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Nonlinear dual-mode instability of planar
liquid sheets
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The nonlinear temporal instability of gas-surrounded planar liquid sheets, whose linear
instability contains both sinuous and varicose modes, is studied. Both the weakly
nonlinear analysis using a second-order perturbation expansion and the numerical
simulation using a boundary integral method have been applied. Their comparison
shows that the weakly nonlinear analysis can precisely predict the shapes of sheets
for most of the time of disturbance evolution and qualitatively explain the instability
mechanism when sheets break up. Both the first harmonics of the linear sinuous
mode and linear varicose mode are varicose; they contribute to the breakup of sheets,
but the first harmonic generated by the coupling between the linear sinuous and
varicose modes is sinuous; it plays an important role in modulating the wave profile.
The instability with various initial phase differences between the upper and lower
interfaces is examined. Except for the varicose initial disturbance, the linear sinuous
mode dominates in the shapes of sheets when their amplitudes grow large. Within
the second-order analysis, the major modes that can cause the breakup include the
linear varicose mode, the first harmonic of the linear sinuous mode and the first
harmonic of the linear varicose mode. The effects of various flow parameters have
been investigated. At relatively large wavenumbers where approximate analytical
and numerical results agree well when sheets break up, increasing the wavenumber
reduces the wave amplitude. Reducing the initial disturbance amplitude makes the
first harmonic of the linear sinuous mode the dominant mode in causing the breakup.
Increasing the Weber number or gas-to-liquid density ratio significantly reduces
breakup time and enhances instability.

Key words: gas/liquid flow, interfacial flows (free surface), nonlinear instability

1. Introduction
1.1. Literature review

The instability of planar liquid sheets is a classical problem of fluid mechanics, with
broad practical applications, such as atomization, combustion and paper-making. A
good understanding of it is of both scientific interest and pragmatic usage. Therefore,
a number of researchers have studied it in various aspects.

† Email address for correspondence: yanglijun@buaa.edu.cn
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(a)  (b)

FIGURE 1. Linear sinuous mode (a) and varicose mode (b).

Squire (1953) and Hagerty & Shea (1955) investigated the linear instability
of inviscid sheets. They obtained the dispersion relation and found that the
instability of the sheet is caused mainly by its interaction with the surrounding
gas; increasing the Weber number and the gas-to-liquid density ratio extensively
enhances instability. There are two unstable modes in linear instability, i.e. the sinuous
mode (antisymmetric waves) and the varicose or dilatational mode (symmetric waves),
schematically shown in figure 1. Both their theories and experiments indicated that, in
common conditions, the sinuous waves grow much faster than the varicose correlate.

Linear analysis only predicts the onset of instability, and depicting the final breakup
of the sheet requires nonlinear analysis. The asymptotic analytical perturbation
solution for weakly nonlinear instability of the linear sinuous mode was investigated
in the study of Clark & Dombrowski (1972), Jazayeri & Li (2000) and Yang et al.
(2013). It was found that the first harmonic of the linear sinuous mode is varicose,
which explains the disintegration of sinuous waves. The harmonics of the linear
varicose mode were not addressed in these studies, because the growth rate of the
varicose wave is much smaller and the sinuous mode was believed to be the major
reason for the disintegration. The nonlinear instability of the linear varicose mode was
studied analytically or semi-analytically by Matsuuchi (1974, 1976) and Mehring &
Sirignano (1999). They found that, although a sheet in a vacuum is stable according
to linear analysis, it can be modulationally unstable when the nonlinearity is taken
into account. However, partly because they neglected the ambient gas, which plays
a vital role in the growth of a disturbance, their studies could not show the sheet
disintegration caused by a small initial disturbance. The demands for very small
disturbance amplitude (Matsuuchi 1974) and very long waves (Matsuuchi 1976;
Mehring & Sirignano 1999) are also their limitations. The numerical approach to this
issue was undertaken by Rangel & Sirignano (1991) and Kan & Yoshinaga (2007).
By means of boundary integral methods, they simulated the nonlinear distortion and
disintegration for both the sinuous and varicose modes.

Because the linear sinuous mode grows much faster than the varicose counterpart in
common conditions, many researchers believe that the sinuous mode is the dominant
mode that determines the instability behaviour, including the disturbance growth
and breakup. In the theoretical analysis of Squire (1953), Clark & Dombrowski
(1972), Asare, Takahashi & Hoffman (1981), Jazayeri & Li (2000) and Yang et al.
(2013), only the linear sinuous mode was investigated, and in the experiments of
Squire (1953), Hagerty & Shea (1955), Crapper, Dombrowski & Pyott (1975), Asare
et al. (1981) and Tammisola et al. (2011), the waves were evidently characterized
by sinuous characters. However, Mitra, Li & Renksizbulut (2001) offered a different
opinion. In their dual-mode linear instability analysis, the linear varicose mode was the
only reason for disintegration because the linear sinuous mode does not contribute
to the thinning. Since using the linear analysis to study the breakup is certainly
dubious and inappropriate, their argument has rarely been adopted by other scholars.
But their opinion is right on at least two points: first, at the onset of instability
where nonlinear amplitudes are negligible, the varicose mode has a dominant effect
in causing the thinning; and second, the linear sinuous mode itself cannot lead to
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Nonlinear dual-mode instability of planar liquid sheets 623

the breakup anyway, however large the amplitude to which it grows. Regarding the
breakup, the core of the controversy lies mainly in the question of which is more
important in causing the attenuation: the varicose harmonics of the linear sinuous
mode, which grow very fast but have very small initial amplitudes, or the linear
varicose mode, which has a much larger initial amplitude but grows slowly. Such a
problem cannot be answered by previous studies, and therefore it will be addressed
in the present study of nonlinear dual-mode instability.

1.2. Present work
The main objective of the present work is to study the nonlinear instability of liquid
sheets leading to breakup whose linear instability contains both sinuous and varicose
modes. This issue has rarely been studied so far: only Mitra et al. (2001) have
considered the sheet’s dual-mode linear instability, but since the linear instability is
not justified to study the breakup, their results are not genuinely convincing. The
topic is important in several respects. For practical application, where any forms
of disturbance can exist, that the initial disturbance is purely sinuous or purely
varicose is only an ideal assumption, and if the initial phase difference between the
sheet’s two surfaces is neither 0 nor π, both modes will exist. So the present study,
which considers both modes, is an important attempt to approach real situations.
More merits of it lie in its scientific interest. For the sheet breakup, as noted in the
literature review, there have been controversial opinions on the roles of the sinuous
mode and varicose mode. Which is dominant? While many previous studies believe
that considering only the fast-growing sinuous mode is enough, our current analysis
indicates that this is not appropriate, at least in the conditions considered in this paper.
By examining the case where the linear sinuous and varicose modes have identical
initial amplitudes, we demonstrate that the linear varicose mode plays a vital role in
the breakup – more important than the sinuous mode for most conditions – through
both itself and its first harmonic. Another important point of this issue is the nonlinear
coupling between linear unstable modes, characterized by the first harmonic generated
by the coupling between the linear sinuous and varicose modes. This unstable mode
exists only when both the linear sinuous and varicose modes exist, indicating that
the two linear modes do not propagate independently when nonlinearity is taken into
account. While it is sinuous in nature and does not contribute to breakup, it has
an important function in modulating the shapes of wave profiles, leading to many
interesting phenomena.

Another important task of this study is the comparison between weakly nonlinear
analysis and numerical simulation. This issue also has not been addressed by previous
studies for the aerodynamic instability of sheets. Clark & Dombrowski (1972),
Jazayeri & Li (2000) and Yang et al. (2013) only undertook the weakly nonlinear
analysis using a perturbation technique, so the question exists whether their results
are appropriate to study the breakup when nonlinearity may become significant. The
numerical simulations of Rangel & Sirignano (1991) and Kan & Yoshinaga (2007)
were compared only to linear instability analysis, so the breakup mechanism could not
be explained by the analytical solution. Only Mehring & Sirignano (1999) compared
their analytical and numerical results, but their study was for the liquid sheet in a
vacuum, in which the disturbance amplitude does not grow and the sheet breaks up
only at large initial amplitudes. This is different from the aerodynamic instability
considered in our study, where small initial amplitudes grow to large ones and cause
the breakup. While the numerical simulation provides a relatively precise solution, the
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FIGURE 2. Sketch diagram of a moving liquid sheet.

weakly nonlinear analysis gives results quickly and reliably, and, more importantly, it
explains the mechanism of instability. By comparing their results, we show essential
agreements between the two methods, and thus the validity of weakly nonlinear
analysis is justified and the mechanism of numerical solution is explained.

2. Mathematical solution
2.1. Problem description

A two-dimensional planar liquid sheet moving through ambient gas is considered.
Both the liquid and the gas are assumed to be inviscid and incompressible. The
surface tension of the liquid sheet is σ ; the densities of the gas and liquid are ρg
and ρl, respectively. For the basic flow, the sheet has a constant thickness 2a and
a uniform velocity U, and the ambient gas is stationary. Gravity is neglected, as
we consider the sheet to be moving at a high velocity. To generalize the results, all
the variables and parameters are non-dimensionalized. The non-dimensional Weber
number and gas-to-liquid density ratio are defined as We = ρlU2a/σ and ρ = ρg/ρl.
The time, length, velocity and velocity potential are scaled with a/U, a, U and Ua,
respectively. It is noted that the viscosity of liquid was considered in our previous
weakly nonlinear analysis for the pure sinuous mode (Yang et al. 2013), but in the
current paper, principally because of the limitation of numerical simulation (see § 2.3),
the liquid is assumed inviscid as well.

A sketch diagram of the sheet is schematically shown in figure 2. In Cartesian
coordinate, the basic flow direction is parallel to the x-direction and the y-direction
is normal to the undisturbed gas-to-liquid interface. The x-axis is the centreline of the
undisturbed sheet, and thus the surfaces of the sheet for the basic flow are located at
y = ±1. When the flow is disturbed, the non-dimensional interface displacements in
the y-direction are defined as ηj(x, t), where j= 1 represents the upper interface and
j= 2 represents the lower, and therefore the locations of the disturbed interfaces are
y= (−1)j+1 + ηj(x, t).

In the present study, only temporal instability is considered, so the sheet is assumed
to be infinite, and at t= 0 an initial interface displacement is given as

ηj|t=0 = η0η̂j exp(ikx)+ c.c., (2.1)

where η0 is a small number representing the initial disturbance amplitude, k is a real
and positive number referred to as the wavenumber and ‘c.c.’ represents the complex
conjugate. Here η̂j (j= 1, 2) are complex numbers indicating the difference between
the upper and lower interfaces. Both η̂1 and η̂2 can be independently given with any
arbitrary values, and if they are not exactly the same (sinuous mode), or opposite
(varicose mode), both linear sinuous and varicose modes exist in the sheet’s linear
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Nonlinear dual-mode instability of planar liquid sheets 625

instability. Note however that, because the initial velocity is not given, the solution
of the problem is not fixed. The focus of our study is one particular solution whose
linear part can be expressed by the sum of two normal modes (2.21); the instability
behaviour of other solutions may be studied in future research.

Two different approaches are used to solve this problem: the weakly nonlinear
analysis using a perturbation expansion, and numerical simulation using a boundary
integral method.

2.2. Weakly nonlinear analysis
A weakly nonlinear analysis using a second-order perturbation expansion is undertaken
to obtain an approximate analytical solution. The weakly nonlinear solution can be
precise for most of the time of disturbance evolution. It gives results quickly and
reliably and, more importantly, it provides insight into the mechanism of instability
and breakup.

2.2.1. Governing equations
Assuming that both the liquid and gas are initially irrotational, the non-dimensional

velocity potentials of the liquid and gas phases are defined as φl and φgj, where j= 1
represents the gas above the sheet and j= 2 represents the gas below.

The mass conservation equations of the liquid and gas are

φl,xx + φl,yy = 0 for −1+ η2 6 y 6 1+ η1, (2.2)
φgj,xx + φgj,yy = 0 j= 1, 2 for y > 1+ η1, y 6−1+ η2. (2.3)

The kinematic boundary conditions of the liquid and gas at the sheet surfaces are

φl,y − ηj,t − φl,xηj,x = 0 at y= (−1)j+1 + ηj, (2.4)

φgj,y − ηj,t − φgj,xηj,x = 0 at y= (−1)j+1 + ηj. (2.5)

The dynamic boundary condition normal to the gas-to-liquid interface is

1
2
+ ρφgj,t − φl,t + 1

2
ρ(φ2

gj,x + φ2
gj,y)−

1
2
(φ2

l,x + φ2
l,y)−

(−1)jηj,xx

We(1+ η2
j,x)

1.5 = 0

at y= (−1)j+1 + ηj. (2.6)

A second-order weakly nonlinear analysis is used to solve the nonlinear equations.
Assuming that the nonlinearity is weak, all the variables are expressed by a second-
order expansion in power series of η0:

(φl, φgj, ηj)= (x, 0, 0)+ (1φl,
1φgj,

1ηj)η0 + (2φl,
2φgj,

2ηj)η
2
0 +O(η3

0). (2.7)

Note that the terms in the first bracket on the right-hand side of (2.7) represent
the basic flow field. For the variables on the disturbed boundaries, their values are
obtained by a Taylor series using their values on the undisturbed boundaries, for
example,

φl,t|y=(−1)j+1+ηj
= φl,t|y=(−1)j+1 + ηjφl,yt|y=(−1)j+1 + · · · . (2.8)

Substituting (2.7) and (2.8) into (2.1)–(2.6), collecting the terms with η0 and η2
0, the

first-order and the second-order governing equations are achieved.
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The first-order equations are

1ηj|t=0 = η̂j exp(ikx)+ c.c., (2.9)
1φl,xx + 1φl,yy = 0 for −1 6 y 6 1, (2.10)

1φgj,xx + 1φgj,yy = 0 j= 1, 2 for y > 1, y 6−1, (2.11)
1φl,y − 1ηj,t − 1ηj,x = 0 at y= (−1)j+1, (2.12)

1φgj,y − 1ηj,t = 0 at y= (−1)j+1, (2.13)

ρ1φgj,t − 1φl,t − 1φl,x − (−1)j
1ηj,xx

We
= 0 at y= (−1)j+1. (2.14)

The second-order equations are

2ηj|t=0 = 0, (2.15)
2φl,xx + 2φl,yy = 0 for −1 6 y 6 1, (2.16)

2φgj,xx + 2φgj,yy = 0 j= 1, 2 for y > 1, y 6−1, (2.17)
2φl,y − 2ηj,t − 2ηj,x = 1φl,x

1ηj,x − 1ηj
1φl,yy at y= (−1)j+1, (2.18)

2φgj,y − 2ηj,t = 1φgj,x
1ηj,x − 1ηj

1φgj,yy at y= (−1)j+1, (2.19)

ρ2φgj,t − 2φl,t − 2φl,x − (−1)j
2ηj,xx

We

= 1ηj(−ρ1φgj,yt + 1φl,yt + 1φl,yx)− 1
2
ρ(1φ2

gj,x + 1φ2
gj,y)+

1
2
(1φ2

l,x + 1φ2
l,y)

at y= (−1)j+1. (2.20)

2.2.2. First-order solutions
The first-order equations are linear in x and t; therefore, the sinuous mode and the

varicose mode can be added together directly to give

(1φl,
1φgj,

1ηj) = (1,sφ̂l,
1,sφ̂gj,

1,sη̂j) exp(ikx− iω1st)

+ (1,vφ̂l,
1,vφ̂gj,

1,vη̂j) exp(ikx− iω1vt)+ c.c., (2.21)

where ω1s and ω1v are the first-order sinuous and varicose complex frequencies; their
real parts represent the oscillation frequencies and their imaginary parts represent the
temporal growth rates. The superscript ‘1, s’ represents the linear sinuous mode and
‘1, v’ represents the linear varicose mode. The symbol ‘ˆ’ denotes the disturbance
amplitudes, which are functions of y only and, in particular, 1,sη̂j and 1,vη̂j are
constants.

The two unstable modes are solved using standard linear analysis combining (2.21)
and (2.10)–(2.14). Here only the results are presented. The upper and lower interface
displacements are identical for the sinuous mode and opposite for the varicose mode:

1,sη̂1 = 1,sη̂2,
1,vη̂1 =−1,vη̂2. (2.22a,b)

The dispersion relations must be satisfied in linear instability to make the solution
non-trivial:

Ds(ω1s, k)= 0, Dv(ω1v, k)= 0. (2.23a,b)
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Here Ds and Dv are defined according to the character equations for the linear sinuous
and varicose modes:

Ds(ω, k)=−ρω2 + k3

We
− (ω− k)2 tanh k, Dv(ω, k)=−ρω2 + k3

We
− (ω− k)2 coth k.

(2.24a,b)
The velocity potentials are

1,sφ̂l = i
(

1− ω1s

k

) sinh ky
cosh k

1,sη̂1,
1,sφ̂gj = (−1)j+1 iω1s

k
exp[k+ (−1)jky]1,sη̂1,

1,vφ̂l = i
(

1− ω1v

k

) cosh ky
sinh k

1,vη̂1,
1,vφ̂gj = iω1v

k
exp[k+ (−1)jky]1,vη̂1.

 (2.25)

Equations (2.22)–(2.25) are the well-known results of standard linear analysis and they
are identical to those presented by Squire (1953) and Hagerty & Shea (1955). Note
that (2.24) and (2.25) are valid only at k > 0; k < 0 renders different expressions
for the solutions but the same instability behaviour governed by the real parts of
the complex solutions; at k = 0, all the temporal frequencies and velocity potentials
are zero. The unique solution of the linear homogeneous equations is determined by
the initial condition. Substituting (2.21) and (2.22) into the initial condition (2.9), the
disturbance amplitudes of the first-order sinuous and varicose modes are derived as

1,sη̂j = 1
2(η̂1 + η̂2),

1,vη̂j = (−1)j+1 1
2(η̂1 − η̂2). (2.26a,b)

To measure the proportion of initial sinuous amplitude in the linear part, we define

rs = |1,sη̂j|
|1,sη̂j| + |1,vη̂j| . (2.27)

2.2.3. Second-order solutions
The second-order solutions are assumed as

(2φl,
2φgj,

2ηj) = (21,ssφ̂l,
21,ssφ̂gj,

21,ssη̂j) exp(2ikx− 2iω1st)

+ (21,ssφ̂l,
21,ssφ̂gj,

21,ssη̂j) exp(−iω1st+ iω1st)

+ (21,vvφ̂l,
21,vvφ̂gj,

21,vvη̂j) exp(2ikx− 2iω1vt)

+ (21,vvφ̂l,
21,vvφ̂gj,

21,vvη̂j) exp(−iω1vt+ iω1vt)

+ (21,svφ̂l,
21,svφ̂gj,

21,svη̂j) exp(2ikx− iω1st− iω1vt)

+ (21,svφ̂l,
21,svφ̂gj,

21,svη̂j) exp(−iω1st+ iω1vt)

+ (22,sφ̂l,
22,sφ̂gj,

22,sη̂j) exp(2ikx− iω2st)

+ (22,sφ̂l,
22,sφ̂gj,

22,sη̂j) exp(−iω2st)

+ (22,vφ̂l,
22,vφ̂gj,

22,vη̂j) exp(2ikx− iω2vt)

+ (22,vφ̂l,
22,vφ̂gj,

22,vη̂j) exp(−iω2vt)+ c.c. (2.28)

The modes with superscript ‘21’ have the same exponent coefficients as the
inhomogeneous terms formed by the first-order products in (2.18)–(2.20), and they
represent the transfer of perturbation from the first order to the second order. Note
that ω1s and ω1v represent the complex conjugates of ω1s and ω1v, but s and v
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are merely symbols indicating that the disturbances are partly generated by the
complex conjugates of first-order disturbances. The modes with superscript 22 have
second-order frequencies: ω2s and ω2s are the second-order sinuous frequencies, and
ω2v and ω2v are the second-order varicose frequencies. Thus they represent the
second-order inherent disturbances. Their corresponding wavenumbers are chosen to
be 2k and 0 (identical to the ‘21’ modes) in order to satisfy the initial condition (2.15).

In (2.28), modes ‘21, ss’ and ‘21, ss’ are generated from first-order sinuous waves,
so they represent the first harmonics of the linear sinuous mode. Similarly modes
‘21, vv’ and ‘21, vv’ represent the first harmonics of the linear varicose mode. Modes
‘21, sv’ and ‘21, sv’ are the first harmonics generated by the first-order sinuous and
varicose waves together; therefore, they represent the coupling between the linear
sinuous and varicose modes in the second order. They are produced only when the
linear sinuous and varicose waves are both present, so their existence signifies that
the sinuous and varicose waves do not propagate independently when the nonlinearity
is taken into account.

The solutions for ‘21’ modes are derived by solving inhomogeneous equations.
Take the mode ‘21, ss’ as an example. Substituting (2.28) into the mass conservation
equations (2.16) and (2.17), and collecting terms with coefficient exp(2ikx − 2iω1st),
one arrives at

21,ssφ̂′′l − 4k2(21,ssφ̂l)= 0 for −1 6 y 6 1, (2.29)
21,ssφ̂′′gj − 4k2(21,ssφ̂gj)= 0 j= 1, 2 for y > 1, y 6−1. (2.30)

Solving (2.29) and (2.30), noting that the disturbance of the gas phase should not be
infinite at y→±∞, yields

21,ssφ̂l = A exp(2ky)+ B exp(−2ky) for −1 6 y 6 1, (2.31)
21,ssφ̂gj =Cj exp[(−1)j2ky] j= 1, 2 for y > 1, y 6−1, (2.32)

where A, B and Cj (j= 1, 2) are integral constants. Substituting (2.28) into boundary
conditions (2.18)–(2.20), the coefficients of exp(2ikx− 2iω1st) produce

21,ssφ̂′l + 2i(ω1s − k)21,ssη̂j =−k2(1,sφ̂l)
1,sη̂j − 1,sη̂j

1,sφ̂′′l at y= (−1)j+1, (2.33)

21,ssφ̂′gj + 2iω1s
21,ssη̂j =−k2(1,sφ̂gj)

1,sη̂j − 1,sη̂j
1,sφ̂′′gj at y= (−1)j+1, (2.34)

2i[−ρω1s
21,ssφ̂gj +ω1s

21,ssφ̂l − k(21,ssφ̂l)] + (−1)j
4k2(21,ssη̂j)

We

= i1,sη̂j[ρω1s
1,sφ̂′gj −ω1s

1,sφ̂′l + k(1,sφ̂′l)] −
1
2
ρ[1,sφ̂′2gj − k2(1,sφ̂2

gj)]

+ 1
2
[1,sφ̂′2l − k2(1,sφ̂2

l )] at y= (−1)j+1. (2.35)

Substituting (2.31) and (2.32) into (2.33)–(2.35), six equations in six unknown
constants A, B, Cj (j= 1, 2) and 21,ssη̂j (j= 1, 2) are obtained.

The solvability of the inhomogeneous equations is discussed next according to
the Fredholm alternative. In the second-order equations (2.16)–(2.20), the forms
of the second-order disturbances, i.e. the linear parts on the left-hand side of the
equations, are exactly the same as the forms of the first-order disturbances in the
first-order equations (2.10)–(2.14), so the coefficient matrix of A, B, Cj (j = 1, 2)
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Nonlinear dual-mode instability of planar liquid sheets 629

and 21,ssη̂j (j = 1, 2), referred to as M(2ω1s, 2k), is the same as the coefficient
matrix of the corresponding constants in the first-order linear analysis, M(ω1s, k),
as long as 2ω1s and 2k are replaced by ω1s and k, respectively. The linear analysis
indicates that the singularity of M(ω, k), which guarantees the non-trivial solutions
of the linear homogeneous equations, is satisfied when and only when the dispersion
relation Ds(ω, k)Dv(ω, k) = 0 is satisfied. The property of Ds and Dv governed
by (2.24) determines that Ds(ω1s, k) = 0 (the linear dispersion relation required
by (2.23)) automatically results in Ds(2ω1s, 2k) 6= 0 and Dv(2ω1s, 2k) 6= 0, and
therefore M(2ω1s, 2k) is non-singular and thus invertible. So according to the first
Fredholm alternative, A, B, Cj (j= 1, 2) and 21,ssη̂j (j= 1, 2) have one and only one
solution.

The solvability of the other inhomogeneous modes can be examined by the same
procedure. Similar to mode ‘21, ss’, the modes ‘21, vv’, ‘21, sv’ and ‘21, sv’ are
solvable in the whole wavenumber range k> 0, but the modes ‘21, ss’ and ‘21, vv’ are
solvable only at wavenumbers smaller than the cutoff wavenumber kc (the wavenumber
corresponding to zero temporal growth rate). This is because, when k> kc, ω1s and ω1v
become real and this makes their corresponding coefficient matrices become M ′(0, 0).
(The form of the coefficient matrix for zero wavenumber modes M ′(ω, 0) is different
from the non-zero wavenumber counterpart M(ω, k) because the velocity potential is
in the form of Ay + B rather than the exponential terms in (2.31) and (2.32).) The
matrix M ′(0, 0) is singular and not invertible, and the vector of the inhomogeneous
terms generated by the first order, referred to as b, does not guarantee the second
Fredholm alternative, that is, b is orthogonal to all eigenvectors of M ′(0, 0)T with
zero eigenvalue, so the inhomogeneous equations are not solvable. It can be confirmed
from (A 4) and (A 8) in appendix A that the solution of 21,ssφ̂gj and 21,vvφ̂gj does not
exist when ω1s and ω1v are real, which happens at k> kc. Therefore, for the present
study, the solvability condition requires that the wavenumber k should be smaller than
the cutoff wavenumber kc. This is also desirable in the current analysis because, in
this wavenumber range, the temporal growth rates Im(ω1s) and Im(ω1v) are positive,
representing the instability of the flow field. In order to extend the wavenumber range
to k> kc, other measures, such as expanding the cutoff wavenumber kc in power series
of η0, may be required (Yuen 1968), but that is not the focus of the present work.

Back to the solution of mode ‘21, ss’. Knowing that the solution is unique, the
following parity analysis is helpful. If the relations

21,ssη̂1 =−21,ssη̂2, A= B, C1 =C2, (2.36a−c)

exist, then the boundary conditions (2.33)–(2.35) will be identical at y= 1 and y=−1,
and solving only those at y= 1 is enough. Thus 21,ssη̂1 is solved as

21,ssη̂1 = k[(ω1s − k)2(3− tanh2k− 4 tanh k coth 2k)+ 2ρω2
1s]

Dv(2ω1s, 2k)
1,sη̂2

1. (2.37)

The solutions for 21,ssφ̂l and 21,ssφ̂gj are given in appendix A.
Using the same solution procedure for other ‘21’ modes, it is easy to deduce the

relations between the upper and lower interface displacements via parity analysis:

21,ssη̂1 =−21,ssη̂2,
21,vvη̂1 =−21,vvη̂2,

21,vvη̂1 =−21,vvη̂2,

21,svη̂1 = 21,svη̂2,
21,svη̂1 = 21,svη̂2.

}
(2.38)
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The solutions for the upper interface are
21,ssη̂1 = 0, (2.39)

21,vvη̂1 = k[(ω1v − k)2(3− coth2k− 4 coth k coth 2k)+ 2ρω2
1v]

Dv(2ω1v, 2k)
1,vη̂2

1, (2.40)

21,vvη̂1 = 0, (2.41)

21,svη̂1 = 2k
Ds(ω1s +ω1v, 2k)

{(ω1s − k)2 + (ω1v − k)2 − (ω1s +ω1v − 2k)

×[(ω1s − k) tanh k+ (ω1v − k) coth k] tanh 2k+ 2ρω1sω1v} 1,sη̂1
1,vη̂1, (2.42)

21,svη̂1 = 0. (2.43)
Their corresponding velocity potentials are given in appendix A. It can be seen that
21,ssη̂j and 21,ssη̂j are identical to η̂j21 and η̂j22 respectively (the corresponding harmonics
of linear sinuous mode for temporal instability) in the study of Yang et al. (2013)
when viscosity vanishes.

One important characteristic of the solutions is that the zero wavenumber interface
displacements, i.e. 21,ssη̂j, 21,vvη̂j and 21,svη̂j, are zero, indicating that up to the second
order there is no unstable mode that makes the sheet dilate or attenuate uniformly
everywhere. This is a special property of the temporal instability of planar liquid
sheets, which can also be proved by the study of Clark & Dombrowski (1972), and it
is very different from the nonlinear instability of cylindrical jets (Yuen 1968). Another
important characteristic is that the first harmonic of the linear sinuous mode 21,ssη̂j
and the first harmonic of the linear varicose mode 21,vvη̂j are varicose, but the first
harmonic generated by the coupling between the linear sinuous and varicose modes,
21,svη̂j, is sinuous.

Since 21,ssη̂1, 21,vvη̂1 and 21,svη̂1 are respectively in proportion to 1,sη̂2
1, 1,vη̂2

1 and
1,sη̂1

1,vη̂1, from which they are generated, it is useful define the ‘relative second-order
disturbance amplitudes’ as

2r,ssη̂=
21,ssη̂1
1,sη̂2

1
, 2r,vvη̂=

21,vvη̂1
1,vη̂2

1
, 2r,svη̂=

21,svη̂1
1,sη̂1

1,vη̂1
. (2.44a−c)

Here 2r,ssη̂, 2r,vvη̂ and 2r,svη̂ represent the ability of each linear mode to generate the
corresponding nonlinear harmonic; their norms are a good indicator of the initial
(at t = 0, so the effect of temporal growth rate is excluded) extent of nonlinearity,
especially when |1,sη̂j| = |1,vη̂j|.

The equations of modes ‘22’ do not contain the first-order inhomogeneous products,
so they are solved using the same method as standard linear analysis. The second-
order temporal frequencies are determined by the dispersion relations

Ds(ω2s, 2k)= 0, Ds(ω2s, 0)= 0, Dv(ω2v, 2k)= 0, Dv(ω2v, 0)= 0. (2.45a−d)

Similar to linear analysis, the sinuous and varicose disturbance amplitudes yield
22,sη̂1 = 22,sη̂2,

22,sη̂1 = 22,sη̂2,
22,vη̂1 =−22,vη̂2,

22,vη̂1 =−22,vη̂2. (2.46a−d)

Substituting (2.28), (2.36a), (2.38) and (2.46) into the second-order initial condition
(2.15), 22,sη̂j, 22,sη̂j, 22,vη̂j and 22,vη̂j are solved as

22,sη̂j =−21,svη̂j,
22,sη̂j =−21,svη̂j = 0,

22,vη̂j =−21,ssη̂j − 21,vvη̂j,
22,vη̂j =−21,ssη̂j − 21,vvη̂j = 0.

}
(2.47)

The solutions of the velocity potentials of the ‘22’ modes are given in appendix A.
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2.2.4. Summary
Removing the modes whose interface displacements are zero and neglecting

the remainder term O(η3
0), the second-order approximate interface displacement is

summarized as

ηj = 1,sηj + 1,vηj + 21,ssηj + 21,vvηj + 21,svηj + 22,sηj + 22,vηj, (2.48)

with
1,sηj = 1,sη̂jη0 exp(ikx− iω1st)+ c.c., (2.49a)
1,vηj = 1,vη̂jη0 exp(ikx− iω1vt)+ c.c., (2.49b)

21,ssηj = 21,ssη̂jη
2
0 exp(2ikx− 2iω1st)+ c.c., (2.49c)

21,vvηj = 21,vvη̂jη
2
0 exp(2ikx− 2iω1vt)+ c.c., (2.49d)

21,svηj = 21,svη̂jη
2
0 exp(2ikx− iω1st− iω1vt)+ c.c., (2.49e)

22,sηj = 22,sη̂jη
2
0 exp(2ikx− iω2st)+ c.c., (2.49f )

22,vηj = 22,vη̂jη
2
0 exp(2ikx− iω2vt)+ c.c. (2.49g)

The shape of the sheet and the contributions of the various modes can be computed
according to (2.48) and (2.49).

2.3. Numerical simulation
The numerical simulation is performed using a boundary integral method; it gives the
solution of the full problem and verifies the validity of the weakly nonlinear analysis.

In the inviscid potential flow considered in this paper, the boundary integral method
represents the flow field by two vortex sheets located at the upper and lower interfaces.
(Note that the ‘sheets’ in the ‘vortex sheets’ are different from those in the ‘liquid
sheets’; the ‘vortex sheet’ here represents the velocity discontinuity between inviscid
gas and inviscid liquid on the gas-to-liquid interface.) The motions of these two vortex
sheets are induced by the vorticity on them. The vortex sheet strength changes with
time, owing to the baroclinic generation of vorticity.

Because this boundary integral method requires that vorticity is confined to the two
interfaces, it is only capable of potential flows, and this is the very reason why both
the liquid and the gas must be assumed inviscid. However, the sacrifice of viscosity
brings about the benefit of accuracy: since any vortex on the interface induces a
continuous and irrotational velocity field, the governing equations of internal and
external flow, (2.2) and (2.3), are always precisely satisfied, though the discretization
of the vortex sheet can cause numerical error in the boundary conditions. As a result,
this boundary integral method can give very precise numerical solutions of interface
evolution. It is noted that, apart from the inviscid potential flow in this paper, other
types of boundary integral methods are applied to other problems: for example, in the
context of high viscosity and small disturbance amplitude, respectively, the nonlinear
Navier–Stokes equation is linearized into the Stokes equation and the unsteady Stokes
equation, which make it possible to derive boundary integral solutions via the Green’s
function. These two types of boundary integral methods are very different from the
one in this paper; a comprehensive introduction to them can be found in the textbook
of Pozrikidis (1992).

The following is the formulation of the boundary integral simulation. We represent
the upper and lower interfacial curves by complex variables parametrically in ξ ,

z1(ξ , t)= x1(ξ , t)+ iy1(ξ , t), z2(ξ , t)= x2(ξ , t)+ iy2(ξ , t), (2.50a,b)
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where the subscript ‘1’ represents the upper interface and ‘2’ represents the lower
interface. Equations (2.50) are similar to the interface denoted by Baker & Beale
(2004), although they only considered the motion of one interface.

The arclengths along the interfaces are s1(ξ , t) and s2(ξ , t). Similar to the study
of Hou, Lowengrub & Shelley (1994), we use γ1(ξ , t) and γ2(ξ , t) to denote the
‘unnormalized vortex sheet strengths’, and thus γ1(ξ , t)/s1,ξ (ξ , t) and γ2(ξ , t)/s2,ξ (ξ , t)
are the corresponding ‘true vortex sheet strengths’, i.e. the tangential jumps in velocity
across the interfaces. As temporal instability is considered, both interfaces are 2π-
periodic in ξ , that is, xj(ξ + 2π)= 2π/k+ xj(ξ), yj(ξ + 2π)= yj(ξ) and γj(ξ + 2π)=
γj(ξ) (j= 1, 2).

The motion of the interfaces is governed by the Birkhoff–Rott equation, which
indicates that the velocity of the fluid is induced by all the vorticity on the interfaces:

∂ z̄1

∂t
(ξ , t) = k

4πi
P.V.

∫ 2π

0
γ1(ξ

′, t) cot
(

k
z1(ξ , t)− z1(ξ

′, t)
2

)
dξ ′

+ k
4πi

∫ 2π

0
γ2(ξ

′, t) cot
(

k
z1(ξ , t)− z2(ξ

′, t)
2

)
dξ ′, (2.51)

∂ z̄2

∂t
(ξ , t) = k

4πi

∫ 2π

0
γ1(ξ

′, t) cot
(

k
z2(ξ , t)− z1(ξ

′, t)
2

)
dξ ′

+ k
4πi

P.V.
∫ 2π

0
γ2(ξ

′, t) cot
(

k
z2(ξ , t)− z2(ξ

′, t)
2

)
dξ ′, (2.52)

where P.V. denotes the principal value integral. These equations are similar to
equations (2.3), (2.1) and (2.2b) of Baker & Beale (2004), except that there are
two integrals in each equation in the present study, since the motion of each interface
is induced not only by the vorticity on itself, but also by the vorticity on the
other. Also, the wavenumber k is included in these equations, because we do not
force the wavelength to be 2π, while Baker & Beale (2004) did. It should be
noted that the equations in Baker & Beale (2004) have additional terms involving a
weighting parameter α. Here we choose that parameter to be zero, i.e. the Lagrangian
formulation (Hou, Lowengrub & Shelley 1997), in order to simplify the equations.

The change of vortex sheet strengths is caused by the baroclinicity on the gas-to-
liquid interface, governed by the following equation:

∂γj

∂t
=−2Atj

[
Re
{

zj,ξ
∂2z̄j

∂t2

}
+ 1

8

(
γ 2

j

|zj,ξ |2
)
ξ

]
+ 2

We(ρ + 1)
κj,ξ , j= 1, 2, (2.53)

where κj is the curvature of the interfacial curve, and Atj is the Atwood number,

Atj = (−1)j
ρ − 1
ρ + 1

. (2.54)

Equation (2.53) is a modification of equation (2.5a) of Baker & Beale (2004)
to include the effect of surface tension, reflected in the term that contains We.
Equation (10) of Hou et al. (1997) contains a similar but slightly different term, as
the definition of the Weber number in that paper is different from that used here.
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The governing equations (2.51), (2.52) and (2.53) are integrated explicitly in time
by the fourth-order Runge–Kutta method. As pointed out by Hou et al. (1994),
boundary integral methods for surface tension flows suffer from a severe time-step
stability constraint when the grid spacing is small, and they developed a small-scale
decomposition technique to break this constraint. However, our numerical experiments
indicate that, for the problems here, where the gas-to-liquid density ratio is of
the order of 0.1, the two surfaces of the liquid sheets always contact before any
small-scale features develop on the fluid interfaces. Therefore, it is not necessary to
apply the technique of Hou et al. (1994).

For the spatial discretization, discrete markers on the interfaces are used: in (2.50),
ξ is given with discrete values of

ξ = 2πn/Nj, n= 0, 1, 2, . . . ,Nj − 1, j= 1, 2, (2.55)

where Nj is the number of markers within one wavelength on the upper interface (for
j= 1) and lower interface (for j= 2).

As shown in Beale, Hou & Lowengrub (1996), with regard to boundary integral
methods for interfacial flows, special care must be taken to avoid numerical instability,
and one way is to use the pseudospectral method along with a dealiasing filter.
Therefore, in our numerical method, the following measures are taken. First, the
principal value integrals in (2.51) and (2.52) are evaluated by the alternating
trapezoidal rule, while the integrals other than the principal value integral are
evaluated by the normal trapezoidal rule. This ensures that all integrals in these
two equations are evaluated in spectral accuracy. Then, all derivatives with respect to
ξ in (2.53) are evaluated by the pseudospectral derivative operator. Finally, we adopt
the 25th-order Fourier filter in Hou et al. (1994) to control aliasing errors. Details
of these procedures can be found in the study of Hou et al. (1994) and Beale et al.
(1996).

A problem associated with the Lagrangian formulation is the accumulation and
separation of interfacial markers during the course of simulation (Rangel & Sirignano
1991; Hou et al. 1997). We circumvent this problem by a redistribution technique
similar to the method of Rangel & Sirignano (1991). For each interface, when the
maximum separation of markers exceeds 120 % of the initial separation or when
the minimum separation drops below 80 % of the initial separation, that interface is
rediscretized to make the computational points equally spaced in arclength. In contrast
to the approach of Rangel & Sirignano (1991), which used linear interpolation to
rediscretize the interface, we use trigonometric interpolation, which gives higher
accuracy. During the rediscretization operation, the number of markers Nj may
increase, since both interfaces are usually elongated over time.

The initial conditions for the numerical simulation are obtained by evaluating the
analytical solution at t= 0 as follows:

xj(ξ , 0)= ξ/k, j= 1, 2, (2.56)

yj(ξ , 0)= (−1)j+1 + ηj|t=0,x=xj(ξ ,0)
, j= 1, 2, (2.57)

γj(ξ , 0) = (−1)jxj,ξ (ξ , 0)(φgj,x − φl,x)|t=0,x=xj(ξ ,0),y=yj(ξ ,0)

+ (−1)jyj,ξ (ξ , 0)(φgj,y − φl,y)|t=0,x=xj(ξ ,0),y=yj(ξ ,0)
, j= 1, 2. (2.58)

Here the initial interface displacement ηj|t=0 is determined by the initial condition
(2.1), and the velocity potentials φl and φgj are given according to the second-order
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approximate solution of weakly nonlinear analysis:

(φl, φgj)= (x, 0)+ (1φl,
1φgj)η0 + (2φl,

2φgj)η
2
0. (2.59)

Discrete values of ξ are given according to (2.55) with N1 =N2 =N, where N is the
initial resolution. Hence, (2.56) makes the initial x-coordinates of the markers evenly
distributed within one wavelength. Note that (2.58) is based on the fact that the vortex
sheet strength is equal to the jump of tangential velocity across the interface.

Although the vortex sheet strengths are derived according to the solution of weakly
nonlinear analysis via (2.58) and (2.59), the initial velocity field induced by the
vortex sheets is not necessarily completely identical to that of the weakly nonlinear
analysis. The main reason for this discrepancy is that the second-order weakly
nonlinear solution is only an approximate solution; the kinematic boundary condition
that the velocity normal to the interface should be continuous is not strictly satisfied.
Since this boundary condition is certainly precisely guaranteed by the vortex sheets,
disparities of the initial condition emerge. In order to mitigate this discrepancy, the
initial velocity field of weakly nonlinear analysis must be very precise. The measure
we undertake here is to choose small values of initial disturbance amplitude: η0 6 0.2
at |η̂1| = |η̂2| = 0.5. But sometimes it may not be enough: in order that the initial
second-order disturbances are very small, the chosen condition should also guarantee
the demand that the relative second-order amplitudes given in (2.44) should not be
too big; an example regarding this issue can be found in § 3.2.1.

To verify the accuracy of our numerical method, we have conducted a spatial
convergence test, with three different initial resolutions, N = 128, 256 and 512,
while the time steps are all 1t = 1 × 10−3. The condition of the test is We = 5,
ρ = 0.1, k= 0.25 and η0 = 0.2, and the initial disturbance is given according to (3.1)
and (3.2), which appear subsequently with initial phase difference θ = π/2; the
temporal evolution of the sheet is presented in figure 4(e–h). We measure the error
by comparing the two lower-resolution calculations to the N = 512 calculation:

εN(t) = max
[

max
06ξ<2π

|xN
1 (ξ , t)− x512

1 (ξ , t)|, max
06ξ<2π

|xN
2 (ξ , t)− x512

2 (ξ , t)|,

max
06ξ<2π

|yN
1 (ξ , t)− y512

1 (ξ , t)|, max
06ξ<2π

|yN
2 (ξ , t)− y512

2 (ξ , t)|
]
. (2.60)

The error is plotted in a negative logarithm scale in figure 3. For most of the time,
the error is less than 10−8 for both the N = 128 and N = 256 calculations, so the
accuracy of our numerical simulation is very high. The N= 128 calculation exhibits a
rapid loss of accuracy after approximately t = 45, while the N = 256 case exhibits
a similar loss after approximately t = 55. By examining the sequence of interface
positions shown in figure 4(e–h), it can be concluded that loss of accuracy occurs
when the sheet is close to breakup. This is consistent with the conclusion of Hou
et al. (1994), who found that the loss of accuracy occurs when the interfaces nearly
pinch. But even at t = 57.5, when the sheet tends to breakup, the error is still very
small, smaller than 10−1 and 10−3 for N = 128 and N = 256, respectively, and such
accuracies are enough to analyse the breakup property of the sheet.

For all the numerical simulations in § 3, initially we use a resolution of N = 128,
which gives a higher calculation speed; when the sheet is close to breakup, we switch
to N = 256 and N = 512 successively in order to obtain a higher accuracy.
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FIGURE 3. Error plot: We= 5, ρ = 0.1, k= 0.25, η0 = 0.2, 1t= 1× 10−3. The initial
disturbance is (3.2) with θ =π/2.
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FIGURE 4. Temporal evolution of liquid sheets at θ =π/2: (a–d) the results of the weakly
nonlinear analysis and (e–h) the results of numerical simulation; (a,e) t= 20, (b, f ) t= 45,
(c,g) t= 53 and (d,h) t= 57.5.

3. Results and discussion
3.1. Instability property and breakup mechanism

The temporal instability of sheets under a typical initial disturbance is studied: in (2.1),

η̂1 = 1
2 , η̂2 = 1

2 exp(iθ) (3.1a,b)

are set, and thus the initial disturbances for the upper and lower interfaces are

η1|t=0 = η0 cos(kx), η2|t=0 = η0 cos(kx+ θ). (3.2a,b)

Here θ represents the initial phase difference between the two interfaces. As θ changes
from 0 to π, the initial disturbance gradually varies from sinuous to varicose, and the
initial sinuous proportion rs alters from 1 to 0. The instability behaviour of sheets for
various values of θ is studied in this section, with an emphasis on the case of θ =π/2,
rs= 0.5, in which the linear sinuous and varicose modes have equal initial amplitudes.
The parameters in this section are given as follows: the condition is We= 5, ρ = 0.1,
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η0 = 0.2, k = 0.25; the complex temporal frequencies are ω1s = 0.178 + 0.0617i,
ω1v = 0.244+ 0.0267i, ω2s = 0.5, ω2v = 0.5; and the relative second-order disturbance
amplitudes (defined in (2.44)) are 2r,ssη̂ = −0.0103 − 0.0247i, 2r,vvη̂ = 1.19 + 1.02i,
2r,svη̂= 0.704+ 0.136i.

The comparison between the weakly nonlinear analysis and numerical simulation
is discussed first. Figure 4 gives an example of sheet’s surface evolution (θ = π/2),
which finally leads to breakup at t=57.5. Up till the time t=45, the results of the two
methods are nearly the same, and this indicates that the weakly nonlinear analysis can
precisely predict the shape of the sheet for most of the time of disturbance evolution.
This also holds for other initial phase differences. Small discrepancies between the
two methods emerge at t = 53, when distinct thinning on the sheet takes place just
before breakup. The shapes of the sheets when they nearly break up at various initial
phase differences are given in figure 5. There are some subtle differences between
the two methods: the wave amplitudes predicted by the weakly nonlinear analysis
are slightly larger for most conditions; the surface from the numerical simulation
is smoother in most regions; and the numerical simulation predicts a protuberance
near the point of breakup. The main reason for these differences is that, because the
nth-order disturbance has growth rates of n Im(ω1s) and n Im(ω1v), the remainder term
O(η3

0), which contains higher-order harmonics, becomes non-negligible at large values
of t. Particularly, the small-scale protuberance near the location of breakup is an
indicator of strong local nonlinearity, which is beyond the competence of the weakly
nonlinear analysis. Despite these differences, however, the weakly nonlinear analysis
still provides representative characteristics of the wave profile. The general shapes
of the two methods are very similar, and, more importantly, except for the case of
θ =π, the weakly nonlinear analysis gives very good prediction of the breakup time
and breakup location, which are most important when studying the breakup property.
Therefore, the qualitative agreement with numerical simulation justifies the weakly
nonlinear analysis in explaining the mechanism of instability.

Figure 6 shows the temporal evolution of the amplitudes of various unstable modes
in weakly nonlinear analysis, which explains the instability behaviour in figure 5. The
modes ‘22, s’ and ‘22, v’ are not plotted because their zero temporal growth rates
make their amplitudes negligible when sheets break up. The linear sinuous mode
‘1, s’ has a much larger temporal growth rate than the linear varicose mode ‘1, v’,
and has much larger initial amplitudes (amplitudes at t = 0) than the second-order
nonlinear modes, so its amplitude is predominant among all the other modes except
for the case of θ = π, rs = 0, where it does not exist. As a result, in figure 5(a–h),
the wave profiles are dominated by sinuous characteristics, though the decrease of
initial sinuous proportion rs from 1 to 0.293 leads to a significant reduction of
wave amplitude. This also explains the phenomenon that, in most experiments, the
sheets exhibit sinuous properties. The temporal growth rate of the linear varicose
mode ‘1, v’ is much smaller, so, although its amplitude is prominent among various
modes initially at t= 0 (except for θ = 0, rs = 1), when the sheet breaks up at large
values of t, its amplitude does not predominate as the linear sinuous mode does.
However, the linear varicose mode’s role in the breakup is vital. Among the modes
‘1, v’, ‘21, ss’ and ‘21, vv’, which are varicose in nature and thus can contribute
to breakup, the amplitude of the linear varicose mode ‘1, v’ is significant except at
θ = 0, rs = 1. Moreover, its ‘k’ wavenumber (in contrast to the ‘2k’ wavenumber of
harmonics ‘21, ss’ and ‘21, vv’) makes the ligaments in figure 5(c–j) interspaced by
one wavelength, while in figure 5(a,b), where the breakup is caused by the harmonic
‘21, ss’, the ligament is interspaced by one half-wavelength. The harmonics ‘21, ss’,
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FIGURE 5. Shapes of sheets when they nearly break up at various initial phase differences:
(a,b) θ = 0, rs = 1, (c,d) θ = π/4, rs = 0.707, (e, f ) θ = π/2, rs = 0.5, (g,h) θ = 3π/4,
rs= 0.293, (i, j) θ =π, rs= 0; (a) t= 61, (b) t= 65, (c,d) t= 59, (e, f ) t= 57.5, (g,h) t= 57,
(i) t= 55, (j) t= 63. (a,c,e,g,i) are the results of weakly nonlinear analysis, and (b,d,f,h,j)
are the results of numerical simulation.

‘21, vv’ and ‘21, sv’ have small initial amplitudes, but, because they also have large
temporal growth rates, their amplitudes become pronounced near breakup, indicating
that the nonlinearity becomes important. In particular, for figure 6(b–d), where both
linear modes exist, it is the mode ‘21, sv’ that finally has the largest amplitude among
the nonlinear harmonics, and this indicates that the nonlinear coupling between the
linear sinuous and varicose modes is significant. The first harmonics of the linear
sinuous mode and linear varicose mode separately, ‘21, ss’ and ‘21, vv’, are varicose,
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FIGURE 6. Temporal evolution of amplitudes of various modes: (a) θ = 0, rs = 1;
(b) θ =π/4, rs= 0.707; (c) θ =π/2, rs= 0.5; (d) θ = 3π/4, rs= 0.293; (e) θ =π, rs= 0.

and thus they contribute to the breakup process. On the contrary, the first harmonic
generated by the coupling between the linear sinuous and varicose modes, ‘21, sv’, is
sinuous, and it modulates the wave profile. The detailed functions of these nonlinear
harmonics will be discussed subsequently.

In order to further probe the mechanism of instability and breakup, a Fourier
analysis is performed. For the periodic wave with wavelength 2π/k, the interface
displacement can be expressed by a Fourier series

ηj =
+∞∑
n=0

nkηj =
+∞∑
n=0

nkη̂j exp(inkx)+ c.c., (3.3)
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with

nkη̂j =


k

4π

∫ 2π/k

0
ηj dx, n= 0,

k
2π

∫ 2π/k

0
ηj exp(−inkx) dx, n 6= 0,

(3.4)

where nkηj is the displacement component with wavenumber nk and nkη̂j is its cor-
responding complex amplitude. In the context of liquid sheets, nkηj is further analysed
into a sinuous displacement nk,sηj and a varicose displacement nk,vηj:

nkηj = nk,sηj + nk,vηj, (3.5)

with
nk,sηj = 1

2(
nkη1 + nkη2),

nk,vηj = (−1)j+1 1
2(

nkη1 − nkη2). (3.6)

The components of the weakly nonlinear analysis have more explicit expressions.
According to (2.48) and (2.49), one arrives at

0k,sηj = 0, 0k,vηj = 0, 1k,sηj = 1,sηj,
1k,vηj = 1,vηj,

2k,sηj = 21,svηj + 22,sηj,
2k,vηj = 21,ssηj + 21,vvηj + 22,vηj.

}
(3.7)

According to (3.7), there are no zero wavenumber components in the second-order
weakly nonlinear analysis. The numerical simulation agrees well with the weakly
nonlinear analysis on this issue. Our results of numerical simulation indicate that the
amplitudes of the ‘0k, s’ and ‘0k, v’ components are of the order of 10−6, smaller
than the possible numerical error limit. Whether the precise solution should be
exactly zero may require a further analysis, but that is beyond the scope of this paper.
Because the remainder term O(η3

0) also contains ‘1k’ and ‘2k’ components (albeit
small), the displacements of ‘1k’ and ‘2k’ obtained from the two methods are not
exactly the same, but their qualitative agreement presented subsequently is adequate
and satisfactory to study the mechanism of instability.

Figure 7 shows the displacements of ‘1k’ and ‘2k’ components, which explain the
instability mechanism more clearly. Only the case of θ = π/2, rs = 0.5 is discussed,
because in this condition the linear sinuous and varicose modes have equal initial
amplitudes, which is more likely to happen in practical situations and serves as a
good foundation for the comparison between the effects of various modes. The sinuous
components have major influences on the wave profile. The ‘1k, s’ component, which
represents the linear sinuous mode, has a much larger wave amplitude than all the
other components, and this determines the general sinuous shape of the sheet. The
‘2k, s’ component modulates the wave profile: its peak near x= 35 shifts the peak of
‘1k, s’ leftwards; its upgrade between x = 29 and x = 35 strengthens the upgrade of
‘1k, s’ while its upgrade between x= 41 and x= 47 weakens the downgrade of ‘1k, s’,
and this is the reason why in figure 7(a,b), the slope on the left side of the peak is
steeper than the slope on the right. Since the ‘22, s’ mode is negligible near breakup,
according to (3.7), the ‘2k, s’ component is mainly determined by mode ‘21, sv’, the
mode generated by linear sinuous and varicose modes together, so this demonstrates
the significance of the nonlinear coupling between the linear sinuous and varicose
modes.

The varicose components contribute to the breakup of the sheet. Both ‘1k, v’
and ‘2k, v’ components contract near x= 50, making the two interfaces contact. The
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FIGURE 7. Interface displacements of various Fourier components for θ =π/2, rs= 0.5 at
t=57.5: (a,b) shape of sheet, (c,d) ‘1k, s’ component, (e, f ) ‘2k, s’ component, (g,h) ‘1k, v’
component, (i, j) ‘2k, v’ component; (a,c,e,g,i) weakly nonlinear analysis, and (b,d, f,h, j)
numerical simulation.

function of the ‘1k, v’ component, which represents the linear varicose mode ‘1, v’, is
more important not only because its amplitude is larger, but also because it primarily
determines the location of breakup. Its period is twice as long as that of ‘2k, v’, so
the thinning caused by ‘2k, v’ near x= 37 is counteracted by the dilation of ‘1k, v’,
and only near the location where ‘1k, v’ contracts does the sheet break up, making
the ligaments interspaced by one wavelength. The ‘2k, v’ component plays the role of
accelerating the thinning and disintegration. According to (3.7), noting that the mode
‘22, v’ is also negligible, the ‘2k, v’ component is determined by modes ‘21, ss’ and
‘21, vv’, the first harmonics of the linear sinuous and varicose modes. According to
figure 6(c), ‘21, ss’ and ‘21, vv’ have parallel amplitudes at t = 57.5, so they have
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FIGURE 8. (Colour online) Shape of sheet for varicose mode at t = 40: (a) weakly
nonlinear analysis; (b) numerical simulation.

similar contributions to breakup. It should be pointed out that the first harmonic of
the linear sinuous mode ‘21, ss’ does not have a predominant impact on the breakup
process, as most previous researchers have conjectured, because, although it has the
largest temporal growth rate, its initial amplitude represented by |2r,ssη̂| is too small,
making its effect less important than the influence caused by varicose modes ‘1, v’
and ‘21, vv’.

Finally, since the nonlinear instability of the pure varicose mode is a very
fundamental problem and its property differs significantly from other situations,
the instability mechanism for θ = π is briefly discussed. Figure 5(i, j) indicates that
the discrepancies between the weakly nonlinear analysis and numerical simulation
become significant when the sheet breaks up. This may be because, as figure 6(e)
shows, the second-order nonlinear amplitude becomes proportional to that of the
linear first order at the final stage; this indicates strong nonlinearity and contradicts
the basis of the weakly nonlinear analysis. Therefore, we only analyse the sheet at
t= 40 when the weakly nonlinear analysis still agrees well with numerical simulation,
which is shown in figure 8. Since in this condition rs = 0, no sinuous mode exists
and the sheet has a symmetric profile. As figure 8(a) shows, the dilatational region
of the first harmonic of the linear varicose mode ‘21, vv’ overlaps the contracting
region of the linear varicose mode ‘1, v’, and thus their interference produces a long
thread. The weakly nonlinear analysis can explain only the formation of this thread,
while the numerical simulation in figure 5(i, j) shows that it is maintained till the
sheet breaks up.

3.2. Effect of flow parameters
The effects of wavenumber k, initial disturbance amplitude η0, Weber number We
and gas-to-liquid density ratio ρ on the nonlinear instability of sheets are studied in
this section. We only consider the case of initial phase difference θ =π/2, in which
rs = 0.5, so that the linear sinuous and varicose modes have identical disturbance
amplitudes initially.

3.2.1. Effect of wavenumber
The complex temporal frequency as a function of wavenumber k, i.e. the dispersion

relation, is given in figure 9. For most of the wavenumber range, the linear sinuous
mode has a much larger temporal growth rate Im(ω), and the phase velocity
represented by Re(ω)/k is different for the linear sinuous and varicose modes.
Figure 9 also reveals that the linear varicose mode has greater temporal growth
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FIGURE 9. Dispersion relation: We= 5, ρ = 0.1.
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FIGURE 10. Relative second-order disturbance amplitudes at different wavenumbers:
We= 5, ρ = 0.1.

rates at very large wavenumbers, and that it has a larger cutoff wavenumber (the
wavenumber corresponding to zero temporal growth rate) for this mode.

The relative second-order disturbance amplitudes, which indicate the second-order
initial amplitudes, are given in figure 10. For most wavenumbers, |2r,vvη̂| is the largest
and |2r,ssη̂| is the smallest, so the first harmonic of the linear varicose mode ‘21, vv’
has the largest initial amplitude and the first harmonic of the linear sinuous mode
‘21, ss’ has the smallest initial amplitude. Figure 10 also shows that, while |2r,ssη̂|
increases monotonically with increase of wavenumber k, indicating that short waves
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FIGURE 11. (Colour online) Shapes of sheets at different wavenumbers: (a,b) the results
of numerical simulation and (c,d) the results of weakly nonlinear analysis; We= 5, ρ= 0.1,
η0 = 0.2; (a,c) k= 0.25, t= 57.5 and (b,d) k= 0.35, t= 60.

have stronger nonlinear effects, both |2r,vvη̂| and |2r,svη̂| have a peak at a certain
wavenumber.

Our examination shows that, unfortunately, in the wavenumber range 0< k < 0.39
where both modes grow (required by the solvability condition discussed in § 2.2.3),
only at approximately k > 0.24 does the weakly nonlinear analysis agree well with
numerical simulation when the sheet breaks up. For 0 < k < 0.1, the small values
of Im(ω1v) and |2r,ssη̂| make the breakup time very long, resulting in extremely
large wave amplitudes (dominated by the linear sinuous mode ‘1, s’). This makes
the nonlinearity significantly strong and the weakly nonlinear analysis is no longer
appropriate to study the breakup. For 0.1 < k < 0.24, the large values of |2r,svη̂|
and |2r,vvη̂| bring about large initial second-order velocities of the weakly nonlinear
analysis, making it less precise at t = 0. Consequently, the initial vortex sheet
strengths of the numerical simulation given by (2.58) and (2.59) do not induce an
initial velocity field that agrees well with that of the weakly nonlinear analysis, and
this certainly brings about significant disparities between the analytical and numerical
results in the subsequent disturbance evolution. Only at k> 0.24 are all the first-order
and second-order amplitudes not very large when the sheet breaks up, and the weakly
nonlinear analysis agrees qualitatively well with numerical simulation. The present
study only focuses on this range.

The shapes of sheets at two wavenumbers k = 0.25 and k = 0.35 are given in
figure 11. The most prominent characteristic is that an increase of wavenumber results
in a reduction of wave amplitude. The reason is explained in the weakly nonlinear
analysis: the amplitude of the linear sinuous mode ‘1, s’ becomes significantly smaller
at k = 0.35 (see table 1). This can be easily understood from the dispersion relation
shown in figure 9: the increase of k from 0.25 to 0.35 leads to a significant reduction
of sinuous growth rate Im(ω1s) but a slight increase of varicose growth rate Im(ω1v).
For the amplitudes of various modes given in table 1, while the linear varicose mode
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k 1, s 1, v 21, ss 21, vv 21, sv 22, s 22, v

0.25 4.912 0.655 0.323 0.337 1.154 0.007 0.016
0.35 2.054 1.003 0.321 0.310 0.565 0.005 0.007

TABLE 1. Disturbance amplitudes of various modes at different wavenumbers k when
sheets break up (predicted by weakly nonlinear analysis); We= 5, ρ = 0.1, η0 = 0.2.

‘1, v’ is enhanced significantly due to the increase of Im(ω1v), modes ‘21, ss’ and
‘21, vv’ do not change very much, as the rise of |2r,ssη̂| and the reduction of |2r,vvη̂|
with the increase of k (see figure 10) offset the corresponding change in temporal
growth rates. Therefore, the breakup mechanism does not vary a lot with the increase
of wavenumber.

The cutoff wavenumbers are generally in proportion to ρWe. In the following
analysis, we only consider the case of k = 0.5ρWe. At this wavenumber, the
instability behaviour is conspicuous and the weakly nonlinear analysis agrees well
with numerical simulation when the sheet breaks up.

3.2.2. Effect of initial disturbance amplitude
The shapes of the sheets at two different initial disturbance amplitudes, η0= 0.2 and

η0= 0.01, are given in figure 12. It is easy to understand that the sheet with a smaller
initial amplitude requires a longer time for the disturbance to grow to one that is large
enough to cause breakup, so the breakup time for η0=0.01 is significantly longer than
that for η0= 0.2. Apart from this obvious difference, the instability behaviour of η0=
0.01 exhibits many other different properties from that of η0= 0.2 which was studied
in detail in § 3.1: it has a larger wave amplitude, its wave’s upgrade and downgrade
have nearly the same slopes, and it has two locations of attenuation in one wavelength.

The reason for these differences can be explained by the weakly nonlinear analysis.
As figure 13 shows, with η0 reducing from 0.2 to 0.01, at the later stage of disturbance
evolution, while the amplitudes of modes ‘1, v’, ‘21, sv’ and ‘21, vv’ decrease
significantly, the amplitude of ‘21, ss’ increases extensively. The large amplitude of
mode ‘1, s’ is not covered by figure 13, but at the figure’s upper limit, ηa = 2, the
slope of η0= 0.01 is much steeper, indicating that it grows much faster, and so, when
the sheet breaks up, the amplitude of mode ‘1, s’ is 8.019 for η0= 0.01, much larger
than 4.192 for η0= 0.2. The increase of the ‘1, s’ mode’s amplitude results in a larger
wave amplitude; the decrease of the ‘21, sv’ mode’s amplitude reduces its function in
modulating the waves, making the slopes of upgrade and downgrade nearly identical.
As for the attenuation, the domination of the ‘21, ss’ mode makes the thinning
interspaced by one half-wavelength (see figure 12d), the one-wavelength mode ‘1, v’
significantly reducing its amplitude and weakening its effect of eliminating one of
the attenuations.

We give a further explanation of the dominance of modes ‘21, ss’ and ‘1, s’ at small
initial amplitudes. The main reason for this phenomenon is that different modes grow
at different speeds. Figure 14 gives the amplification factors of modes ‘21, ss’ and
‘21, sv’, denoted as 21,ssf and 21,svf :

21,ssf = exp[2 Im(ω1s)t], 21,svf = exp[Im(ω1s)t+ Im(ω1v)t]. (3.8a,b)

At t= 57.5, the breakup time for η0= 0.2, 21,ssf and 21,svf have parallel values, but at
a much longer breakup time, t = 114, rendered by a much smaller initial amplitude
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FIGURE 12. Shapes of sheets at different initial disturbance amplitudes: (a,b) the results
of numerical simulation and (c,d) the results of weakly nonlinear analysis; We= 5, ρ= 0.1,
k= 0.25; (a,c) η0 = 0.2, t= 57.5, (b) η0 = 0.01, t= 119, and (d) η0 = 0.01, t= 114.
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FIGURE 13. Effect of initial amplitude on the temporal evolution of the amplitudes of
various modes: We= 5, ρ = 0.1, k= 0.25; (a) η0 = 0.2 and (b) η0 = 0.01.

η0 = 0.01, 21,ssf becomes far larger than 21,svf , the reason being that its dominance
in exponential growth rate becomes extensive at longer times. This explains why the
reduction of η0 leads to the domination of mode ‘21, ss’ over modes ‘21, sv’ and
‘21, vv’. For the first-order modes ‘1, s’ and ‘1, v’, this analysis is not applicable,
as their dependences on η0 are different: the first-order modes are proportional to
η0, while the second-order modes are proportional to η2

0. The amplitudes of modes
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FIGURE 14. Amplification factor of modes ‘21, ss’ and ‘21, sv’: We= 5, ρ= 0.1, k= 0.25.

‘1, s’ and ‘21, ss’, denoted as 1,sA and 21,ssA, have a simple relation: according to their
expressions

1,sA= 2η0|1,sη̂j| exp[Im(ω1s)t], 21,ssA= 2η2
0|21,ssη̂j| exp[2 Im(ω1s)t], (3.9a,b)

using the definition of 2r,ssη̂ given in (2.44), we have

1,sA=
√

2(21,ssA)
|2r,ssη̂| . (3.10)

Therefore, the increase of the amplitude of mode ‘21, ss’ results in a corresponding
amplification of mode ‘1, s’, explaining the large amplitude of the linear sinuous
mode at a small initial disturbance amplitude. For the linear varicose mode ‘1, v’,
such a simple relation does not exist. We can only explain a little vaguely that,
because its growth rate Im(ω1v) is small, the increment of its amplification factor
1,vf = exp[Im(ω1v)t] as a result of a longer breakup time is not enough to compensate
the effect of the reduction in η0, leading to the decrease of its amplitude.

3.2.3. Effect of Weber number and gas-to-liquid density ratio
The effects of Weber number and gas-to-liquid density ratio have been extensively

studied by previous researchers. It is now well known that an increase in Weber
number or gas-to-liquid density ratio significantly increases temporal growth rates,
thereby prominently enhancing instability, and that the instability is mainly caused
by the interaction between liquid and gas. In the present study, while the typical
discussion, i.e. the effect of We and ρ on the temporal growth rates, second-order
amplitudes and breakup time, is briefly noted, we also reveal some interesting
properties of unstable waves, and give explicit explanations for them through the
weakly nonlinear analysis.

The effects of Weber number and gas-to-liquid density ratio on the major
parameters, i.e. temporal growth rates and relative second-order disturbance amplitudes,
are given in tables 2 and 3. An increase in Weber number and gas-to-liquid density
ratio results in an extensive increase in the temporal growth rates, and this leads to a
much shorter breakup time (see figures 15 and 16). For the second-order amplitudes,
the amplitude of mode ‘21, ss’ increases significantly, while the other two modes only
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FIGURE 15. Shapes of sheets at different Weber numbers: (a,b) the results of numerical
simulation and (c,d) the results of weakly nonlinear analysis; ρ=0.1, k=0.5ρWe, η0=0.2;
(a,c) We= 3, t= 124.8, (b) We= 6, t= 46, and (d) We= 6, t= 45.

We Im(ω1s) Im(ω1v) |2r,ssη̂| |2r,vvη̂| |2r,svη̂|
3 0.0298 0.0127 0.0122 1.550 0.594
6 0.0750 0.0347 0.0343 1.632 0.638

TABLE 2. Effect of Weber number on temporal growth rates and relative second-order
disturbance amplitudes; ρ = 0.1, k= 0.5ρWe.

ρ Im(ω1s) Im(ω1v) |2r,ssη̂| |2r,vvη̂| |2r,svη̂|
0.1 0.0298 0.0127 0.0122 1.550 0.594
0.13 0.0386 0.0210 0.0217 1.500 0.639

TABLE 3. Effect of gas-to-liquid density ratio on temporal growth rates and relative
second-order disturbance amplitudes; We= 3, k= 0.5ρWe.

change slightly. But this does not bring about the predominance of ‘21, ss’ when the
sheet breaks up, because the effect of this increase in second-order initial amplitude
is somewhat marginal compared to the prominent effect of growth rates. A further
examination shows that such a change in Weber number and gas-to-liquid density
ratio does not result in a qualitative change in the breakup mechanism.

The numerical simulation shows that, as the Weber number and gas-to-liquid
density ratio increase, the protuberance near the point of breakup becomes larger. This
indicates that a more extensive interaction between gas and liquid can significantly
enhance the local nonlinearity and distort the sheet more severely. The protuberances
on the sheets have already been observed in the experiments of Asare et al. (1981)
and Tammisola et al. (2011); their experiments also showed that these protuberances
are very likely to break up into smaller drops. But the mechanism of their formation
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FIGURE 16. Shapes of sheets at different gas-to-liquid density ratios: (a,b) the results
of numerical simulation and (c,d) the results of weakly nonlinear analysis; We = 3, k =
0.5ρWe, η0= 0.2; (a,c) ρ= 0.1, t= 124.8, (b) ρ= 0.13, t= 87, and (d) ρ= 0.13, t= 83.5.

and evolution is not very clear so far, and we look forward to future studies on this
issue.

Next, we use the weakly nonlinear analysis to explain two interesting phenomena
in figures 15 and 16. The first phenomenon is that, in figure 15, at We= 3, the sheet
breaks up on its wave crest, but at We= 6, the sheet breaks up near its wave trough.
The main reason is the shift of the linear varicose mode ‘1, v’, as the discussion of
figure 7 has indicated that the sheet breaks up near the contraction of mode ‘1, v’ (see
figure 15c,d). At We= 3, the contraction of mode ‘1, v’ is near the wave crest, but
at We= 6, its contraction moves rightwards, resulting in the corresponding change in
breakup location.

The second phenomenon is that, in figure 16, using y= 0 as the origin, at ρ = 0.1,
the depth of the wave trough is larger than the height of the wave crest, but at
ρ = 0.13, the situation is the opposite, the height of the wave crest being larger than
the depth of the wave trough. This is mainly caused by the first harmonic generated
by the coupling between the linear sinuous mode and the varicose mode, i.e. mode
‘21, sv’. At ρ = 0.1, the troughs of mode ‘21, sv’ overlap both the peak and trough
of the basic sinuous wave, shifting both of them downwards; while at ρ = 0.13, it is
the crests of mode ‘21, sv’ that are in the positions of the peak and trough of the
basic sinuous wave, and thus shift both of them upwards. This phenomenon has again
highlighted the importance of the nonlinear coupling between the linear sinuous and
varicose modes.

3.3. Remarks and future work
The parameter range in the present study is small Weber numbers (We6 6) and large
gas-to-liquid density ratios (ρ∼ 0.1). The present study neglects gravity; given a fixed
small Weber number, this is applicable for very thin liquid sheets, so that the Froude
number Fr = U2/ga = Weσ/ρlga2, which describes the ratio of inertia to gravity, is
very large. For example, using the properties of water, that is, ρl= 1000 kg m−3 and
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σ = 0.073 N m−1, if We = 5, a = 4 µm, then U = 9.55 m s−1 and Fr = 2.33 × 106.
Such thin films have appeared in the study of Squire (1953): one of his experiments
was in the condition a= 4 µm, U = 20 m s−1, and thus Fr= 1.02× 107; the Froude
number in his experiment was even larger. High gas densities exist in situations such
as the combustion chamber of a rocket engine (the gas pressure can be as high as
10 MPa).

A more common situation is that the sheet is not very thin: the thickness is of the
order of 1 mm, and the gas has the density of air. In this condition, the Weber number
is relatively large and the gas-to-liquid density ratio is very small. For example, in
the experiment of Tammisola et al. (2011), which also used water, the conditions
were a= 0.5 mm, U= 7.15 m s−1, ρg = 1.3 kg m−3, and thus We= 350, ρ = 0.0013,
Fr= 10433; note that gravity also had little effect in their study. Similar conditions are
broadly used in industrial applications, such as paper-making, atomization and sprays,
and thus they have been imposed with more focus by previous studies. Unfortunately,
the present study cannot address such situations. The weakly nonlinear analysis can
easily give solution for these conditions, but the numerical simulation encounters some
difficulties. Our numerical experiments indicate that, in these conditions, small-scale
features develop on the fluid interfaces before the sheet’s two interfaces contact,
similar to the ‘Kelvin–Helmholtz spirals’ obtained in Hou et al. (1997). Our current
numerical code is not capable of handling these small-scale features, and in order to
overcome this difficulty, local grid refinement is necessary. This issue is left for our
future research.

4. Conclusions
The nonlinear temporal instability of an inviscid planar liquid sheet moving in an

inviscid gas is studied, with an emphasis on the case in which both the linear sinuous
mode and the linear varicose mode exist simultaneously. Two different approaches,
the weakly nonlinear analysis using a second-order perturbation expansion and
numerical simulation using a boundary integral method, have been employed. While
the numerical solution is relatively precise, the approximate analytical solution gives
important explanations to it. There are good agreements between them. For most of
the time of disturbance evolution, the shapes predicted by the two methods are nearly
the same. When the sheet nearly breaks up, some disparities between them emerge,
but the weakly nonlinear analysis’s predictions of the sheet’s general shape, breakup
time and breakup location are still very close to those of the numerical simulation
in most conditions. The Fourier analysis also shows that the two methods have good
agreements in the fundamental wave and its first harmonic when the sheet breaks up.
These comparisons justify the validity of the weakly nonlinear analysis in studying
the mechanism of instability and breakup.

The weakly nonlinear analysis shows that both the first harmonic of the linear
sinuous mode and the first harmonic of the linear varicose mode are varicose; they
contribute to the sheet’s breakup. But the first harmonic generated by the coupling
between the linear sinuous and varicose modes is sinuous; it plays an important role
in modulating the shapes of the waves. In some conditions, it makes the upgrade
and downgrade of the wave have different slopes, while in some other conditions,
it brings about a difference between the height of the wave crest and the depth of
the wave trough. The numerical simulation shows that a protuberance appears near
the location of breakup; its size increases with the increase of Weber number and
gas-to-liquid density ratio. Such a strong local nonlinear effect cannot be explained
by the present weakly nonlinear analysis.
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We examined the temporal evolution of disturbances leading to the final breakup
with various initial phase differences between the upper and lower interfaces,
representing various proportions of initial sinuous and varicose amplitudes. The
shapes of sheets are dominated by the linear sinuous mode’s characteristics when
their amplitudes grow large, except for the case of initial varicose disturbance, in
which the linear sinuous mode does not exist and the sheet maintains a symmetric
profile. When the initial phase difference is π/2 and the linear sinuous and varicose
modes have identical initial amplitudes, the breakup is mainly caused by three modes
according to the second-order weakly nonlinear analysis: the linear varicose mode,
the first harmonic of the linear sinuous mode and the first harmonic of the linear
varicose mode. The role of the linear varicose mode is especially important because,
in most conditions, its amplitude is relatively large and it primarily determines the
location of breakup.

The effects of flow parameters, including the wavenumber, initial disturbance
amplitude, Weber number and gas-to-liquid density ratio, have been investigated. Our
examination shows that, when sheets break up, the weakly nonlinear analysis agrees
well with numerical simulation only at relatively large wavenumbers, and in this
range increasing the wavenumber results in a reduction of wave amplitude, as this will
reduce the sinuous growth rate. Reducing the initial disturbance amplitude significantly
increases the breakup time, and consequently makes the first harmonic of the linear
sinuous mode the dominant mode in breakup, because the effect of its fast growth
rate predominates at longer times. Increasing the Weber number or gas-to-liquid
density ratio significantly increases the linear sinuous and varicose growth rates, and
therefore extensively reduces the breakup time, significantly enhancing instability.
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Appendix A. Solution for second-order velocity potential

The solution is as follows:

21,ssφ̂l = i(ω1s − k)[k tanh k1,sη̂2
1 − 21,ssη̂1]

k sinh 2k
cosh 2ky, (A 1)

21,ssφ̂gj = iω1s

( 21,ssη̂1

k
+ 1,sη̂2

1

)
exp[2k+ (−1)j2ky], (A 2)

21,ssφ̂l = 0, (A 3)

21,ssφ̂gj = i[−ρ(|ω1s|2 −ω2
1s)+ 1

2 |ω1s − k|2(1+ tanh2k)− (ω1s − k)2]|1,sη̂1|2
ρ(ω1s −ω1s)

, (A 4)
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21,vvφ̂l = i(ω1v − k)[k coth k1,vη̂2
1 − 21,vvη̂1]

k sinh 2k
cosh 2ky, (A 5)

21,vvφ̂gj = iω1v

( 21,vvη̂1

k
+ 1,vη̂2

1

)
exp[2k+ (−1)j2ky], (A 6)

21,vvφ̂l = 0, (A 7)

21,vvφ̂gj = i{−ρ[|ω1v|2 −ω2
1v] + 1

2 |ω1v − k|2(1+ coth2k)− (ω1v − k)2}|1,vη̂1|2
ρ(ω1v −ω1v)

, (A 8)

21,svφ̂l = {2ik[(ω1s − k) tanh k+ (ω1v − k) coth k]1,sη̂1
1,vη̂1

− i(ω1s +ω1v − 2k)21,svη̂1} sinh 2ky
2k cosh 2k

, (A 9)

21,svφ̂gj = (−1)j+1i(ω1s +ω1v)

( 21,svη̂1

2k
+ 1,sη̂1

1,vη̂1

)
exp{2k[1+ (−1)jy]}, (A 10)

21,svφ̂l = 0, (A 11)

21,svφ̂gj =−(−1)j+1 (1− ρ)
ρ

i(ω1s −ω1v)
1,sη̂1

1,vη̂1, (A 12)

22,sφ̂l = i
(

1− ω2s

2k

) sinh(2ky)
cosh(2k)

22,sη̂1, (A 13)

22,sφ̂gj = (−1)j+1 iω2s

2k
exp[2k+ (−1)j2ky]22,sη̂1, (A 14)

22,sφ̂l = 0, (A 15)

22,sφ̂gj = 0, (A 16)

22,vφ̂l = i
(

1− ω2v

2k

) cosh(2ky)
sinh(2k)

22,vη̂1, (A 17)

22,vφ̂gj = iω2v

2k
exp[2k+ (−1)j2ky]22,vη̂1, (A 18)

22,vφ̂l = 0, (A 19)

22,vφ̂gj = 0. (A 20)
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