
 Robotica (1997) volume 15 , pp 111 – 115 . ÷ 1997 Cambridge University Press

 ORCCAD : software engineering for real-time robotics
 A technical insight
 D . Simon , † B . Espiau , ‡ K . Kapellos † and R . Pissard-Gibollet ‡

 SUMMARY
 The ORCCAD programming environment for robotic
 systems gathers control laws in continuous time at the
 low levels and discrete time logical aspects at higher
 levels . Based upon a formal definition of robotic actions ,
 complex applications can be designed , verified and
 generated incrementally . The approach and tools
 prototypes have been validated through several
 applications .

 KEYWORDS : ORCCAD ; Robotic systems ; Control laws .

 1 . GOALS AND CONCEPTS
 Actual robotic systems range from cooperative man-
 ipulators to autonomous vehicles . They have in common
 a continuously increasing complexity which makes more
 and more dif ficult the needed integration of issues raised
 by automatic control , sensor data processing and
 computer science areas . The goal of a control
 architecture is then to organize coherently all the
 involved subsystems so that the global system behaves in
 an ef ficient and reliable way to match the end-user’s
 requirements .

 Robotic systems belongs to the class of hybrid reactive
 and real-time systems in which dif ferent methods and
 tools of programming and control are to be used . From
 the users and programmers’ point of view , the
 specification of a robotic application must be modular ,
 structured and accessible to users with dif ferent
 expertise , from the control systems engineer to the
 end - user . The ORCCAD 1 environment is aimed at
 providing such users with a set of coherent structures and
 tools to develop , validate and encode robotic applica-
 tions in this framework .

 The formal definition of a robotic action is a key point
 in the ORCCAD approach . The Robot - Task (RT)
 models basic robotic actions where control aspects 2 are
 predominants , like the hybrid position / force control of a
 robot arm or the visual servoing of a mobile robot . The
 RT characterizes in a structured way closed loop control
 laws in continuous time , along with their implementation
 temporal features , and the handling of associated events .
 These events are pre-conditions , post-conditions and
 exceptions which are themselves classified in type 1
 (weak) , type 2 (strong) and type 3 (fatal) exceptions .

 † INRIA Sophia-Antipolis , B . P . 93 , 06902 SOPHIA-
 AMTIPOLIS Cedex (France) .
 ‡ INRIA Rhone-Alpes , 655 avenue de l’Europe , 38330
 MONTBONNOT ST MARTIN (FRANCE) .

 This set of signals defines an event-based abstract view of
 the RT .

 The characterization of the interface of a RT with its
 environment through typed input / output events allows to
 compose them easily in order to construct more complex
 actions , the so called Robot - procedures (RP) , while
 hiding most implementation details . The aim in designing
 this entity is to be able to define a representation of a
 robotic action that could fit any abstraction level needed
 by the mission specification system . In its simplest
 expression , a RP coincides with a RT , while the most
 complex one might represent an overall mission . Briefly
 speaking , it specifies in a structured way a logical and
 temporal arrangement of RTs in order to achieve an
 objective in a context-dependent and reliable way ,
 providing predefined corrective actions in the case of
 unsuccessful execution of RTs .

 These formally defined structures 3 associated with
 synchronous composition , thanks to the use of the
 ESTEREL language , 4 allows to systematize and
 therefore to automatize formal verification about the
 expected controller behaviour . In complement of two
 other features of ORCCAD , i . e . the object-oriented
 model and the possibility of automatic code generation ,
 this capability of verification is a key point for meeting
 the requirements of safety in the programming of critical
 applications .

 2 . ROBOT-PROCEDURES THROUGH AN
 EXAMPLE
 We focus in this section on the highest level of
 programming in ORCCAD , the Robot-procedure , in
 order to emphasize original aspects of design and
 verification issues .

 While the events of type 1 are locally processed in the
 RT , e . g . by parameters modification , 5 exceptions of type
 2 are handled by the RP , leading either to synchronize
 with , or to switch to a dif ferent RT in nominal situations
 or to call the planning level , if any , in case of failure .
 Type 3 exceptions lead to the abortion of the mission
 through a safe emergency scenario which may be
 context-dependent . For the mission designer , this set of
 signals with the associated behaviours represents abstract
 views of RTs and RPs hiding all specification and
 implementation details . This allows the incremental
 design and validation of procedures of variable
 complexity .

 For example , let us consider an inspection procedure
 to be achieved by an underwater manipulation system
 (Figure 1) , described in details in another paper : 6 the
 goal of the procedure is to control the motions of an arm

https://doi.org/10.1017/S0263574797000131 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000131

 112 ORCCAD

 Fig . 1 . Outline of an inspection procedure .

 fitted on an underwater vehicle . The two subsystems are
 controlled separately but must be coordinated .

 Firstly two first level procedures are designed , one for
 the arm and the another one for the vehicle . The
 trajectory tracking for the arm can be controlled in joint
 space , in operational space or through a teleoperated
 mode according to signals sent by the human operator or
 issued by the RP reactive behaviour . The vehicle is
 usually stabilized by visual servoing on a known target .
 In case of failure (video signal loss) the control is
 switched to station keeping using acoustic sensor upto

 recovering stability under visual control . This is a
 common situation where several RTs can be chosen to
 achieve a common goal according to the state of the
 mission . At run-time it is ensured that control laws never
 compete to control a same physical device (i . e . they are
 mutually exclusive) .

 These first level RPs are encapsulated in a new one
 designed to synchronize the motions of the arm and the
 ef fective stabilization of the vehicle . This RP may be
 specified through an user-oriented language 7 as shown
 down below in Figure 2 .

 Fig . 2 . Control code of a procedure .

https://doi.org/10.1017/S0263574797000131 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000131

 ORCCAD 113

 Fig . 3 . Abstract view at RT level of the inspection RP .

 When compiled the control code of this procedure
 expands in more than 300 ESTEREL statements which
 correspond to the logical behaviours of all the embedded
 RPs and RTs and also to the management (suspension
 and resumption) of the real-time tasks involved in the
 mission . Obtaining all the logical control code with
 ESTEREL allows to perform formal verification at every
 step of RTs and RPs design .

 Crucial properties like safety (any fatal exception must
 always be correctly handled) and li y eness (the RP always
 reaches its goal in a nominal execution) can be checked
 by building abstract criteria from the user’s exceptions
 specification . For example it can be proved that the
 underwater system will perform an emergency ascent in
 case of water leak detection in any state of the mission .

 More specific properties like the conformity of the RP
 beha y iour with respect to the requirements are verified by
 observing abstract views of the logical behaviour . The
 control automaton is then reduced to an equivalent one
 where only relevant signals are visible . For example the
 abstract view at the RT level of the inspection procedure
 (Figure 3) allows to check that the arm and vehicle
 motions are correctly synchronized , i . e . that the arm is
 allowed to move only when the vehicle is stabilized in
 front of its target . Conflicts detection can be checked in
 the same way .

 Finally , temporal properties and performance assess-
 ment can be checked by both formal methods using
 model checking techniques , 3 and by additional
 simulations 8 with SIMPARC .

 3 . SOFTWARE COMPONENTS IN ORCCAD
 Briefly speaking , the ORCCAD system is a set of tools
 (see Figure 4) to design , verify , simulate and execute a

 Fig . 4 . ORCCAD Tools .

 robot control application , following the approach
 previously described .

 The Orccad Kernel is a C 11 library implementing the
 class hierarchy proposed for designing a robot controller
 in the ORCCAD model . 1

 The Orccad Interface is a Very Graphical User
 Interface (VGUI) aimed at providing an easy way to
 specify a robot controller following the ORCCAD
 methodology , i . e . to create instances of the ORCCAD
 class hierarchy . The interface is used to design objects of
 increasing complexity starting from elementary items
 called Modules , up to Robot Tasks and Robot
 Procedures . Both the continuous and the discrete-time
 aspects can be considered . Verification and code
 generation tools for simulation and execution can be
 activated through the interface .

 The Orccad Verif components allows to formally
 analyze selected properties of the controller behaviour
 after composition of RTs . It uses AUTO and
 AUTOGRAPH tools . 9 Original aspects has been
 previously emphasized through an example .

 The Orccad Simul tool generates the code of a robot
 controller for use in the SIMPARC 1 0 simulator .
 Compared with others simulation softwares commonly
 used in robot control , a specific feature of Simparc is that
 it allows to simulate both the plant dynamics and the
 important temporal characteristics of the controller , like
 sampling rates and communication delays , even including
 the basic features of real-time operating systems . We can
 therefore simulate as far as possible the ef fect of actual
 code execution .

 The Orccad Exec component generates the C 11 code
 for a dedicated robot controller . This generated code is
 independent of the real-time target environment . The
 generated system is afterwards integrated with the
 run-time libraries of the target environment . The present
 target systems are VxWorks* and Solaris (using Posix
 threads) . The robot control software is divided in three
 parts :

 – The computation of the continuous-time part of the
 system (control laws and observers) . The tasks are
 usually periodic , using asynchronous communications
 and message passing mechanisms between them
 (producer / consumer type) .

 * Trademark of Wind River System .

https://doi.org/10.1017/S0263574797000131 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000131

 114 ORCCAD

 Fig . 5 . An example of Robot-task Design .

 Fig . 6 . VGUI for Robot-tasks Design .

https://doi.org/10.1017/S0263574797000131 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000131

 ORCCAD 115

 – The discrete event controller : the synchronous
 reactive approach (ESTEREL 4 language) is used to
 compose RT-based behaviours as well to coordinate RTs
 switching and synchronization .

 – The interface between the synchronous controller
 and the asynchronous items .

 4 . SOFTWARE AVAILABILITY AND
 APPLICATIONS
 The ideas and tools of ORCCAD have been already
 tested on dif ferent systems through prototype versions .
 RTs for robot arm control (task-space servoing ,
 singularity handling) have been designed and encoded
 using a first version of the G . U . I . depicted in Figure 5 . 5 , 11

 Sequencing of RTs to achieve a robot mission , where
 visual servoing and Cartesian space control were
 involved , was experimentally assessed with a wheeled
 mobile robot . 1 2 The design and the formal verification of
 RPs , both from the logical and temporal point of view ,
 have been tested through the control of a virtual train of
 electric cars . 13 , 14 Several events had to be considered ,
 like the loss of sensory information or the need for
 additional braking power . The control of complex
 underwater systems 6 is currently a support for improve-
 ments of the ORCCAD system from both the
 programming easiness and run-time ef ficiency points of
 view .

 Based on the returns from all these tests , performed in
 real conditions , a first stabilized version of ORCCAD is
 presently under development (see an example of the final
 interface in Figure 6) . We hope it will be available as a
 freeware by Spring 1997 .

 References
 1 . D . Simon , B . Espiau , E . Castillo and K . Kapellos ,

 ‘‘Computer-aided Design of a Generic Robot Controller
 Handling Reactivity and Real-time Control Issues’’ IEEE
 Trans . on Control Systems Technology 1 , No . 4 , 213 – 229
 (December , 1993) .

 2 . C . Samson , M . Le Borgne and B . Espiau Robot Control :
 the Task - Function Approach (Clarendon Press , Oxford
 Science Publications , U . K ., 1991) .

 3 . B . Espiau , K . Kapellos , M . Jourdan and D . Simon , ‘‘On the
 Validation of Robotics Control Systems . Part I : High level
 Specification and Formal verification’’ Inria Research
 Report No 2719 (November , 1995) .

 4 . G . Berry and G . Gonthier , ‘‘The Synchronous Program-
 ming Language ESTEREL : Design , Semantics , Implemen-
 tation’’ Science Of Computer Programming 19 , No . 2 ,
 87 – 152 (1992) .

 5 . K . Kapellos and B . Espiau , ‘‘Implementation with Orccad
 of a Method for Smooth Singularity Crossing in a 6-DOF
 Manipulator’’ Inria Research Report No 2654 (September ,
 1995) .

 6 . D . Simon , K . Kapellos and B . Espia , ‘‘Control Laws , Tasks
 and Procedures with ORCCAD : Application to the
 Control of an Underwater Arm’’ Preprints of 6 th IARP
 workshop on Underwater Robotics , Toulon , France
 (March , 1996) . (In press) .

 7 . B . Espiau , K . Kapellos , E . Coste-Manie ̀ re and N . Turro ,
 ‘‘Formal mission specification in an open architecture’’
 Preprints of Intl Symposium on Robotics and Manufactur-
 ing ISRAM 9 6 , Montpellier , France (May , 1996) . (In press) .

 8 . D . Simon , E . Castillo and P . Freedman , ‘‘On the
 Validation of Robotics Control Systems . Part II : Analysis
 of real-time closed-loop control tasks’’ Inria Research
 Report No 2720 (November , 1995) .

 9 . G . Boudol , V . Roy , R . de Simone and D . Vergamini ,
 ‘‘Process calculi , from theory to practice : Verification
 tools’’ International Workshop on Automatic Verification
 Methods for Finite State Systems , LNCS , Grenoble
 (Springer Verlag , Berlin , 1990) pp . 1 – 10 .

 10 . C . Astraudo and J . J . Borrelly , ‘‘Simulation of Multiproces-
 sor Robot Controllers’’ Proc . IEEE Int . Conf . on Robotics
 and Automation . Nice (May , 1992) pp . 573 – 578 .

 11 . K . Kapellos ‘‘Environnement de programmation des
 applications robotiques re ́ actives’’ Ph .D . dissertation
 (Ecole des Mines de Paris , Sophia Antipolis , France ,
 November , 1994) .

 12 . R . Pissard-Gibollet , K . Kapellos , P . Rives and J . J . Borrelly ,
 ‘‘Real-Time Programming of Mobile Robot Actions Using
 Advanced Control Techniques’’ 4 th Int . Symp . on
 Experimental Robotics , Stanford , USA (June 30 – July 2 ,
 1995) pp . 345 – 357 .

 13 . K . Kappelos , S . Abdou , M . Jourdan and B . Espiau ,
 ‘‘Specification , Formal Verification and Implementation of
 Tasks and Missions for an Autonomous Vehicle’’ 4 th Int .
 Symp . on Experimental Robotics , Stanford , USA , (June
 30 – July 2 , 1995) pp . 257 – 262 .

 14 . M . Parent , S . Abdou and B . Espiau , ‘‘Specify , Validate and
 Implement Missions for Autonomous Vehicles’’ Preprints
 of Intl Symposium on Robotics and Manufacturing
 ISRAM ’ 9 6 , Montpellier , France (May , 1996) (In press) .

https://doi.org/10.1017/S0263574797000131 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000131

