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Gas flows through constricted shallow
micro-channels
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We study the viscous compressible flow through micro-channels of non-uniform
cross-section. A lubrication approximation is applied to analyse the flow through
shallow configurations whose gap width is small in comparison with the other
characteristic dimensions. Focusing on channels with a symmetric constriction (or
cavity) we obtain the solution to the problem by means of a Schwarz–Christoffel
transformation. This analytic solution is verified by examining the convergence of
numerical simulations with diminishing Reynolds number and gap width. Explicit
closed-form expressions for the pressure-head and mass-flow-rate losses in terms of
the geometrical parameters characterizing the constriction are presented and discussed
in the context of experimental data existing in the literature.

1. Introduction
With the advent of micro-fabrication technology micro-fluidics has become relevant

to a rapidly growing spectrum of applications. Many of these applications (e.g. flow
control, cooling in micro-electronic systems, etc.) involve gas flows through micro-
configurations (Ho & Tai 1996, 1998; Gad-el-Hak 1999). Most of the research in
micro-fluidic systems has so far focused on straight and uniform channels which
constitute the simplest geometrical configuration while representing a basic element
in practically all applications. Typically, the longitudinal and transverse dimensions
of these channels are ≈ 103 − 104 µm and 10 − 102 µm, respectively. Pressure-
driven flows are therefore dominated by high viscous resistance. Substantial density
variations appear as the result of the large pressure drop involved which, however,
are only accompanied by relatively minor accelerations. A clear indication of this
‘low-Mach-number compressibility’ is a nonlinear streamwise pressure variation as
observed in the experiments of Pong, Ho & Tai (1994) and Liu, Tai & Ho (1995).
Such non-uniform longitudinal pressure gradients were obtained in one-dimensional
analyses of compressible viscous flows at small Reynolds and Mach numbers through
circular cylindrical tubes (Prud’homme, Chapman & Bowen 1986; Berg, Seldam &
Gulik 1993). Following these analyses and neglecting transverse velocity and pressure
gradient, Harley et al. (1995) obtained an approximate solution for a one-dimensional
channel flow. All of the above analyses neglect rarefaction effects. They are thus
strictly valid only when Kn , the Knudsen number representing the ratio between
the molecular mean free path and the macroscopic length scale, is vanishingly small.
(Practically, the continuum hypothesis applies for Kn � 10−3, cf. Cercignani 2000).
However, for micro-channels at standard atmospheric conditions Kn ≈ 10−1 − 10−2.
In this slip-flow domain the standard continuum model needs to be modified through
the incorporation of velocity-slip and temperature-jump conditions at the channel
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walls. This correction has been applied to micro-channel flows in a series of papers
by Beskok and Karniadakis (Beskok, Karniadakis & Trimmer 1996, and references
cited therein).

Micro-channel configurations are often shallow in the sense that the flow essentially
takes place within the narrow (≈ 1 µm) gap between parallel plates (cf. Harley et al.
1995; Arkilic, Schmidt & Breuer 1997; Zohar et al. 2002). Arkilic et al. (1997) have
accordingly applied a lubrication approximation to obtain closed-form expressions
for the mass-flow-rate and pressure distribution in a low-Mach-number compressible
viscous slip flow in a straight and uniform channel. Their analytic and experimentally
results have since been validated independently (e.g. Fan, Xue & Shu 1999; Zohar
et al. 2002; Graur, Meolans & Zeitoun 2005, as well as others) and are widely referred
to in the literature concerning gaseous micro-flows (Sharipov 1999; Yao et al. 2004;
Qin, Sun & Yin 2007, as well as others).

It is important to note that complex geometries including such elements as channel
junctions and branches, sudden expansions and contractions, etc. are of considerable
relevance in micro-fluidics (e.g. channel networks, fuel cell devices, etc. Lee, Wong
& Zohar 2001, 2002a; Tsai et al. 2007). However, in the absence of more suitable
analyses, Arkilic et al.’s analysis is still used to correlate and interpret results pertaining
to flows through essentially non-uniform channels (Lee et al. 2001, 2002b; Yu et al.
2005). The thrust of our contribution is therefore the extension of existing analyses
of compressible viscous flows to configurations of non-uniform cross-section.

The rest of this paper is organized as follows: In the next section we formulate
the general dimensionless problem governing the flow in shallow channels within the
framework of the lubrication approximation. In §3 the problem is transformed to a
Neumann problem for an appropriately defined quadratic function of the pressure,
which is subsequently solved for a symmetric constriction or cavity by means of a
Schwarz–Christoffel transformation. Explicit results for the pressure and mass-flow-
rate losses are presented and discussed in §4 in terms of the geometrical parameters
characterizing the constriction. The asymptotic calculations leading to these results
are outlined in the Appendix.

2. Formulation of the problem
The steady motion of a perfect gas is governed by the continuity equation

∇̃ · (ρ̃ ũ) = 0, (2.1)

the equation of motion (neglecting the effects of gravity)

ρ̃ ũ · ∇̃ũ = −∇̃p̃ + ∇̃ · τ̃ , (2.2)

the energy equation

ρ̃Cv ũ · ∇̃T̃ = −∇̃ · q̃ − p̃∇̃ · ũ + τ̃ : ∇̃ũ (2.3)

and the equation of state.

p̃ = ρ̃RT̃ . (2.4)

In (2.1)–(2.4), ũ is the velocity vector and ρ̃, T̃ and p̃ denote the fluid density,
temperature and pressure, respectively, R is the gas constant and Cv is the specific
heat capacity at constant volume. For a Newtonian fluid the stress tensor is

τ̃ = µ
(
∇̃ũ + ∇̃ũt

)
−

(
2
3
µ − λ

)
(∇̃ · ũ)I, (2.5)
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Figure 1. A schematic view of the constricted micro-channel defining the geometrical
parameters l, d and L and the coordinate axes. (All dimensions are scaled by D, half the
channel width.)

wherein µ and λ are, respectively, the shear and bulk viscosity coefficients. The heat
flux-density vector is given by Fourier’s equation

q̃ = −k∇̃T̃ , (2.6)

where k is the heat conductivity. We employ a Cartesian coordinate system (x̃, ỹ, z̃)
where the x̃- and ỹ-axes are in the longitudinal and lateral directions, respectively,
in the mid-plane of the channel and z̃ is perpendicular thereto (see figure 1). The
x, y dimensionless coordinates (tildes are omitted in the notation of dimensionless
variables) are normalized by D, the half-width of the uniform segments upstream
and downstream of the constriction, while z is scaled by H , half the channel depth.
Subsequent analysis focuses on a shallow micro-channel where

ε =
H

D
� 1. (2.7)

For long shallow micro-channels with uninsulated walls maintained at uniform
temperature, we follow the common practice in assuming an isothermal flow (see
Arkilic et al. 1997; Harley et al. 1995, and the conclusion of this section). In this
case µ, λ and k are uniform throughout the fluid. We normalize the pressure by an
appropriate reference value p0 of the pressure drop. The x and y components of
u, u and v respectively, are normalized by U = p0H

2/µD reflecting the dominant
balance in the equation of motion (2.2) between the pressure gradient and the viscosity
terms (the inertial effects being negligible; cf. Graur et al. 2005). The corresponding
z component, w, is accordingly scaled by εU . The reference density is selected in
accordance with (2.4), to obtain its dimensionless counterpart as in (2.12). When
ε → 0 the leading order obtained is

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0, (2.8)

∂p

∂x
=

∂2u

∂z2
+ O(εRe, ε2), (2.9)

∂p

∂y
=

∂2v

∂z2
+ O(εRe, ε2), (2.10)
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∂p

∂z
= O(ε3Re, ε2), (2.11)

and

p = ρ. (2.12)

As mentioned in the Introduction, the gas flow through a micro-channel is usually
characterized by a small but non-zero Knudsen number corresponding to the slip-
flow regime (Sone 2002). Consequently, the continuum model needs to be modified
by imposing velocity-slip conditions on the channel walls. Thus,

w = 0 at z = ±1, (2.13a)

(u, v) = ∓σKn
∂

∂z
(u, v) at z = ±1. (2.13b)

In the conditions (2.13b) Kn is based on H , and σ , representing the interaction between
the gas molecules and the solid wall, is related to the momentum accommodation
coefficient (Maxwell 1879; Chapman & Cowling 1970). In (2.9)–(2.11) Re = UH/νref,
where νref denotes an appropriate reference value of the kinematic viscosity, is the
Reynolds number. For the present limit process to be consistent it is thus necessary
that εRe be asymptotically small when ε → 0 (which condition is common in shallow
geometrical configurations, cf. Batchelor 1967). This requirement is generally satisfied
for micro-channel flows (Arkilic et al. 1997; Lee et al. 2002a; Yu et al. 2005).

Before proceeding, it is useful to consider the above assumption of isothermal
conditions. Inspecting the dominant balance in (2.3), we observe that the convection,
conduction, compression-work and viscous-dissipation terms are of the orders
ρCv(U/D)�T , (k/H 2)�T , pU/D and µ(U/H )2, respectively. Since the Prandtl
number for common gases (such as air, nitrogen etc.) is Pr ≈ 1, the ratio of
the magnitudes of convection and conduction is ∼ εRe and hence the contribution
of convection is negligible. Conduction balances the compression work for relative
temperature differences �T/T ∼ εRe and the dissipation rate for �T/T ∼ M2 where
M denotes the Mach number (which is typically � 0.1, Lee et al. 2002a ,b). We
thus conclude that, when channel walls are maintained at a uniform temperature
(as is often the case for micro-devices), conduction balances compression work and
dissipation with negligible relative temperature variations across the fluid.

3. Analysis
Integrating (2.9) and (2.10) twice with respect to z while making use of (2.11) and

(2.13b) we obtain for u‖ = (u, v)

u‖ = −
[

1
2
(1 − z2) − σKn

]
∇‖p, (3.1)

where ∇‖ = î∂/∂x + ĵ∂/∂y is the planar portion of ∇. Since the mean free path is
inversely proportional to the local density we may substitute Kn = Kn0/p (where
Kn0 is the value corresponding to the reference conditions) into (3.1) to obtain

u‖ = −
[

1
2
(1 − z2) − σ Kn 0

p

]
∇‖p. (3.2)

Substituting this together with (2.12) in the continuity equation (2.8) and integrating
with respect to z while making use of the symmetry of the problem relative to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008001055


Gas flows through constricted shallow micro-channels 431

iy
I

d

C

B F

D

l

–l –b –a

E
x

H∞

G∞
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Figure 2. The domain of the problem in (a) the physical t-plane and (b) the transformed
ζ -plane. (J∞H∞ is the symmetry line of the channel planform.)

midplane z = 0 yields

w =
z

p
∇2

‖
[

1
4

(
1 − 1

3
z2

)
p2 + σKn0p

]
. (3.3)

From (2.13a) we obtain the linear equation

∇2
‖G = 0, defining G � 1

6
p2 + σKn0p. (3.4)

In the absence of slip at z = ±1 (i.e. when Kn = 0) it immediately follows from the
above that ∇2

‖p
2 = 0 and thus by (3.3) w vanishes identically (Arkilic et al. 1997).

From (3.2) we note that as is common in the lubrication approximation (Batchelor
1967) ∇‖ × u‖ = 0. Consequently, we may only impose on the sidewalls of the channel
that n̂ · u‖ = 0, where n̂ is a unit normal perpendicular to the wall. Equivalently, by
(3.1) and (3.4), ∂G/∂n = n̂ · ∇‖G = 0.

As mentioned in the Introduction, the widths of micro-channels are usually much
smaller than their lengths. Subsequent analysis is thus facilitated by considering
an infinite channel. Far upstream and downstream of the constriction the flow is
expected to become parallel and uniform in the y-direction. Integrating ρu, the mass
flux density, across the channel from bottom to midplane while making use of (2.12),
(3.2) and (3.4) and selecting reference values at the far upstream or downstream, we
obtain the far-field conditions

∂G

∂x
= −1 as x → ±∞. (3.5)

To obtain G(x, y) satisfying (3.2) together with the above Neumann-type boundary
conditions we regard it as the real part of an analytic function F (t) = G(x, y)+iQ(x, y)
of the complex variable t = x + iy. Figure 2(a) presents the domain of the problem
in the physical t-plane. (In fact, owing to the symmetry of the problem about the
line J∞H∞, only half of the domain appears in the figure.) Let the analytic function
t = t(ζ ) represent a conformal mapping of the fluid domain within (half) the
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micro-channel onto the upper half η > 0 of the complex ζ = ξ + iη plane (figure 2b).
By the Schwarz–Christoffel theorem (Milne-Thomson 1968) and the symmetry of the
problem with respect to DI , the requisite transformation is accomplished through

dt

dζ
=

C

ζ 2 − 1

√
ζ 2 − a2

ζ 2 − b2
. (3.6)

The parameters C (which in general is complex) and the real 0 < a < b < 1 are
determined by specifying the geometry of the constriction through the location in the
t-plane of the points I, E and F . Note that the above transformation equally applies
to a channel with a cavity (instead of a constriction) when a and b are interchanged
in (3.6) or, equivalently, we choose the parameters 0 < b < a < 1. Thus, making use
of the fact that t(H∞) − t(G∞) = i we integrate (3.6) along a small semi-circular arc
ζ = 1 + δeiθ (δ → 0) from θ = π to θ = 0 (marked by the dashed line around ζ = 1)
to obtain

C = − 2

π

√
1 − b2

1 − a2
. (3.7)

We could anticipate that C is real in the present problem from DE lying along
the real axis of the t-plane (figure 2a). Selecting the branch of (ζ − a)1/2/(ζ − b)1/2

defined by a branch cut extending between ζ = a and ζ = b along the real axis of
the ζ -plane and by being real and positive at ζ = 1, (3.6) is integrated in conjunction
with the condition t(0) = 0 to yield

t = − 2

πb

(
1 − b2

1 − a2

)1/2 [
F

(
ζ

a

∣∣∣∣a2

b2

)
−

(
a2 − 1

)
Π

(
a2;

ζ

a

∣∣∣∣a2

b2

)]
, (3.8)

where

F

(
ζ

a

∣∣∣∣a2

b2

)
=

∫ ζ/a

0

dζ1√(
1 − ζ 2

1

) (
1 − ζ 2

1 a2/b2
) (3.9)

and

Π

(
a2,

ζ

a

∣∣∣∣a2

b2

)
=

∫ ζ/a

0

dζ1(
1 − ζ 2

1 a2
) √(

1 − ζ 2
1

) (
1 − ζ 2

1 a2/b2
) (3.10)

are elliptic integrals of the first and third kinds, respectively (Abramowitz & Stegun
1964). The complex potential in the ζ -plane F [ζ (z)] = f (ζ ) = g + iq is obtained as

f (ζ ) =
1

π
ln

1 − ζ

1 + ζ
. (3.11)

Thus, for a given pair of a and b, i.e. a given channel planform, the complete solution
of the problem consists of (3.11) together with (3.8). The solution G(x, y) is explicitly
independent of the (presumed small) value of Kn (which only appears in (3.4) relating
G and the pressure).

The resulting flow may be described by means of the respective families of curves,
G = const (dashed) and Q = const (solid) shown in figure 3. By (3.4), the former
family corresponds to lines of constant pressure. Furthermore, since by definition G

and Q respectively constitute the real and imaginary parts of the analytic function
F (t), the above families are mutually orthogonal. The lines Q = const are thus tangent
to ∇‖p. Hence, by (3.1) they constitute the streamlines of the field u‖ or the actual
streamlines at the channel mid-plane (z = 0). Employing the polar representation
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Figure 3. Streamlines (solid) and equi-potential lines (dashed) in (a) the physical t-plane
and (b) the transformed ζ -plane.

1 ∓ ζ = rj exp(iθj )(j = 1, 2), (3.11) is written

f (ζ ) =
1

π

[
ln

r1

r2

+ i(θ1 − θ2)

]
. (3.12)

Thus, for r1/r2 = R, the dashed circles of radii 2cR1/2/(1 − R) centred at [±(1 +
R)/(1 − R), 0] in figure 3(b) correspond to g = const curves, which are the ζ -plane
images of the above family G = const. Furthermore, the solid circular arcs subtended
by the chord (−1, 1) in figure 3(b) mark lines of q = const, the ζ -plane images
of the above family Q = const. (Orthogonality of both families is preserved by the
conformal mapping t = t(ζ ).) Figure 3(a) presents the flow field in the physical t-plane
as obtained from figure 3(b) by use of (3.8).

We now apply the present calculation to assess the effect of the constriction on the
pressure head required to drive a given mass flow rate through the micro-channel.
We express the difference between the constricted channel and a uniform channel in
terms of G(x, y) which uniquely determines p through (3.4). The above-mentioned
fore–aft symmetry of the problem governing G(x, y) allows us to consider only the
downstream half of the channel between x = 0 and x → ∞. For a straight uniform
channel one readily obtains that (within an arbitrary additive constant)

G0 = −x or, equivalently, F0 = −t. (3.13)

From this together with the condition (3.5) it is evident that for a given mass flow
rate the difference G − G0 tends to a constant limit as x → ∞. To obtain a measure
of the pressure-head loss associated with the constriction we therefore focus on the
limit

∆ = lim
t→∞

Re {F (0) − F (t) − [F0(0) − F0(t)]} = lim
ζ→1

Re

{
−t(ζ ) − 1

π
ln

ζ − 1

ζ + 1

}
, (3.14)
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utilizing (3.11) and (3.13). Since (cf. figure 2) Re{t(1−)} = Re{t(1+) − t(∞)}, we apply
(3.6) to obtain

lim
ζ→1

Re {t(ζ )} = lim
ζ→1

Re

{
2

π

(
1 − b2

1 − a2

)1/2 ∫ ∞

ζ

(
ζ 2
1 − a2

ζ 2
1 − b2

)1/2
dζ1

ζ 2
1 − 1

}
. (3.15)

Substituting this into (3.14) and integrating by parts, the logarithmic singularities
mutually cancel and we obtain

∆ =
1

π

(
1 − b2

1 − a2

)1/2 ∫ ∞

1

ln

(
ζ + 1

ζ − 1

)
dζ

(ζ 2 − a2)1/2(ζ 2 − b2)3/2
. (3.16)

From (3.14) one readily obtains that the total difference in G0 along a finite segment
of length L of the uniform channel is �G0 = L. Provided that L is sufficiently
large so that (3.5) is already approximately satisfied at x = ±L/2 (see the discussion
at the beginning of §4), the corresponding difference in the constricted channel is
�G = L + 2∆ (the factor 2 arising from the above calculation dealing with only
the respective downstream halves of both channels). Thus, 2∆ is the normalized
‘equivalent length’. This term, which is in common use in the literature concerning
(incompressible) viscous flows through ducts (White 1986), quantifies ‘minor losses’
(i.e. the additional pressure head required to compensate for the presence of bends,
valves or constrictions) in terms of an additional length of a uniform straight conduit.
Furthermore, the proportionality of the mass flow rate and ∂G/∂x (see the argument
preceding (3.5)) together with the linearity of the problem governing G(x, y) allow
the calculation of the reduction due to the constriction in the mass flow rate for
given entrance and exit pressures. Thus, if the mass flow rate in both (uniform and
constricted) channels is equal to ṁ0 for �G > �G0, reducing �G to �G0 in the
constricted channel will result in a proportionally reduced rate ṁ (< ṁ0). From the
above we thereby obtain

ṁ

ṁ0

=
�G0

�G
=

(
1 +

2

L
∆

)−1

. (3.17)

We emphasize that ∆ depends only upon the geometrical parameters of the
constriction and upon neither the entrance or exit conditions (Kn , pressures, etc.)
nor the specific properties of the gas (provided, of course, that it satisfies the equation
of state (2.4)). It thus seems desirable to express ∆ explicitly in terms of l and d , the
geometric parameters characterizing the constriction (figure 2), rather than in terms
of a and b, the parameters of the transformation (3.6). This calculation is outlined in
the Appendix and the results are presented in the next section.

4. Results and discussion
The analysis of the preceding section is based on the assumptions that ε and

εRe are both asymptotically small. To examine the resulting approximation we have
numerically simulated (by means of the finite element COMSOL 3.3 software package)
the flow of air through 1 µm-deep shallow constricted channels for diminishing values
of ε and εRe. Unlike the analytic approximation, the simulated fluid motion is
governed by the complete set of the three-dimensional continuity, Navier–Stokes and
energy equations for a perfect Newtonian gas. A uniform temperature (293 K) is
prescribed at the channel walls and uniform pressures and temperatures are assumed
at the entrance and exit cross-sections, respectively. The exit pressure is atmospheric
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Figure 4. Variation with d , the dimensionless gap (see figure 1), of the ratio Rm between
the mass flow rates obtained from the analytic approximation and the numerical simulation,
respectively, for (a) Re = 0 and the indicated values of ε; (b) ε = 0.05 and the indicated values
of εRe. In all cases the normalized length of the constriction is l = 0.5. For comparison the
case ε = 0.05 and Re = 0 (marked by the dashed lines) appears in both parts.

and the entry pressure is adjusted so as the achieve the requisite values of Re. To
simplify the comparison no-slip conditions at the walls are imposed in the simulations.
The corresponding analytic solution is accordingly calculated by substituting Kn0 = 0
in the relation (3.4) between p and G, thus ensuring that (as far as possible within
the limitations of the lubrication approximation) the analytic solution employed in
the comparison also satisfies the no-slip conditions.

We have selected for our COMSOL simulations a tetrahedral unstructured mesh.
In general, variations of the various fields in the x- and y-directions are expected
to be slower than in the z-direction. Nevertheless, to avoid convergence problems,
cell dimensions in all directions need to be of comparable lengths. This, together
with the division of the distance between the channel bottom and its midplane into
at least four cells, places a lower bound on the total number of cells for a given
channel configuration, imposing computational limitations on the smallest value of ε

and the largest total length of the simulated domain which are practically realizable.
The latter parameter is selected so that a uniform fully developed flow is established
across the channel width at both the entrance and exit sections. An initial estimate
of the required length is based on the analytic solution and is later refined according
to the numerical results. In general, the length (which is sufficient to ensure that the
variance of G across both the entrance and exit sections of the simulation domain
be smaller than ≈ 10−6) is essentially determined by the constriction gap width. The
results indicate that, for all d � 1/4, this (dimensionless) length is smaller than ≈ 2.5
both upstream and downstream of the constriction. To avoid excessive computational
effort we have thus performed these simulations only for d � 1/4.

A global measure of the difference between numerical and analytic calculations
is provided by Rm, the ratio between the respective analytically and numerically
obtained mass flow rates. The analytic calculation (3.17) consists of two elements:
calculation of ṁ0 through the corresponding uniform channel and the effect of the
constriction embodied in ∆ (3.16). The latter only depends upon the geometrical
parameters; in accordance with the above, ṁ0 is calculated for Kn0 = 0. Figure 4
thus presents the variation of Rm with d for l = 1/2 and the indicated values of ε
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(a)

(b)

(c)

Figure 5. Streamline patterns at the mid-plane of a constricted channel (l, d = 0.5) as
obtained from the analysis (solid) and numerical simulation (ε = 0.05, dashed) for (a) Re = 0,
(b) Re = 10 and (c) Re = 20.

(a) and εRe (b). To isolate the respective impacts of diminishing ε and diminishing
inertial effects we take Re = 0 in part (a) of the figure. We observe that for each
curve Rm is increasing with decreasing d . This reflects the fact that with diminishing
constriction gap width the ‘local’ value of ε is effectively increasing. We further
observe that Rm is approaching unity nearly linearly with decreasing ε, whereas for
Re = 0 the error in (2.9)–(2.12) is O(ε2). This O(ε) error results from the failure
of u‖ to satisfy the no-slip boundary condition on the channel sidewalls (which
is inherent in the lubrication approximation, see the discussion of the boundary
conditions following (3.4)). Figure 4(b) describes for ε = 0.05 and diminishing values
of εRe the convergence of Rm to the corresponding curve from Figure 4(a) (which
is here marked by the dashed line). When εRe � 0.1 (Re � 2) the curves are nearly
indistinguishable.

Figure 5 compares the streamline patterns in the mid-plane of the flow (from left to
right) through a constricted channel (l, d = 1/2) as obtained from the analytic solution
(3.8) and (3.11) (solid lines) and from the numerical simulations (dashed lines) for
ε = 0.05 and the finite values of Re = 0 (a), 10 (b) and 20 (c) (corresponding to three
of the curves presented in figure 4(b)). The analytically obtained streamline pattern
possesses fore–aft symmetry. The same is true of the numerically simulated pattern at
Re = 0. The relatively small differences between both patterns in part (a) are related to
the finite value of ε (= 0.05) in the numerical simulation. With increasing Re in parts
(b) and (c), the simulated patterns become increasingly asymmetric demonstrating
the rapidly growing inaccuracy of the analytic solution for Re � 10 (which is not
surprising considering that εRe � 0.5 no longer qualifies as asymptotically small).
While no flow reversal has been detected in our simulations up to Re = 20, the
numerically computed (dashed) pattern in Figure 5(c) indicates an impending flow
separation from the lee-side of the constriction. Evidently, the present analysis which
is based on the lubrication approximation cannot predict this.
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3
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Figure 6. Experimental data for normalized mass flow rates ṁ0 and the corresponding values
of �G for the flow through symmetrically constricted micro-channels (Lee et al. 2002b) of
total length 4000 µm, width 40 µm and depth 1 µm (ε = 0.025), dimensionless constriction
length l = 0.5 and gap width d = 0.85 (�), 0.7 (�), 0.5 (•) and 0.25 (×). Also presented
are measurements in micro-channels with symmetric multiple cavities (Yu et al. 2005). The
total length of these channels is 3825 µm, their width 30 µm and depth 1.7 µm (ε = 0.057), the
dimensionless length of the cavities is l = 1, their gap width is d = 2 and their total numbers
are 63 (�) and 127 (�).

The onset of flow separation in micro-channel configurations (e.g. cavities, sudden
expansions, etc.) has been studied by Yu et al. (2005) and Tsai et al. (2007) by means
of flow visualizations and simulations. Their measurements and numerical results are
correlated by flow-regime maps in the plane of Re and a geometric parameter (related
to ε) indicating that small-Re separation is only possible for ε exceeding a certain
threshold value (≈ 0.15 when relating the geometric parameter of Yu et al. 2005, to
ε through the smallest dimension of the present planform). In terms of the present
parameters, the results of Yu et al. (2005) predict that for ε = 0.05 flow separation
only appears at Re � 25 (which is in agreement with our above comments regarding
the simulated streamline pattern in figure 5(c)). These observations indicate that the
flow is indeed fully attached for sufficiently small finite values of ε and εRe.

As mentioned above, the mass flux density along the micro-channel is proportional
to ∂G/∂x and G is governed by a linear problem (which are fundamental attributes of
the lubrication approximation applied to the shallow micro-channel). Consequently,
the mass flow rate is linear in �G, the total difference between the values of G

at the entrance and exit sections, respectively. Figure 6 presents a compilation of
experimental results reported by Lee et al. (2002b) and Yu et al. (2005) regarding
the mass flow rate in constricted and multi-cavity micro-channels, respectively. The
values of �G are calculated by substituting the reported Knudsen numbers and
entrance pressures (the exit pressures are atmospheric) in the definition (3.4). They
are plotted versus the mass flow rates in the figure. (For each configuration the
reported mass flow rates are calibrated by a constant multiplication factor so as to
make the proportionality coefficient with �G equal to unity.) The linear correlation
evident in the figure (which is typical of low-Mach-number viscous compressible
flows in uniform long micro-channels, Beskok et al. 1996) supports our use of the
lubrication approximation in the present analysis, indicating that the effect of flow
separation (if any) in these micro-channels is rather small.
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0

2

1

0

–1
0 1

d

2

0.3 1 3

∆

Figure 7. The effect of l (values indicated), the constriction (cavity) length, on the variation
of ∆ with d , the gap width. Solid lines are obtained for l 
= 0 via numerical quadratures of
(3.16), (A1) and (A2) and for l = 0 from (4.1). Dashed and dashed-dotted lines represent (4.2)
and (4.3), respectively.

We next examine the effect of the geometrical configuration on ∆ representing the
pressure-head or mass-flow-rate losses. Figure 7 thus describes the variation of ∆

with the gap width for both constrictions (0 < d < 1) and cavities (d > 1) at the
indicated values of the dimensionless length l. The solid lines mark exact calculations
of ∆(a, b), d(a, b) and l(a, b) via numerical quadratures of (3.16), (A1) and (A2),
respectively. An exception is l = 0 for 0 < d < 1 corresponding to a = 0 (see (A3)
and figure 2). For this case we obtain the closed-form expression

∆0 = − 2

π
ln

[
sin

(
2

π
d

)]
. (4.1)

The dashed lines represent the approximation

∆ ∼ 1

2

1 − d

d
l +

1

π

[
2 ln

∣∣∣∣1 − d2

4d

∣∣∣∣ +
1 + d2

d
ln

∣∣∣∣1 + d

1 − d

∣∣∣∣
]

, (4.2)

obtained in the Appendix and the horizontal dash-dotted asymptotes represent the
limit of deep cavities (d → ∞) when (see the Appendix)

∆ =
1

π
ln

(
l2 + 4

4

)
− l

{
1

2
− 1

π
cos−1

[
l(

l2 + 4
)1/2

]}
. (4.3)

All the curves descend monotonically with d passing through ∆ = 0 at d = 1 (i.e.
a uniform channel). The variations of ∆ are larger for a constriction, increasing
indefinitely with diminishing gap, than for a cavity where increasing the depth cannot
reduce ∆ below the limit (4.3). Thus, for all l 	 0.3 and d > 1, ∆ is vanishingly
small. Evidently, the respective effects for both constrictions and cavities become more
substantial with increasing length.
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With the exception of l = 0, the approximation (4.2) is remarkably accurate
throughout the range of constrictions. In fact, even for l as small as ≈ 0.1 (not
presented in the figure), the dashed and solid lines are already nearly indistinguishable
from each other. Furthermore, as is clearly visible for l = 3, when (with increasing
d > 1) the dashed curve starts to deviate from the solid line the latter is already
close to the dash-dotted asymptote (4.3). Evidently, the explicit expression of ∆ in
terms of l and d is most useful, allowing a simple interpretation of the effects of the
geometrical configuration on ∆. Thus, the first term, which is linear in l, represents
the increase (for d < 1) or reduction (for d > 1) of the hydrodynamic resistance per
unit length of an infinite straight channel resulting from changing its uniform width
from unity to d . The rest of the expression on the right-hand side of (4.2), which
is independent of l, represents ‘end effects’ associated with the transitions between
the uniform channel and the constriction (or cavity) zone. Comparison of the solid
and dashed curves in figure 7 demonstrates that this approximate description of end
effects is not very different from the exact result (4.1) for a constriction of zero length
l = 0.

The approximation (4.2) has been obtained in the Appendix as a leading-order
asymptotic estimate in the limit a, b → 1. As such, the above-observed accuracy of
(4.2) seems rather surprising. Inspection of (A1) and (A2) reveals that throughout
much of the domain of the parameters l and d (particulary for d < 1), a and b are
both close to unity. A posteriori (4.2) turns out to be accurate provided that neither
a nor b are much smaller than 1 (i.e. a small constriction length or a deep cavity,
respectively). As mentioned above, in these limits ∆ is closely approximated by (4.1)
or (4.3) respectively.

The results of the present analysis are in agreement with those of Yu et al. (2005)
as opposed to earlier results from the same group (Lee et al. 2002b). There is an
apparent difficulty in the application of results obtained from the above analysis
strictly pertaining to a single constriction or cavity within an infinitely long channel
to the present multi-cavity problem. However, Yu et al. (2005) observe that when the
distance between adjacent cavities exceeds the length of a single cavity, the total effect
is linear in the number of cavities. This suggests that the effects of multiple cavities are
additive thereby demonstrating that hydrodynamic interactions between the various
cavities along the channel are negligible. This view is also supported by the present
analytic solution which shows that halfway between the adjacent cavities the flow field
restores uniformity (in the y-direction) across the channel. We can thus estimate the
effect of the multiple cavities on the mass flow rate by making use of (3.17) for a ‘unit
cell’ whose length L is the sum of the cavity length and the distance between adjacent
cavities. Consider the multi-cavity micro-channels of Yu et al. (2005) whose total
length, width and depth are 3825 µm, 30 µm and 1.7 µm, respectively. The length and
width of each cavity as well as the distance between the adjacent cavities are all equal
to 15 µm. In terms of the parameters of the present analysis l = 1, d = 2 and L = 2.
For these values (see figure 7) ∆ already coincides with the asymptote (4.3) which
readily yields ∆ ≈ −0.076. From (3.17) we then obtain that the corresponding mass
flow rate increases by ≈ 8% relative to a uniform channel whereas Yu et al. (2005)
estimate the average increase as ≈ 7%. Considering the approximations involved (e.g.
ε ≈ 0.057 in the actual channel while our analysis strictly applies when ε → 0) the
agreement is satisfactory.

Equation (3.17) together with (4.2) provide a useful approximation allowing
a straightforward estimate of the effect of the constriction for practically any
combination of the geometrical parameters. Furthermore, the present scheme is in
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principle applicable to any shallow micro-configuration whose planform qualifies as
a generalized polygon (cf. Milne-Thomson 1968). Considering the current fabrication
technology (e.g. of silicon micro-devices) this requirement is met in a wide variety of
micro-fluidics problems.

Appendix Approximate explicit expressions for ∆(l, d)

By (3.8) and figure 2

d = 1 − 2

π

(
1 − b2

1 − a2

)1/2 ∫ b

a

(
ξ 2 − a2

ξ 2 − b2

)1/2
dξ

1 − ξ 2
(A1)

and

l =
4

π

(
1 − b2

1 − a2

)1/2 ∫ a

0

(
a2 − ξ 2

b2 − ξ 2

)1/2
dξ

1 − ξ 2
. (A2)

Furthermore, making use of (3.14) and (3.15) we obtain the alternative expression

∆ =
2

π

∫ ∞

1

[
1 −

(
ξ 2 − a2

ξ 2 − b2

)1/2 (
1 − b2

1 − a2

)1/2
]

dξ

1 − ξ 2
. (A3)

4.1. The limit a, b → 1

Defining the parameters 0 < β 	 α � 1 through

a = 1 − α, b = 1 − β (A4)

and replacing ξ , the integration variable in (A1) and (A2), by ξ1 = 1 − ξ , we obtain
to leading order in (α, β)

d ∼ 1 − 1

π

(
β

α

)1/2 ∫ α

β

(
α − ξ1

ξ1 − β

)1/2
dξ1

ξ1

∼
(

β

α

)1/2

. (A5)

Similarly, from (A2)

l ∼ 4

π

(
β

α

)1/2 ∫ 1

α

(
2ξ1 − ξ 2

1 − 2α

2ξ1 − ξ 2
1 − 2β

)1/2
dξ1

ξ1 (2 − ξ1)
. (A6)

To estimate l we divide the interval (α, 1) into the sub-intervals (α, γ ) and (γ, 1) where
α � γ � 1. Making use of the approximations respectively appropriate to each of
the sub-intervals we obtain

l ∼ 2

π

(
β

α

)1/2
[∫ γ

α

(
ξ1 − α

ξ1 − β

)1/2
dξ1

ξ1

+ 2

∫ 1

γ

dξ1

(2 − ξ1) ξ1

]

∼ 2

π

[(
β

α

)1/2

ln

(
8

α − β

)
− ln

(
α1/2 + β1/2

α1/2 − β1/2

)]
. (A7)

To obtain an approximate expression for ∆ we change the integration variable in (A3)
to ξ2 = 1−ξ . The interval of integration (0, ∞) is then separated into the sub-intervals
(0, γ ) and (γ, ∞), respectively. Utilizing the approximations respectively valid in each
of the sub-intervals we eventually obtain

∆ ∼ 1

π

{
ln

[
1

2

(
α1/2 + β1/2

α1/2β1/2

)2
]

+

(
β

α

)1/2

ln

[(
α1/2 + β2

)1/2

8

]}
. (A8)
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The ratio β/α is available from (A5). Making use of this and (A7) to express lnα in
terms of l and d and substituting in (A3) we readily obtain ∆(l, d) for 0 < d 	 1.
When 1 < d (a cavity) we need to consider the limit 0 < α 	 β � 1. The only
difference from the above calculation is that in (A7) the arguments of the logarithmic
terms are now replaced by their respective absolute values. The same applies to ∆(l, d)
as appears in (4.2) for all 0 < d < ∞.

4.2. The limit b → 0 (a deep cavity)

For d > 1 the parameters a and b are interchanged in the integration limits in (A1)
and (A2). When b → 0 with a fixed we obtain from (A2)

l ∼ 4a

π

(
1 − a2

)1/2
∫ b

0

(
b2 − ζ 2

)−1/2
dζ =

2a(
1 − a2

)1/2
. (A9)

For the gap width we separate the integration interval (b, a) into the sub-intervals
(b, γ ) and (γ, α) where b � γ � a and obtain to leading order

d ∼ 1 − 2

π

[
a(

1 − a2
)1/2

ln

(
b

4a

)
− sin−1 a

]
, (A10)

verifying that d indeed diverges in this limit. For ∆ we obtain from (A3)

∆ ∼ − 1

π

[
2a(

1 − a2
)1/2

(π

2
− cos−1 a

)
+ ln

(
1 − a2

)]
. (A11)

Expressing a in terms of l by means of (A9) we readily obtain (4.3) from (A11).

REFERENCES

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions . Dover.

Arkilic, E. B., Schmidt, M. A. & Breuer, K. S. 1997 Gaseous slip flow in long microchannels.
J. Microelectromech. Syst. 6, 167–178.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

van den Berg, H. R., ten Seldam, C. A. & van der Gulik, P. S. 1993 Compressible laminar flow
in a capillary. J. Fluid Mech. 246, 1–20.

Beskok, A., Karniadakis, G. E. & Trimmer, W. 1996 Rarefaction and compressibility effects in
gas microflows. Trans. ASME: J. Fluids Engng 118, 448–456.

Cercignani, C. 2000 Rarefied Gas Dynamics . Macmillan.

Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-uniform Gases . Cambridge
University Press.

Fan, Q., Xue, H. & Shu, C. 1999 DSMC simulations of gaseous flows in microchannels. In 5th
ASME/JSME Joint Thermal Engineering Conference March 15-19 1999, San Diego, California .

Gad-el-Hak, M. 1999 The fluid mechanics of microdevices. Trans. ASME: J. Fluids Engng 121,
5–33.

Graur, I. A., Meolans, J. G. & Zeitoun, D. E. 2005 Analytical and numerical description for
isothermal gas flow in microchannels. Microfluid Nanofluid 2, 64–77.

Harley, J. C., Huang, Y., Bau, H. H. & Zemel, J. N. 1995 Gas flow in micro-channels. J. Fluid
Mech 284, 257–274.

Ho, C. M. & Tai, Y. C. 1996 Mems and its applications for flow control. Trans. ASME: J. Fluids
Engng 118, 437–447.

Ho, C. M. & Tai, Y. C. 1998 Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev.
Fluid Mech. 30, 579–612.

Lee, W. Y., Wong, M. & Zohar, Y. 2001 Gas flow in microchannels with bends. J. Micromech.
Microengng 11, 635–644.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008001055


442 A. Gat, I. Frankel and D. Weihs

Lee, W. Y., Wong, M. & Zohar, Y. 2002a Microchannels in series connected via a
contraction/expansion section. J. Fluid Mech 459, 187–206.

Lee, W. Y., Wong, M. & Zohar, Y. 2002b Pressure loss in constriction microchannels.
J. Microelectromech. Syst 11, 236–244.

Liu, J. Q., Tai, Y. C. & Ho, C. M. 1995 MEMS for pressure distribution studies of gaseous flows
in microchannels. In Proc. IEEE Micro-electromech. Syst , pp. 209–215.

Maxwell, J. C. 1879 On stresses in rarified gases arising from inequalities of temperature. Phil.
Trans. R. Soc. Lond. 170.

Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics . Macmillan.

Pong, K., Ho, C. & Tai, Y. 1994 Non-linear pressure distribution in uniform microchannels.
ASME-FED vol. 197, pp. 51–56.

Prud’homme, R., Chapman, T. & Bowen, J. 1986 Laminar compressible flow in a tube. Appl. Sci.
Res. 43, 67–74.

Qin, F.-H., Sun, D.-J. & Yin, X.-Y. 2007 Perturbation analysis on gas flow in a straight microchannel.
Phys. Fluids 19.

Sharipov, F. 1999 Non-isothermal gas flow through rectangular microchannels. J. Micromech.
Microengng 9, 394–401.

Sone, Y. 2002 Kinetic Theory and Fluid Dynamics . Birkhauser.

Tsai, C.-H., Chen, H.-T., Wang, Y.-N., Lin, C.-H. & Fu, L.-M. 2007 Capabilities and limitations of
2-dimensional and 3-dimensional numerical methods in modeling the fluid flow in sundden
exapansion microchannels. Microfluid Nanofluid 3, 13–18.

White, F. M. 1986 Fluid Mechanics, 2nd edn. McGraw-Hill.

Yao, Z.-H., He, F., Ding, Y.-T., Shen, M.-Y & Wang, X.-F. 2004 Low-speed gas flow subshocking
phenomenon in a long-constant-area microchannel. AIAA J. 42, 1517–1521.

Yu, Z. T. F., Lee, Y.-K., Wong, M. & Zohar, Y. 2005 Fluid flows in microchannels with cavities.
J. Microelectromech. Syst. 14, 1386–1398.

Zohar, Y., Lee, S. Y. K., Lee, W. Y., Jiang, L. & Tong, P. 2002 Subsonic gas flow in a straight and
uniform microchannel. J. Fluid Mech. 472, 125–151.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008001055


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 15%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveEPSInfo false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /Description <<
    /DEU <>
    /FRA <>
    /JPN <FEFF005000440046002f0058002d0031006100206e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af002030b330f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d0031006100206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Cambridge University Press - Distiller version 6 job options for Press quality - 16-Feb-05)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




