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Abstract

This paper describes how genetic programming has been used as an invention machine to automatically synthesize
complete designs for four optical lens systems that duplicated the functionality of previously patented lens systems. The
automatic synthesis of the complete design is done ab initio, that is, without starting from a preexisting good design
and without prespecifying the number of lenses, the topological arrangement of the lenses, or the numerical or nonnu-
merical parameters associated with any lens. One of the genetically evolved lens systems infringed a previously issued patent,
whereas the others were noninfringing novel designs that duplicated (or improved upon) the performance specifications
contained in the patents. One of the patents was issued in the 21st century. The designs were created in a substantially similar
and routine way, suggesting that the approach described in the paper can be readily applied to other similar problems in the
field of optical design. The genetically evolved designs are instances of human-competitive results produced by genetic
programming in the field of optical design.
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1. INTRODUCTION

An optical lens system is an arrangement of refractive or
reflective materials that manipulate light (Smith, 1992,
2000; Fischer & Tadic-Galeb, 2000).

This paper describes how genetic programming has been
used as an invention machine to automatically synthesize
complete designs for optical lens systems that duplicated
the functionality of four previously patented lens systems.
The automatic synthesis of the complete design is done ab in-
itio, that is, without starting from a preexisting good design
and without prespecifying the number of lenses, the topologi-
cal arrangement of the lenses, or the numerical or nonnu-
merical parameters associated with any lens. One of the geneti-
cally evolved lens systems infringed a previously issued
patent, whereas the others were noninfringing novel designs
that duplicated (or improved upon) the performance
specifications contained in the patents. One of the patents
was issued in the 21st century.

The design process for optical systems is more of an art
than a science. As Warren J. Smith states in Modern Optical
Engineering (Smith, 2000, p. 393),

Optical design is in great measure a systematic application
of the cut-and-try process.

There is no “direct” method of optical design for original
systems; that is, there is no sure procedure that will lead
(without foreknowledge) from a set of performance speci-
fication to a suitable design.

A complete design for a classical optical lens system encom-
passes numerous decisions, including the choice of the sys-
tem’s topology (i.e., the number of lens surfaces and their
spatial arrangement and placement), choices for numerical
parameters, and choices for nonnumerical parameters.

The topological decisions required to define a lens system
include the physical placement of lens surfaces between the
object (OBJ) and the image (IMS), decisions as to whether
consecutive lenses touch or are separated by air, the nature
of the mathematical expressions defining the curvature of
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each lens surface (traditionally spherical, but today some-
times aspherical), and the locations and sizes of the field
and aperture stops that determine the field of view (FOV)
and the maximum illumination of the IMS, respectively.

The numerical choices include the thickness of each lens
and the separation (if any) between lens surfaces, the numer-
ical coefficients for the mathematical expressions defining
the curvature of each surface (which in turn, implies whether
the surface is concave, convex, or flat), and the aperture
(semidiameter) of each surface.

The nonnumerical choices include the type of material as-
sociated with each lens surface. The materials may be glass,
air, vacuum, oil, polymer, or a gas. Each type of material
has various properties of interest to optical designers, notably
including the index of refraction n (which varies by wave-
length), the Abbe number V, and the cost. Choices of glass
are typically drawn from a standard glass catalog for ordinary
commercial applications, although it is possible to manufac-
ture custom glasses with specified properties at additional
cost.

When optical design is done by humans or by humans with
the aid of optimization software, an existing human-created
design is frequently the starting point for the new lens system
(Smith, 1992, 2000).

Smith (2000, p. 394) identifies four stages in the “ordinary
design process” of optical systems by human designers:

The ordinary design process can be broken down into four
stages, as follows: first, the selection of the type of design
to be executed, i.e., the number and types of elements and
their general configuration. Second, the determination of
the powers, materials, thicknesses, and spacings of the ele-
ments. These are usually selected to control the chromatic
aberrations and the Petzval curvature of the system, as well
as the focal length (or magnifying power), working dis-
tances, field of view, and aperture. (Choices made at this stage
may affect the performance of the final system tremen-
dously, and can mean the difference between success and
failure in many cases). In the third stage, the shapes of
the elements or components are adjusted to correct the
basic aberrations to the desired values. The fourth state is
the reduction of the residual aberrations to an acceptable
level.

Section 2 provides general background on genetic program-
ming, and Section 3 mentions previous work on optical de-
sign in the field of genetic and evolutionary computation.

Section 4 provides general background on the design of
optical lens systems, and Section 5 discusses the domain-
specific operations used to apply genetic programming to
problems of optical design.

Section 6 introduces the four patented lens systems dis-
cussed in this paper, Section 7 discusses the preparatory steps
used to apply genetic programming to the four problems, and
Section 8 presents the results.

Section 9 discusses the use of parallel computing systems
for work in genetic programming. Section 10 discusses com-
puter time, Moore’s law, and the future of genetic program-
ming for automated design.

Section 10 is the conclusion.

2. BACKGROUND ON GENETIC
PROGRAMMING

Genetic programming starts from a high-level statement of
what needs to be done and automatically creates a computer
program to solve the problem. Genetic programming uses
the Darwinian principle of natural selection along with
analogs of recombination (crossover), mutation, gene dupli-
cation, gene deletion, and mechanisms of developmental
biology to breed an ever-improving population of programs
(Koza 1990, 1992, 1994a, 1994b; Koza & Rice 1992; Banz-
haf, Nordin, Keller, & Francone, 1998; Koza, Bennett, An-
dre, & Keane, 1999; Koza, Bennett, Andre, Keane, & Brave
1999; Langdon & Poli 2002; Koza, Keane, Streeter, Mydlo-
wec, Yu, & Lanza 2003a, 2003b). Additional information on
genetic programming may be found in Section 2 of another
article in this Special Issue (Koza, this issue).

3. PREVIOUS WORK IN OPTICS USING
GENETIC ALGORITHMS AND GENETIC
PROGRAMMING

Genetic algorithms (Holland, 1975) have been extensively
used for several decades for optimizing the choices of pa-
rameters of optical systems having a prespecified number of
lenses and a prespecified topological arrangement of the
lenses. Jarmo Alander’s voluminous An Indexed Bibliography
of Genetic Algorithms in Optics and Image Processing
(Alander, 2000) lists many examples of earlier work.

In a noteworthy paper in 2002, Beaulieu, Gagné, and Par-
izeau used genetic programming to “reengineer” and improve
a preexisting design of a four-lens system (itself produced, as
it happens, by a run of a genetic algorithm; Beaulieu et al.,
2002). Their approach used functions that incrementally ad-
justed (additively or multiplicatively) the distance between
lens surfaces, the radius of curvature of lens surfaces, and
stop location values. The result of their reengineering was
an improvement over the best design produced by 11 human
teams in an international design competition held at the 1990
International Lens Design Conference.

4. BACKGROUND ON THE DESIGN OF OPTICAL
LENS SYSTEMS

A classical lens system is conventionally specified by a table
called a prescription (or, if the system is being analyzed by
modern-day optical simulation software, a lens file).
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4.1. Example of an optical lens system

To aid in explaining optical prescriptions, Figure 1 shows a
system (Smith, 2000, p. 508) composed of four spherical
lenses intended for use as a telescope eyepiece. Tackaberry and
Muller patented this lens system in 1958 (Tackaberry &
Muller, 1958), and is an improved design within a subclass
of the Konig lens systems patented in 1940 (Konig, 1940).
In this optical lens system, the OBJ is shown at the far left
of the figure and the IMS is shown at the far right. Curved sur-
faces 1 and 2 together define the first lens. Surfaces 3 and 4
together define the second lens. Curved surfaces 5, 6, and 7
together define a doublet (i.e., two lenses fitting snuggly to-
gether). Light rays a, b, and c (so-called axial rays) start at the
OBJ (at the far left), enter the system in parallel at the entry
pupil (EP), and eventually converge (at the far right) to a sin-
gle point ( focal point f) on the IMS. Light ray d (so-called
chief ray) starts from the point farthest from the axis on the
OBJ plane that is visible through the lens system (FOV).
This chief ray runs through the center, e, of the aperture
stop (EP here) and to the IMS (at a point q, called the image
height).

4.2. Example of a prescription (lens file)

Table 1 shows a prescription (slightly modified for tutorial
purposes) for the Tackaberry–Muller lens system (a telescope
eyepiece) of Figure 1. Each row in the table represents a sur-
face. The OBJ appears in the first row, the EP appears in the

second row, and the IMS appears in the last row. The other
surfaces are consecutively numbered (from 1 to 7). All entries
in this table are normalized so that the system has a focal
length of 1. As will be seen, a single lens is defined by two
surfaces having a material, such as glass, between them.

Some of the information on a given row in a prescription
pertains to the surface, whereas other information pertains
to the space between the surface and the next surface. For ex-
ample, in Table 1, the radius of curvature of the surface (col-
umn 3) and the aperture (column 5) are characteristics of the
surface itself. The distance (column 2) refers to the distance
between the surface represented by that row and the surface
represented by the next row (i.e., the surface to the right).
Similarly, the material (column 4) refers to the material
(e.g., air, vacuum, glass, polymer, oil, other material) be-
tween the surface represented by that row and the surface rep-
resented by the next row.

The Tackaberry lens system has an EP. The distance between
the OBJ and the EP is infinite (represented here by the value of
1010). The EP is a flat opaque surface with a small circular hole
of semidiameter 0.18 mm, centered at the axis line.

Surface 1 in Table 1 is located at a distance (column 2) of
0.88 from the previous surface (i.e., EP). The value of
23.52361 (column 3) for the radius of curvature of surface
1 indicates that surface 1 is a sector of a sphere with a radius
3.52361. The negative sign indicates that the sphere’s center
is located to the surface’s left. The material (column 4)
located to the right of surface 1 is BK7, a commercially
available crown glass. The aperture semidiameters for
surfaces 1 through 7 (found in column 5) have a uniform value
of 0.62 for this particular lens system (a telescope eye-
piece).

Surface 2 is located at distance 0.21900 from surface 1. The
negative sign of the radius of curvature of surface 2
(21.05274) indicates that the sphere’s center is located to
the surface’s left. The material to the right of surface 2 is
air. Together, surfaces 1 and 2 define a lens of thickness
0.21900 composed of BK7 glass with a concave left surface
and a convex right surface. As can be seen in Figure 1, the
leftmost surface of this lens is concave and its rightmost sur-
face is convex. Note that surface 2’s radius of curvature
(1.05274) is smaller than that of surface 1 (3.52361), giving
surface 2 a greater curvature.

Surfaces 3 and 4 together specify a lens (composed of BK7
glass) at distance 0.07280 from surface 2 with a concave left
surface and a convex right surface.

Surfaces 5, 6, and 7 together define a doublet lens. The ma-
terial to the right of surface 5 is BK7 glass and the material to
the right of surface 6 is SF61, a commercially available flint
glass. The positive radius of surface 5 (1.02491) and the
negative radius of surface 6 (20.93493) indicate that the
left lens of the doublet is biconvex. The negative radius of
surface 6 (20.93493) and the positive radius of surface 7
(7.94281) indicate that the right lens of the doublet is bicon-
cave. The relatively large (absolute) value of the radius of sur-
face 7 (7.94281) means that surface 7 is almost flat.

Fig. 1. The Tackaberry–Muller lens system.

Table 1. Lens file for the patented Tackaberry–Muller lens system

Surface Distance Radius Material Aperture

OBJ 1010 Flat Air
EP 0.88 Flat Air 0.18
1 0.21900 23.52361 BK7 0.62
2 0.07280 21.05274 Air 0.62
3 0.22500 24.40723 BK7 0.62
4 0.01360 21.07043 Air 0.62
5 0.52100 1.02491 BK7 0.62
6 0.11800 20.93493 SF61 0.62
7 0.47485 7.94281 Air 0.62

IMS Flat
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The material between surface 7 and the IMS is air and its
distance is 0.47485 (the back focal length).

The distance of 0.88 between the EP and surface 1 defines
the eye relief of the eyepiece. Eye relief describes the distance
between the eye and the eyepiece lens and is an important de-
sign criterion of eyepieces. Eye relief (from the perspective of
design constraints) is determined by the FOV and the aperture
of the EP. In general, the design tradeoff is that the smaller the
aperture of the EP and/or the larger the FOV, the shorter the
eye relief. This system here has a half FOV (HFOV) of 19.88.

The format of lens files used in modern-day optical simula-
tion software can accommodate many complex features not
illustrated by the above prescription. For example, the surfaces
need not be spherical. Instead, an aspherical surface can be spe-
cified by a higher order polynomial or even an arbitrary math-
ematical function. Such aspherical lenses are becoming increas-
ingly common today because it is now possible to manufacture
them economically. Another example of a feature not illustrated
by the above prescription is that surfaces can be reflective
as well as refractive, thereby permitting light rays to travel in

nonsequential paths (not just left to right). In addition, it is pos-
sible for a surface to consist of multiple subsurfaces containing
various geometric shapes (e.g., circular, polygonal) residing at
various physical locations on the surface.

4.3. Analysis of an optical system

Once a classical optical system is specified by means of its pre-
scription (lens file), many of its optical properties can be calcu-
lated by tracing the paths of light rays of various wavelengths
through the system. Ray-tracing analysis is extremely tedious
when performed by hand. Today it is typically performed by
optical simulation software. Numerous commercial software
packages (e.g., OSLO, Zemax, Code V) and public domain
software packages (e.g., KOJAC) are available in the field of
optical engineering to aid in this process.

Modern optical simulation software yields a multiplicity of
curves describing the system’s optical characteristics. For
example, Figure 2 shows conventional curves for distortion
(Fig. 2a), astigmatism (Fig. 2b), chromatic aberration

Fig. 2. Characteristics of the Tackaberry–Muller system.
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(Fig. 2c), and spherical aberration (Fig. 2d) for the Tacka-
berry–Muller system (Fig. 1).

Figure 3 shows the on-axis ray intercept diagram (Fig. 3a),
a partial field ray intercept diagram (Fig. 3b), and the full field
ray intercept diagram (Fig. 3c). Within each subfigure, the
diagram for the meridional plane (i.e., planes that contain
the optical axis and axial rays) is on the left, with the sagittal
plane (i.e., skew planes that contain off-axis rays such as the
chief ray) on the right.

5. DOMAIN-SPECIFIC OPERATIONS
FOR OPTICAL SYSTEMS

Genetic programming is typically applied to design problems
using the domain-independent operations such as crossover, re-
production, tree mutation, numerical parameter mutation, and
architecture-altering operations. However, when applying
genetic programming to a particular field, it may be advantage-
ous (or necessary) to modify these standard domain-

independent operations to the special requirements of the field
or to augment the standard operations with domain-specific
operations. Four such adjustments are useful for the field of op-
tical design.

5.1. Practical limitations on numerical values

When applying genetic programming to a design problem in a
particular field, practical considerations usually dictate cer-
tain limitations on the range of numeric values that are al-
lowed. In the field of optical design, for example, there is a
practical limitation on the radius of curvature of a lens surface
and the distance between surfaces. For this work, where the
focal lengths of the target systems were normalized to
1 mm, the minimum radius of curvature is 215 and the max-
imum is þ15. The maximum thickness (for glass or air) is
1.0 mm. The minimum thickness for air is 0.01 mm and the
minimum thickness for glass is 0.1 mm. The minimum aper-
ture is 0.1 mm (where an opaque mounting is added to cradle
a lens that would otherwise be hovering in air). The aspheric

Fig. 3. Additional characteristics of the Tackaberry–Muller system.
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coefficient terms have a range from 210 to þ10 (for optical
systems normalized to a focal length of 1).

5.2. Glass mutation operation

The numerical parameter values for distance and the radius of
curvature of a lens can each be established using the standard
technique of perturbable numerical values. These perturbable
numerical values are perturbed during the run using the stan-
dard method in genetic programming for numerical pa-
rameter mutation. In this standard method, each perturbable
numerical value is set, individually and separately, to a ran-
dom value in a chosen range in the initial generation of a
run (generation 0). After generation 0, the perturbable numer-
ical value may be perturbed. The perturbation is usually rela-
tively small. The value to be perturbed is considered to be the
mean of a Gaussian distribution. A relatively small preset pa-
rameter establishes the standard deviation of the Gaussian
distribution. The value to be perturbed is then perturbed by
an amount determined by the Gaussian distribution.

However, the standard method for perturbing numerical val-
ues cannot be readily used when mutating materials (e.g., types
of glass). In optical design, each type of material is characterized
by a set of wavelength-dependent indices of refraction, its Abbe
number, and its cost. The Abbe numbers and indices of refrac-
tion are interrelated, and therefore cannot be independently var-
ied with total freedom. The 199 commercially available glasses
in the Schott catalog reside in a relatively small and compact
crescent-shaped area occupying only about 27% of the area of
the rectangle bounded by the extreme values of n and V for
the catalog, namely, 1.46 , n , 2.02 and 20 , V , 77. The
optical designer usually cannot freely choose numerical values
for the materials to be used, but must, instead, limit the choices
to the relatively small number of commercially available types of
materials. This limitation is not just a matter of the higher cost of
manufacturing a custom type of glass because it may not be pos-
sible to manufacture a type of glass with an arbitrarily chosen
Abbe number and a set of arbitrarily chosen indices of refraction
for particular wavelengths. Accordingly, our mutation operation
for materials changes one type of material in the chosen catalog
to another type of material in the catalog whose properties are
nearby in the multidimensional space of properties.

5.3. Toroidal mutation operation for the radius
of curvature

A flat surface can be viewed as a spherical surface with a very
large positive or negative radius of curvature. That is, a very
large positive or negative radius represents the same thing.
Thus, it is advantageous to slightly modify the standard method
used in genetic programming for numerical parameter mutation
when perturbing the radius of curvature. Accordingly, our nu-
merical parameter mutation operation for curvatures operates
in a toroidal way (wrapping þ15 to 215) when it is applied
to a terminal representing the radius of curvature.

5.4. Lens splitting operation

A lens-splitting operation appears to be useful for the field
of optical design. The lens-splitting operation is performed
on a single parent selected probabilistically from the popu-
lation based on its fitness. The lens-splitting operation re-
places one randomly picked lens with two new lenses. Fig-
ure 4 shows an illustrative lens system, and Figure 5 shows
the result of applying the lens-splitting operation. The
thickness of each of the two new lenses is half of the
thickness of the original lens. The radius of curvature of
the first surface of the first new lens is set equal to the ra-
dius of curvature of the first surface of the original lens.
The second surface of the first new lens (which is the
same as the first surface of the second new lens) is flat.
The radius of curvature of the second surface of the second
new lens is set equal to the radius of curvature of the sec-
ond surface of the original lens. When the original lens is a
single lens (as is the case in Fig. 5), the result of the lens
splitting operation is a doublet lens (as shown in Fig. 5).
The lens-splitting operation is intended to be optically neu-
tral (and, hence, does not change the fitness of the lens
system involved). The one exception occurs if half of the
thickness is less than the minimum permissible lens thick-
ness. In that event, the thickness of each new lens is set to
the minimum (and the overall length of the lens system is
slightly increased). Note that because of the toroidal behav-
ior of the numerical parameter mutation operation, the
newly created flat surface has an equal probability of being
perturbed to a negative or positive radius of curvature
when it is first mutated.

The motivation for the lens-splitting operation is that the
insertion of additional surfaces or lenses by means of

Fig. 4. Lens system before lens-splitting operation.

Fig. 5. Lens system after lens-splitting operation.
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crossover rarely yields an improved individual. The lens-
splitting operation creates an offspring that almost always
has the same (reasonably good) fitness as its parent. It thus in-
troduces topological diversity without changing fitness. Sub-
sequent glass mutations or numerical mutations of the dis-
tance or radius of curvature can then be done gradually.

6. FOUR PATENTED LENS SYSTEMS

This paper is concerned with four previously patented eye-
pieces:

† the 1985 Nagler patent (Nagler, 1985),
† the 1968 Scidmore patent (Scidmore, 1968),
† the 2000 Koizumi–Watanabe patent (Koizumi & Wata-

nabe, 2000), and
† the 1940 Konig patent (Konig, 1940) and the related

1958 Tackaberry–Muller patent (Tackaberry & Muller,
1958).

The Tackaberry–Muller patent (Tackaberry & Muller,
1958) cites the 1940 Konig patent (Konig, 1940) and the for-
mer is a special case of the latter.

Each patent document contains the inventor’s high-level
design goals, a detailed specification of the invention, one
or more independent claims (usually with an associated pre-
scription), and a diagram of the optical lens system.

7. PREPARATORY STEPS FOR APPLYING
GENETIC PROGRAMMING TO OPTICAL
DESIGN

Genetic programming starts from a high-level statement of
the requirements of a problem and attempts to produce a com-
puter program that solves the problem.

The human user communicates the high-level statement of
the problem to the genetic programming system by perform-
ing certain well-defined preparatory steps.

The five major preparatory steps for genetic programming
require the human user to specify

1. the set of primitive functions for the program being
evolved,

2. the set of terminals (e.g., the independent variables of
the problem, zero-argument functions, perturbable nu-
merical values, and random constants) for the program
being evolved,

3. the fitness measure (for explicitly or implicitly measur-
ing the fitness of individuals in the population),

4. certain parameters for controlling the run, and
5. the termination criterion and method for designating the

result of the run.

The first two preparatory steps specify the programmatic
ingredients (i.e., the functions and terminals) that are avail-
able to create programs that represent optical lens systems.

The representation scheme for optical lens systems is defined
by the functions, terminals, and the constrained syntactic
structure specifying the allowable combinations of the func-
tions and terminals. The run of genetic programming is a
competitive search through a space of programs composed
of the available functions and terminals.

The third preparatory step concerns the fitness measure for
the problem. The fitness measure is the primary mechanism
for communicating the high-level statement of the problem’s
requirements to the genetic programming system. The fitness
measure specifies what needs to be done. The first two pre-
paratory steps define the search space, whereas the fitness
measure specifies the direction of the search.

7.1. Function Set

The first preparatory step in applying genetic programming
involves identifying the function set for the programs to be
evolved. The same function set is used for all the problems
presented in this paper.

The widely used and well-established format for optical
prescriptions (and lens files for optical analysis software)
suggests a developmental process suitable for representing
optical lens systems. This developmental representation
employs a “turtle” similar to that used in Lindenmayer
systems (Lindenmayer, 1968; Prusinkiewicz & Linden-
mayer, 1990). A turtle was used in our previous work
in synthesizing geometric patterns using developmental
genetic programming (Koza, 1993) and in synthesizing
antennas using developmental genetic programming (Co-
misky, Yu, & Koza, 2000; Koza, Keane, Streeter, Mydlo-
wec, Yu, & Lanza, 2003a).

In our developmental representation for optical lens sys-
tems, the turtle starts at the point where the system’s main
axis intersects with the EP surface (point g in Fig. 6) and in-
serts optical surfaces and materials as it moves. The distance
between point g and point e (where the EP surface intersects
the system’s main axis b) defines the eye relief of the system.
Figure 6 shows the beginnings of the Tackaberry–Muller lens
system shown of Figure 1 (where the eye relief is 0.88 mm).

The function set F contains two functions

F ¼ {SS, PROGN2}

Fig. 6. Turtle starts at point g along main axis b.
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The three-argument spherical surface (SS) function causes
the turtle to do three things at its starting point (and each sub-
sequent point to which the turtle moves). First, it inserts a
spherical surface with a specified radius of curvature at the
turtle’s present location. Second, the SS function moves the
turtle to the right by a specified distance along the system’s
main axis. Third, the SS function fills the space to the right
of the just-added surface with a specified type of material
(e.g., air, vacuum, glass, polymer, oil, other material).

Radius and distance values are each established by a value-
setting subtree of the SS function consisting of a single per-
turbable numerical value.

The material is established by a value-setting subtree of the
SS function consisting of a single terminal identifying the
type of material.

The two-argument PROGN2 function is a connective (glue)
function that first executes its first argument and then exe-
cutes its second argument. It does not itself add anything to
the developing structure.

Figure 7 shows the result of the insertion of spherical surface
1 (with a radius of curvature of 23.52361). After inserting this
surface, the turtle moves the specified distance of 0.219 from its
starting point g to point h along axis line b. BK7 indicates that
glass type BK7 (a commercially available crown glass) will be
used to fill the space between g and whatever surface is
subsequently inserted at point h (by the turtle’s next step).
These actions by the turtle reflect the information contained
on the row labeled surface 1 in the prescription of Table 1.

Figure 8 shows the result of the insertion by the turtle of
spherical surface 2 (with a radius of curvature of 21.05274).
After inserting this surface, the turtle moves the specified dis-

tance of 0.07280 from point h to i. Surfaces 1 and 2 together de-
fine a lens of thickness 0.219 of BK7 glass. Because the centers
of the two spheres defining surfaces 1 and 2 are both positioned
in the negative direction (i.e., to the left) along the axis b, this
first lens has a concave left surface and a convex right surface.
Note that the material inserted to the right of surface 2 is air.
That is, air will be used to fill the space between h and whatever
surface is subsequently inserted at point i (by the turtle’s next
step). These actions by the turtle reflect the row labeled surface
2 in the prescription in Table 1.

In a similar manner, the rows labeled surfaces 3 and 4 in the
prescription of Table 1 correspond to a second lens of BK7
glass (as shown in Fig. 9).

Figure 9 also shows the result of the insertion by the turtle
of spherical surface 5 (with a radius of curvature of 1.02491).
The turtle moves a distance of 0.52100 from point k to l. BK7
glass will be used to fill the space between k and whatever
surface is subsequently inserted at point l (by the turtle’s
next step). These actions by the turtle reflect the row labeled
surface 5 in the prescription of Table 1.

Figure 10 shows the result of the insertion by the turtle of
spherical surface 6 (with a radius of curvature of 20.93493).
The turtle moves a distance of 0.11800 from point l to m. SF4
glass is used to fill the space between l and whatever surface is
subsequently inserted at point m (by the turtle’s next step).
Surfaces 5 and 6 together define a lens of thickness
0.52100 of BK7 glass. The positive radius of surface 5 and
the negative radius of surface 6 together indicate that the third
lens is biconvex. These actions by the turtle reflect the row
labeled surface 6 in the prescription of Table 1. Note that a
pair of snuggly fitting lens is being formed by this step

Fig. 7. Turtle inserts surface 1.

Fig. 8. Turtle inserts surface 2, thereby completing the first lens.

Fig. 9. Turtle inserts surface 5.

Fig. 10. Turtle inserts surface 6, thereby completing third lens.
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because glass, as opposed to air, is filling the space between
points l and m. These actions by the turtle reflect the row
labeled surface 6 in the prescription of Table 1.

Figure 11 shows the result of the insertion by the turtle
of spherical surface 7 (with a radius of curvature of
7.94281). Air is used to fill the space between m and what-
ever surface may be subsequently inserted. The turtle
moves a distance of 0.47485 starting from point m. Sur-
faces 6 and 7 together define a lens of thickness 0.11800 of
SF4 glass. Because there was no air between the third lens
and this new lens, a doublet is formed. The negative radius
of surface 6 and the positive radius of surface 7 together
indicate that the right lens of the doublet is biconcave.
These actions by the turtle reflect the row labeled surface
7 in the prescription of Table 1. Because there are no ad-
ditional surfaces in the prescription, the developmental
process ends at this stage. The IMS is automatically insert-
ed where the turtle is now located (i.e., at distance
0.47485 from point m).

7.2. Terminal Set

The second preparatory step in applying genetic program-
ming involves identifying the terminal set for the programs
to be evolved. The same terminal set is used for all the prob-
lems presented in this paper.

The terminal set for each value-setting subtree that estab-
lishes thickness or radius values (Tperturbable) is

Tperturbable ¼ {R},

where R denotes perturbable numerical values between 0.0
and 1.0. The value produced by the value-setting subtree is
interpreted using a scale that is appropriate for whether the
terminal is being used for a surface’s thickness or a radius
of curvature.

The terminal set for each value-setting subtree that estab-
lishes the type of material (Tmaterial) consists of the names of
all of the permissible materials.

A constrained syntactic structure specifies how the func-
tions and terminals may be combined in a program tree. A
constrained syntactic structure consists of a set of rules of

construction (Koza, 1992). The constrained syntactic struc-
ture here enforces the occurrence of

† a PROGN2 function at the top of the program tree (be-
cause an optical system consisting of just one surface
is of no interest),

† either an SS or PROGN2 function as the arguments of
the PROGN2 function,

† a single perturbable numerical value for the value-set-
ting subtree that establishes the radius of curvature
(i.e., first argument of the SS function),

† a single perturbable numerical value for the value-set-
ting subtree that establishes the numerical value for dis-
tance (i.e., second argument of the SS function), and

† a single type of material for the value-setting subtree that
establishes material (i.e., third argument of the SS
function).

A given optical lens system can be represented in four
equivalent ways. Each representation is useful in some aspect
of this paper’s discussion of how to apply genetic program-
ming to the design of optical lens systems.

First, there is the schematic diagram of the physical lens
system (such as shown in Fig. 1). This representation provides
a visual picture of the physical lens system.

Second, there is the prescription or lens file (such as shown
in Table 1). This representation corresponds to the traditional
way by which a lens system is described as a table of numer-
ical and nonnumerical parameter values.

Third, there is the program tree consisting of a composition
of functions and terminals. Figure 12 shows a program tree
that represents the first two lenses (four surfaces) of the Tack-
aberry–Muller lens system of Figure 1 and Table 1. Genetic
programming operates on a population of program trees.

Fourth, using the LISP programming language, there is the
symbolic expression (S-expression) consisting of a composi-
tion of functions and terminals. Of the four equivalent repre-
sentations, the S-expression is closest to the representation
used internally by the computer code that implements genetic
programming. The S-expression corresponding to the pro-
gram tree of Figure 12 is shown in the following:

(PROGN2 (PROGN2 (SS -3.523 0.219 BK7)

SS -1.053 0.073 AIR))

(PROGN2 (SS - 4.407 0.225 BK7)

(SS -1.070 0.014 AIR)))

7.3. Fitness measure

The third preparatorystep in applying genetic programming to a
problem involves constructing the fitness measure. The purpose
of the fitness measure is to specify what the human wants. Spe-
cifically, the fitness measure must establish a partial order
among any two candidate lens systems that may be encountered

Fig. 11. Turtle inserts surface 7, thereby completing the forth lens (and
creating a doublet).
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during the run of genetic programming (i.e., the fitness measure
must enable two candidates to be compared so that one is iden-
tified as being better than the other). The fitness measures for
each of the problems presented in this paper are based on the
level of performance of the lens system described in the particu-
lar patent. The fitness measures for each of the problems in this
paper have the same general structure.

Figure 13 shows the steps in ascertaining the fitness of an
individual program tree that may be encountered during the
run of genetic programming. When developmental genetic
programming it used, the ascertainment of fitness begins
with the developmental process. First, the functions in the
program tree are executed and applied to an optical embryo
to create an optical lens system (as will be explained in addi-
tional detail momentarily). Second, the resulting optical lens
system is reexpressed as a prescription (lens file) specifying
the numerical and nonnumerical parameters associated with
each surface in the lens system. Third, the prescription (lens
file) is fed into a simulator to obtain the optical behavior and
characteristics of the lens system. Fourth, a value of fitness is
calculated from the system’s behavior and characteristics.

Once a classical optical system is specified by means of its
prescription (lens file), many of its optical properties can be
calculated by tracing the path of light rays of various wave-
lengths through the system. The ray tracing analysis yields
a set of characteristics of interest to optical designers, includ-
ing distortion, astigmatism, and chromatic aberration. Ray-
tracing analysis by hand is extremely time consuming. Ray
tracing is typically performed nowadays by optical simulation
software (e.g., OSLO, Zemax, Code V, KOJAC). KOJAC is a
public-domain educational software package for optical ray
tracing originally authored by Olivier Scherler and currently
maintained by Olivier Ripoll. We developed our own lens
analysis simulator based on KOJAC to evaluate the perfor-
mance of candidate lens systems. We wrote code to use the
ray traces produced by KOJAC to compute relevant optical
characteristics, and in addition, wrote our own code for the
image analysis. We embedded all of this code in our genetic
programming system operating on our Beowulf-style parallel

cluster computer. We used a commercially available software
package (OSLO from Lambda Research) running on a single
workstation for postrun validation of the final results obtained
from the cluster computer.

Fig. 12. Program tree for first two lenses of Tackaberry–Muller lens system.

Fig. 13. Steps for ascertaining the fitness of an individual program tree.
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Fitness is measured by embedding each candidate lens sys-
tem into a fixed structure called the test fixture. The OBJ,
IMS, and EP lines of the prescription together constitute the
test fixture for evaluating a particular candidate lens system.
For the eyepieces discussed in this paper, the distance be-
tween the OBJ surface and the EP in the test fixture is fixed
at infinity. The distance between the EP and the first surface
(eye relief) is fixed for each particular problem and appears as
the distance on the line for the EP in the prescription (e.g., the
eye relief is 0.88 mm in Table 1). The concept of test fixture
used in this paper for optical systems is directly analogous to
the test fixture used in connection with the automatic synthe-
sis of electrical circuits by means of genetic programming
(Koza, Bennett, Andre, & Keane, 1999; Koza, Keane, Stre-
eter, Mydlowec, Yu, & Lanza, 2003).

The representation scheme used in this paper for applying
genetic programming to the field of optical design is similar
to that encountered in numerous other fields of design in that
it permits the creation of various types of pathological struc-
tures that are of no practical interest. In the course of discuss-
ing the fitness measure below, we describe how we heavily
penalize, slightly penalize, or repair various pathological
structures.

The fitness measure is, for practical design problems in
most fields, multiobjective in the sense that it combines two
or more different elements. Trade-offs between multiple com-
peting considerations are common to most fields of engineer-
ing design, regardless of whether the design is being accom-
plished by evolutionary search, other types of search, or
human design. The different elements of the fitness measure
are typically in competition with one another to some degree.
This is indeed the case for optical design.

Because of the multiple conflicting objectives inherent in
problems of optical design, the fitness measure is divided
into four distinct phases. Broadly speaking, the four phases
sequentially consider whether

† the system is not degenerate;
† the system’s paraxial aberration performance is at least

as good as that of the target (patented) system;
† the system’s image-forming quality is at least as good as

that of the target (patented) system; and
† the system is parsimonious, that is, it has the same or

fewer lenses as the target (patented) system.

Numerical and Boolean values are both computed for each
of the four phases. That is, fitness is a vector of eight items.
The numerical value is used to rank the goodness of a candi-
date individual. The Boolean value indicates whether the in-
dividual satisfies certain minimum performance requirements
specified for the phase. In comparing two individuals, an in-
dividual satisfying the minimum requirements of a phase
(i.e., has a positive Boolean value) is considered superior to
any individual that does not. In addition, an individual with
a lower numerical value for a particular phase is considered

superior to an individual with a higher numerical value for
that phase.

To conserve computer time, the fitness evaluation of an in-
dividual not satisfying the minimum requirements of a par-
ticular phase (i.e., has a negative Boolean value) is short
circuited (i.e., simply not evaluated in later phases).

As will be seen, construction of the fitness measure re-
quires consideration of the technical requirements of the field
of optical design.

The goal of the first phase of the fitness measure is to de-
termine if a candidate lens system has two particular patho-
logical characteristics, namely, whether the lens system is “all
air” or whether glass abuts the IMS. Figure 14 shows an
all-air system. An all-air system is created when air is speci-
fied as the material associated with every surface. Such an in-
dividual is of no interest, and receives an extremely high nu-
merical penalty value for fitness (10100) that effectively
eliminates it from further serious consideration.

Figure 15 shows a lens system in which glass abuts the
IMS. Such an individual is considered infeasible for the prob-
lems under consideration here, and this individual accord-
ingly receives a large numerical penalty (500,000), reflecting
its infeasibility. Some search is conducted outside the range
of feasible structures in the hope that a desirable feasible in-
dividual may subsequently emerge. A large infeasibility pen-
alty greatly reduces the likelihood that an individual will be
selected to participate in a genetic operation; however, it
does not entirely exclude an individual from further consid-
eration. Infeasible individuals participate (to a diminished de-
gree) in the genetic search.

For the first phase, the Boolean value is negative for an in-
dividual with a numerical value of fitness of 10100 and

Fig. 14. All-air optical system.

Fig. 15. Suspension passive physical structure design alternative 3.
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positive otherwise (i.e., those with a numerical value of 0 or
500,000). If a lens system does not have either of the above
two pathologies, it is assigned a numerical fitness of 0 for
the first phase.

The goal of the second phase of the fitness measure is to
determine if the values of aberration and paraxial coefficients
are at least as good as those of the target system, without vig-
netting (i.e., physically blocking some percentage of the in-
coming light), without modifying the system F-number
(i.e., the ratio of the size of the effective EP to the focal length
of the system), and without excessive distortion.

The second phase of the fitness measure involves an anal-
ysis of 62 rays. The 62 rays are considered in three separate
groups:

† the system’s two principle rays (i.e., the axial ray and
chief ray),

† 20 rays traced along a radial axis to determine the distor-
tion curve for the lens system, and

† 40 rays (20 tangential and 20 sagittal) from the full FOV
OBJ position to analyze vignetting.

The first of these groups of rays is used to derive the
system’s aberration and paraxial coefficients, the second is
used to measure distortion, and the third verifies that the sys-
tem’s aberration and paraxial performance was not achieved
through the artifice of vignetting.

We first consider the system’s two principle rays. Two
pathological situations sometimes arise in tracing the axial and
chief rays.

First, Figure 16 shows a divergent lens system in which the
chief ray, d, does not hit the IMS at all. Ray traces also fail in
other ways. For example, a ray trace is considered to fail if the
light rays do not hit all surfaces of the system (including the
final IMS) within the window determined by the eyepiece’s
maximum image size or if a ray hits the surfaces out of order.
If either the axial or chief ray traces fail, the individual re-
ceives an extremely high numerical penalty value for fitness
(10100).

Second, Figure 17 shows a lens system in which the back
focal length is negative (i.e., the image ends up inside the lens
system). Such an individual receives a large numerical pen-
alty equal to 500,000 plus 500,000 times the distance by
which the back focal length is offset.

In the second phase, if a lens system does not have either of
the above two pathologies, its performance is compared to
that of the target (patented) lens system and a weighted
sum of the deviations between the systems is computed. Spe-
cifically, the weighted sum is

† 10,000 times each of the Seidel aberration deviations,
namely, spherical aberration, coma, astigmatism, field
curvature (Petzval sum), and Seidel distortion;

† 20,000 times each of the chromatic deviations, namely,
axial chromatic and lateral chromatic;

† if the back focal length is less than the target value, 10
times the absolute deviation of the back focal length
from the target value; and

† if the Petzval radius is less than the target value, 25 times
the absolute deviation of Petzval radius from the target
value and 100 times the absolute deviation of the effec-
tive focal length from the target value.

The particular weightings above were chosen to approxi-
mately equalize, based on our own advance estimates, the rel-
ative influence of deviations from the various elements of the
fitness measure. This approach is patterned after our recent
work with multiobjective fitness measures in the field of au-
tomatic circuit synthesis (Koza, Jones, Keane, Streeter, & Al-
Sakran 2004).

We now consider the 20 rays traced along a radial axis to de-
termine the distortion curve for the lens system. For this analysis,
20 rays are traced along the OBJ tangential axis of the system,
starting from the axial ray and extending out to the chief ray.

The distortion percentage is calculated at each position as
the percent deviation from where the ray strikes the image
plane and where it would strike an ideal image. An ideal im-
age is one where the following constraints are met: if the co-
ordinates of the OBJ point O from which the ray being cast
originates are (hy, hx) and those of the point O0 where the
ray terminates on the image plane are (hy

0, hx
0), the image

of O onto O0 will be considered ideal if hy
0 ¼ mhy and hx

0

¼ mhx, where m is the magnification of the image and is in-
dependent of hy and hx. In our case, m is a paraxial constant
determined by dividing the image height (point q in Fig. 1)
ascertained by the chief ray intersection of the image plane
by the corresponding height in the OBJ plane where the chief
ray originated. The distortion curve is then comprised of the
distortion percentage values at each of the 20 rays along theFig. 16. Chief ray fails to hit IMS.

Fig. 17. Negative back focal length.
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tangential axis of the system. The system is penalized for de-
viation at two specific points of the curve, with the first being
at the chief ray’s image height and the second being the max-
imum distortion value along the length of the curve defined
by the 19 other ray traces. The numerical fitness value for
the second phase is incremented by 100 times the deviation
of each of these values with those corresponding in the target
system (but only if the distortion is greater than that the target
system).

Whenever a search (genetic or otherwise) is conducted un-
der the direction of a fitness measure, there is the possibility
that improvements can be achieved in a way that is of no prac-
tical interest. Experience indicates that a low value of the
above weighted sum can be obtained through the artifice of
modifying the system’s F number or by vignetting. To coun-
ter these two forms of what is often called “cheating,” the
above weighted sum is adjusted in one of two ways.

For the vignetting analysis, we consider 40 rays (20 tangen-
tial and 20 sagittal) traced along the tangential and sagittal
planes from the axis to the edge of the EP originating from
the full FOV of the OBJ. The system is assumed to be symmet-
ric across each of the axis. If any ray does not hit all surfaces of
the system (including the final IMS) within the window deter-
mined by the eyepiece’s maximum image size or if a ray hits the
surfaces out of order, the system is said to vignette. The vignet-
ting percentage is defined as the percentage of rays that vignette.
The numerical fitness value accumulated so far for the second
phase is divided by 100% minus this percentage (i.e., it multi-
plies the fitness value accumulated so far).

The F-number of the system is defined as the effective focal
length divided by the aperture of the EP. It is easier to minimize
the numerical value of fitness (because of aberrations) from the
second phase if the F-number is larger because the proportion
of light the system processes is decreased.

For the second phase, the Boolean value is positive if the
first seven values of the weighted sum (i.e., the five Seidel
aberrations and the two chromatic deviations) equal 0, if the
individual has not been assigned numerical value of fitness
of 10100, if the effective focal length is not greater than
110% of the target value for effective focal length, and if
no vignetting has occurred. Otherwise, the Boolean value is
negative.

Returning to the discussion of pathological cases, certain
combinations of values for distance and the radius of curva-
ture may result in a lens system in which two lenses physi-

cally intersect. For example, Figure 18 shows a physical inter-
section of the two lenses defined by surfaces 5, 6, and 7. In
such cases, we determine the maximum aperture that avoids
the intersecting glass. We then pass the repaired individual
(with reduced aperture) to the simulator. Experience indicates
that the simulator will often successfully evaluate such indi-
viduals. As usual, if either chief ray or the axial ray falls be-
yond the maximum aperture, the numerical fitness value for
the second phase is set to 10100 for the candidate individual.

Figure 19 shows another pathological case, called a marble.
In this figure, the diameter of sphere 5 is smaller than the hous-
ing for the lens system, so that the sphere hovers in space.

Similarly, in Figure 20, two surfaces (5 and 6) define a
hovering lens whose diameter is smaller than the housing for
the lens system.Because lenses cannot hover in space, an opaque
mounting is added above and below the lens. The mounting
redefines (and reduces) the aperture. If either chief ray or
the axial ray falls beyond the maximum aperture of surfaces
5 and 6, the numerical fitness value for the second phase is
set to 10100 for the candidate individual.

The goal of the third phase of the fitness measure is to es-
tablish that the system’s image-forming quality to be at least
as good as that of the target (patented) system.

A 17 � 17 grid is overlaid on the EP and a ray is shot
through the corner defining each grid position contained in-
side the EP. A three-color spot diagram is then formed and
evaluated. Several other system metrics are derived from
these data, including modulation transfer functions (MTFs)
and point spread functions.

Figure 21a–c shows gray scale versions of a three-color spot
diagram for the Tackaberry–Muller system. The rays from each
FOV position in the figure are traced for each of three

Fig. 18. Intersecting lenses within a doublet.

Fig. 19. A spherical marble.

Fig. 20. Another example of a marble.
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wavelengths (486, 588, and 656 nm) and projected through the
system onto the image plane. Figure 21a shows the trace from
the axial point. Figure 21b shows the trace from the 70% of
the FOV. Figure 21c shows the full FOV performance.

The spot diagram provides a measure of the deviation re-
sulting from the compound error of the chosen lens aberration
contributions. An ideal diffraction limit spot size (corre-
sponding to the minimum spot size that can be discernable
when diffraction effects are taken into account) is determined
for the system and the root mean square (RMS) error for the
ray intercept deviations is calculated. The numerical fitness
value for the third phase is incremented by 200, 340, and
400 times the difference between the target RMS error for
the axial, 70% FOV and full FOV, respectively. These differ-
ent penalty multipliers reflect the increasing difficulty in
attaining the desired performance.

An MTF measures the contrast and resolution differences
between the OBJ and the image for a specified plane and
FOV. Figure 22 shows the six MTFs for the Tackaberry–
Muller system in the tangential and sagittal planes of each
of the three FOV positions used for the spot diagrams. Each
curve is sampled at 30 increments of 10 cycles/mm across
the target system. We obtain the same six MTFs for the can-
didate lens system. The numerical fitness value for the third
phase is further incremented by a sum over the 30 points
for each of the six MTFs. Each addend in this sum consists

of a weight and the amount (if any) by which the MTF of
the candidate individual is worse than the MTF of the target
system. There is no contribution if the candidate individual is
better than the target system. The weights are 0.5 for the sag-
ittal-axial, 1.0 for the tangential-axial, 1.0 for the sagittal
70% field, 2.0 for the tangential 70% field, 2.0 for the sagittal
full field, and 4.0 for the tangential full field.

For the third phase, the Boolean value is positive if the val-
ues for the RMS error for the spot diagram are equal or less
than those of the target system and the weighted cumulative
error across the MTF curves is no larger than 5%.

The goal of the fourth phase of the fitness measure is par-
simony. The parsimony penalty is the sum of 20 times the
number of lenses plus the width of the lens system (its foot-
print) measured in millimeters.

If desired, the cost of the glass (found in the glass catalog)
can be considered in this fourth phase.

For the fourth phase, the Boolean value is positive if the
lens system has a better value of the parsimony penalty
than the target (patented) system, but negative otherwise.

To conserve computer time, if an “all-air” optical system is
encountered in the process of creating the initial generation of
the population (generation 0), it is immediately deleted from
the population and a replacement is created.

All fitness calculations are done with double precision
arithmetic.

The runs of genetic programming described in this paper
starts with an initial population that is randomly created
from the available functions and terminals. About 94.6% of
the randomly created individuals are pathological in some
way and cannot be simulated. If we retained these individuals
in the population for generation 0 (say, penalizing them heav-
ily because of their unsimulatability), we would be limiting
the genetic material available for crossovers and mutation
to only about 1/20 of what it might be. Thus, in creating
the initial random generation, we continue generating the re-
quired number of individuals until 100% of the generation 0
is simulatable. Because simulatable individuals tend to breed
simulatable offspring (an observation applicable to the design
of analog electrical circuits, antenna, and controllers as well
as the design of optical lens systems), the issue of unsimulat-
ability is not a substantial concern in later generations.

7.4. Control parameters

The fourth preparatory step in applying genetic programming
to a problem entails specifying the control parameters for the
run.

The crossover operation is usually predominant in runs of
genetic programming (typically being performed at rates such
as 80 or 90%). However, because there is only one active
function (SS) in the function set used for the optical design
work described in this paper and all arguments of this one
function are terminals, perturbation of parameters (numerical
and nonnumerical) is far more important than usual. Accord-
ingly, we performed numerical parameter mutation at a rate of

Fig. 21. Gray scale versions of spot diagrams.

Fig. 22. Modulation transfer functions.
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32%, glass mutation at a rate of 22%, lens splitting at a rate of
10%, crossover at a rate of 32%, reproduction at a rate of 3%,
and subtree mutation at a rate of 1%.

The standard deviation for the Gaussian distributions used
for numerical parameter mutation was 0.1. In glass mutation,
there is a 10% probability of air mutating into a type of glass
and vice versa.

The maximum number of points in a program tree is 1000.
In creating generation 0, the SS function was twice as likely
as the PROGN2 function.

Tournament selection (with a group size of 2) was used. Elit-
ism (i.e., the automatic reproduction of the single best individ-
ual on each processing node) was used. In crossover, the prob-
ability of choosing a terminal is 40% and a nonterminal is 60%.

We used the Schott Glass Catalog (containing 199 types of
glass).

We partitioned our Beowulf-style computer cluster into
five parts for the problems of optical design in this paper.
The population size was substantially the same for all prob-
lems in this paper (2000 individuals for each of 134 process-
ing nodes for a total of 268,000 individuals). Slight differ-
ences in population arose because of the unequal number of
active nodes in each of the five partitions.

7.5. Termination

The fifth preparatory step in applying genetic programming to
a problem consists of specifying the termination criterion and
the method of designating the result of the run. In general, the
termination criterion may include a maximum number of gen-
erations to be run as well as a problem-specific success predi-
cate. For the work described in this paper, we manually mon-
itored the run and terminated the run when the values of
fitness for numerous successive best of generation individuals
appeared to have reached a plateau. The single best so far in-
dividual was then harvested and designated as the result of the
run. For each run, the stated result was the smallest fully com-
pliant individual produced.

7.6. Preparatory steps

Table 2 summarizes the preparatory steps for runs of genetic
programming used to automatically synthesize optical lens
systems that duplicate (or improve upon) the functionality
of the patented optical lens systems presented in this paper.

8. RESULTS FOR THE FOUR PATENTED
OPTICAL LENS SYSTEMS

As will be seen in this section, one of the genetically evolved
lens systems infringed a previously issued patent, whereas the
others were noninfringing novel designs that duplicated (or
improved upon) the performance specifications contained in
the patents. The noninfringing novel designs can be consid-
ered new inventions.

8.1. Nagler eyepiece

Figure 23 shows the patented Nagler lens system (Nagler
1985). This system has four groups of lenses containing a to-
tal of six lenses.

Each run of genetic programming in this paper starts with
an initial population (generation 0) in which each individual
in the population is randomly created from the available func-
tions and terminals. That is, the runs of genetic programming
start ab initio (as opposed to starting with a human-designed
good lens system).

Table 2. Preparatory steps for runs of genetic programming

Objective: Design an optical lens system that duplicates (or
improves upon) the functionality of the patented
optical lens system.

Test fixture: A lens system (with no lenses) containing an object
surface (OBJ), an image surface (IMS) and an
entry pupil (EP).

Developmental
process:

A turtle starts on the axis at a specified distance from
the entry pupil (the eye relief) and inserts spherical
surfaces and materials as the turtle moves to the
right.

Program
architecture:

One result-producing branch. Automatically defined
functions and architecture-altering operations are
not used.

Function set: F¼ fSS, PROGN2g.
The three-argument SS function inserts a spherical

surface and material into a developing optical
system.

The two-argument PROGN2 function is a connective
function.

Terminal set: The terminal set for establishing distance and radius
values consists of perturbable numerical values.

The terminal set for establishing the type of material
consists of the names of all of the permissible
materials.

Fitness: A multiobjective fitness measure incorporating
various optical characteristics obtained from a ray-
tracing simulator.

Parameters: Population size M¼ 268,000.
Result designation: Best so far individual
Termination: Manual termination of the run when the values of

fitness for numerous successive best of generation
individuals appeared to have reached a plateau

Fig. 23. Nagler patent.
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For nontrivial problems, the individuals in the population
at generation 0 of a run of genetic programming are invariably
poor in terms of satisfying the problem’s requirements. This
was indeed the case for the Nagler problem. The best of gen-
eration individual from the initial random population (genera-
tion 0) and consisted of a lens system with one lens (Fig. 24).
This individual has a numerical value of fitness of 222 for the
second phase of the fitness measure but a negative Boolean
value (i.e., it does not satisfy the requirements of the second
phase of the fitness measure).

The number of lenses in the best lens system produced by a
run of genetic programming is not prespecified by the human
user. Instead, the number of lenses (as well as their topological
arrangement and the numerical and nonnumerical parameters
associated with each lens) emerge during the evolutionary pro-
cess in an automated way. The first best of generation individual
with two groups of lens occurred in generation 29 (with a nu-
merical value of fitness of 102 and a negative Boolean value
for the second phase of the fitness measure). That is, the best
of generation lens system from generation 29 has better perfor-
mance than the best of generation individual from generation 0,
although it has not satisfied the performance requirements of
the second phase of the fitness measure.

Although the best of generation individual from generation
0 is poor in terms of satisfying the problem’s requirements,
the single lens provides a toehold that enables the evolution-
ary process to proceed.

A two-group topology (with four lenses) appeared as the
best of generation individual of generation 35 (Fig. 25). This
individual had a numerical value of fitness of 57 and a negative
Boolean value for the second phase of the fitness measure).

As the run continued, best of run individuals emerged with
three and four groups of lenses (with the largest group con-
taining four lenses).

The first best of generation individual that has a numerical
value of fitness of 0 and a positive Boolean value for the sec-
ond phase of the fitness measure appeared in generation 124.
It has a numerical value of fitness of 204 and a negative Boo-
lean value for the third phase of the fitness measure. This lens
system (Fig. 26) consisted of three groups, with two, four, and
five lenses in the three groups, respectively.

Different two- and three-group arrangements appeared
over approximately the next 100 generations, whereas three-
and four-group arrangements dominated for approximately
150 generations.

Figure 27 shows the best of generation individual of gen-
eration 382. This individual is the last pace-setting individual
with a numerical value of fitness of 21 and a negative Boo-
lean value for the third phase of the fitness measure.

The first best of generation individual with a numerical value
of fitness of 0 and a positive Boolean value for the third phase of
the fitness measure appeared in generation 330. This individual
consisted of a singlet and a triplet and has a parsimony fitness of
104. Parsimony was thus relevant for all later pace-setting indi-
viduals. As the run continued, the total size of the system and
the remaining residual errors were reduced.

Figure 28 shows the best of run lens system from genera-
tion 495 of the Nagler problem. This lens system has two
groups of lenses, one singlet and one triplet.

Table 3 shows the prescription (lens file) for the best of run
individual from generation 495. Note that there is an air sur-
face (surface 1) at the front of the lens system (surface 1 in the
table). Thus, the air that was built into the system in the form

Fig. 24. Best of generation 0 for the Nagler problem.

Fig. 25. Best of generation 35 for the Nagler problem.

Fig. 26. Best of generation 124 for the Nagler problem.

Fig. 27. Best of generation 382 for the Nagler problem.
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of the eye relief (the 0.5 mm of air on the “EP” line of the ta-
ble) is added to the air created by this air surface (the 0.19 mm
of air for surface 1). The result is to increase the eye relief by
38% (from 0.5 to 0.69). Note that the radius of curvature is
irrelevant when a surface is air.

Table 4 compares characteristics of the best of run individ-
ual from generation 495 with those of the patented lens sys-
tem for the Nagler problem. As can be seen in the table, the
evolved individual is comparable to the Nagler lens system
for each characteristic in the table (and superior in all but
five instances).

Note that in Table 4, the patented lens systems always
scores a value of zero for all of the MTF measurements,
and that a value of zero for the evolved solution indicates
that the evolved solution is equal to, or superior to, the pa-
tented system in that respect. In addition, note that the last
nine lines of Table 4 (and other similar comparison tables
later in this paper) are measured quantities that are not part
of the fitness measure.

The best of run individual from generation 495 for the Nag-
ler problem differs considerably from Nagler’s patented in-
vention (Nagler, 1985), and therefore does not infringe the
patent. However, as shown in Table 5, the inventor’s design
goals, as stated in the patent, are achieved. As can be seen
in the table, the Nagler patent focused on a wide FOV and
a specific performance (low astigmatism).

Thus, the best of run lens individual from generation 495
accomplished the inventor’s design goals in addition to being
superior to the lens system in the Nagler patent for each char-

acteristic in the Table 4. Therefore, the best of run lens indi-
vidual from generation 495 is a noninfringing novel design
that duplicates (and indeed improves upon) the performance
specifications for invention, that is, the evolved lens system
can be considered as a new invention.

The best of run lens individual from generation 495 has
the unexpected benefit of having two fewer lenses. That is,
the portion of the fitness measure devoted to parsimony
was successful in directing the genetic search to a
parsimonious lens system that satisfied the problem’s
requirements.

Fig. 28. Best of run lens system from generation 495 for the Nagler problem.

Table 3. Lens file for best of run lens system
from generation 495 for the Nagler problem

Surface Distance Radius Material Aperture

OBJ 1010 Flat Air
EP 0.5 Flat Air 0.098615
1 0.190362 2.651701 Air 0.448719
2 0.322134 214.948329 LAK21 0.691494
3 0.050000 21.493656 Air 0.691494
4 0.420184 1.627528 LAFN21 0.704655
5 0.100000 21.079922 SF57 0.704655
6 0.773284 1.648485 LASFN15 0.704655
7 0.161123 2.723813 Air 0.704655

IMS Flat 0.687515

Table 4. Comparison of characteristics of the patented Nagler
system and best of run individual from generation 495

Nagler Patent Evolved Solution

Spherical aberration 20.000467 20.000419
Coma 0.000365 0.000017097
Astigmatism 0.004094 0.003000
Petzval 20.012140 20.011745
Distortion 20.214273 20.205194
Distortion (%) 21.655 21.421
Max distortion (%) 21.655 21.421
Axial chromatic 0.000243 0.000119
Lateral chromatic 20.001698 20.001372
Spot RMS

Axial error 0.0 0.0
70% FOV error 0.40212 0.39901
Full field error 0.54564 0.54424

MTF axial
Tangential 0 0
Sagittal 0 0

MTF 70%
Tangential 0 0
Sagittal 0 0

MTF full
Tangential 0 (Residual error)
Sagittal 0 0

Peak–valley OPD axial 0.01971 0.01772
RMS OPD axial 0.006045 0.005431
Peak–valley OPD 70% 0.3067 0.3181
RMS OPD 70% 0.07773 0.07909
Peak–valley OPD full 0.5511 0.5985
RMS OPD full 0.1393 0.1473
0 Peak PSF

Axial 0.999 0.999
70% field 0.755 0.755
Full field 0.5 0.27

Table 5. Design goals of the Nagler patent

Nagler Patent Evolved Solution

Very wide field of view (.708) Field of view extends to 708
Reduced astigmatism at the edge of

the field
Lens system has very low

astigmatism in image
Low aberration contributions Evolved individual has equivalent

performance
Six lenses Only four lenses
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Another unexpected benefit is the 38% larger eye relief of
the best of run lens individual from generation 495. This ben-
efit is remarkable because this characteristic was not an expli-
cit part of the fitness measure. It is an example of the fact that
the evolutionary process sometimes rewards the user with
something beyond that which was explicitly requested by
the fitness measure.

8.2. Scidmore eyepiece

Figure 29 shows the patented Scidmore lens system (Scid-
more, 1968). This system has four groups of lenses contain-
ing a total of six lenses.

The best of generation individual of generation 0 of the
Scidmore problem has a fitness of 777 and consisted of a
lens system with one lens (Fig. 30). Similarly, the best of gen-
eration individuals for the next seven generations has one
lens; the best of generation individuals between generations
8 and 31 have two lenses; and the best of generation individ-
ual until generation 49 has three lenses. A wide variety of
topologies appeared between generations 50 and 98, most
having four groups of lenses.

Figure 30 shows the best of run lens system from genera-
tion 194 for the Scidmore problem.

Table 6 shows the lens file for best of run lens system from
generation 194 for the Scidmore problem.

The genetically evolved lens system is comparable to the
patented lens system for each of the characteristics listed in
Table 4 and, in fact, is superior in all but four instances.

The best of run lens individual from generation 194 for the
Scidmore problem differs considerably from the Scidmore
patent (Scidmore, 1968), and therefore, does not infringe the
patent. However, as shown in Table 7, the inventor’s design
goals, as stated in the patent, are achieved. As can be seen in
the table, the Scidmore patent focused on achieving a minimum
acceptable performance level over a wide FOV and minimizing
the number of surfaces for manufacturing efficiency.

Thus, the best of run lens individual from generation 194 is a
noninfringing novel design that duplicates (and indeed improves
upon) the performance specifications for invention, that is, the
evolved lens system can be considered as a new invention.

8.3. Koizumi–Watanabe eyepiece

Figure 31 shows the patented Koizumi–Watanabe lens system
(Koizumi & Watanabe, 2000), Figure 32 displays the best of
run lens system created by our run of genetic programming in
generation 1026 on the Koizumi–Watanabe problem, and
Table 8 provides the lens file for best of run lens system
from generation 1026 for the Koizumi–Watanabe problem.

The genetically evolved lens system is comparable to the
patented lens system for each of the characteristics listed in
Table 4 and, in fact, is superior in all but four instances.

Fig. 29. Scidmore patent.

Fig. 30. Best of run lens system from generation 194 for the Scidmore
problem.

Table 6. Lens file for the best of run individual
from generation 194 for the Scidmore problem

Surface Distance Radius Material Aperture

OBJ 1010 Flat Air
EP 0.493359 Flat Air 0.125218
1 0.232378 29.30484 SF59 0.501373
2 0.316047 2.973292 LAFN21 0.651134
3 0.068638 21.20292 Air 0.719252
4 0.403009 1.271851 PSK52 0.880533
5 0.02 213.7423 Air 0.880533
6 0.272930 13.23272 LAF2 0.93062
7 0.236531 7.667174 LASFN31 0.93062
8 0.292384 23.490137 Air 0.897563
9 0.1 21.062511 SF53 0.851483

10 0.001989 214.95792 Air 0.724261
IMS Flat 0.8391

Table 7. Design goals of the Scidmore patent

Scidmore Patent Evolved Solution

Very wide field of view (.808) Field of view extends to 808
Minimize lens elements (six lens

elements in patent)
Evolved individual has six lens

elements
Low aberration contributions Evolved individual has performance

equivalent to patent
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The best of run lens individual from generation 1026 for
the Koizumi–Watanabe problem differs considerably from
the patent (Koizumi & Watanabe, 2000), and therefore,
does not infringe the patent. The best of run lens individual
from generation 1026 accomplished the inventors’ design
goals (Table 9), and is therefore a noninfringing novel design
that duplicates (and indeed improves upon) the performance
specifications for invention—that is, the evolved lens system
can be considered as a new invention.

8.4. Tackaberry–Muller and Konig eyepiece

Figure 1 shows the patented Tackaberry–Muller lens system
(Tackaberry & Muller, 1958), and Table 1 shows the lens
file for the Tackaberry–Muller patent. The 1958 Tacka-
berry–Muller patent cites the 1940 Konig patent (Konig,
1940) and is a special case of it.

Figure 33 illustrates the best of run lens system from gen-
eration 241 for the Tackaberry–Muller problem. This lens
system has only three groups and a total of four lenses.
Table 10 shows the lens file for best of run lens system
from generation 241 for the Tackaberry–Muller problem.

The genetically evolved lens system is comparable to the
patented lens system for each of the characteristics listed in
Table 4 and, in fact, is superior in all but four instances.

The best of run lens individual from generation 241 for the
Tackaberry–Muller problem differs considerably from the pa-
tent (Tackaberry & Muller, 1958), and therefore, does not in-
fringe the patent. However, as shown in Table 11, the inventors’
focus was on achieving a minimum acceptable performance
level over a wide FOV and minimizing the number of surfaces
for manufacturing efficiency. The inventors’ design goals, as

stated in the patent, are achieved by best of run lens individual
from generation 241.

Table 12 compares that the best of run lens system from
generation 241 with claim 1 of the Konig patent (Konig,
1940). As can be seen, the best of run lens system from gen-
eration 241 infringes the Konig patent.

In previously published work (Al-Sakran, Koza, & Jones,
2005), we used a fitness measure that considered fewer char-
acteristics than the fitness measure used herein. In the earlier
work, the topology of the best of run individual (Fig. 34)
matched that of the topology of the Tackaberry–Muller.
That is, in that earlier work, genetic programming succeeded
in evolving a lens system that infringed claim 1 of the Konig
patent (Konig, 1940). In other words, genetic programming
succeeded, in the earlier work, in reinventing a previously pa-
tented invention.

Table 13 compares the features of the best of run lens sys-
tem from that earlier run with claim 1 of the Tackaberry–Mul-
ler patent (Tackaberry & Muller, 1958). The only difference
(a slightly out of range radius of curvature) is apparently be-
cause of the improved performance of the genetically evolved
design compared to the patented 1958 design.

Table 8. Lens file for the best of run individual
from generation 1026 for the Koizumi–Watanabe problem

Surface Distance Radius Material Aperture

OBJ 1010 1010 Air
EP 0.925247 1010 Air 0.106126
1 0.022066 25.936786 Air 0.695573
2 0.192813 27.362778 LAK23C 0.709631
3 0.086376 21.473264 Air 0.790685
4 0.166211 2.663955 SK13 0.820276
5 0.030000 28.744855 Air 0.837020
6 0.100000 3.159402 LAK8 0.840131
7 0.100000 11.381255 SF57 0.835117
8 0.287737 1.354558 LAK31 0.829935
9 0.120000 29.312223 Air 0.829286
10 0.469817 2.506716 LASFN30 0.821380
11 0.151433 22.591650 Air 0.773951
12 0.100000 21.314657 SF58 0.735645
13 0.092526 9.419787 Air 0.651290

IMS 1010 0.642290

Table 9. Design goals of the Koizumi-Watanabe patent

Koizumi–Watanabe Patent Evolved Solution

Wide field of view (.558) Field of view extends to 658
Less than 6% distortion through

full field of view
Max distortion of 5.13%

Less than or equal to six lens
elements

Evolved solution has seven lenses

Low aberration contributions Evolved solution has equivalent
performance to embodiment

Fig. 31. Koizumi–Watanabe patent.

Fig. 32. Best of run lens system from generation 1026 for the Koizumi–
Watanabe problem.
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Additional information may be found in Al-Sakran, Koza,
and Jones (2005); Jones, Al-Sakran, and Koza (2005); and
Koza, Al-Sakran, and Jones (2005a, 2005b).

8.5. Three common features of the four results

The above results have three features in common, namely,

† genetic programming starts small,
† genetic programming breeds simulatability, and
† genetic programming engineers around existing patents

and creates novel designs more frequently than infringe-
ments.

The initial population (generation 0) for a run of genetic
programming is typically created using a probabilistic growth
process for program trees. Generally, this growth process is
structured so as to guarantee the generation of program trees
for generation 0 that span a wide range of sizes and shapes.
There is a loose correlation between program size and the
number of operative parts in the structure (but, of course, it
is entirely possible for a large program tree to have a small
number of operative parts).

The best of generation structure of generation 0 tends to
have a small number of operative parts.

We suggest that the reason that better individuals at the be-
ginning of a run of genetic programming tend to have just one
(or just a few) operative parts is that the probability (in the in-
itial random growth process) of creating a multipart structure

Table 12. Comparison of claims of the Konig patent
and the best of run lens system from generation 241

Claim 1 of Konig Patent Evolved Solution

“An optical system for telescope
eyepieces, comprising a front, a
medial and a rear element, said
elements being convergent and
axially spaced by air,”

The evolved solution contains three
convergent elements (two single
lenses and one doublet lens) and
they are separated by air.

“the sum of the distances apart of
said elements being at most one-
third of the focal length of said
system,”

The focal length of the evolved
system is 0.992298 and the sum of
the distances is 0.09881 (�1/10).

“said rear element being a single
lens, the numerical value of the
curvature of the rear surface of
said lens being smaller than the
numerical value of the refractive
power of said lens,”

The curvature of the rear element
(the lens defined by surfaces 1
and 2) is 0.12229 (i.e.,
1/8.177274) and its refractive
power is 0.49017 (computed by
the standard textbook formula).

“said medial element consisting of at
least one lens and at most two
lenses,”

The medial element (the lenses
defined by surfaces 4–6) is a
doublet lens.

“said front element consisting of at
least one lens,”

The front element (surfaces 7 and 8)
consists of a single lens.

“the front lens of said medial element
and that lens of said front element
which faces this front lens of said
medial element being
convergent,”

These two lenses (viz., the front of
the medial lens defined by
surfaces 5 and 6 and the singlet
defined by surfaces 7 and 8) are
both convergent.

“at least one optically effective
surface of one of said two
convergent lenses being a
cemented surface,”

The doublet lens defined by surfaces
4–6 has a common surface 5.

“the refractive power of one
cemented surface of said two
convergent lenses amounting to at
least eleven twentieths of the
algebraic sum of the refractive
powers of all cemented surfaces of
said convergent lenses,”

The refractive power of the specified
surface is 0.16068. It is also the
only common surface and hence
amounts to the entire sum
described.

“the numerical value of last said sum
being greater than one twelfth of
the sum of the numerical values of
the curvatures of those surfaces of
said convergent lenses which face
each other.”

One-twelfth of the sum corresponds
to 0.033928 and 0.16068 is
greater.

Table 11. Design goals of the Tackaberry–Muller patent

Tackaberry–Muller Patent Evolved Solution

Eyepiece having a flat field Evolved system has a flatter field
Full correction for color within

the eyepiece itself
Evolved system has chromatic aberrations

corrected to a higher degree than
patented system

Four lens elements Evolved system has four lenses
“Ample” eye relief Evolved system has greater eye relief than

the patented system

Fig. 33. Best of run lens system from generation 241 for the Tackaberry–
Muller problem.

Table 10. Lens file for the best of run individual
from generation 241 for the Tackaberry Muller–problem

Surface Distance Radius Material Aperture

OBJ 1010 Flat Air
EP 0.88 Flat Air 0.18
1 0.179862 Flat Air 0.63
2 0.769713 8.177274 KZFS7A 0.63
3 0.058810 21.670709 Air 0.63
4 0.100000 5.153155 SF59 0.63
5 0.292354 1.021859 LAFN21 0.63
6 0.040000 23.279045 Air 0.63
7 0.560156 1.404301 LASFN30 0.63
8 0.429366 2.410695 Air 0.63

IMS Flat 0.357227
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with reasonably high fitness is small. The probability is small
because, in multipart structures, the parts must be appropri-
ately connected together and the numerical parameters asso-
ciated with each part must lie in certain limited, appropriately
coordinated ranges.

When simulators are employed in conjunction with genetic
programming, unsimulatable individuals are typically as-
signed a severe penalty. Because Darwinian selection is
used at each step of genetic programming, the practical effect
of this penalty is that unsimulatable individuals are almost
never selected to be reproduced into the next generation or
to participate in crossover and mutation.

Of course, culling out unsimulatable individuals and elim-
inating their influence on future generations does not itself
guarantee that simulatable parents will beget simulatable off-
spring. At the time when we began our work on the automatic
synthesis of optical lens systems by means of genetic

programming, it was not known whether genetic program-
ming would beget simulatable offspring.

Table 14 shows the percentage of unsimulatable indi-
viduals at generation 0 and at a typical early generation
(i.e., generation 10) of the runs reported in this paper. As
can be seen, the vast majority of individuals in generation 0
are unsimulatable. However, after only a small number of
generations, most of the individuals are simulatable.

We consider the fact that genetic programming breeds sim-
ulatability to be a very surprising recurring feature of the
work discussed because new individuals are introduced into
the population by probabilistic operations (i.e., crossover,
mutation). However, experience indicates there is a high
probability that the offspring produced by crossover will be
simulatable (Koza, Al-Sakran, & Jones, 2005a, 2005b).

As of this writing, genetic programming has been used to
automatically synthesize multiple previously patented inven-
tions (as opposed to single previously patented inventions) in
two domains. In addition to the optical lens systems discussed
in this paper, genetic programming has previously duplicated
the functionality of six previously patented 21st century ana-
log circuit designs (Koza, this issue). Acknowledging the
small amount of data, we believe it is nonetheless worth men-
tioning that, in both the group of optical patents and the group
of analog circuit patents, genetic programming infringed only
one of the patents. Specifically, genetic programming created
an infringing circuit for the Irving–Kolb circuit patent and
created an infringing optical system for the Konig optical pa-
tent. We suggest that the reason that there is only one in-
fringement in each of these two groups of patents is that there
are many ways to satisfy engineering specifications. Genetic pro-
gramming conducts a search for a satisfactory solution, but it
has no a priori knowledge about (and, hence, no particular
preference for) the solution that a human may have patented
in the past. In addition, a patent is a solution for a problem,
but it is not necessarily (or even usually) an optimal solution.
Genetic programming seeks a solution that optimizes its fit-
ness measure.

8.6. Human-competitiveness of the results

Referring to the eight criteria for establishing that an auto-
matically created result is competitive with a human-produced
result (Koza, Bennett, Andre, & Keane 1999; Koza, Keane,
Yu, Bennett, & Mydlowec 2000), the rediscovery by genetic

Table 14. Percentage of unsimulatable individuals
in generations 0 and 1

Problem Generation 0 Generation 10

Nagler 76 9
Skidmore 80 11
Tackaberry–Muller 64 10
Koizumi–Watanabe 82 14

Fig. 34. Earlier evolved individual for the Tackaberry–Muller problem.

Table 13. Comparison of claims of the Tackaberry–Muller
patent and of best of run lens system

Claim 1 of Tackaberry–Muller
Patent Evolved Solution

“A telescopic eyepiece adequately
corrected for color”

The genetically evolved solution is a
slight improvement over the
patented design.

“consisting of three convergent
components”

There are three convergent
components.

“formed of four lenses” There is a total of four lenses.
“the front component being a

doublet”
The front component is a doublet.

“comprising a divergent lens of
relatively low dispersion glass”

The first material of the doublet is
SF58, a flint (low dispersion
glass).

“and a convergent lens of crown
glass”

The second material of the doublet is
LAK16A, a crown glass
(convergent lens)

“the dispersive indices of the two
lenses of the doublet having a
ratio lying between .415 and
.445”

The dispersive indices are 21.51 and
51.78, with a ratio of .415.

“and the radius of curvature of the
internal contact surfaces lying
between .86 F and 1.01 F,”

The radius of curvature is 1.3.

“the other convergent components
being single lenses of crown
glass.”

The material for the other two single
lens is SSK3, a crown glass.

Complete designs of four patented optical lens systems 269

https://doi.org/10.1017/S0890060408000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000176


programming of an optical lens system duplicating the func-
tionality of the each of the above patented inventions satisfies
the following two of the eight criteria:

A. The result was patented as an invention in the past, is an
improvement over a patented invention, or would qual-
ify today as a patentable new invention.

. . .

F. The result is equal to or better than a result that was con-
sidered an achievement in its field at the time it was first
discovered.

8.7. High return for human effort expended

The question arises, in connection with any automated prob-
lem-solving method, as to what is delivered by the automated
operation of the problem-solving method in comparison to the
amount of knowledge, information, analysis, and intelligence
that is presupplied by the human employing the method.

We define the artificial/intelligence (AI) ratio of a prob-
lem-solving method as the ratio of that which is delivered
by the automated operation of the artificial method to the
amount of intelligence that is supplied by the human applying
the method to a particular problem.

The AI ratio is especially pertinent to methods for getting
computers to automatically solve problems because it mea-
sures the value added by the artificial problem-solving
method. Manifestly, the aim of the fields of artificial intelli-
gence, machine learning, and automated design is to generate
human-competitive results with a high AI ratio.

Ascertaining the AI ratio for the problems presented in this
paper requires measuring the amount of A that is delivered by
the automated problem-solving method (i.e., genetic pro-
gramming) in relation to the amount of I that is supplied by
the human user (i.e., in the form of the preparatory steps prior
to the launch of the run of genetic programming).

In performing this qualitative comparison, we start with the
amount of A. The result produced by genetic programming
for the problems presented in this paper is considered to be
human-competitive for the two reasons mentioned in the pre-
vious section. Because the results are human-competitive,
there is a high amount of A in the numerator of the AI ratio.

Measuring the amount of I requires the discipline of draw-
ing an explicit line between that delivered by the artificial sys-
tem and that supplied by the intelligent human user. We
imposed this discipline when we detailed the human-supplied
preparatory steps for this problem.

We did not employ any deep knowledge about optical lens
systems in selecting the terminals and functions to be used by
genetic programming in synthesizing optical systems. In fact,
the function and terminal sets were based on the widely used
and well-established format for optical prescriptions and lens
files for optical analysis software. That is, the terminal set and
the function set incorporated only platitudinous information
about optical lens systems.

The fitness measure is constructed directly from the high-
level statement of the problem’s requirements, as presented
by the inventor in their patent documents. Clearly, technical
knowledge of the field of optics is required to construct a quan-
tative measure for evaluating candidate individuals. However,
construction of a fitness measure is a precondition to doing op-
tical design: whether it is done with the aid of conventional
nongenetic optimization or search methods or done by humans.

The remaining preparatory steps (concerning control pa-
rameters, the termination criterion, and the method of result
designation) were unremarkable administrative steps.

In summary, the preparatory steps were straightforward and
uncomplicated translations of a high-level statement of the
problem. That is, the human user supplied only de minimus
knowledge about the field of optical design. Hence, there is
only a small amount of I in the denominator of the AI ratio.

The high amount of A in the numerator of the AI ratio in
conjunction with the small amount of I in the denominator
means that the AI ratio is high for the genetically evolved solu-
tions to the problems of optical design presented in this paper.

8.8. Routineness of the results

Generality is a precondition to what we mean when we say
that an automated problem-solving method is “routine.”
Once the generality of a method is established, “routineness”
means that relatively little human effort is required to get the
method to successfully handle new problems within a par-
ticular domain and to successfully handle new problems
from a different domain. The ease of making the transition
to new problems lies at the heart of what we mean by routine.

The routineness of the transition from problem to problem
is clear from the problems of optical design presented in this
paper. All the problems were run using the same software, the
same computer hardware, and the same settings of the minor
control parameters. As we moved from one problem to the
next, the only substantial change is the specification of
what needs to be done. For the work described in this paper,
this amounted to changing the target values in the fitness
measure to match the performance levels specified in the pa-
tent involved and adjusting the test fixture to reflect the spe-
cific problem. This specification is based on each inventor’s
statement of performance of each patented circuit. As stated
in Genetic Programming: On the Programming of Compu-
ters by Means of Natural Selection (Koza, 1992a), “Structure
arises from fitness.”

In summary, the designs were created in a substantially
similar and routine way, indicating that the approach de-
scribed in the paper can be readily applied to other problems in
the field of optical design.

8.9. Summary

In summary, genetic programming delivered routine, high-re-
turn, human-competitive solutions to the problems of optical
design presented in this paper.
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9. PARALLEL COMPUTING SYSTEM

The problems described in this paper were run on a Beowulf-
style parallel cluster computer system built in 1999 (Sterling,
Salmon, Becker, & Savarese, 1999). Each node of the cluster
contains of a 350-MHz Pentium II processor accompanied
by 64 MB of RAM. The nodes communicate with one another
by 100 Mbps Ethernet. The Pentium system has a 350-MHz
Pentium II computer as host. The nodes and the host use the
Linux operating system. There is no hard disk associated
with the processing nodes. Instead, the operating system, the
genetic programming system, and the data (notably the
population) reside in RAM.

The entire system consists of 1000 processors. Two proces-
sors are housed in each of the 500 physical boxes of the 1000-
Pentium system.

The system was partitioned into five parts for the work de-
scribed in this paper. Each 200-processor part of the system is
organized into a 2�2 toroidal arrangement of groups, with
each group containing 50 processors (25 physical boxes). A
population of size 2000 resides at each processor.

The “island” version of parallel genetic programming was
employed. In the island version of parallel genetic program-
ming, semi-isolated subpopulations (demes) of individuals re-
side at each processor. The time-consuming evaluation of fit-
ness and the relatively quick genetic operations are performed
separately on each processor. The time required to evaluate
fitness varies considerably from individual to individual,
with larger and more complex structures generally requiring
more time to simulate. Generations are run asynchronously
on each processor. This asynchronous approach guarantees
full usage of the computational resources of each processor
because no computational resources are wasted in an attempt
to synchronize activity on a global basis. As each processor
(asynchronously) completes the generation on which it is cur-
rently working, emigrants from that processor’s population
are dispatched to four toroidally adjacent processors. The
emigrants wait in a buffer at their destination processor until
that processor reaches the end of its current generation.

The four processors that are toroidally adjacent to a given
processor may be of three types. One of the four toroidally ad-
jacent processors is always in the same physical box. The sec-
ond case is that the toroidally adjacent is in the same group of 50
processors. The third case is that the toroidally adjacent is in a
different group of 50 processors. The rate of migration varies

depending on these three cases. The rate of migration is 10%
if the destination is within the same physical box, 5% if the des-
tination is within the same group of 50 processors, and 2% if the
destination is within a different group of 50 processors. The
emigrants are selected randomly for emigration within a phys-
ical box of within a group of 50 processors. The emigrants are
selected probabilistically based on fitness for emigration be-
tween the different groups of 50 processors. The result is that
the two populations residing in the same physical box are highly
intermixed; the populations within a group of 50 processors are
intermixed to an intermediate degree; and the four groups of 50
are more lightly intermixed.

Fan failures and hard disk failures are the major operational
problems associated with Beowulf-style commodity off the
shelf (COTS) cluster computers. In our case, we have no hard
disks, so fan failures have been the major operational problem.
In the 5 years of operation of our 1000-processor system, fan
failures (concentrated in the third year) caused about 24% of
the processors to burn out. We have now replaced all the
fans. The result of this damage is that there are now dead pro-
cessors scattered at random in the system. Emigrants are only
sent to processors that are known to be functional.

10. COMPUTER TIME, MOORE’S LAW, AND
THE FUTURE OF GENETIC PROGRAMMING
FOR AUTOMATED DESIGN

Table 15 shows the amount of computer time required for the
runs of genetic programming presented in this paper. There is
considerable variation in the size and complexity of the opti-
cal lens system satisfying the requirements of each problem.
Moreover, we have made only one run of each problem, so
we do not have statistically valid averages for any of the prob-
lems. Having said that, the average time required to process a
single individual is about 0.9 s; the average number of pro-
cessed individuals is about 128,000,000; and the average length
of the run is 239 h (about 10 days).

Remembering that the processors are 350-MHz Pentium II
processors and that inexpensive computers available at the
time of this writing operated at about 3.5 GHz, the average
length of a run on contemporary equipment would be about
23.9 h (about 1 day).

Alternatively, the average number of processors used for
the runs in the table is 129, which is equivalent to a cluster
of about 13 inexpensive contemporary (2005) computers.

Table 15. Computer time required for runs

Problem Population Generations Individuals Processed
Run Duration

(h)

Time per
Individual

(s)

Nagler 268,000 496 132,928,000 150 0.544
Skidmore 282,000 195 54,990,000 104 0.96
Tackaberry–Muller 218,000 242 52,756,000 151 1.123
Koizumi–Watanabe 264,000 1027 271,128,000 551 0.966
Average 258,000 490 127,950,500 239 0.898

Complete designs of four patented optical lens systems 271

https://doi.org/10.1017/S0890060408000176 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000176


Techniques of genetic and evolutionary computation gen-
erally require significant computational resources to solve
nontrivial problems. This statement is generally true a fortiori
when the results are human competitive.

Fortunately, because of three factors, the computer time
necessary to achieve human-competitive results has become
increasingly available in recent years.

First, the speed of commercially available single computers
continues to double approximately every 18 months in accor-
dance with Moore’s law (Moore, 1996). Moore’s law is cur-
rently expected to continue (and possibly accelerate) over the
next decade. This exponential growth in computational power
is equivalent to 2 orders of magnitude per decade: 10,000 to
1 over 20 years and 1,000,000 to 1 over 30 years.

Second, techniques of genetic and evolutionary computa-
tion in general (and genetic programming in particular) are es-
pecially amenable to efficient (and almost effortless) parallel-
ization (Koza, Bennett, Andre, & Keane 1999a).

Third, affordable parallel cluster computer systems can be as-
sembled with relative ease in the Beowulf-style using COTS
hardware (Sterling, Salmon, Becker, & Savarese, 1999).

The combined effect of the second and third factors above
is that increased computational power may be realized both at
the rates called for by Moore’s law and though parallelization.

Referring again to the computer time required for the runs of
genetic programming presented in this paper (Table 15), the

† the average length of a run on contemporary equipment
would be about 24 h,

† the average length of a run in 2015 would be 2.4 h,
† the average length of a run in 2025 would be 0.24 h

(14.4 min), and
† the average length of a run in 2035 would be 0.024 h

(1.44 min or 86.4 s).

Looking at automated design in terms of the increasing
complexity of problems that may be solved in the future,

† a problem 100 times more complex may be solvable in
2015,

† a problem 10,000 times more complex may be solvable
in 2025, and

† a problem 1,000,000 times more complex may be solva-
ble in 2035.

11. CONCLUSION

This paper described how genetic programming was used to
automatically synthesize complete designs for four optical
lens systems. The automated synthesis was done ab initio,
that is, without starting from a preexisting good design and
without prespecifying the number of lenses, the topological ar-
rangement of the lenses, or the numerical or nonnumerical
parameters associated with any lens. The paper described
how genetic programming created lens systems that duplicated

the functionality (or infringed) four previously patented lens
systems, including one 21st century patent. The genetically
evolved designs are instances of human-competitive results
produced by genetic programming in the field of optical de-
sign.
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