supercritical
behaviour of a non-odd system endowed with shear viscosity. The radially exponential
profiles can also be understood as equatorial (Tauber et al. 2019) and topological waves
(Souslov et al. 2019) (that is, waves that propagate parallel to a boundary and decay away
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from it exponentially). Solution of the real and imaginary parts of the secular equation
gives parametric curves of admissible (ω, νo) values (where νo is the coefficient of
kinematic odd viscosity) leading to the aforementioned exponential/wall mode/evanescent
behaviour. Therefore, this formulation can provide the means of determining the largely
unknown odd viscosity coefficient by observing the precessing rate of patterns in an
experiment. The special case of the axisymmetric m = 0 mode is relegated to the
supplementary materials available at https://doi.org/10.1017/jfm.2024.791. that includes
a number of illustrative examples associated with this mode.

In § 3, we formulate the non-axisymmetric motion of a three-dimensional
incompressible rigidly rotating odd viscous liquid in a cylinder of radius R. The
formulation is nearly identical to the two-dimensional case of § 2.1 with the exception of
the presence of an axial velocity component vz(r, φ, z, t), whose arguments are expressed
with respect to cylindrical coordinates, and two (rather than one) odd viscosity coefficients
νo and ν4. A Poincaré–Cartan and a secular equation give rise to the admissible planar real
or complex wavenumbers κ leading to precessing body and wall modes, respectively. Since
the patterns precess in the rotating frame, again, one could determine the unknown odd
viscosity coefficients by experimentally observing their rotation rate. The observation of
evanescent waves in rigidly rotating (non-odd) inviscid or viscous liquids is rather rare
with the exception of a recent experimental study (Nosan et al. 2021) and references
therein. We thus adapt the experimental conditions of Nosan et al. (2021) to the case of a
three-dimensional odd viscous liquid rotating rigidly with angular velocity Ω . We show
that fluid particle paths are ellipses lying on r–z planes and can possibly be employed to
determine the unknown values of the odd viscosity coefficients.

The two- and three-dimensional problems are formally equivalent and the density ρ′
of the former plays the same role as the axial velocity component vz in the latter, as
discussed in § 3.2. This behaviour is related to the conservation of helicity which is a
consequence of the alignment of velocity with vorticity. This tendency of the two fields
to alignment, even when nonlinear terms of the Navier–Stokes equations are included,
is expected from general grounds (Pelz et al. 1985). We relegate this discussion to the
supplementary materials.

The effects described in the main body of this paper are affected by the lower order
terms of the governing partial differential equations (the dispersion relation). We show
in Appendix B how higher order terms are responsible for the propagation of data in
directions explicitly determined by the values taken by the odd viscosity coefficients.

2. Evanescent and inertial-like oscillations in a rigidly rotating compressible
two-dimensional odd viscous liquid

2.1. Non-axisymmetric waves
A two-dimensional odd viscous liquid obeys the constitutive law (Lapa & Hughes 2014;
Banerjee et al. 2017; Ganeshan & Abanov 2017)

σ ′ = ηo

⎛
⎜⎜⎝

−
(

∂rvφ − 1
r
vφ + 1

r
∂φvr

)
∂rvr − 1

r
vr − 1

r
∂φvφ

∂rvr − 1
r
vr − 1

r
∂φvφ ∂rvφ − 1

r
vφ + 1

r
∂φvr

⎞
⎟⎟⎠ , (2.1)

where ηo is termed the odd viscosity coefficient. We here consider a two-dimensional
compressible liquid rigidly rotating with angular velocity Ω , endowed with the above
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Evanescent waves

y

Ω

r

x
φ

vφ

vr

Figure 2. Two-dimensional odd viscous compressible liquid rotating with angular velocity Ω . In plane polar
coordinates, the velocity field is v = vr r̂ + vφ φ̂ in the frame rotating with the liquid at constant angular
velocity Ω .

constitutive relation and satisfying the continuity equation

∂tρ
′ + ρ div v = 0 for ρ′ � ρ, (2.2)

where ρ′ is the variable part of the density and ρ a constant background level. In plane
polar coordinates r, φ (cf. figure 2), consider azimuthally dependent fields of the form[

vr(r), vφ(r), ρ′(r)
]

exp(i(mφ − ωt)), (2.3)

where ω is a real frequency and m an integer. Employing the constitutive law (2.1), the
linearized equations of motion and continuity, in the frame of reference rotating with the
liquid (Lifshitz & Pitaevskii 1981, § 89), become

−iωvr = −c2

ρ

∂ρ′

∂r
+ 2Ωvφ − νo

[
Lvφ + 2im

r2 vr

]
, (2.4)

−iωvφ = − imc2

r
ρ′

ρ
− 2Ωvr + νo

[
Lvr − 2im

r2 vφ

]
, (2.5)

−iωρ′ = −ρ

[
1
r

∂

∂r
(rvr) + im

r
vφ

]
, (2.6)

where c is the speed of sound, νo = ηo/ρ and L is the linear operator

L = ∇2
2 − 1

r2 , (2.7)

where ∇2
2 is the two-dimensional Laplacian (1/r)(∂/∂r)(r(∂/∂r)) − m2/r2 and we

neglected the nonlinear terms assuming small-amplitude motions.
We impose no-slip boundary conditions at r = R as

vr(r = R) = vφ(r = R) = 0. (2.8)

These can be relaxed and replaced by mixed no-slip and force-free boundary conditions as
reported by Souslov et al. (2019).
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10

0

–10

Four imaginary κ

β = –α2

Four real κ
β

 =
 ω

2
 –

 (
2
Ω

)2

α = –c2/(2νo) – 2Ω

–20

–6 –4

Two complex conjugate pairs κ

Two real and two imaginary κ

–2 0 2 4 6

Figure 3. Roots of (2.12) in the parameter space (α, β) defined in (2.13a,b) giving rise to the wall and body
modes depicted in figure 1 according to whether κ is real, imaginary or complex. Here, α and β have units of
frequency and square frequency, respectively.

In Appendix C, we reduce the momentum and continuity equations into a single
equation for the density ρ′:

∂t

[(
2Ω − νo∇2

2

)2 − c2∇2
2 + ∂2

t

]
ρ′ = 0. (2.9)

Substituting

ρ′(r, φ) = Jm(κr) exp(i(mφ − ωt)) (2.10)

into (2.9), where Jm is the Bessel function of first kind, we obtain the relation

−κ4ν2
o − 4Ωκ2νo − c2κ2 − 4Ω2 + ω2 = 0, (2.11)

satisfied by the (possibly complex) wavenumber κ = κ(c, Ω, ω, νo), where all parameters
in the round brackets are real. Solving (2.11) for κ2 leads to

νoκ
2 = α ±

√
α2 + β, (2.12)

where

α = − c2

2νo
− 2Ω, β = ω2 − (2Ω)2. (2.13a,b)

Therefore, κ in (2.12) can be real, imaginary or complex as displayed in figure 3 and
table 1. Each one of these three root types thus corresponds to the three density or pressure
behaviours depicted in figure 1.

From this point onwards, we follow the solution method employed by Goldstein et al.
(1993) in determining the fields arising in non-odd rapidly rotating Rayleigh–Bénard
convection. From the four values of κ obtained in (2.12), only two give rise to linearly
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Evanescent waves

independent solutions. Let κ1 and κ2 denote these κ values. The fields can then be stated as(
vr
vφ

)
=

2∑
j=1

Ajγj

(
δj 2Ω

−2Ω δj

)( ∂r
im
r

)
Jm(κjr), ρ′ =

2∑
j=1

AjJm(κjr), (2.14a,b)

where the coefficients γj and δj are

γj =
κ2

j νo + 2Ω

2Ωκ2
j ρ

, δj = −2iωΩ

νoκ
2
j + 2Ω

, j = 1, 2, (2.15a,b)

determined by substituting the solution (2.14a,b) into the continuity equation (2.6) and into
the z component of the vorticity equation, and Aj are complex constants determined by the
boundary conditions. Substituting (2.14a,b) into the boundary conditions (2.8) leads to a
homogeneous system for two (complex) equations for the Ai,

M(νo, ω, Ω, c, ρ, m, R)

(
A1
A2

)
= 0. (2.16)

The complex matrix M also depends on κj through the dispersion relation. System (2.16)
has a solution only when its determinant vanishes, explicitly when

det M ≡ vr(κ1R)vφ(κ2R) − vr(κ2R)vφ(κ1R) = 0. (2.17)

We thus parametrize κ1(ω, νo) and κ2(ω, νo), fix values for Ω, c, ρ, m and R, substitute
into the real and imaginary parts of the secular equation (2.17), and solve for ω and νo.

2.2. Character of the eigenvalue κ

Recent literature on two-dimensional compressible odd viscous liquids (Souslov et al.
2019; Tauber et al. 2019) has brought forward examples supporting the bulk–interface
correspondence by establishing the presence of waves propagating parallel to a boundary
and increasing/decreasing exponentially with distance from it. The starting point for
these studies is the dispersion relation ω = ω(k) obtained from (2.11), where k is a
real wavevector. In this case, dispersion curves exist only for ω > 2Ω . To obtain the
exponential behaviour, the wavenumber then is set to be complex and the frequencies
studied are those in the ‘gap’, that is, with ω < 2Ω .

We here adopt an opposite outlook, similar to the one followed in the literature of rigidly
rotating liquids. This method emphasizes the derivation of a wavenumber κ , as in (2.12),
that can be complex and is a function of an always real frequency ω.

We display in figure 4 the frequency ω versus the real and imaginary parts of κ , drawn
from (2.12) which is to be compared with figure 3 and table 1. In figure 4(a), when
ω < 2|Ω| = 40 (β < 0), the four imaginary roots are clearly visible. When ω > 40 =
2|Ω| (β > 0), (2.12) acquires two real and two imaginary κ roots. In figure 4(b), when
ω < 2|Ω| = 1000 (β < 0), two distinct behaviours are visible. Those that make α2 + β in
(2.12) negative give rise to the aforementioned complex roots (located below the parabola
of figure 3), while those that make α2 + β positive give rise to four real roots (located
outside the parabola of figure 3). When β becomes positive (ω > 2|Ω| = 1000), we obtain
two imaginary and two real roots for κ .

The conclusion of this discussion is that values of the frequency ω < 2Ω exist when
the wavenumber κ is imaginary or complex, and this is a natural outcome of the present
formulation. Note that both panels in figure 4 symmetrically extend for negative values of
the frequency.

996 A13-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.791


E. Kirkinis and M. Olvera de la Cruz

80

(a) (b)
1500

1000

50

0

70

60

50

40ω

30

20

10

0

–80
–40

0

Im κ Re κ
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Figure 4. Real frequency ω versus the real and imaginary parts of the eigenvalue κ derived as a solution of
(2.12). Both panels emphasize the presence of imaginary or complex values of κ that cannot be captured
by a plane-wave analysis of the momentum equations. In particular, the domain ω < 2Ω is populated by
imaginary or complex κ that may give rise to wall (evanescent wave) modes (the character of κ is displayed in
figure 3). Note that the indicated curves are symmetric with respect to the ω = 0 plane and continuously extend
towards negative ω values. The parameters are given in arbitrary units. (a) (c, Ω, νo, ρ) = (8, −20, 0.1, 1).
(b) (c, Ω, νo, ρ) = (15, −500, 2, 1).

2.3. Basic observations
From (2.4)–(2.6), we can calculate the vorticity curl v = (1/r)[∂(rvφ)/∂r − ∂vr/∂φ]ẑ of
the two-dimensional odd viscous liquid, which is found to be proportional to the density
ρ′:

curl v = (κ2νo + 2Ω)
ρ′

ρ
ẑ. (2.18)

This proportionality was also pointed out in the numerical simulations of Souslov et al.
(2019, figure S2). On account of the equivalence of the two- and three-dimensional
problem (to be discussed in § 3.2), this proportionality is justified based on the
conservation of helicity. In addition, it is expected to persist, even when (the neglected
here) nonlinear terms are incorporated into the Navier–Stokes equations (Pelz et al.
1985). The conservation of helicity follows familiar lines and is thus relegated to the
supplementary materials.

2.4. Wall and body modes in two-dimensional compressible odd viscous liquids
Goldstein et al. (1993) and Knobloch (1994), following the experiments of Ecke, Zhong
& Knobloch (1992) in rapidly rotating Rayleigh–Bénard convection (of a non-odd liquid),
showed theoretically the existence of two types of non-axisymmetric modes precessing in
the rotating system: wall modes, which peak near the sidewall and decay in the interior of
the cylinder, and body modes filling the whole cylinder and having their largest amplitudes
close to the centre rather than the sidewall. Both types are classified in table 1. We proceed
by showing that the two-dimensional compressible odd viscous liquid under consideration
gives rise to similar wall and body modes which can be understood in the context of our
formulation as evanescent and oscillatory inertial-like waves, respectively.

In figure 5(a,b), we display the density profiles for the wall modes m = 2 and m = 5
arising by solving the system (2.17) in a disk of radius R = 10 rotating with angular
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0ρ′
–0.2
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0.5

0

–0.5
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y x–10

Wall mode m = 2(a) (b)

10

Wall mode m = 5

0

0.4

0.2

0

–0.2

–0.4

0.4

0.2

0

–0.2

–0.4

10

0

y x–10

10

0

(c) (d)

Figure 5. Density profiles and contours for the wall modes arising when the parameter κ lies in the lower left
of the diagram in figure 3 (two imaginary pair κ values) and thus the frequencies lie in the ‘gap’ (−2Ω, 2Ω).
(a,c) m = 2 mode, with (ω, νo) = (0.4, 6.4) as solution of system (2.17) leading to (κ1, κ2) = (−1.95i, −3.2i).
(b,d) m = 5 mode, with (ω, νo) = (1.5, 2.5) as a solution of system (2.17) leading to (κ1, κ2) = (−2.7i, −5.9i).
In both cases, (c, Ω, ρ0, R) = (8, 20, 1, 10) and thus both profiles precess in a prograde manner in the frame
rotating with the liquid. Note the resemblance of the density profiles with the temperature distribution of rapidly
rotating (non-odd) Rayleigh–Bénard convection in Goldstein et al. (1993, figure 6) and of the contour plots with
those of Souslov et al. (2019, figures 3 and S3). Observing experimentally the precession rate of patterns could,
in principle, lead to the determination of the odd viscosity coefficient. Parameter and observable units are
arbitrary.

velocity Ω = 20 and ω > 0 in both cases (we employ arbitrary units). Thus, the profiles
precess with frequency ω in a prograde manner in the frame rotating with the disk.
Both profiles resemble those of the temperature distribution in (non-odd) rapidly rotating
Rayleigh–Bénard convection as they are displayed in Goldstein et al. (1993, figure 6). Note
also the resemblance of the contour plots in figure 5(c,d) to those of Souslov et al. (2019,
figure 3 and S3).

In figure 6, we display admissible (νo, ω) pairs, as a solution of system (2.17), giving rise
to the wall modes displayed in figure 5. Thus, all the corresponding κ values arising from
the displayed parameter pairs are imaginary and will give rise to exponentially decaying
velocity fields in the radial direction. Since the modes precess with frequency ω in the
rotating frame, these modes will also propagate parallel to the circular boundary of the
disk. It is thus clear that observing experimentally the precession rate of patterns could, in
principle, lead to the determination of the odd viscosity coefficient νo.

We note that Favier & Knobloch (2020) and Knobloch (2022) commented on the
resemblance of wall modes in (non-odd) rapidly rotating Rayleigh–Bénard convection
to odd viscosity-induced topological waves that appear near the boundary of a rotating
two-dimensional odd viscous liquid (Souslov et al. 2019).

In figure 7, we display the density and contour profile of the body mode m = 5 arising by
solving the system (2.17) in a disk of radius R = 10 rotating with angular velocity Ω = 20.
The profile precesses with frequency ω in a prograde manner in the frame rotating with

996 A13-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.791


E. Kirkinis and M. Olvera de la Cruz

3.5

3.0

2.5

2.0ω

1.5

1.0

0.5

2 4

m = 1 m = 2 m = 5

6 8 10

νo

12 14 16 18 20

Figure 6. Admissible (νo, ω) pairs, as a solution of system (2.17), giving rise to the wall modes displayed in
figure 5 employing the latter figure’s parameter values. Thus, observing experimentally the precession rate of
patterns ω, it would be possible, in principle, to determine the largely unknown value of the odd viscosity
coefficient νo. Arbitrary units of the parameters were employed.

0.5

0ρ′

–0.5
10

0

y x–10

0

10

0.4

0.2

0

–0.2

–0.4

Body mode m = 5

Figure 7. A body mode for m = 5 with (ω, νo) = (34.6, −2.8) as a solution of system (2.17) leading to
(κ1, κ2) = (−4.2, 1.7), and the same parameters as in figure 5. Thus, the admissible κ values are located in the
lower right of figure 3. The patterns precess in the rotating frame in a prograde manner. Note the resemblance of
the density profiles with the temperature distribution of non-odd rapidly rotating Rayleigh–Bénard convection
in Goldstein et al. (1993, figure 7). Observing experimentally the precession rate of patterns could, in principle,
lead to the determination of the odd viscosity coefficient. Units employed above are arbitrary.

the disk. The profile resembles somewhat the temperature distribution in the (non-odd)
rapidly rotating Rayleigh–Bénard convection as they are displayed in Goldstein et al.
(1993, figure 7).
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(Lifshitz & Pitaevskii 1981) (Khain et al. 2022) (Hulsman et al. 1970) This paper

η3 ηo
1 η4 ηo

η4 ηo
2 η5 η4

Table 2. Conventions of odd viscosity coefficients that have appeared in the literature.

3. Inertial-like waves in a three-dimensional rigidly rotating incompressible odd
viscous liquid

The constitutive law of an odd viscous liquid in three dimensions is of the form

σ ′ = σ ′
o + σ ′

4, (3.1)

where, in cylindrical polar coordinates r, φ, z,

σ ′
o = ηo

⎛
⎜⎜⎜⎜⎜⎝

−
(

∂rvφ − 1
r
vφ + 1

r
∂φvr

)
∂rvr − 1

r
vr − 1

r
∂φvφ 0

∂rvr − 1
r
vr − 1

r
∂φvφ ∂rvφ − 1

r
vφ + 1

r
∂φvr 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠ (3.2)

and

σ ′
4 = η4

⎛
⎜⎜⎜⎜⎜⎝

0 0 −
(

1
r
∂φvz + ∂zvφ

)
0 0 ∂rvz + ∂zvr

−
(

1
r
∂φvz + ∂zvφ

)
∂rvz + ∂zvr 0

⎞
⎟⎟⎟⎟⎟⎠ , (3.3)

where ηo and η4 are the odd viscosity coefficients. Notation employed in the literature to
denote the odd viscosity coefficients appears in table 2.

Consider a three-dimensional odd viscous liquid rotating rigidly about the ẑ axis with
angular velocity Ω (cf. figure 8) and azimuthally dependent fields[

vr(r), vφ(r), vz(r), p′(r)
]

exp(i(kz + mφ − ωt)) (3.4)

in the frame of reference rotating with the liquid, where the frequency ω and wavenumber
k along the axis are both real and m is an integer. We assume that k has already been fixed
by suitable boundary conditions on the lids of the cylinder. We neglect the nonlinear terms
by assuming small-amplitude motions. The Navier–Stokes equations take the form

−iωvr − 2Ωvφ = − 1
ρ

∂p′

∂r
− νo

[
Lvφ + 2im

r2 vr

]
+ ν4

[
k2vφ + mk

r
vz

]
, (3.5)

−iωvφ + 2Ωvr = − im
r

p′

ρ
+ νo

[
Lvr − 2im

r2 vφ

]
+ ν4

[
−k2vr + ik

∂vz

∂r

]
, (3.6)

−iωvz = − ik
ρ

[
p′ + η4ζ

]
, (3.7)

where L is the linear differential operator (2.7), p′ is the variable part of the pressure in
the wave, (νo, ν4) ≡ (ηo, η4)/ρ are the coefficients of kinematic odd viscosity, ζ is the z
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z

x r

y

vz

vr

ϕ

vφ

Ω

Figure 8. Three-dimensional odd viscous liquid rotating with angular velocity Ω about the ẑ axis. In
cylindrical coordinates, the velocity field is v = vr r̂ + vφ φ̂ + vzẑ in the frame of reference rotating with the
liquid.

component of the vorticity, ζ = (1/r)[∂/∂r(rvr) − imvr] and the centrifugal acceleration
has been combined into the effective pressure p′ (Greenspan 1968).

The incompressibility condition becomes
1
r

∂

∂r
(rvr) + im

r
vφ + ikvz = 0. (3.8)

In Appendix B, we derive a single equation for the pressure p̃ = p′ + η4ζ ,[
∇2

2 +
(

1 − (2Ω − S)2

ω2

)
∂2

z

]
p̃ = 0, (3.9)

where S is the linear operator

S = (νo − ν4)∇2
2 + ν4∂

2
z , (3.10)

∇2
2 is the two-dimensional (horizontal) Laplacian and we considered perturbations of the

pressure ∼ exp(−iωt) with real frequency ω. Clearly, when νo = ν4 = 0, (3.9) reduces to
the standard Poincaré–Cartan equation (A1) of non-odd rigidly rotating liquids.

Substituting
p̃(r, φ) = Jm(κr) exp(i(kz + mφ − ωt)) (3.11)

into (3.9), where Jm is the Bessel function of first kind, leads to a quartic equation for the
determination of wavenumber κ:

−κ2 − k2

[
1 −

(
2Ω + ν4k2 + (νo − ν4) κ2)2

ω2

]
= 0. (3.12)
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Evanescent waves

The κ solutions of (3.12) are given by the simple expression

κ2 = α ±
√

α2 + β

2(νo − ν4)2k2 , (3.13)

with

α = ω2 + 2k2 (ν4 − νo) (2Ω + ν4k2), β = 4k4(νo − ν4)
2
[
ω2 − (2Ω + ν4k2)2

]
.

(3.14a,b)

Thus, the character of κ values (real, imaginary or complex) is again described by figure 3
and table 1.

From the four values of κ obtained in (3.13), only two give rise to linearly independent
solutions. Let κ1 and κ2 denote these κ values. The fields can then be cast as(

vr
vφ

)
=

2∑
j=1

Ajγj

(
δj 2Ω

−2Ω δj

)( ∂r
im
r

)
Jm(κjr), vz =

2∑
j=1

AjJm(κjr), (3.15a,b)

the coefficients γj and δj are

γj =
κ2

j (νo − ν4) + ν4k2 + 2Ω

2Ωκ2
j ω

, δj = −2iωΩ

κ2
j (νo − ν4) + ν4k2 + 2Ω

, j = 1, 2,

(3.16a,b)
determined by substituting the solution (3.15a,b) into the isochoric constraint (3.8) and into
the z component of the vorticity equation, and Aj are complex constants to be determined
by the boundary conditions.

We impose no-slip boundary conditions at the sidewall of the cylinder r = R:

vr(r = R) = vφ(r = R) = 0, (3.17)

leading to an homogeneous system for two (complex) equations for the Ai,

M(νo, ν4, ω, Ω, k, m, R)

(
A1
A2

)
= 0. (3.18)

System (3.18) has a solution only when its determinant

det M ≡ vr(κ1R)vφ(κ2R) − vr(κ2R)vφ(κ1R) = 0 (3.19)

vanishes. We thus parametrize κ1(ω, νo, ν4) and κ2(ω, νo, ν4), fix values for Ω, k, R, m,
substitute into the real and imaginary parts of (3.19), and solve for ω and νo (see the
discussion in § 3.3 on how ν4 is chosen).

3.1. Character of the κ eigenvalues
A non-odd rotating liquid has κ solutions satisfying

κ = k

√
4Ω2

ω2 − 1 (non-odd rotating liquid) (3.20)

(obtained from the Poincaré–Cartan equation (A1)). Thus, when ω < 2Ω , κ is real and
the solutions are oscillatory Bessel functions. When however ω > 2Ω , there are two
imaginary κ values and the fields are modified (exponentially increasing) Bessel functions.
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(a) (b)
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ω

5

0

25
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Im κ Re κ Im κ Re κ
2

20 10 0 –10 –20
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0
1 3 2 1 0
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Figure 9. Real frequency ω versus the real and imaginary parts of the eigenvalue κ derived as a solution of
(3.13). Both panels emphasize the presence of imaginary or complex values of κ that cannot be captured by a
plane-wave analysis of the momentum equations. In particular, the domain ω < 2Ω is populated by imaginary
or complex κ values that exclusively give rise to wall (evanescent wave) modes. Note that the indicated curves
are symmetric with respect to the ω = 0 plane. Units employed above are arbitrary. (a) (Ω, νo, k) = (5, 1, 1).
(b) (Ω, νo, k) = (5, 10, 1).

We display in figure 9 the frequency ω versus the real and imaginary parts of κ , drawn
from (3.13) which is to be compared with figure 3 and table 1.

In figure 9(a), we display the bifurcation diagram for the set of values (Ω, νo, k) =
(5, 1, 1) (arbitrary units). There are two complex conjugate roots up to ω = 6, where the
radical in (3.13) changes sign. For 6 < ω < 10 = 2Ω , there are four real roots and beyond
this, two imaginary and two real roots. In figure 9(b), we employ the alternative set of
values (Ω, νo, k) = (5, 10, 1) (arbitrary units). There are four imaginary κ roots up to
ω = 10 = 2Ω . Beyond this, there are two imaginary and two real roots.

3.2. Formal equivalence of the two- and three-dimensional problems
Setting ν4 = 0 in the equations of motion shows that they are equivalent to their
two-dimensional counterparts by effecting the correspondence

p′ = c2ρ′ (2D), p′ = ρω

k
vz (3D). (3.21a,b)

The pressure in the two- and three-dimensional cases satisfies p′ = (ρc2/iω) div2v and
p′ = −(ρω/ik2) div2v, respectively, where div2v = (1/r)[∂r(rvr) + imvφ]. Thus, the two
problems are identical inasmuch as the respective dispersion relations are taken into
account.

Likewise, the three-dimensional problem with ν4 /= 0 can be recovered from the
three-dimensional problem with ν4 = 0 by performing the substitution

νo → νo − ν4, and 2Ω → 2Ω + ν4k2. (3.22a,b)

Thus, the role of ν4 is to renormalize both the angular velocity Ω and the odd viscosity
coefficient νo.

The question arises, if the two- and three-dimensional problems are mathematically
equivalent, where do they differ? In the Appendix, we show that the role of ν4 is to alter
the direction of propagation of data along characteristics. For instance, when ν4 is zero,
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Mixed mode m = 2(a) (b) Body mode m = 5
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Figure 10. Precessing axial velocity (or pressure) profiles and contours for the modes arising when the
parameter κ lies in the upper part (two real two imaginary) and lower right section of the diagram in figure 3
(four real κ values), respectively. (a,c) m = 2 mixed mode, with (ω, νo) = (−0.9, −3.3) as a solution of system
(2.17) leading to (κ1, κ2) = (−0.97, −0.5i). (b,d) m = 5 body mode, with (ω, νo) = (0.3, −3) as a solution of
system (2.17) leading to (κ1, κ2) = (−0.75, 0.3). In both cases, (k, Ω, R) = (1, 1, 10) in arbitrary units. The
odd viscosity coefficients were chosen to satisfy νo = 2ν4, as explained in (3.23). Observing experimentally
the precession rate of patterns could, in principle, lead to the determination of the odd viscosity coefficients νo
and ν4. Units employed above are arbitrary.

characteristics are parallel to the z axis, giving rise to a Taylor column, while when ν4 is
non-zero, they become oblique to the centre axis.

3.3. Mixed and body modes in a three-dimensional odd viscous liquid
In § 2.4, we illustrated the two-dimensional theory by deriving the density profiles when
the wavenumbers κ were all imaginary or all real, thus respectively giving rise to wall
and body modes defined in table 1, as these are displayed in figures 5 and 7, respectively.
There is a third category however, as this is displayed by the character of wavenumbers κ

in the upper part of figure 3, where there are concurrent real and imaginary admissible κ

values as a solution of equation (2.12). Here we will provide one such example, which is
displayed in figure 10(a,c).

In three dimensions, there are two odd viscosity coefficients and a choice has to be made
regarding the solution of secular equation (3.19) (two equations for the determination of
ω, νo and ν4). We thus follow (Markovich & Lubensky 2021; Khain et al. 2022) who
consider the combination

ηo = 2η4 (3.23)

as representing an experimentally verified case (for polyatomic gases, Hulsman et al.
1970). See the discussion of Kirkinis & Olvera de la Cruz (2023a, § 8.3) for some
consequences of making this choice.

In figure 10(a,b), we display the axial velocity profiles for the mixed mode m = 2 and
body mode m = 5 arising by solving the system (3.19) in a cylinder of radius R = 10
rotating with angular velocity Ω = 1, k = 1, employing arbitrary units and enforcing
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the combination (3.23). Plotting the velocity component vz is equivalent to plotting the
pressure p̃ = p′ + η4ζ on account of the connexion (3.7). Note that the non-vanishing
ν4 has renormalized the cylinder angular velocity Ω according to (3.21a,b), making
β = 8.3 > 0 in (3.14a,b).

As in the two-dimensional case, the outcome of this formulation is to give some means
of determining the odd viscosity coefficients by observing experimentally the precession
rate of the patterns.

3.4. Evanescent waves in the experiments of Nosan et al. (2021)
Consider an annular cylinder of inner and outer radii R1 and R2, respectively, where the
inner boundary is being radially displaced harmonically with frequency ω. The liquid is
rotating as a whole with angular velocity Ω about the central axis. This then is a system
with the geometry employed in the recent experiments of Nosan et al. (2021) which showed
that a (non-odd) rigidly rotating three-dimensional incompressible liquid gives rise to
evanescent waves at the cross-over frequency ω → 2Ω . Setting ω = 2Ω (β = 0 in (3.13)),
we obtain two imaginary roots κ = ±iκ̃ for real κ̃ from (3.13) if 0 < Ω < Ωo(≡ νok2) and
the solution reads

vr = AI1(κ̃r) + BK1(κ̃r), (3.24)
where by κ̃ in this section only, we denote the imaginary part of the roots of (3.13). Thus,

κ̃ = 2

√
Ω

νo

(
1 − Ω

Ωo

)
, Ωo = νok2 > Ω, (3.25a,b)

where, on account of the discussion in the previous paragraph, we have set η4 ≡ 0. Let
η(z, t) = η̂ exp(i(kz − ωt)) (3.26)

be the radial displacement of the inner boundary at r = R1 with complex η̂ which will
excite inertial-like waves of oscillatory or evanescent character. Thus, the radial velocity
satisfies

vr(R1, z, t) = ∂tη = −iωη, vr(R2, z, t) = 0. (3.27a,b)
The boundary conditions (3.27a,b) lead to the requirements vr(R1) = AI1(κ̃R1) +

BK1(κ̃R1) = −iωη̂ and vr(R2) = AI1(κ̃R2) + BK1(κ̃R2) = 0 from which we obtain

A = −iωη̂K1(κ̃R2)J−1, B = −A
I1(κ̃R2)

K1(κ̃R2)
, J =

∣∣∣∣ I1(κ̃R1) I1(κ̃R2)
K1(κ̃R1) K1(κ̃R2)

∣∣∣∣ . (3.28a–c)

The solution simplifies somewhat if we cast A in polar form A = aeiθ for real a, θ . Then,

a = ω|η̂|K1(κ̃R2)J−1, θ = − arctan
Re η̂

Im η̂
, (3.29a,b)

where |η̂| =
√

(Re η̂)2 + (Im η̂)2, and Re η̂ and Im η̂ are the real and imaginary parts of
the complex number η̂. We thus obtain

vr = ω|η̂|J−1 [I1(κ̃r)K1(κ̃R2) − I1(κ̃R2)K1(κ̃r)
]

cos(kz − ωt + θ), (3.30)

vφ = (2Ω − νoκ̃
2)|η̂|J−1 [I1(κ̃r)K1(κ̃R2) − I1(κ̃R2)K1(κ̃r)

]
sin(kz − ωt + θ), (3.31)

vz = −ω|η̂|J−1 κ̃

k

[
I0(κ̃r)K1(κ̃R2) + I1(κ̃R2)K0(κ̃r)

]
sin(kz − ωt + θ). (3.32)

Note the positive sign of K0(κ̃r) in (3.32) obtained because Kn satisfies different derivative
relations to In. The solution (3.30)–(3.32) for evanescent waves in an odd viscous liquid
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Figure 11. Instantaneous streamlines in the r–z plane of the velocity field (3.30)–(3.32), representing a forced
harmonic wave propagating in the z direction according to (3.26). The liquid is confined between the forced
inner cylinder at r = R1 = 2 + Re η and the immobile external cylinder at r = R2 = 4 (in arbitrary units).

is formally analogous to the one obtained by Nosan et al. (2021). We display the
instantaneous resultant streamlines of system (3.30)–(3.32) in an r–z slice of the cylinder
in figure 11.

One could attempt to determine the value of odd viscosity with the experimental
apparatus of Nosan et al. (2021) by measuring the planar velocity (vr, vφ) at fixed radial
locations and different elevations, and averaging the result over a period of oscillation
2π/k. These measurements could then be substituted into the expression (determined from
(3.30) and (3.31))

v2
r[

2Ω(Jκ̃)−1|η̂|∂rI(r)
]2 + v2

φ[
(2Ω − νoκ̃2)(Jκ̃)−1|η̂|∂rI(r)

]2 = 1, (3.33)

which only depends on the radial position of the measurement through the expression
∂rI(r), where

I(r) = [
I0(κ̃r)K1(κ̃R2) + I1(κ̃R2)K0(κ̃r)

]
. (3.34)

Fixing the r location, (3.33) then constitutes one algebraic equation to determine νo.
The fields (3.30) and (3.32) can also be employed to determine the paths of fluid

particles in the wave. Let (r0, z0) and (r, z) be the equilibrium position and coordinates,
respectively, of a moving fluid particle. Let dr/dt = vr and dz/dt = vz be the velocity of
a fluid particle in the r–z plane and consider small oscillations away from the equilibrium
position. Integrating with respect to time gives the trajectories of the fluid particles which
are the ellipses

(r − r0)
2

[k∂rI(r)]2 + (z − z0)
2

I2(r)
=
[
κ̃|η̂|J−1

]2
. (3.35)

Thus, observing the trajectories of suspended particles should, in principle, provide an
alternative way of determining the value of the odd viscosity coefficient νo.

Another related question concerns the effect shear viscosity has on the motion of an
odd viscous liquid. With respect to the present axisymmetric geometry, the kinematic
shear viscosity ν enters into the Navier–Stokes equations just by adding the terms

996 A13-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.791


E. Kirkinis and M. Olvera de la Cruz

ν(L − k2)vr, ν(L − k2)vφ and ν(L − k2 + r−2)vz to the right-hand side of (3.5), (3.6)
and (3.7), respectively, (setting m = ν4 = 0) everything else remaining the same. Defining
the dimensionless frequencies

ξ = νk2

ω
and ξo = νok2

ω
, (3.36a,b)

and assuming velocity fields of modified Bessel function type In(kκ̂r), leads the
dimensionless wavenumber κ̂ to satisfy

ξ2κ̂6 −
(
ξ2

o + 3ξ2 − 2 iξ
)

κ̂4 +
(

4Ωξo

ω
− 1 + 3ξ2 − 4 iξ

)
κ̂2 − ξ2 + 2 iξ + 1

−
(

2Ω

ω

)2

= 0. (3.37)

Letting ξo ≡ 0, (3.37) recovers the evanescent disturbance wavenumber equation of Nosan
et al. (2021, (5.16)). However, setting ξ = 0, we recover (3.12). Following the discussion
of Nosan et al. (2021), we can study the effects of shear viscosity perturbatively, more
specifically, by considering ξ as a perturbing parameter in (3.37) and expanding κ̂ in
powers of ξ . The wavenumber κ̂ correct to first order in ξ is

κ̂ ∼
√

2ξo − 1
ξo

+ ξ
i (ξo − 1)4

(2ξo − 1)3/2 ξ3
o
. (3.38)

Following the program established by Nosan et al. (2021), the effect of shear viscosity ν on
the flow can now be determined by substituting (3.38) into (3.30)–(3.32) and expanding the
modified Bessel functions In(kκ̂r) and Kn(kκ̂r) with respect to the perturbing parameter ξ .
In the experiments of Nosan et al. (2021) (carried-out with a non-odd viscous liquid), this
parameter was equal to 0.008 which led to only modest viscous correction for ω ∼ 2Ω

(with only one resonant exception). It is clear that these same conclusions are valid in the
present case.

4. Conclusion

The main result of this paper is the derivation of precessing wall, body and mixed modes,
as these are depicted in figure 1 and defined in table 1, in an odd viscous liquid as a
consequence of the complex or real character, respectively, of a planar wavenumber κ .
The wall modes are evanescent waves and resemble the wall modes obtained in (non-odd)
rotating Rayleigh–Bénard convection (Goldstein et al. 1993; Knobloch 1994), although the
latter are a consequence of thermal forcing in a liquid endowed with shear viscosity. They
can also be understood as equatorial (Tauber et al. 2019) and topological waves (Souslov
et al. 2019) (that is, waves that propagate parallel to a boundary and decay away from it
exponentially). That these modes should be present in (the dispersive) odd viscous liquid
system was also commented by Favier & Knobloch (2020) and Knobloch (2022).

The analysis is essentially exact (subject to solving two transcendental equations) and
gives rise to a parameter space which could be employed, in principle, to determine the
value of the odd viscosity coefficients. In a real system, shear viscosity will be present and
it will have to be taken into account. However, by itself, the presence of shear viscosity will
always lead an initially forced system to decay in finite time. A meaningful system is one
where some form of persistent forcing is always present. For instance, in the experiments
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of Soni et al. (2019), which are the only ones where the odd viscosity coefficient has been
determined in a liquid, the forcing was provided by a rotating magnetic field. Here, we only
discuss some general behaviour of the dispersive system without shear viscosity, with the
exception of the (Nosan et al. 2021) experiments in § 3.4. Effects of shear viscosity are
expected to follow familiar lines of rotating liquids (Chandrasekhar 1961).

In the main body of this article, we were concerned with the establishment of fluid flow
behaviour that is non-axisymmetric, m /= 0. In the supplementary materials, we provide
a detailed discussion of the m = 0 case (axisymmetric) which includes elements of plane
polarized waves and the conservation of helicity, following arguments analogous to those
of Kirkinis & Olvera de la Cruz (2023a).

Rotating and stratified Boussinesq flow can be decomposed in parameter regimes
depending on the combination of strengths of these two effects (Embid & Majda 1998;
Whitehead & Wingate 2014). The typical characteristic of these systems is the existence
of a two-dimensional slow manifold towards which energy is being transferred due to
fluctuations. Such a two-dimensional manifold is expected to exist in the case of a rigidly
rotating odd viscous liquid although the particle paths of odd viscous liquids are circular
while those of internal gravity waves are rectilinear (Maas 2001).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.791.
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Appendix A. Poincaré–Cartan equation for a (non-odd) rotating inviscid liquid

For a (non-odd) liquid rigidly rotating about the z axis with angular velocity Ω , the
Poincaré–Cartan equation (Greenspan 1968, § 2.6) is a second-order partial differential
equation satisfied by the pressure[

∇2
2 +

(
1 − 4Ω2

ω2

)
∂2

z

]
p′ = 0, (A1)

see also Landau & Lifshitz (1987, § 14). When ω < 2Ω , this equation becomes hyperbolic
while in the opposite case, it becomes elliptic, see Whitham (1974, § 12.6). In the
hyperbolic case, the data propagate on characteristics lying on a cone making an angle 2θ

with the z axis, where sin θ = ω/(2Ω). Unsteady motions give rise to inertial waves, that
is, plane-polarized waves with p′ ∼ exp(i(k · r − ωt)) (k = (kx, ky, kz) is the wavenumber
whose magnitude is k = |k| and ω is the frequency of the inertial wave), and to a dispersion
relation ω = 2Ωkz/k. However, steady motions (ω ≡ 0) lead to the requirement that
∂2

z p = 0. Characteristics are then straight lines parallel to the z axis. Thus, data that
emanate from a body moving slowly along the axis of rotation (the z axis) propagate in
straight lines ahead and behind the obstacle forming Taylor columns (Moore & Saffman
1968; Maxworthy 1970; Bush, Stone & Tanzosh 1994) as long as the group velocity
exceeds the speed of the slowly moving body.
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Appendix B. Poincaré–Cartan equation of three-dimensional odd viscous liquids and
its classification

In this section, we will derive the Poincaré–Cartan equation for a rigidly rotating odd
viscous liquid, the analogue of (A1), which is then employed in (3.12) and (3.13)
to determine the admissible planar wavenumber values. An equivalence between the
two- and three-dimensional problems was established in § 3.2. Here, we proceed by
showing that their difference lies on how data propagate along characteristic rays
determined by the values taken over by the odd viscosity coefficients νo and ν4. This
requires the consideration of the higher order terms of the governing PDEs only (the
characteristic form), and in doing so, we adopt the analysis of Courant & Hilbert (1962,
Chap. III, §§ 2.3–2.6).

To this end, the Navier–Stokes equations take the form (when the odd viscous liquid
rotates with angular velocity Ω)

∂u
∂t

= − 1
ρ

∂ p̃
∂x

+ (2Ω − S)v,
∂v

∂t
= − 1

ρ

∂ p̃
∂y

− (2Ω − S)u,
∂w
∂t

= −∂ p̃
∂z

, (B1a–c)

where S is the second-order differential operator defined in (3.10) and p̃ = p′ + η4ζ , with
ζ being the z component of vorticity. In what follows, we drop the superposed tilde on the
pressure.

To derive the Poincaré–Cartan equation, we follow the non-odd, rotating liquid
procedure, cf. Landau & Lifshitz (1987, § 14). Differentiate (B1a–c) with respect to x, y
and z and add to obtain −∇2p + ρ(2Ω − S)(∂xv − ∂yu) = 0 where we employed the
incompressibility condition. Differentiating with respect to time and using (B1a–c) again
leads to ∂t∇2p = −ρ(2Ω − S)2∂w/∂z by employing the incompressibility condition
again. One more differentiation with respect to time and use of the third equation in
(B1a–c) leads to the desired sixth-order equation

[
∇2

2 +
(

1 − (2Ω − S)2

ω2

)
∂2

z

]
p = 0. (B2)

When νo = ν4 = 0, (B2) reduces to the standard Poincaré–Cartan equation (A1). Equation
(B2) is employed in the main body of this paper to determine the admissible planar
wavenumber κ values in (3.12) and (3.13).

Equation (B2) can be classified according to the scheme employed by Courant & Hilbert
(1962, Chap. III, §§ 2.3–2.6) by isolating its principal part ∂2

z S2. Thus, the characteristic
form is

Q(φ) = φ2
3S2(φ), (B3)

where

S(φ) = (νo − ν4)(φ
2
1 + φ2

2) + ν4φ
2
3, (B4)

φ = (φ1, φ2, φ3) and the index i = 1, 2, 3 denotes the variables x1 = x, x2 = y, x3 = z
with respect to which the function φ is differentiated.

The characteristic form (B3) is identical to the one obtained from Maxwell’s equations
(Courant & Hilbert 1962, p. 178) if we identify φ3 with τ (in Maxwell’s case, it is exact
– there are no lower order terms). In our case, there are multiple sheets Q1, Q2, . . . etc.,
and the characteristic form Q can be expressed in the form Q = Q1Q2 . . . , where some of
the factors may be identical. Thus, as in Courant & Hilbert (1962, p. 596), rays should be
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defined not with reference to Q but with respect to the irreducible factors Qj of Q. Let

Q1 = φ3 and Q2 = S(φ) (B5a,b)

be these irreducible factors.
Consider the characteristic surface φ(x, y, z) = c, where c is a constant. The

characteristic rays or bicharacteristics are given by

ẋi = ∂Q
∂φi

, i = 1, 2, 3, (B6)

where a superposed dot denotes differentiation with respect to some suitable curve
parameter s.

For the first sheet Q = Q1 = φ3, (B6) becomes dx/ds = dy/ds = 0 and dz/ds = 1.
Thus, the characteristic curves are

C(s) = (c1, c2, c3) + (0, 0, 1)s, (B7)

that is, straight lines in the z direction away from a fixed point with coordinates c1, c2, c3
and where s is the parameter of the curve ranging along some suitable interval.

Characteristics are also generated by Q2 as defined in (B5a,b). Consider first the
special case when ν4 vanishes. Then, since Q2 = φ2

1 + φ2
2 , we find that characteristics

are described by C(s) = (c1, c2, c3) since Q2 = 0 is satisfied only if φ1 = φ2 = 0. Thus,
when ν4 = 0, the only characteristics associated with the form (B3) are those along the
z direction described in (B7). This then explains the presence of Taylor columns in a
three-dimensional odd viscous liquid which only extend along the z direction (Kirkinis
& Olvera de la Cruz 2023a).

In the general case where both νo and ν4 are non-zero, Q2 = (νo − ν4)(φ
2
1 + φ2

2) + ν4φ
2
3

from (B5a,b) is substituted into (B6) to give dx/ds = (νo − ν4)φ1, dy/ds = (νo − ν4)φ2,
dz/ds = ν4φ3 (in each case, an unimportant factor of 2 has been absorbed into, say, s).
Take z to be the time-like variable and form

dx
dz

= (νo − ν4)

ν4

φ1

φ3
and

dy
dz

= (νo − ν4)

ν4

φ2

φ3
. (B8a,b)

From the condition Q2 = 0, we obtain

φ2
3 = (ν4 − νo)

ν4
(φ2

1 + φ2
2). (B9)

This is only possible in the hyperbolic case, requiring that νo < ν4 when ν4 > 0. Squaring
and adding, we obtain (

dx
dz

)2

+
(

dy
dz

)2

= (ν4 − νo)

ν4
. (B10)

A solution is

(x − x0)
2 + ( y − y0)

2 = (ν4 − νo)

ν4
z2, (B11)

where x = α1z + x0 and y = α2z + y0 so, α2
1 + α2

2 = (ν4 − νo)/ν4. Thus, characteristic
curves lie on the local ray cone or Monge cone

z = ±
√

ν4

ν4 − νo
r, (B12)

where r =
√

(x − x0)2 + ( y − y0)2, see Courant & Hilbert (1962, p. 601). In figure 12, we
display two slices of the domain into which liquid enters from the right wall at x = 40 cm.
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Figure 12. Distribution of pressure (colourbar: dyne cm−2) in an odd viscous liquid entering into a rectangular
channel from the right, moving slowly with velocity U = 0.01 cm s−1, and meeting a centred solid immobile
sphere (of radius 6 cm). Stokes flow with η4 = 0.2 g (cm s)−1 and ηo = 0 from the constitutive law (3.1),
shear viscosity that of water and with no-slip boundary conditions on the channel walls. In both panels, data
propagate along directions making a 45◦ angle with the horizontal (along the Monge cone z = ±r in (B12)).
Since the depth of the box is narrow, the data in panel (b) are reflected on its walls located at y = ±20 cm.
Numerical simulations were performed with the finite-element package COMSOL.

Colourbar denotes the distribution of pressure. In both panels, we have set νo = 0 and
both panels display the direction of data along characteristics on the local ray cone (B12)
z = ±r. Figure 12(b) shows that characteristics are reflected on the lateral channel walls
located at y = ±20 cm.

In figure 13(a), we display the radial component of the liquid velocity v = vr r̂ + vφφ̂ +
vzẑ along an r–z slice of a cylinder (see figure 14 for a view of the whole cylinder) filled
with odd viscous liquid with η4 = 2 and ηo = 0.1 g (cm s)−1, and flowing around an
immobile sphere (of radius 3.8 cm) located at elevation z = 50. Liquid enters from the top
(z = 100 cm) and exits at the bottom (z = 0), with the cylinder speed (the sphere is not
allowed to rotate). The white lines are the streamlines of the flow. We thus observe oblique
propagation of data from the sphere to the wall and then their reflection. In figure 13(b), we
display the pressure distribution showing the same pattern of oblique propagation of data.
Since there are also characteristics that propagate vertically, associated with the form Q1 in
(B5a,b), a Taylor-type column also exists, circumscribing the sphere and surrounding the
central axis. This becomes visible by displaying the distribution of the axial component of
velocity vz along the whole cylinder, not just a slice. Thus, in figure 14, we see a Taylor
column parallel to the anisotropy (z axis) circumscribing the sphere, and also oblique
characteristics that emanate from the sphere and propagate in a direction making an angle
of (nearly) 45◦ with the horizontal. Parameters employed to produce this figure: odd
viscosity coefficient shear viscosity η = 0.01 g(cm s)−1, cylinder radius 20 cm, sphere
radius 3.8 cm, cylinder height H = 100 cm, liquid density ρ = 1 g cm−3, liquid velocity
in the −ẑ direction U = 0.01 cm s−1.

Summarizing, the characteristic structures that exist according to the characteristic form
(B3) are (assume ν4 > 0 for simplicity) as follows.
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Figure 13. (a) Colourbar: distribution of radial component of velocity vr (cm s−1), (where the liquid velocity
is denoted by v = vr r̂ + vφ φ̂ + vzẑ in cylindrical coordinates) and (b) pressure p (dyne cm−2) in an odd viscous
liquid moving slowly and meeting an immobile sphere (of radius 3.8 cm) located at elevation z = 50 cm at the
centre axis of a cylinder. Here η4 = 2 g (cm s)−1, ηo = 0.1 g(cm s)−1 from constitutive law (3.1) and shear
viscosity is that of water. Liquid enters from the top (z = 100 cm) and exits at the bottom (z = 0) of the cylinder.
The sphere is not allowed to rotate. White lines are liquid streamlines. In all cases, data emanating from the
sphere propagate along rays that lie on the Monge cone z ∼ ±r defined in (B12). A column circumscribing
the sphere, whose generators are parallel to the z axis is also present. It becomes visible in a plot of the flow
structure along the full expanse of the cylinder, see figure 14. Numerical simulations were performed with the
finite-element package COMSOL.

(i) When νo < ν4, then the operator S in (3.10) is hyperbolic and characteristics
exist both in the z direction (because of Q1 in (B5a,b)) and the oblique direction
determined by the ratio of the odd viscosities as in (B12).

(ii) When ν0 > ν4, the operator S is elliptic and characteristics exist only in the z
direction (because of Q1 in (B5a,b)).

(iii) When ν0 = ν4, S is parabolic and characteristics exist only in the z direction
(because of Q1 in (B5a,b)).

We note that similar conclusions to the above were reached by employing a simpler
exposure based on a generalized Taylor–Proudman theorem (Kirkinis & Olvera de la Cruz
2023b).
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Figure 14. Colourbar: distribution of minus the axial velocity vz (cm s−1) (the z component of the liquid
velocity v = vr r̂ + vφ φ̂ + vzẑ whose strength is displayed in the colourbar) in an odd viscous liquid moving
slowly and meeting an immobile sphere (of radius 3.8 cm) located at elevation z = 50 cm at the centre axis of
a cylinder (figure 13 shows an r–z slice of this cylinder). Liquid enters from the top (z = 100 cm) and exits at
the bottom (z = 0). The sphere is not allowed to rotate. The presence of a central Taylor column circumscribing
the sphere is visible and it is attributed to the straight-line characteristics (B7) parallel to the anisotropy z axis.
The presence of rays making (nearly) a 45◦ angle with the horizontal is also visible. They are attributed to the
characteristics that lie on the Monge cone (B12). η4 = 2 g (cm s)−1, ηo = 0.1 g (cm s)−1 from constitutive
law (3.1) and shear viscosity is that of water, as in figure 13. Numerical simulations were performed with the
finite-element package COMSOL.

Appendix C. Poincaré–Cartan equation of a two-dimensional compressible odd
viscous liquid

We are not aware of a Poincaré–Cartan equation in two-dimensional compressible flow, so
we include below the steps leading to its derivation. This equation is then employed in the
main body of this paper to determine the planar wavenumber κ values in (2.11) and (2.12).

Starting from the Navier–Stokes (by restoring the pressure p = ρ′c2), we obtain the set
of equations:

∂tu = − 1
ρ

∂xp + Lv, ∂tv = − 1
ρ

∂yp − Lu, ∂tp + ρc2(∂xu + ∂yv) = 0, (C1a–c)

where we introduced the linear differential operator L = 2Ω − νo∇2, ρ is a constant
background density, ρ′ its variable part and c is the speed of sound. We thus obtain the
evolution equations:

∂t(∂xv − ∂yu) = −L(∂xu + ∂yv), ∂t(∂xu + ∂yv) = − 1
ρ

∇2p + L(∂xv − ∂yu) (C2a,b)
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t

y

x

ρ0(x, y)

Figure 15. Initial data of density ρ0(x, y) in a compressible two-dimensional odd viscous liquid propagate
along straight characteristic lines according to (C4a,b), forming a temporal Taylor column.

for the vorticity and divergence of the velocity field. Differentiating the pressure equation
in (C1a–c) twice and using (C2a,b), we obtain

∂t

[
L2 − c2∇2 + ∂2

t

]
p = 0. (C3)

Equation (C3) can be considered as the Poincaré–Cartan equation for a two-dimensional
compressible and rigidly rotating odd viscous liquid. It is clear that when the pressure
oscillates as p̂e−iωt, one obtains ω[L2 − c2∇2 − ω2]p̂ = 0, which recovers the dispersion
relation (2.12).

The classification of the two-dimensional Poincaré–Cartan equation (C3) can proceed
as in the foregoing three-dimensional case (see also Courant & Hilbert 1962, Chap. III,
§§ 2.3–2.6). We replace the operators (∂t, ∂x, ∂y) by time and space-like quantities
(τ, φ1, φ2) and form the principal part

Q = Q1Q2, where Q1 = τ and Q2 = ν0(φ
2
1 + φ2

2)2. (C4a,b)

The situation is the same as in (B7) with the z coordinate replaced by time. Initial data
propagate along vertical characteristics as displayed in figure 15. This situation can also
be understood as a temporal Taylor column, cf. figure 15.
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