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The steady laminar annular spread of a thin liquid film generated by a circular jet
which impinges perpendicularly in direction of gravity on the centre of a rotating
disc is examined both analytically and numerically. Matched asymptotic expansions
of the flow quantities provide the proper means for studying the individual flow
regimes arising due to the largeness of the Reynolds number formed with the radius
of the jet, its slenderness and the relative magnitude of the centrifugal body force.
This is measured by a suitably defined Rossby number, Ro. The careful analysis of
jet impingement predicts a marked influence of gravity and surface tension on the
film flow, considered in the spirit of a shallow-water approach, only through the
vorticity imposed by the jet flow. Accordingly, associated downstream conditions are
disregarded as the local Froude and Weber numbers are taken to be sufficiently large.
Hence, the parabolic problem shaped from the governing equations in a rigorous
manner describes the strongly supercritical spread of a developed viscous film past
an infinite disc, essentially controlled by Ro. Its numerical solutions are discussed for
a wide range of values of Ro. The different flow regimes reflecting varying effects
of viscous shear and centrifugal force are elucidated systematically to clarify the
surprising richness of flow phenomena. Special attention is paid to the cases Ro� 1
and Ro � 1. The latter, referring to relatively high disc spin, implies a delicate
breakdown of the asymptotic flow structure, thus requiring a specific analytical and
numerical treatment. Finally, the impact of gravity and capillarity and thus of the
disc edge on the film flow is envisaged in brief.

Key words: rotating flows, thin films

1. Motivation and introduction
Liquid-jet impingement on a spinning disc is of vital importance in many

engineering settings, such as spin coating, cooling, rinsing, spraying or erosive
processes, not to mention the thriving field of microfluidics and sensor technology.
To be more specific, etching the surface reliefs of silicium wafers and purging them
of the resulting nano-particles in the course of semiconductor manufacturing serves
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as a typical example of relevant industrial practices. Here and in the following, a
circular swirl-free jet is taken to hit a circular disc perpendicularly in the direction
of gravity; the disc has a perfectly smooth, impervious, rigid surface; it rotates in its
horizontal plane around the jet axis. Specifically, our main concern is with the mass
transport of the axisymmetric and stationary laminar viscous flow generated by the
impacting jet and swirling due to the disc spin.

This ubiquitous significance of such flow configurations has led to extensive
research activities in the near past. These have been attracted by the several
accompanying physical aspects and guided by a variety of, to a greater or less
extent, semi-empirical methodical approaches. In particular, the description of the
relatively thin liquid film generated by the jet (or, in some cases, a radial nozzle)
and spreading radially along the disc has been tackled chiefly by traditional integral
methods, descended from the classical von Kármán–Pohlhausen method. These are
applied to the shallow-water approximation of the Navier–Stokes equations (NSE)
under the assumption of a developed layer, i.e. with viscous shear being dominantly
at play. The associated slender flow then is of boundary-layer (BL) type.

A myriad of literature is available in the spirit of – not fully rational – approximate
theories and computations; the in the authors’ minds most relevant contributions based
on classical BL theory are (also note the references therein): Dorfman (1965, 1967),
Rahman & Faghri (1992) (radial nozzle, neglect gravity), Prosvirov & Riabchuk
(1995) (neglect gravity/capillarity, stipulate sufficiently slow radial flow variations),
Sisoev, Matar & Lawrence (2003), Basu & Cetegen (2006a,b), Prieling & Steiner
(2013a,b). Computational fluid dynamics (CFD) based on the full NSE was performed
first by Deshpande & Vaishnav (1982). Such simulations, employing in-house codes
and both widely used commercial and open-source software, have in turn gained
increasing popularity, more recently also for the purpose of assessing the grade of
the aforementioned approximate solutions: see e.g. Sisoev et al. (2003) (who also
address the generation of periodic waves), (Kim & Kim 2009; Prieling, Steiner
& Brenn 2012a,b; Vita et al. 2012). The latter work extends previous approaches
based on finite-volume schemes towards an efficient transient one that aims at
accurate predictions of stationary characteristics of wafer etching. Extensive surveys
on the commonly adopted calculation methods and engineering applications, also
corroborating experiments, that deserve recognition are provided by Lienhard’s
seminal overview (1995) and Shevchuk’s (2009) textbook. Notably, Lienhard (1995)
also addresses the impact of disc roughness on the key properties of the flow. Thomas,
Faghri & Hankey (1991) are a definite reference for careful experiments highlighting
the details of the thin film.

Hitherto, many of the flow phenomena associated with the quite disparate length
and velocity scales involved (typical jet and disc radii, film height, jet speed, disc spin)
and their viscous counterparts, accounted for by a typically large Reynolds number
typical of the jet flow, have withstood their discovery via full ab initio simulation.
Consequently, our current level of understanding regarding how the key features of the
flow are related to the input parameters and their current prediction (with a reliability
desired in applications) must be viewed as unsatisfactory. Naturally, a full-CFD-based
approach involves an abundance of physical input quantities and encounters the
well-known difficulties in the numerical treatment of slender viscous free-surface
flows (in the simulations mentioned above accomplished by the volume-of-fluid
method). Moreover, a correct choice of the computational domain so as to account
for the free-jet generation at the nozzle orifice with adequate accuracy poses a
definitely formidable task. Hence, the challenge of a numerical solution to the full
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Laminar spread of a liquid jet over a rotating disc 451

problem that resolves all the scales with an accuracy deemed satisfactory, especially
for relatively high disc spin, has not been mastered so far.

Although the progress in CFD made so far is unequivocally enormous, its success
proves elusive here. However, a comprehensive rigorous investigation of the flow
configuration considered has not attracted matchable appreciation since. This is
remarkable insofar as the aforementioned scale separation represents a prototype
for demonstrating the power of exploiting first principles by perturbation methods.
Already the slenderness of the jet suggests a systematic asymptotic analysis of this
fundamental problem. This is expected to facilitate the yet lacking deep and rational
understanding of the entire flow rather than of the thin-film regime solely. Filling
this gap thoroughly in the so arising limits of the NSE, i.e. also for sufficiently weak
gravitational and capillary forces, is the ultimate goal of the present work. This is
felt to overcome the shortcomings of currently available full CFD and to shed light
on proper control strategies for such an important flow in engineering practice. The
remainder of this introduction is dedicated to noteworthy existing building blocks and
the scope and outline of our investigation.

In an extensive study dealing with rotating flows one does not get around
mentioning Greenspan’s (1968) outstanding textbook and the summaries in not less
classical ones by Rosenhead (1963) and Schlichting & Gersten (2017, pp. 118–126,
327–331) and by Zandbergen & Dijkstra (1987). Pointing to a variety of phenomena
of broad interest, they have stimulated many researchers both theoretically and
experimentally. The vast amount of the rigorous work deals with the axisymmetric
motion of an unconfined viscous fluid above an infinitely large disc (or one confined
by two parallel counter-rotating discs), i.e. the classical swirling flow (von Kármán
1921) and its extensions. However, this branch of research is only of minor relevance
here, namely just for the flow in the vicinity of the disc centre (stagnation point),
as our main thrust concerns the more intricate thin film forming relatively far from
impingement of the unsubmerged jet. Exceptions are early studies on perturbations
of the asymptotic state of the film flow, i.e. the fully developed rotatory (Poiseuille)
flow and its spatial/temporal stability, with experimental evaluation (Charwat, Kelly &
Gazley (1972), considered capillary waves; Rauscher, Kelly & Cole (1973), included
gravity; Needham & Merkin 1987; Cholemari & Arakeri 2005).

Most important, negligibly small gravity force and surface tension, i.e. asymptotically
large Froude and Weber numbers typical of the thin rotating film in engineering
situations, render the leading-order shallow-water problem parabolic. Here the most
notable ingredient of our study, at least for relatively slow disc spin, is that of a
jet-induced axisymmetric shallow layer spreading along a stationary plane attributed
to Watson (1964) and its reappraisal by Bowles & Smith (1992). Watson (1964)
first recognised the unbounded quadratic radial growth of the layer height for fully
developed, self-preserving flow. In general, by the loss of any upstream influence on
the flow, only the sudden modification of the no-slip towards a free-slip condition
holding at the detaching streamline marks the disc edge. We here largely ignore its
existence, in favour of studying the approach towards the fully developed rotatory
film above an infinitely large disc.

The paper is organised as follows.

(i) § 2: highlights the parametrisation of the problem by dimensional reasoning and
formulates and discusses it non-dimensionalised in full (in a form also suitable
to be at the basis of full CFD simulations);

(ii) § 3: considers the different flow regions by a rigorous reduction process of the
NSE and allows for a first systematic variation of the flow parameters and
upstream conditions controlling the thin-film regime;
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(iii) § 4: presents a previously unappreciated, most accurate numerical integration of
the shallow-water equations, explains various phenomena via asymptotic analysis
of the regions of non-uniformity in the film flow emerging for relatively low and
high disc spin;

(iv) § 5: gives a short synopsis, comments on further and ongoing activities;
(v) appendix A: disentangles the major consequences of a non-negligible upstream

influence in a real scenario where the disc must considered as finite (breakdown
of hierarchical shallow-water theory near disc edge, viscous hydraulic jump).

In the present study, particular emphasis lies on the sound analytical and numerical
investigation of the strictly supercritical slender film (§§ 3 and 4). As a matter of fact,
the analytical part of the work employing matched asymptotic expansions is quite
technical. However, the exposition of the core findings in § 4 addresses a broader
readership as its recognition does not necessarily resort to all the details of the
preceding analysis. Also, the intriguing short-scale subtleties entailed by the upstream
influence are largely beyond the scope of this study but part of our follow-up activities,
and their understanding is not compulsory for grasping the central results. Therefore,
preliminary findings of that direction of research are relegated to appendix A. We
would also like to point to the closely related study by Wang & Khayat (2018),
partially leading to analogous findings and published during the development of the
present study.

2. Statement of the full problem

Throughout this section, we tacitly refer to the configuration of the flow as stated
at the beginning of § 1 and sketched in figure 1.

Both the considered liquid and the ambient gas are taken as Newtonian, inert and
immiscible. Furthermore, the latter is essentially quiescent at zero pressure level and
separated from the first by a sharp interface, Σ . Hereafter, tildes indicate dimensional
quantities. Under the isothermal conditions presumed, the liquid (no subscript) and
the gaseous environment (subscript e) have uniform densities ρ̃, ρ̃e, uniform dynamic
viscosities µ̃, µ̃e, hence kinematic ones ν̃ = µ̃/ρ̃, ν̃e = µ̃e/ρ̃e, and a uniform surface
tension σ̃ in Σ . We anticipate that the reasonable premises ρ̃/ρ̃e�1, µ̃/µ̃e�1 justify
the conventional assumption of Σ being free of normal and viscous tangential stresses,
posing the dynamic boundary conditions (BCs). We furthermore introduce the constant
gravitational acceleration g̃ and the constant angular velocity Ω̃ of the disc. Let a
nozzle with an orifice of radius ã, positioned a distance d̃ above the disc, emit the
jet, carrying the volumetric flow rate Q̃=πã2Ũ with the cross-section-averaged speed
Ũ at the orifice. Finally, r̃e denotes the disc perimeter and h̃e the (suitably controlled)
vertical height of the liquid above its edge.

2.1. Non-dimensional key groups and orders of magnitude
We conveniently describe the flow in an inertial frame of reference, using polar
coordinates r, z made non-dimensional with ã in directions respectively radial from
the stagnation point S , i.e. the centre of rotation, and normal from the wetted face of
the disc. Accordingly, let u, v, w denote the velocity components, non-dimensional
with Ũ, in the radial, azimuthal and normal directions respectively, and p the pressure
in the flow, non-dimensional with ρ̃Ũ2. Our focus lies on the flow downstream of jet
impingement. Henceforth, z= h(r) rather than its inverse r= a(z) preferably describes
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FIGURE 1. Feasible flow configuration (not to scale, non-dimensional quantities and
scalings defined in body text).

the position of the free surface Σ such that h denotes the local height of the liquid
layer and a its local radial extent (double valued due to radial contraction of the
freely falling jet).

Dimensional analysis shows that the sought flow quantities [u, v,w, p](r, z) and h(r)
are parametrised by the complete set of non-dimensional key groups equivalent to the
above physical input quantities which characterise the flow:

δ := d̃/ã, re := r̃e/ã, he := h̃e/ã, (2.1a−c)

Rea :=
Ũã
ν̃
=

Q̃
πãν̃

, Roa :=
Ũ

ãΩ̃
=

Q̃

πã3Ω̃
, Fra :=

Ũ√
g̃ã
, Wea :=

ρ̃Ũ2ã
σ̃

.

(2.1d−g)

In (2.1d–g), Rea is the Reynolds number formed with the typical jet radius ã and
characteristic of the internal flow upstream of the nozzle, Roa the Rossby number Roa

measuring the ratio of inertial to centrifugal forces, Fra the Froude and Wea the Weber
number, all defined consistently. The associated Bond and capillary numbers Boa =

Wea/Fr2
a and Caa =Wea/Rea provide useful combinations.

The vast majority of applications advocate the usual assumption of a slender free
jet and radially spreading film. Moreover, it is realistically accompanied by that of
large values of Rea:

δ� 1, re� 1, Rea� 1. (2.2a−c)
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g̃ ρ̃ ν̃ σ̃ d̃ ã Q̃ Ũ Ω̃

(m s−2) (kg m−3) (mm2 s−1) (mN m−1) (mm) (mm) (l min−1) (m s−1) (r.p.m.)

9.81 998.20 1.00 72.75 50 2.5 1.0 0.849 500–3000

TABLE 1. Typical input values (water jet at 20◦, Ũ calculated, rounding due to the usual
measurements).

δ Rea Rea/δ Ro2
a Fr2

a Fr2
a/δ Wea Boa Caa

20.0 2120 106 42.0–1.17 29.4 1.47 24.7 0.84 0.012

TABLE 2. Values of dimensionless groups according to table 1 (suitably rounded).

Simultaneously, Rea is taken as sufficiently small so that laminar–turbulent transition
of the flow is expected to occur downstream of any region considered subsequently (a
realistic scenario as pointed out by Higuera (1994)). We add the important restriction

Rea/δ� 1 (2.3)

as this furnishes an appealing possibility to control the behaviour of the jet and, in
turn, the film flow (in terms of its purging/etching performances, for instance). The
asymptotic analysis will make clear that particular order-of-magnitude requirements
for Roa, Fra, Wea are not as crucial (and can be relaxed) as the fundamental ones
in (2.2). Although justified for the majority of potential applications, largeness of Wea,
say, does not substantially simplify the treatment of jet deflection where capillary
effects are thus kept for the sake of generality (§ 3.2). Most important, assuming
formal largeness of Ro2

a is backed by the scaling of the thin wall-bounded film,
associated with a least-degenerate flow description (§ 3.3.1).

The data of the input quantities listed in table 1 refer to an example typical of
genuine application: a liquid/environment constellation water/air at standard conditions.
Table 2 displays the values of the corresponding non-dimensional parameters. It is
noteworthy that a wide range of species and flow configurations of practical interest
give Boa=O(1) and Caa� 1. In the authors’ opinion, the data in table 1 represent a
reliable input for the vast amount of engineering problems. Subsequently, any range
of values discussed refers essentially to the variation of Ω̃ in table 1, viz. in table 2
that of Ro2

a as a key quantity subsequently.
It is instructive to first pose the flow problem in full, irrespective of approximations

ensuing from the preceding order-of-magnitude estimates.

2.2. Governing equations
The computational domain is fixed by 0 6 r 6 re, 0 6 z 6 h 6 δ. As usual, subscripts
unambiguously indicate partial derivatives.

The equations of motion comprise the continuity equation

(ru)r + rwz = 0, (2.4)

conveniently satisfied identically through a streamfunction ψ(r, z) defined by

ψz = ru, ψr =−rw, (2.5a,b)
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and the NSE for, respectively, the radial, azimuthal and vertical directions

uur +wuz − v
2/r= Re−1

a {[(ru)r/r]r + uzz} − pr, (2.5c)

uvr +wvz + uv/r= Re−1
a {[(rv)r/r]r + vzz}, (2.5d)

uwr +wwz = Re−1
a {(rwr)r/r+wzz} − pz − Fr−2

a . (2.5e)

The kinematic BCs

ψ(0, z)=wr(0, z)= 0, ψ(r, 0)= u(r, 0)= 0, v(r, 0)= rRo−1
a , ψ(r, h(r))= 1

2
(2.5f−i)

account for axial symmetry, no penetration and no slip at the disc, and conservation
of the volumetric flow rate. Finite disc rotation yields a non-trivial azimuthal flow
component v above the disc by viscous diffusion, so that (2.5d) involving the
Coriolis acceleration is non-degenerate. The resultant centrifugal body force showing
up in (2.5c) and the mutual coupling of (2.5d) with (2.5c) are of specific interest in
this study.

In order to formulate the dynamic BCs, required to determine h(r), we recall the
well-known Bonnet expression for the mean curvature

κ(r)=−
d[rh′(1+ h′2)−1/2

]/dr
2r

=−
h′

2r(1+ h′2)1/2
−

h′′

2(1+ h′2)3/2
(2.5j)

of Σ and decompose the viscous surface stress, non-dimensional with ρ̃Ũ2, into its
tangential components τm and τa, referring to the median and the azimuthal direction
respectively, and its normal component τn. This gives

Rea(1+ h′2)τm ≡ [2h′(wz − ur)+ (1− h′2)(uz +wr)]z=h = 0, (2.5k)

Rea(1+ h′2)1/2τa ≡ [vz − h′(vr − v/r)]z=h = 0, (2.5l)

τn ≡
2[h′2ur − h′(uz +wr)+wz]z=h

Rea(1+ h′2)
= p(r, h(r))−

2κ(r)
Wea

. (2.5m)

The following excursus elucidates these zero-stress simplifications, resorting to the
estimates stated at the beginning of § 2. The liquid and ambient gaseous phase share
the flow speed and the shear stress on their interface Σ . Then the inertia terms
and, in turn, the balanced shear stress gradients in the adjacent liquid shear layer
and the relatively thin induced gaseous drag layer are of comparable magnitude.
Accordingly,

√
ν̃/ν̃e measures the ratio of their penetration depths normal to Σ , thus

(µ̃/µ̃e)
√
ν̃e/ν̃ =

√
(ρ̃/ρ̃e)(µ̃/µ̃e) � 1 that of the shear stresses inside those layers.

Equating these when evaluated on Σ implies vanishing non-dimensional shear stress
as expressed by (2.5k) and (2.5l); extending this consideration to the normal-force
balance on Σ leads to (2.5m).

The problem is closed once appropriate upstream and downstream conditions are
posed. It is reasonable to assume a more-or-less fully developed Hagen–Poiseuille
flow in a cylindrical tube ending concentrically in the relatively short, slender nozzle
(both having circular cross-sections). It is controlled by the supply and the discharge
pressure, the latter given by We−1

a according to (2.5j), (2.5m). By the largeness of
Rea, the flow undergoes a predominantly inviscid modification inside the nozzle. This
raises an idea which might be of interest in engineering applications but, to the
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authors’ knowledge, is actually not realised so far: as noted above, controlling w and
hence the behaviour of the thin radial wall flow can be accomplished via a properly
designed axial shape of the nozzle. Its suitably tapered and smooth (polished) inside
wall maintains stable laminar flow (cf. McCarthy & Molloy 1974). Specifically, for
the sake of simplicity, let its contour exhibit a vertical tangent at the orifice. Then
u can be considered as negligibly small there, which motivates the model initial
conditions (ICs)

[u, v,w, p](r, δ)= [0, 0,wo(r),We−1
a ] (0 6 r 6 1), h(1)= δ. (2.5n)

Here it is sensible to describe the velocity profile wo(r) by a superposition of a
typical parabolic profile and a uniform one, accounting for the targeted distortion of
the former:

wo(r)= 2(1−µ)r2
− 2+µ (6 0, 0 6µ6 1). (2.5o)

The parameter µ specifies variations of the nozzle shape and controls the vorticity
introduced under the last condition in (2.5f –i). The limits µ= 0 and µ= 1 refer to
the full Hagen–Poiseuille and a parallel flow respectively. Notably, the irrotational
contribution violates the no-slip condition at the nozzle outlet. However, this is met
correctly by a rather steep but smoothing gradient of wo as r→ 1 in a BL where
1 − r = O(Re−1/2

a ) originating inside the nozzle. This renders the proposed flow
model admissible within our requirements of asymptotic accuracy, given the primarily
inviscid flow inside of the nozzle suggested to modify the flow in a supply pipe further
upstream. Furthermore, the current deliberate simplification of a one-parametric in
lieu of a more involved model of wo(r) is acceptable given the possibility of further
analytical progress, and the focus of our study. Finally, specifying

h(re)= he, (2.5p)

accommodates the ellipticity of the flow problem. More advanced and physically
more meaningful replacements of (2.5p) are conceivable in the shallow-water limit
(cf. Higuera (1994) and the appendix A).

Also, it proves expedient to identify the components −vz, uz − wr, (rv)r/r of the
vorticity for the r-, azimuthal, and z-direction respectively.

Any attempt to solve the full flow problem governing [ψ, v](r, z) and the position
z= h(r) of the free surface Σ as formulated by (2.5p) numerically requires a major
subtleness; at least to the extent of the desired grade of resolution. Specifically the
better the restriction (2.3) is satisfied, the more calculating the position of Σ with
satisfactory accuracy is compromised. This becomes obvious from the slenderness of
both the jet and the resultant radially spreading film; the first associated with viscous
forces acting in the aforementioned rather slowly growing thin sublayers along Σ ,
the second with a complex interplay of viscous and centrifugal forces. This without
doubt renders the problem an intriguing one. Consequently, resolving the richness
of interesting flow details is not routine. In fact, it has not been accomplished
so far. These assessments strongly substantiate the need for asymptotic techniques.
A systematic reduction process then obviates the need of a multiparametric, full
numerical study of (2.5p). The so obtained much more feasible one highlights
all the features of the film flow on the conditions (2.2) and (2.3) at drastically
reduced computational costs and under variation of only a few similarity parameters
(§ 4). Most important, the achieved parabolicity of the leading-order problem makes
(2.5p) ultimately obsolete by suppressing the difficile upstream influence by re, he
in (2.1a–c).
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3. Asymptotic structure of the flow

We proceed by elucidating four flow regions to be distinguished grossly: the jet
exiting the nozzle and then freely falling (§ 3.1); that of its bending due to its
impingement (§ 3.2); the thin viscous BL forming adjacent to the disc (§ 3.3); the
relatively thin, radially spreading developed film (a notion here preferred against the
common ‘wall jet’, used later for a submerged jet), where viscous effects are finally
of importance across its whole thickness (§ 3.4).

3.1. Jet regime: r=O(1), h� 1
We first make reference to the earlier discussion of the radial distribution of w and
an associated thin edge layer. Initially, w ∼ wo given by (2.5o) holds in the bulk of
the just forming jet where a− r is not too small; in the second viscosity regularises
(for any value of Rea) the jump at the orifice from a no-slip towards a free-slip
condition (or w=O(a− r) to wr =O(a− r) as r→ a). The latter follows from (2.5k)
in the ‘jet limit’ h′→−∞.

For any howsoever small initial surface slip µ> 0, Khayat (2016) aids in describing
the non-trivial local modification of the aforementioned shear layer. If µ = 0, the
findings by Khayat (2017) and the regularisation of the Goldstein singularity by
localised viscous–inviscid interaction of the type put forward by Scheichl, Bowles &
Pasias (2018) apply. Since vertical convection balances viscous diffusion in that edge
layer, inspection analysis of (2.5e) yields the order-of-magnitude estimates w∼ a− r,
by (2.5o), and w2/(δ − z) ∼ w/[Rea(a − r)2] there. One then typically locates its
formation immediately downstream of interaction for

µ= 0 : (a− r)3 ∼ (1− z̆)δ/Rea� 1, z̆ := z/δ. (3.1)

Slenderness of the bulk region of the jet implies u = O(δ−1) via (2.4) and (2.5o)
and p∼ (Wea a)−1

+ O(δ−2) according to (2.5m) and (2.5c). To confirm the previous
and subsequent scalings as adequate for the targeted flow control, let us first elucidate
the flow in a least-degenerate fashion. To this end, we relax (2.3) and take Rea/δ but
also Wea as of O(1). This fastens the merging of the edge BL and the bulk layer by
viscous diffusion. There the one-term expansions ψ ∼ ψ̆(r, z̆), w∼ w̆=−ψ̆ r/r, a∼ ă(z̆)
(z̆=O(1), δ� 1) and (2.5a,b) yield the shear-layer approximation

ψ̆ rψ̆ rz̆ − ψ̆ z̆ψ̆ rr + ψ̆ z̆ψ̆ r/r=−r2p̆′(z̆)− (δ/Rea)r[r(ψ̆ r/r)r]r (3.2a)

of (2.5e) with the suitably reduced pressure, zero at the nozzle exit (z̆= 1),

p̆(z̆) := Fr−2
d (z̆− 1)+We−1

a (ă
−1
− 1), Frd := Fra/

√
δ. (3.2b)

For the resulting typical value of the Froude number Frd formed with the height of
fall d̃ see table 2. Equation (3.2a) is then subject to the ICs and kinematic BCs

[(ψ̆ r/r)(r, 1), ă(1)] = [−wo(r), 1], [ψ̆, (ψ̆ r/r)r](0, z̆)= [0, 0], ψ̆(ă, z̆)= 1
2 , (3.2c,d)

cf. (2.5n), (2.5o) and (2.5f –i) respectively, and the free-slip condition

(ψ̆ r/r)r(ă, z̆)= 0 (3.2e)
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458 B. Scheichl and A. Kluwick

provided by (2.5k). Owing to the lack of a symmetry-breaking no-slip condition, the
BL problem (3.2) governing ψ̆ and ă, as entering the sought pressure contribution, for
0 6 r 6 ă, 0< z̆ 6 1 is of parabolic type. That is, the jet does not ‘feel’ a feedback
of its impact in the leading approximation: consequently, stopping the (numerical)
downstream integration of (3.2) for z̆= 0 yields the terminal jet contraction a0 := ă(0)
and w̆-profile w0(r) := w̆(r, 0). For more interesting details see Tillett (1968).

The assumption (2.3) ensures a predominantly inviscid and yet swirl-free (v ∼ 0)
90◦-deflection of the flow where r, z=O(a0) and the jet approximation breaks down.
By the largeness of Rea, the spin of the disc is indeed noticeable only via (2.5f –i) in
an adjacent BL, typically having a vertical extent not larger than of O(Re−1/2

a ) even
for arbitrarily small values of Roa. This scenario is investigated in § 3.3. It alleviates
drastically the prediction of the modification of the initial w-profile in the nozzle and
thus the control of the u-profile in the developed film (for etching/cleaning purposes).
Assuming a fully viscous falling jet, however, requires the numerical solution of
(3.2) and a systematic variation of δ/Rea, Frd, Wea and µ. That is, as long as
(2.3) is not met, a desirable simplification arises only if Frd is small, i.e. d̃ chosen
as correspondingly large, since the viscous term in (3.2a) is predominant only for
z̆ = O(Fr2

d). For larger values of z̆, the increasing action of gravity and the absence
of external shear forces accelerate the jet whereas vorticity is no longer diffused, and
inspection of (3.2) recovers Toricelli’s law for uniform flow and the associated jet
thinning:

w̆∼−
√

2(1− z̆)/Frd, ă∼ 1/
√
−w̆. (3.3a,b)

(This scenario applies even for only moderately large values of Rea: then the viscous
and, by (3.2c,d), also the convective terms dominate (3.2a) already for smaller values
of z̆ before gravity becomes important, which finally confirms the above results further
downstream.)

The marked increase of the irrotational contribution to w by (3.3) also hampers
severely the desired control of the vorticity. Hence, the demand for a viable control
strategy underpins the requirement (2.3), i.e. of a predominantly inviscid fall of the jet
already for z̆=O(1). Then the viscous term in (3.2a) remains small, thus the edge BL
slender and of a thickness ∆ :=

√
δ/Rea, see figure 1. In this inviscid-flow limit, the

expensive systematic numerical investigation of the full problem (3.2) is superseded
by the analytical evaluation of its first integral. This expresses Bernoulli’s theorem in
von Mises form: w̆=−

√
w2

o − 2p̆ is a function of ψ̆ and z̆. Integrating rw̆=−ψ̆ r for
z̆ = 1 reveals wo = −

√
(2−µ)2 − 8(1−µ)ψ̆ , according to (3.2c,d) and (2.5o), and

once again for z̆ 6 1 subject to (3.2c,d) preservation of vorticity along streamlines:

ψ̆ = (µ− 1)r4/2− w̆c(z̆)r2/2, w̆c(z̆) :=−
√
(2−µ)2 − 2p̆(z̆), (3.4a)

w̆=−
√
(2−µ)2 − 2p̆− 8(1−µ)ψ̆ = 2(1−µ)r2

+ w̆c(z̆) (0 6 r 6 ă). (3.4b)

Here w̆c is the flow speed along the jet centreline. Substituting the last of the
conditions (3.2c,d) into (3.4a) and (3.2b) gives for Wea <∞ (Wea =∞) an implicit
(explicit) expression for the local jet contraction ă, effectively as a function of

Λ(z̆) := Fr−2
d (1− z̆)+We−1

a = (Weaă)−1
− p̆(z̆), (3.5)

Wea (cf. Gurevich 1961), and 1−µ as a measure of the vorticity. It is advantageously
written as

[ă−2
+ (1−µ)ă2

]
2
= w̆2

c = 2Λ− 2(Weaă)−1
+ (2−µ)2. (3.6)
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FIGURE 2. Jet contraction ă (a) and centre speed w̆c (b) by varying Λ, Wea, µ (same
legend).

Fr−2
d We−1

a Λ0 a0 ε rν (Ro/Roa)
2 Ro2 α Ek0 × 104

0.68 0.04 0.72 0.8 0.115 7 0.0502 2.11–0.586 0.47–17.06 47.7–7.96

TABLE 3. Characteristic values governing jet deflection and the thin film according to
table 2.

This finally yields the flow factors a0 and w0,c := w̆c(0) by (3.4a) and (3.5), providing
the match with the flows in the jet and the region of its marked deflection.

For the distributions of ă and w̆c see figure 2. Here varying µ has only little effect;
according to table 3, with

Λ0 :=Λ(0)= Fr−2
d +We−1

a (3.7)

and the typical data for these two addends, a rather moderate end contraction rate a0
ensues. In general, 0< ă61 holds, and ă decreases as z̆, Fr−1

d , We−1
a , µ decrease. Thus,

a0 becomes quite small for a very slender jet, elongated by gravity, eventually in the
asymptotic limit (3.3) implied by (3.4b), (3.6) and (3.2b). The behaviour of w̆c turns
out to be strictly reciprocal. We note that jet formation at the nozzle exit is governed
by the limit λ :=Λ−We−1

a → 0+. In turn, setting γ := 1− ă gives p̆∼−λ+We−1
a [γ +

γ 2
+ O(γ 3)] where γ expands in three different forms: γ ∼ [We−1

a + 2µ(2 − µ)]λ +
O(λ2) (µ > 0); γ ∼

√
λ/8 + O(λ) (µ =We−1

a = 0); γ ∼Weaλ −We2
a(8We−1

a + 1)λ2
+

O(λ3) (µ= 0, Wea <∞). Here the first two imply w̆c ∼−(2−µ)+O(λ), the second
an irregular sudden expansion of the jet (smoothed out by surface tension, Wea� 1)
and the last w̆c ∼−(2− µ)− 16(Weaλ)

2/(2− µ)+O(λ3). As for what follows, even
more important, we also find the behaviour

[ă, w̆c] ∼ [(2Λ)−1/4, − (2Λ)1/2] +O([Λ−9/4, Λ−1/2
][1+We−1

a Λ
1/4
]) (Λ� 1). (3.8)

The parabolic contribution to w̆ scales with ă2 but the irrotational one w̆c with ă−2.
We hence consider the characteristic flow speed Ũ0 := Ũ/a2

0 and jet radius ã0 := a0ã in
the region of pronounced jet deflection z=O(a0), with (3.3) providing a lower bound
for a0. In turn, adequately defined Froude, Reynolds and Weber numbers are

Fr0 := Ũ0/
√

g̃ã0 = Fra/a
5/2
0 , Re0 := Rea/a0, We0 :=Wea/a3

0. (3.9a−c)
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The premise (2.3) renders (3.3) valid for Frd � 1 in (3.2b), which implies Λ ∼
Fr−2

d and a0∼Fr1/2
d /21/4 per (3.5) and (3.8), hence Fr0/Fra∼ 25/8/Fr5/4

d = (2δ)5/8/Fr5/4
a .

The values in table 2 also imply Fr0� 1, but rather due to the largeness of Fra than
the smallness of Frd. The latter is argued by Higuera (1994, p. 72, bottom) when he
claims that ‘Ũ2

0/(2g̃) is the head of the fluid in the jet, typically large compared with
its half-width a0’ (our notations used) – which means Fr0�1 finally. The present view
agrees on neglecting the effect of gravity on jet bending but sees it only moderately
increasing w̆c and decreasing a0 as Frd is considered to take on rather not so small
corresponding values. In the irrotational-flow limit µ→ 1−, one also confirms a0 =

O(1) for w̆∼ w̆c and again ă∼ 1/
√
−w̆= 1/[1+ 2Λ− 2/(Weaă)]1/4 (cf. figure 2), but

now holding for the more realistic, moderate values of Frd. However, in the following
Frd and thus a0 are allowed to become very small. Therefore, taking ã0 as the new
length scale representative of jet impingement includes this case conveniently.

With (3.2a), (3.2c,d) and (3.2e), we now may also be more specific as to the viscous
perturbations of ψ̆ and hence the surface slip W(z̆) :=−w̆(ă, z̆) (>0) by the edge shear
layer. There ψ ∼ 1/2−∆W +∆2Ψ (R̆, z̆) where R̆ := [ă(z̆)− r]/∆=O(1) so that the
rescaled streamfunction Ψ satisfies the locally linearised form of (3.2),

(ăW)′(ΨR̆ − R̆ΨR̆R̆)− 2ă′WΨR̆ + ăWΨR̆z̆ = ăΨR̆R̆R̆, (3.10a)

Ψ (0, z)=ΨR̆(0, z̆)= 0, ΨR̆R̆(∞, z̆)= ψ̆ rr(0, z̆). (3.10b)

Matching with the non-zero shear of the inviscid jet flow requires the last relationship
and implies a non-trivial solution. With W→µ (z̆→ 1), the initial stage of the edge
layer provides the IC. However, if µ is as small as ∆, the linearisation breaks down
downstream of the nozzle where (3.1) is met again, i.e. for 1− z̆=O(∆).

3.2. Jet-bending regime: r=O(a0), h=O(a0)

As stated above, all the assumptions (2.2) and (2.3) are of paramount importance
for enabling a desirable simplified analysis of both the jet and its massive deflection.
Concerning its bulk regime, we have just sketched a flow picture consistent with
the scalings proposed in § 2.1. According to the definitions (3.9), here jet bending
is categorised most precisely by the validity of the following order-of-magnitude
estimates:

(i) Re0� 1, Fr0� 1; in this respect,
(ii) We−1

0 assumes values ranging from of o(1) to O(1) (' 0.0210 here); also
(iii) a0 assumes values ranging from of o(1) to O(1) (meaning a very large

dimensionless fall δ and a correspondingly small relevant Bond number
Bo0 :=We0/Fr2

0 = Boaa2
0).

By (i), jet impingement is seen to be a predominantly inviscid process. The lower
bound in prerequisite (ii) asserts that jet bending might be significantly affected by
capillary effects. Given the original presumption Boa=O(1) and the findings Fra� 1
and issue (iii) of § 3.1, all justified by the associated data, this represents a relaxation
we allow for hereafter as it is readily included in the subsequent asymptotic analysis
of the flow properties. In this most general setting, jet inflexion is then asymptotically
described by (i) and the match with the developed jet flow where Wea, Frd and thus
a0 are taken as of O(1).

Before we proceed, a few words should be said on the concept of a steady and
sufficiently smooth jet under the capillary impact accounted for by the tacitly made
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assumptions Wea =O(1) (above) and Wea <We0 =O(1) (below). As was pointed out
kindly by a referee, the capillary hoop stress induces the well-known Rayleigh–Plateau
instability if, in our setting, the value of δ exceeds the critical wavelength, δc' 2.74×
√

Wea (see e.g. Chandrasakhar 1981, p. 537 ff.). The practically ubiquitous values
summarised in tables 1 and 2, consistent with the essential scaling of the flow in
this and related studies, predict δc ' 13.6 and thus indeed supercritical conditions.
Conversely, one then would like to have Wea being sufficiently larger than (δ/2.74)2,
i.e. (20/2.74)2 ' 53 here, or even

δ2
�Wea (3.11)

to safely avoid any danger of a dripping rather than a contiguous jet. However, the
proposed jet flow can be easily reproduced by a ‘classroom experiment’ with a tap
in a kitchen or bath sink, where an only slightly wavy jet surface confirms that
instability visually but dispels any concern regarding a markedly wavy jet or even its
pinch-off. This observation is supported by experimental evidence from other studies
dealing with jet impingement on rotating/non-rotating discs for jet geometries and
kinematic viscosities comparable with those in table 1, where no signs of significant
instabilities were reported: cf. Charwat et al. (1972), Astarita & Cardone (2008),
Mohajer & Li (2015) (for an even more elongated jet) and Bhagat et al. (2018)
(specifically, we refer to figure 2 in the last study). It might be traced back to weak
viscous damping in the dispersion relation entered by Caa, which here is small.
Therefore, assuming (3.11) proves a sufficient but not necessary criterion to avoid
that instability. Admittedly, since δc decreases with a, this might be of concern if
capillarity considerably influences jet bending for a0 � 1, i.e. a relatively large fall,
entailing Wea =We0 a3

0� 1 by (3.9). Nonetheless, the following analysis deliberately
includes capillarity as a dominant effect (at a negligible small gravitational one) for
the sake of generality. In other words, our analysis not only seems to confidently
model reality but remains valid (and becomes accordingly simplified) if one takes
Wea as consistently large to avoid safely a marked waviness of the jet or even its
breakage into droplets.

In leading order, (2.5c)–(2.5e) reduce to the Euler equations by virtue of the
expansions

{[ψ, a4
0 p], v, h/a0} ∼ {[ψ̄, p̄](r̄, z̄), 0, h̄(r̄)}, a2

0[u,w] ∼ [ū, w̄] = [ψ̄ z̄/r̄,−ψ̄ r̄/r̄],
(3.12a,b)

[r̄, z̄] := [r, z]/a0. (3.12c)

Via the match with the jet flow, [ψ̄, p̄] → [ψ̆(a0r̄, 0),We−1
0 ] (z̄→∞) with (3.4) and

(3.5) for z̆= 0, Bernoulli’s law expressed with the appropriately rescaled quantities in
(3.12) becomes

(ū2
+ w̄2)/2+ p̄= B(ψ̄) := a4

0w2
0/2+We−1

0 = a4
0[(2−µ)

2/2+Λ0 − 4(1−µ)ψ̄] (3.13)

with B∼ 1/2, w0 ∼ w0,c ∼−1/a2
0 for a0� 1 by (3.8). Helmholtz’s transport equation

for the vorticity ω̄ := ūz̄ − w̄r̄ then expresses the invariance of ω̄/r̄ along streamlines
in the form

ω̄/r̄≡ ψ̄ ρ̄ρ̄ + ψ̄ z̄z̄/(2ρ̄)= B′(ψ̄), ρ̄ := r̄2/2. (3.14a)
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This equation governs ψ̄ subject to the kinematic BCs as hitherto and the dynamic
one ensuing from (3.13) and (2.5m). With a0κ ∼ κ̄(r̄) defining κ̄ , see (2.5j), these
now read

ψ̄(0, z̄)= ψ̄(r̄, 0)= ψ̄(r̄, h̄(r̄))− 1
2 = 0, (ū2

+ w̄2)(r̄, h̄(r̄))+ 4We−1
0 κ̄ = 2B( 1

2).
(3.14b,c)

Once the Bernoulli function B is specified, the nonlinear free-surface problem (3.14),
effectively parametrised by Λ0 and We0 where gravity plays a key role only far
upstream but surface tension also locally, is already completed by the in- and outflux
conditions

h̄→∞ (r̄→ 1, z̄→∞), h̄→ 0 (r̄→∞). (3.14d,e)
Together with (3.14a) and the suppression of super-algebraically growing eigensolu-
tions (or, equivalently, strict forward flow), these requirements anticipate the match of
the jet bending with both the developed-jet and stratified-film regions. Flow reversal at
Σ is possible sufficiently upstream for κ > 0 but only once (dκ/dr< 0) and is hence
unacceptable. The first of the conditions (3.14d,e) implies the above ones of matching
as ū→ 0, κ̄ → 1/2 (h̄′ → −∞) and involves a double valued h̄(r̄) in case the jet
radius undergoes a minimum. The second complies with the ellipticity of (3.14a) and
states that ψ̄ =O(1) and ū=O(1) as w̄→ 0 according to the last kinematic and the
dynamic BC in (3.14b,c) respectively.

As (3.14d,e) entails w̄→ 0, one infers directly from (3.13), specifying B via the
incidental flow, that

[ψ̄, ū, p̄, h̄, κ̄ ] ∼
[

f0(η)

2
,

f ′0(η)
m0

,
2κ̄
We0

,
m0

2r̄
,−

m0

4r̄3

] (
η :=

z̄
h̄
=O(1), r̄→∞

)
, (3.15)

f ′0(η)=m0

√
2B( f0/2), f0(0)= 0, f0(1)= 1, (3.16)

and w̄ ∼ −ηf ′0/(2r̄2) accordingly. The relations (3.15) embody the conservation
of the volumetric flow rate and of the linear momentum such that ū remains
of O(1). Specifically, evaluation of (3.14b,c) yields the asymptote of p̄ and the
problem (3.16) governing f0 and the affine parameter m0 that quantifies the radial
flattening of Σ . This completes the sought modification of the prescribed (parabolic)
profile wo of nozzle outflow, see (2.5o), via w0, see (3.4b) and (3.13), towards
the linear radial profile f ′0/m0. This represents a most viable paradigm for the
inviscid distortion of a developed jet by its deflection. It initiates the thin-film
flow with the upstream history controlled by Frd, Wea, µ still in a quite general
fashion. Recalling −w̄ = ψ̄ ρ̄ ∼

√
2B(ψ̄)− 2We−1

0 = a2
0w0 (z̄ → ∞) expresses the

acceleration of the fluid due to the pressure drop We−1
0 accompanying jet bending.

In view of the zoomed-in detail in figure 1 and (3.16), we set u0(η) := f ′0(η)/(a
2
0m0),

u0,0 := u0(0) =
√

w2
0,c + 2/(Weaa0). Knowing the function B puts f0 in closed

form in two cases: firstly, an insignificant pressure recovery (We0 � 1) gives
f0(η) = 2ψ̆(a0

√
m0η, 0) as noticed by Rubel (1980); secondly, if B(ψ̄) varies not

stronger than quadratically, as is the case here, where ψ̆(r, 0) and thus w0(r) can
again be expressed explicitly.

Specifying B by the (right-hand side of) (3.13) gives

B′(ψ̄)=−4a4
0(1−µ) (3.17)

in (3.14a) and yields with the aid of (3.4a) and (3.5) for the radial slip exerted on
the disc in the original scaling

u0,0 =
√
(2−µ)2 + 2Λ0 (3.18)
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FIGURE 3. Flattening factor m0 (a,b) and shear rate σ (c,d) under variation of Frd, Wea, µ:
(a) legend see figure 2; (b) Wea= 1, Λ0= 1.1, 1.2, 1.3, 1.4, 1.5 (bottom to top),@ indicate
extrema.

to leading order. We furthermore deduce from (3.16) (after some tedious manipula-
tions)

f0(η)= η− σ(η− η
2)/2, σ := 2a4

0m2
0(µ− 1) (−2 6 σ 6 0), (3.19a)

m0 =

√
(2−µ)2 + 2Λ0 −

√
µ2 + 2Λ0√

(2−µ)2 + 2Λ0 − 2/(Weaa0)−
√
µ2 + 2Λ0 − 2/(Weaa0)

(6 1), (3.19b)

σ =
(√

(2−µ)2 + 2Λ0 −
√
µ2 + 2Λ0

)2
(2µ− 2), (3.19c)

σ/(a2
0m0)=

√
µ2 + 2Λ0 −

√
(2−µ)2 + 2Λ0. (3.19d)

The derivation of the relationships (3.19b)–(3.19d) involves the, for finite values of
Wea, implicit relationship (3.6) for a0. This renders also m0 effectively a function of
Λ0, µ and Wea (in (3.19b), strict forward flow along Σ implies the negative sign in
the numerator) but σ dependent on Λ0 and µ solely: see the flow charts in figure 3.
We have u′0(η) ≡ σ/(a

2
0m0), f ′′0 (η) ≡ σ for the slope (vorticity) of the radial velocity

profile and the normalised representation f ′0(η). Hence, f ′(0) = 1 − σ/2 and f ′0(1) =
1 + σ/2 are the associated disc slip and surface speed. Figure 3(c,d) condenses the
upstream dependence of the flow sketched in the excerpt in figure 1. The following
interesting behaviours are deduced from (3.19).

At first, m0 (σ ) increases if Λ0 (Λ0 or µ) increases towards the asymptotes m0 ∼

1+O(We−1
a a−1

0 ) (Weaa0� 1), [m0, σ ] ∼ [1+O(Λ−1
0 ), (µ− 1)/Λ0+O(Λ−2

0 )] (Λ0� 1),
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464 B. Scheichl and A. Kluwick

[m0, σ ] ∼ [
√

1− 2/[Weaa0(1+ 2Λ0)], − 2χ/(1 + 2Λ0)] + O(χ 2) (χ := 1 − µ→ 0+).
The variation of m0 with respect to µ exhibits a second extremum (local minimum)
for Wea <∞ where the values of Λ0 occupy a rather small range (figure 3b). Also,
the important assumptions Frd� 1 (negligibly small drop height of the jet), Wea� 1
imply

m0 ∼ 1, σ ∼ 2µ− 2+Λ0(4− 4µ)/(2µ−µ2)+O(Λ2
0) (Λ0→ 0), (3.20)

see figure 3(a,c). On the other hand, by (3.19c) the limit σ →−2 (negligibly small
surface speed, maximum disc slip) means Λ0→ 0 for µ= 0 (maximum vorticity).

The dynamic BCs in (3.14b,c) confirm the results (3.19) and determine unambiguou-
sly the higher-order extension of (3.15), based upon (3.19a). Investigation of (3.14a)
supplemented with (3.17) and the no-slip condition gives

2[ψ̄, r̄h̄/m0] ∼ [ f0(η), 1] + [ f1(η),m1]/(We0r̄3)+O(r̄−4) (r̄→∞). (3.21)

Hence, the dominant correction to purely inviscid flattening of the jet is dictated by
surface tension, but the next higher one of O(r̄−4) solely by convection. Taking into
account that the capillary correction leaves the volume flux unchanged, we obtain
f ′1(1)=−f ′1(0)=m1σ by

f1(η)= 2m1[ f0(η)− η], m1 = 2m3
0/(σ

2
− 4) (< 0). (3.22a,b)

The downstream tail of the locally strongly concave surface Σ causes a pressure drop
increasing u∼ f ′0/m0 by the amount (m1/m0)[ f ′0(η)− 2]/(We0r̄3), stratifying the layer.

The flow speed ū0(r̄) := ū(r̄, 0) along the disc driving the BL and the associated
penetration depth of fluid rotation deserve some comments regarding the full
numerical solution of (3.14). In the authors’ opinion, here the most relevant candidates
in the vast quantity of quotable studies involve various specifications of B(ψ̄) or
inflow profiles and semi-analytical techniques: see the overviews by Lienhard (1995)
and Webb & Ma (1995), the classical solutions of the potential-flow case (B′≡ 0) via
classical Green’s function approaches (Trefftz 1916; Birkhoff & Zarantonello 1957;
Gurevich 1966), later rectified by more tenable series expansions (cf. Liu, Gabour
& Lienhard 1993), and the likewise recent extension to the more intriguing and
interesting case of a curved influx profile, albeit ignoring capillary effects (B′6 0;
Phares, Smedley & Flagan 2000a). See also the overview on adopted approaches
given by Deshpande & Vaishnav (1982). This improves the original treatment, which
was approximate, by resorting to slender-flow assumptions (Bradbury 1972; Rubel
1980, 1983). The last two pioneering investigations merit specific mention. Most
important, Rubel (1983) demonstrated that a (closed) separated-flow region can only
emerge adjacent to the disc and only if B′(ψ̄) takes on sufficiently large positive
values owing to a centred dent in the influx profile wo(r). Let us finally confirm
this analytically for an eddy that is typically convex at the reattachment point
(r̄, z̄)= (r̄r, 0) with some r̄r > 0.

The branched portions of the streamline ψ̄ = 0 confine that bubble. Since (3.14a)
expresses preservation of ω̄/r̄ along the streamlines ψ̄ = const., we introduce the value
ω̄R = r̄rB′(0) of ω̄ carried by the forward flow. Then (3.14a) together with the slip
condition ψ̄(r̄, 0)= 0 yields the quadratic approximation ψ̄ ∼ B′(0)(r̄r z̄)2/2+ O((r̄ −
r̄r)z̄) for (r̄ − r̄r, z̄)→ (0+, 0+). Convexity of the reattaching part of the streamline
ψ̄ = 0 requires ū ∼ B′(0) r̄r z̄ > 0 for sufficiently small values of z̄ and thus B′(0) >
0. Evaluation of (3.14a) in the limit z̄→∞ gives B′(ψ̄)=−a4

0w′0(r)/r according to
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Laminar spread of a liquid jet over a rotating disc 465

(3.12) and thereby limr→0 w′0(r)/r = w′′0(0) < 0, i.e. a ‘dented’ w0(r)-distribution. The
analysis of § 3.1 indicates that this originates in the aforementioned depression of the
wo(r)-profile. (Applying this rationale to the symmetric bending of a planar jet yields
an analogous conclusion.)

Also, a description of closed streamlines of a steady and inviscid flow (considered
as an asymptotic limit) remains intrinsically incomplete and must thus be accepted
with some caution. Here, the modified Prandtl–Batchelor theorem holding for
axisymmetric flow with a zero azimuthal component aids by predicting a constant
value of ω̄/r̄ within the toroidal recirculating-flow region. (The uncertainty in
determining the recirculating flow was kindly pointed to us by one of the referees.)

3.3. Rotatory boundary layer
In all the cases considered here, (3.17) yields strict forward flow throughout the region
of inviscid jet bending. Moreover, the radial convergence of the streamlines according
to (3.14a) suggests strictly radially accelerating flow adjacent to the disc: ū′0(r̄) > 0.
Hence, we are concerned with a BL under a favourable pressure gradient. This
exhibits a quite rich variety of flow patterns, unappreciated so far both experimentally
and theoretically, which depends on the relative magnitude of the centrifugal force.
It can be understood in considerable depth even though ū0(r) is available only
qualitatively. Two important approximations are specified rigorously: the Blasius and
the von Kármán BL.

3.3.1. General scaling of fully viscous flow
In a first step, we determine the onset of the evolution of a radially thinning wall

jet as expressed by (3.15). More precisely, the flow regime governing jet deflection is
superseded by a new one once viscous diffusion, initially concentrated in the rapidly
growing aforementioned BL, has spread vertically across the entire layer.

We first supplement (3.12) with v̄ := a2
0v and (3.9) with the Rossby and Ekman

numbers respectively

Ro0 := Roa/a3
0, Ek0 := Ro0/Re0 = ν̃/(Ω̃ ã2

0). (3.23a,b)

Formed with Ũ0 and ã0, these absorb the contraction of the jet in the full governing
equations including BCs, (2.4)–(2.5f –i), as these prove invariant under the variable
transformation q 7→ q̄ (q = r, z, ψ, u, v, w, p) and (Rea, Roa, Fra) 7→ (Re0, Ro0, Fr0).
Inspection analysis of (2.4), (2.5c)–(2.5f -i) and the downstream tail of an inviscid jet
bending expressed by (3.15) then launches the following sets (i), (ii) and (A)–(C) of
apparent order-of-magnitude balances for Re0� 1.

(i) As long as disc rotation is so weak that ū∼ 1 (by inviscid jet bending) even in
the BL, this merges into the entire layer to form a developed thin film for r̄ ∼
r̄v :=Re1/3

0 (from conservation of volume or ūh̄r̄∼1 and the radial inertial–viscous
balance ū2/r̄∼ Re−1

0 ū/h̄2);
(ii) in the BL, the centrifugal force induces a radial velocity component ∼ 1 for r̄∼

r̄c := Ro0 (from v̄ ∼ r̄/Ro0).

Then the effect of rotation extends to the full film for ū∼ v̄ ∼ r̄/Ro0 or, with the
last balances in (i),

r̄∼ r̄r := (Re0Ro0)
1/4 (3.24)

to yield the subsequent basic case analysis the more complex classification precipitated
at the end of § 3.3.1 pivots around.
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(A) Ro0� Re1/3
0 : the magnitude of rotation matches up to that of the radial flow in

(2.5c)–(2.5e) relatively far downstream of the formation of a developed film, i.e.
for (r̄c�) r̄r� r̄v;

(B) Ro0∼Re1/3
0 : generic case, rotation becomes important where the developed film

emerges, i.e. for r̄c ∼ r̄r ∼ r̄v;
(C) Ro0�Re1/3

0 : centrifugal forces come into play when the BL is still much thinner
than the whole film, implying a (generalised) von Kármán BL where ū ∼ v̄ ∼
r̄/Ro0, i.e. the whole film is entrained into this for r̄c� r̄r (� r̄v).

As a consequence of these preliminary findings, the BL is discerned for 0 6 r̄�
Re1/3

0 , where the latter bound defines its downstream end in the cases (A) and (B). At
the same time, ū0(r̄) grows monotonically from ū0=O(r̄) for r̄� 1, given the locally
stagnant Euler flow, but saturates as ū0(∞)= ū0,∞ := a2

0u0,0= f ′0(0)/m0, hence defining
the downstream tail of the BL with a radial stretch depending on the magnitude of
Ro0.

By the typical expansions holding within a distance ∼1/
√

Re0 from the disc

p̄∼ B(0)−
ū2

0(r̄)
2
, ψ̄ ∼

r̄ū0(r̄)F(r̄, Z)
√

Re0
, v̄ ∼

r̄G(r̄, Z)
Ro0

, Z := z̄
√

Re0 =O(1),

(3.25a−d)
equation (2.5c)–(2.5e) assume their BL approximations in the form

ū′0(F
2
Z − 1)− (r̄ū0)

′FFZZ/r̄+ ū0(FZFr̄Z − Fr̄FZZ)− r̄G2/(Ro2
0ū0)= FZZZ, (3.26a)

[2ū0FZG− (r̄ū0)
′FGZ]/r̄+ ū0(FZGr̄ − Fr̄GZ)=GZZ. (3.26b)

Supplemented with the BCs (2.5f –i) and matching conditions,

Z = 0 : F= FZ = 0,G= 1, Z =∞: FZ = 1,G= 0, (3.26c,d)

they determine the functions F and G. The potential flow induced by their
displacement and their perturbations caused by its feedback are not of concern here.
For ū0(r̄) prescribed, downstream integration of (3.26) starts at stagnation, given by
r̄= 0. Since we have ū0∼ br̄ (r̄→ 0) with a positive initial slope b of ū, the Hannah
flow (Hannah 1947; Tifford & Chu 1952), here parametrised by Ro0, is recovered.
A Wentzel–Kramers–Brillouin (WKB) ansatz inserted into (3.26a) and (3.26b) yields

[F− ZA, G] ∼ [eϕ, eϕ] +O(e2ϕ) (ZA := Z + A→∞) (3.27a)

with the here unknown displacement function −A(r̄; Ro0) and the exponent

ϕ ∼−~(r̄)Z2
A − 3 ln ZA +Ω(r̄)+ o(1), (3.27b)

[~, Ω] :=

[
r̄2ū2

0(r̄)
/(

4
∫ r̄

0
t2ū0(t) dt

)
, Ω0 + 12

∫ r̄

0

(
~(t)
ū0(t)

−
1
t

)
dt+ ln

(
~1/2r̄7

ū7
0

)]
(3.27c)

and some constant Ω0. This representation of the transition towards the external flow,
used below, satisfies ICs found for r̄→ 0 (Hannah flow; ~ ∼ b, Ω ∼Ω0) and predicts
[~, Ω] ∼ [3ū0,∞/(4r̄), (7/2) ln r̄] for r̄� 1. A key quantity potentially of interest in
applications is the shear stress dragging the disc against rotation, here written as

v̄ z̄(r̄, 0)∼ r̄GZ(r̄, 0)
√

Re0/Ro0 (< 0). (3.28)
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In (3.26a), the centrifugal-force term in (2.5c) becomes of O(r̄/Ro2
0) and involves

the local ratio
β := Ro0 ū0/r̄ (3.29)

of the two local reference speeds Ũ0ū0 and Ω̃ ã0r̄ at play. It grows drastically with
r̄ when the BL approaches its downstream end. Once the fully viscous film has started
to evolve, in its bulk the quantity r̄h̄2Re0/Ro2

0 expresses the order of magnitude
of the centrifugal relative to the viscous term. According to the above estimates,
this is equivalent to (Re1/3

0 /Ro0)
2 or 1/β2. However, this also provides a confident

upper bound for the ratio of those terms in the whole BL, where the viscous one is
consistently dominant. Anticipating the analysis of the developed film, we conveniently
measure this bound by a novel parameter α. This is the squared reciprocal of a
Rossby number characteristic of the film flow, i.e. Ro0 reduced by a small parameter
ε assessing the radial stretch of the BL relative to that of the film:

ε :=

(
4

Re0

)1/3

, Ro := εRo0 =

(
4

a8
0Rea

)1/3

Roa = (4Ek0)
1/3Ro2/3

0 , α :=
1

Ro2
.

(3.30a−c)
We have Ro=βεr̄/ū0 with εr̄� 1 in the BL. Typical values of ε, the ‘viscous’ radius

rν := a0/ε (3.31)

characteristic of the developed flow in units of the nozzle radius ã, Ro, α and Ek0
formed with quantities estimated earlier complete table 3. Hence, full adjustment to
the film is expected to be accomplished quite close to jet impingement. The coupling
parameter α properly describes a series of distinguished limits for Re0� 1 involving
the viscous and centrifugal forces. So measuring the spin of the flow in both the BL
region and the thin-film region further away from the disc centre by α requires us to
distinguish between the following cases, resorting to these two main flow regimes.

(a) α � 1: slowly rotating flow in both flow regions, associated with a regular
perturbation about the limit α= 0 of purely radial flow in the BL but a singular
one in the thin-film region;

(b) α=O(1): generic case of a modestly rotating film and thus a slowly rotating BL;
(c) α=O(Re2/3

0 ) or Ro0=O(1): modestly rotating BL and thus strongly rotating film,
raises a singular perturbation problem in the region of the latter;

(d) α� Re2/3
0 or Ro0� 1: strongly rotating BL and thus very strongly rotating film,

raises a series of singular perturbation problems in either region.

In view of (3.24), the situations (a) and (b) refer to the original ones (A) and (B)
respectively, (c) and (d) to the scenario (C) above. Concerning the BL flow, we next
subsume the cases (a) and (b) in § 3.3.2, then (c) and (d) in § 3.3.3. Our main concern
is with the behaviour of the BL relatively far downstream, i.e. in the intermediate
region 1� r̄� 1/ε providing the match with the film flow.

3.3.2. Slowly rotating boundary layer: α� 1, α =O(1)
In this scenario with β � 1, the approximation [F, G] ∼ [F0, G0] (Ro0� 1), with

F0 describing the BL above a disc at rest and G0 the one-sidedly coupled associated
azimuthal flow, is uniformly valid within the entire BL. Near stagnation, the Hannah
flow is then approximated by the classical Homann flow (Homann 1936). In the
intermediate region, the BL thickens at a rate ∼

√
r̄, defining its absorption by the
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FIGURE 4. Self-preserving BL flow of Blasius type (a), von Kármán type (b), flow
profiles along abscissae, F′K augmented accordingly.

developed film flow, and thus assumes Blasius form: [F0,G0] ∼ [
√

r̄/c FB(ζ ), GB(ζ )],
ζ := Z

√
c/r̄, c := 3ū0,∞, with FB and GB satisfying the reduced form of (3.26)

−FBF′′B = 2F′′′B , 4F′BGB/3− FBG′B = 2G′′B, (3.32a,b)

FB(0)= F′B(0)=GB(∞)= 0, F′B(∞)=GB(0)= 1. (3.32c,d)

The (straightforward) numerical solution of (3.32) is shown in figure 4(a). According
to (3.27) in the limit of large r̄, we recover the behaviours A∼ A∞

√
r̄/c with A∞ '

−1.7208 and [FB − ζA,GB] ∼ [eΦ, eΦ] with ζA := ζ − A∞ and Φ ∼−ζ 2
A/4− 2 ln ζA +

O(1). Its independence of the upstream history conforms to a subtle breakdown of
(3.27c) for ζA =O(1). We also find r̄GZ(r̄, 0)∼

√
cr̄ G′B(0) with G′B(0)'−0.48982 in

view of (3.28).
For semi-empirical methods to obtain approximate solutions of (3.26a) for Ro−1

0 = 0
and good agreement of calculated flow data with accurately measured ones we refer
to Phares, Smedley & Flagan (2000b); see also the references therein. These authors
calculated ū0(r̄) with the method devised in their aforementioned study (Phares
et al. 2000a), where they adopted Bickley’s or Schlichting’s well-known far-field
expressions for the axial velocity of an either fully developed laminar free jet or
its fully turbulent counterpart, see Batchelor (1970, pp. 344–345) and Schlichting
& Gersten (2017), as upstream input for inviscid jet bending (contrasting with the
present flow configuration). Most important, their data confirm both the trends in
the radial development of r̄0 and the wall shear rate FZZ(r̄, 0), predicted here by
asymptotic analysis: the latter initially increases at a rate ∼r̄, provoked by the
accelerating Hannah flow, then reaches a maximum and eventually decreases, at a
rate ∼ 1/

√
r̄.

3.3.3. Modestly to rapidly rotating boundary layer: α� 1
In this situation, Ro0 is small enough to render the centrifugal-force term in (3.26a)

dominant for r̄ � 1/ε. Then (3.26) has to be solved in full for a prescribed value
of Ro where downstream integration is initiated by Hannah’s solution. For increasing
disc rotation, that term and, correspondingly, FZ and thus F increase close to the disc.
Simultaneously, the second contribution to F2

Z − 1 in (3.26a) feeling the imposed flow
speed ū0 becomes more and more insignificant. Its truncation renders the BL problem
(3.26) singular: in case (c) above in the intermediate region; in case (d) within the
whole streamwise extent of the BL. In either case, a reformation of the effective BL,
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defined by the predominance of both convective and centripetal acceleration of the
fluid, takes place. Most important, this implies incomplete similarity of F and G. We
adequately rescale Z and F by setting

[F̄, Ḡ](r̄, Z̄) := [β/
√

Ro0F,G](r̄, Z), Z̄ := Z/
√

Ro0 = z̄/
√

Ek0 (3.33a,b)

in the regions of non-uniformity. For r̄=O(1), (3.29) implies a speed ratio β of O(1)
in case (c) and β� 1 in case (d). Nevertheless, in both cases β and thus the scaling
factors of F in (3.33) are asymptotically small in those regions. In turn, there the
expansion

[F̄, Ḡ] ∼ [FK,GK](Z̄)+ β[F1,G1](r̄, Z̄)+ β2
[F2,G2](r̄, Z̄)+O(β3) (β→ 0) (3.34)

holds. Our interest is with the bracketed functions. Re-expanding the azimuthal shear
rate accordingly turns (3.28) into

v̄ z̄(r̄, 0)∼ [r̄G′K(0)/Ro0 + ū0G1Z̄(r̄, 0)]/
√

Ek0. (3.35)

To leading order, equation (3.26) then restates the classical problem of von Kármán
(1921), see also Cochran (1934), as

F′2K − 2FKF′′K −G2
K = F′′′K , 2(F′KGK − FKG′K)=G′′K, (3.36a,b)

FK(0)= F′K(0)= F′K(∞)= 0, GK(0)= 1. (3.36c,d)

Figure 4(b) displays our numerical solution of (3.36). The following properties of FK

and GK are essential. As only strict forward flow is admissible and possible, F′K(z̄)
describes an overshooting streamwise flow component or wall jet, triggered by the
strong centripetal acceleration given by −G2

K in (3.36a,b) and thus barely affected by
the relatively slow motion on its top. It sounds counterintuitive at first, however, that
increasing disc rotation progressively impedes the penetration of the azimuthal flow
component into the bulk of the flow. In case (c), the effective or von Kármán layer
just suppresses the Blasius-type growth of the BL; in case (d), it is globally squeezed
towards the disc by the factor

√
Ro0 such that (3.36) describes the BL adjacent to the

disc in canonical manner. One finds G′K(0) ' −0.61592 entering (3.35). The desired
condition GK(∞)= 0 is implied by F′K(∞)= 0 rather than to be stated as a second
BC (as done usually). Then FK cannot grow stronger than with Z̄ raised to some
non-negative power smaller than unity for Z̄→∞; examining (3.36a,b) asymptotically
shows that this exponent is zero and F∞ := FK(∞)' 0.44115. In turn, (3.25a–d) and
(3.33) predict the strong rate of entrainment −w̄∼ 2F∞/Ro for the von Kármán layer.
Let C and D denote positive constants being part of the full solution, we finally arrive
at the well-established exponential decay

[F′K,GK] ∼−[C,D]E+O(E2), E := exp(−2F∞Z̄) (Z̄→∞). (3.37a,b)

The next higher approximation in (3.34) gives rise to the homogeneous linear
equations

[F′K(r̄ū0F1Z̄)r̄ − F′′K(r̄ū0F1)r̄]/ū0 − 2(FKF1Z̄Z̄ +GKG1)= F1Z̄Z̄Z̄, (3.38a)
[F′K(r̄ū0G1)r̄ −G′K(r̄ū0F1)r̄]/ū0 − 2(FKG1Z̄ −GKF1Z̄)=G1Z̄Z̄ (3.38b)
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controlling the perturbation functions F1 and G1. By the initial matching condition
FZ ∼ 1 (Z→∞), they are supposed to be non-trivial. We have in turn

Z̄ = 0 : F1 = F1Z̄ =G1 = 0, Z̄ =∞: F1Z̄ = 1, G1 = 0. (3.38c)

As a consequence of (3.37), the three linearly independent contributions to F1 behave
for Z̄→∞ to leading order like Z̄ +O(Z̄2E), 1+O(Z̄E) and E; correspondingly, the
two ones to G1 like 1, except for terms of O(Z̄2E) and O(Z̄E) arising from F1, and
E. For evaluating the solvability of (3.38), let us consider (3.38b) an inhomogeneous
equation governing G1 where F1 already satisfies (3.38a) and (3.38c). By varying
G1Z̄(r̄, 0), we can then construct a contribution to G1 satisfying the truncated
homogeneous equation and the first of the BCs (3.38c) such that G1 vanishes for
Z̄→∞ (and F1 is modified accordingly). As a result of these considerations, both
F1 and G1 are uniquely determined (unless the homogeneous form of (3.38b) subject
to (3.38c) allows for a non-trivial solution at exceptional values of r̄). The linear
growth of F1 reminds us of the external flow (β 6= 0). Since ū′0(F1

2
Z̄ − 1), see (3.26a),

represents an inhomogeneity in the equation governing F2, this quantity grows just
like Z̄2E and not stronger than F1. This grants consistency of the expansion (3.34)
with the flow on top of the BL.

Then the according expansions of F′ and G break down passively in a layer
set apart from the disc around Z = −

√
Ro0 ln β/(2F∞) and having a width again

of O(
√

Ro0). The final question is how to unravel the gradual modification of the
exponential towards the Gaussian tail in accordance with (3.27), triggered by the
radial flow on top of the BL, for larger values of Z. It must be answered separately
for each of the cases (c) and (d).

Case (c). Here we have ū0 ∼ ū0,∞ and take r̄ large but not Ro0 in (3.29), (3.33)
and (3.34). In turn, this expansion describes incomplete similarity of the BL flow far
downstream such that F1 and G1 are functions of Z̄ solely. Then (3.38) reduces to

F′KF′1 − F′′KF1 − 2(FKF′′1 +GKG1)= F′′′, (3.39a)
F′KG1 −G′KF1 − 2(FKG′1 −GKF′1)=G′′1 (3.39b)

subject to (3.38c). Figure 4(b) shows also the numerical solution of this problem. It
gives G′1(0) ' −0.21073 in (3.35). The slightly lowered decay for Z̄ being large is
clearly visible.

Case (d). The aforementioned transition already indicated for situation (c) above
now takes place for r̄=O(1). Its detailed analysis is beyond the scope of the present
study. Here we only note that the structure of the Hannah flow for Ro0 → 0 just
represents a special case.

Our asymptotic analysis of the BL discloses the origin of a radial wall jet, slightly
perturbed by the radial flow on top. It complements the theoretical investigation by Liu
et al. (1993) and the extensive experimental one by Broderson, Metzger & Fernando
(1996a,b).

3.4. Thin-film regime: r� a0, h� a0

The preliminary analysis of the thin film in § 3.3.1 lays the basis for the formulation
of the problem governing the developed film flow in the limit of a small stretching
parameter ε.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1009


Laminar spread of a liquid jet over a rotating disc 471

The earlier scalings invoke the expansion for ε→ 0

[ψ̄, v̄, ū, w̄, h̄ ] ∼
[

f (R, η)
2

,
Rg(R, η)

Ro
,U(R, η), ε2W(R, η),

εH(R)
2

]
, R := εr̄. (3.40)

It is valid in the thin-film region where the compressed radial coordinate R is of
O(1) or greater and the associated stretched vertical coordinate 2z̄/ε, the rescaled film
height H, the film coordinate η ∼ 2z̄/(εH) already defined by (3.15) and the newly
introduced functions f , g, U, W are of O(1). This casts (3.28) into

v̄ z̄(r̄, 0)∼ 2Rgη(R, 0)/(εH). (3.41)

Furthermore, we write

U = fη/m, 2W = ηH′fη/m− fR/R, (3.42a,b)

where we have conveniently introduced

m(R) := RH. (3.43a)

Then plugging (3.40) into (2.5c)–(2.5e) reduces these equations to their parabolic
shallow-water forms respectively

m( fηfRη − fRfηη)−m′f 2
η − αR m3g2

= R2fηηη, (3.43b)

m( fηgR − fRgη + 2fηg/R)= R2gηη. (3.43c)

Supplemented with (2.5f –i) and the free-slip conditions resulting from (2.5k) and
(2.5l) and ICs,

η= 0 : f = fη = 0, g= 1, η= 1 : f = 1, fηη = gη = 0, (3.43d)
R= 0 : [ f , fη, g,m] = [ f0(η), f ′0(η)sgn(η), 1− sgn(η),m0], (3.43e)

they govern the quantities f , g, m. These are parametrised by α taken as of O(1) and
Λ0, Wea, µ. The latter enter the ICs and reflect the match with the predominantly
inviscid process of jet bending. The jumps of f ′, g at the disc surface introduced
in (3.43e) account for the no-slip condition in (3.43d) and thus render the resulting
parabolic problem (3.43) singular. This triggers the evolution of the associated BL
for small values of R, whereas that along Σ emerges naturally as we have f ′′0 ≡ 0
(0<η6 1).

Specifically, equation (3.43b) yields together with the rescaling in (3.40), (3.25a–d),
(3.15) and § 3.3.2

[ f , g] ∼ [
√

ū0,∞R3/3FB(ζ ),GB(ζ )] (ζ =m0η
√

3ū0,∞/R3 =O(1), R→ 0). (3.44)

That is, the solutions to (3.43) are inherently tied in with the excitation of a
Blasius BL for any value of α, howsoever large. They naturally include its
modification associated with the generation of a wall jet for R = O(α−1/2) and
α� 1, pointing to the predominance of the centrifugal-force term in (3.43b) in the
BL limit and the cases (c) and (d) in § 3.3.1.

The subsequent section, forming the core of our study, is devoted to the leading-
order analysis of the flow regime governed by (3.43) in the whole radial domain 06
R<∞. Perturbations caused by the higher-order terms in (3.21) as well as by gravity
and capillarity are at first discarded as they are recognised to be weak and to bear
no decisive physical relevance. Inspection of (2.5b,d, f,g) shows upon substitution of
(3.9), (3.12), (3.15) and (3.40) that

p̄∼ ε(1− η)H/(2Fr2
0)− ε

3(RH′)′/(2We0R)+O(ε4) (3.45)

holds for R=O(1). Thus, there the film pressure is indeed negligibly small.
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4. Numerical and analytical study of thin-film regime
Our thorough numerical investigation of the full problem (3.43) involves two

advancements of typical methods for discretising (3.43b)–(3.43e):

(I) (unconditionally stable) second-order finite differences with respect to R
(equidistant step sizes of approximately 10−3), the first step formulated in central
and the consecutive ones in backward manner, and Chebyshev collocation with
respect to η (200 points); frequently referred to as to method of lines;

(II) an advanced Keller–Box scheme (R-steps as for method I, resolution in
η-direction increasing with α by 200 up to 2718 grid points), taking the
convective terms in (3.43b) in conservative form m2

[( f 2
η /m)R − ( fRfη/m)η]

interpreted as a finite-volume method, known to be more accurate than its
non-conservative counterpart (cf. Patankar 1980).

These tailored procedures enable highly accurate solutions. In each R-step, they
involve the solution of a nonlinear system of algebraic equations, dense/sparse in cases
I/II, obtained with a relative precision of 10−8 (Euclidean norm). Finally, evaluation
of (3.43a) gives H(R). No significant difference between the techniques I and II in
terms of absolute accuracy of the obtained solutions (up to the forth digit) as well
as acceptable computation time have been recorded. The intrinsic BLs on the disc
and (from a numerical viewpoint, less critically) beneath the free surface for small
values of R emerged without any difficulty as the first R-step was completed. However,
accomplishing a smooth adjustment to the developed flow within a few R-steps is at
some additional computational expense, by incorporating the BL profiles provided by
(3.44) in the solution. This demands either a local mesh refinement or a sufficiently
large number of Chebyshev modes, both accompanied by a local mapping of η to ζ
(method II: BL resolved at 20–200 ζ -points) and grid interpolation between successive
R-steps in an auto-adaptive manner; the necessity of this effort fades as R increases.
This strategy also applies to the resolution of the wall jet evolving for large values of
α from its initial stage studied in § 3.3.3. However, naturally method II proves more
flexible and slightly more capable of coping with the steep gradients involved in both
cases. The smooth curves in the visualisations below were obtained via cubic-spline
interpolation of the discrete data sets.

Before we discuss the results for α > 0, we first reappraise the classical leading-
order but also higher-order results for a stationary disc.

4.1. Disc at rest revisited: α = 0 (benchmark case)
The Mangler–Stepanov transformation (see e.g. Schlichting & Gersten 2017, p. 323)

[x, y] := [R3/3, m(R)η], f̂ (x, η) := f (R, η), ĥ(x) :=m(R) (4.1a−c)

casts (3.43b) into an advantageous autonomous form, governing the planar counterpart
of the flow exhibiting the same streamwise velocity component: let x and y denote the
streamwise and disc-normal coordinates respectively and f̂ and ĥ the corresponding
streamfunction and film height. With η∼ y/ĥ, these quantities then satisfy

ĥ(f̂ η f̂ xη − f̂ x f̂ ηη)− ĥ′ f̂ 2
η − αΞ = f̂ ηηη, Ξ := ĥ3g2/R. (4.2)

We take α = 0 first to reconsider the flow over a disc at rest. It was studied first
exhaustively by Watson (1964); the axisymmetric case was taken up by Bowles &
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Smith (1992), the planar counterpart revisited by Higuera (1994). Here we focus
on large values of x in more depth so as to conveniently gain the results for large
values of R with conforming asymptotic accuracy. These provide a benchmark for the
precision of our numerical predictions if we assume an irrotational jet and neglect
surface tension: equations (3.19a,b) yield m0 =µ= 1 and σ = 0. Hence, downstream
integration is initiated by [ f ,m] ∼ [η, 1] (R→ 0) (equivalent to [f̂ , ĥ] ∼ [η, 1] (x→ 0)
as conservation of the flow rate yields ĥ ∼ 1 initially for ū ∼ 1, see Higuera 1994).
The numerical solution of the so resulting initial-value problem was evaluated at
three rather moderate end values Re := 1, 2, 3 of R; f and m were found to adjust
quite rapidly to their far-field values of O(1) computed via (4.1). Comparing key
figures with those obtained originally by Watson (1964) and Bowles & Smith (1992)
convincingly confirm the high reliability and downstream stability of the present
numerical schemes. The results are visualised together with those for α > 0 in § 4.3.

Watson employed a simplified von Kármán–Pohlhausen method interpolating
between the small- and large-R form of f he analysed first; Bowles & Smith chose
R, y as independent variables, which is equivalent to setting m ≡ 1 and identifying
η with y in (3.43b). They adopted a Crank–Nicholson discretisation. Although this
approach copes perfectly with the initial development of the flow (yet exhibiting
an almost inviscid bulk), it does less adequately than our scheme with the rapidly
increasing growth of H.

Equation (4.2) implies f̂ ∼ fW(η)+[x−ωf ′W(η)Fω(η)+ c.c.]/2+ o(x−ω) associated with
a nearly linear thickening of the layer:ĥ − d3

∼ hWx + [hωx1−ω
+ c.c.]/2 + o(x1−ω)

and ū ∼ f ′W/(hWx) for x→∞ and some constants ω (Reω > 0, ω 6= 1), hW > 0, hω
and d (real and due to integration). The last two reflect the flow history specified by
the ICs (3.43e). This behaviour is equivalent to m ∼ hW(R3

+ d3)/3 (R→∞) or H
increasing with R2 accordingly (Watson 1964). In accordance with (4.1) and (4.2), H
and f (ĥ) can be viewed as symmetric in R (antisymmetric in x), which confirms the
form above expansions (which amounts to ω being even). Moreover, extending the
next-order terms towards the limits ω→ 0+ and ω→∞ includes the possibility of a
respectively sub- and super-algebraic variation in x. The associated functions fW , Fω
then satisfy

−hW f ′2W = f ′′′W , fW(0)= f ′W(0)= f ′′W(1)= 0, fW(1)= 1, (4.3)
(1−ω)f ′4W (hWF′ω − hω)= ( f ′3W F′′ω)

′, Fω(0)= Fω(1)= F′′ω(1)= 0. (4.4)

Problem (4.3) is one of the few of Falkner–Skan-type where a closed-form solution
is available. Let us abbreviate Γ := 0[1/3]/0[5/6]. By integration, the BCs fix the
rescaled surface slip f ′W(1) as Γ 2/(2

√
3) ' 1.6260, the respective shear rate at the

disc f ′′W(0) as
√

π/3Γ 3/6' 2.2799 and the eigenvalue hW as π/
√

3' 1.8138. One in
turn finds f ′W(η)/f

′

W(1)= 1−
√

3 tan2(φ/2) where φ is the Jacobi amplitude am(c(1−
η); k) with c=

√
πΓ /33/4

' 1.8454 and the elliptic modulus k = (
√

3/4+ 1/2)1/2 '
0.96593. This solution of (3.43) describing self-similar flow for α = 0 was originally
put forward by Watson (1964) but with an ambiguous (inaccurate) value of k. We
detected non-zero residua fη(Re, 1)− f̂ ′(1), fηη(Re, 0)− f̂ ′′(0), h′(Re)− hW in the third
digits. Also, Watson (1964) estimated d ' 2.29 by his approximate method, whereas
we extracted d' 2.33 from our as did Bowles & Smith (1992) from their data.

Problem (4.4) governs the perturbation quantities Fω, ω, hω. They are worth
considering in more depth and breadth with respect to the case of finite disc rotation.
Let Fh

ω denote a homogeneous solution, i.e. obtained by setting hω = 0. Then (4.4)
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represents a generalised singular self-adjoint Sturm–Liouville eigenvalue problem
fixing the eigenvalues of ω and Fh′

ω , the latter subject to Fh′′
ω (1)= 0 and sorting out an

η−2-singularity for η→ 0. Thus ω and all other quantities involved are real. Writing
Fh
ω(η)∼ η + O(η4) in this limit uniquely defines Fh

ω(η) for each admissible value of
ω. Hence, the full solution reads Fω(η)= CωFh

ω(η)+ hωη/hW with some constant Cω

fixed by the upstream history of the flow and hω/Cω given by −hWFh
ω(1). A numerical

investigation then shows that F′′ω(1) vanishes for a discrete set of eigenvalues where
Fh
ω(η) becomes more and more oscillatory the larger ω is. (Finally, a sublayer forms

where η is of O(ω−1/3) as the problem becomes singular, and the algebraic variations
in x even merge with exponentially weak ones once ω has become of O(x/ ln x) for
some sufficiently large x.). Quite interestingly, it seems that ω∗ exactly equal to 14
(and even, as proposed above) represents the smallest of those eigenvalues (Fh ′

ω∗(η)

changes sign once). This (surprisingly large) value explains the very fast approach
of f towards Watson’s solution fW observed via full downstream integration. For the
sake of completeness, we note that Fh

ω∗(1) seemingly also equals a rational number,
namely 0.48.

4.2. Slowly rotating film: α� 1
For α → 0, (3.43b) decouples from (3.43c). According to the study of the BL in
§ 3.3.2, for not too large values of R the power series

[ f , g,m] ∼ [f̂ (x, η), ĝ(x, η), ĥ(x)] + α[ f 1(R, η), g1(R, η),m1(R)] +O(α2) (4.5)

holds. With f̂ known and satisfying (3.43b) in the form (4.2) for α = 0, a one-sided
coupling between (3.43b) and (3.43c) and a hierarchy of linear problems is generated
determining the sequence ĝ, f 1, g1, . . .: the second equation, together with the (jump)
condition for g in (3.43e) and the inhomogeneous BC ĝ(x, 0)= 1, determines ĝ and
the centripetal acceleration −Ξ in (4.2); this forces its linearised version governing
f 1, feeding into the corresponding equation for g1; reiteration of this scheme yields
higher-order corrections. Specifically, ĝ satisfies ĥ[f̂ η ĝx − f̂ x ĝη + 2f̂ ĝ/(3x)] = ĝηη.

For R � 1, weak disc rotation extends Watson’s solution: ĝ ∼ gW(η) with gW

governed by
2hW f ′WgW = 3g′′W, gW(0)= 1, g′W(1)= 0. (4.6)

From the straightforward numerical solution of (4.6), g′W(0)'−0.76126 is adopted in
(3.41). The corresponding effect of disc spin felt by the axial flow is readily at hand
by studying the linearised full form of (4.2) for large R, viz. Ξ ∼ h3

Wg2
WR8 providing

a forcing term. The analysis of § 4.1 subsequent to (4.1) immediately predicts

f 1/f ′W(η)∼ R8F1(η)+ R−3ω∗Fω∗(η), m1
∼ h1(R/31/3)11

+ hω∗(R/31/3)3−3ω∗ (4.7a,b)

and g1
=O(R8) (R→∞). Herein, ω∗ designates the unique value of ω found before,

and the function F1 and the constant h1 are uniquely determined by the accordingly
inhomogeneous counterpart to (4.4) with ω=−8/3:

(11/3)f ′4W (hWF1′
− h1)− (h3

W/3
1/3)( f ′WgW)

2
= ( f ′3W F1′′)′ (4.8)

subject to identical homogeneous BCs. With regard to the dominant homogeneous
contributions to m1 and f 1 in (4.7), the constants hω∗ and thus Cω∗ , i.e. the strength
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of the perturbation Fω∗ , are expected to differ from hω and Cω fixing the large-x form
of f̂ above when evaluated for ω=ω∗.

For R becoming large, the rapid approach towards Watson’s solution for α = 0 is
seen to be attenuated likewise by the advent of a finite disc speed and the rapidly
increasing magnitude of Ξ in (4.2). In turn, the expansions (4.5) and (4.7) trigger a
region R=O(α−1/8) of non-uniformity. Therein, (3.43b) or (4.2) are re-established in
full. Simultaneously, in this leading approximation the flow is no longer reminiscent
of any jet characteristics. We beneficially introduce rescaled O(1)-quantities by

[ f , g](R, η)∼ [f̄ , ḡ](R̄, η), [H,m](R)∼ [α−1/4H̄, α−3/8m̄](R̄), R̄ := α1/8R. (4.9a,b)

The underlying affine transformation identifies the region R̄ = O(1) where the disc
speed is representative of both relevant velocity components: m̄ū and v̄ are of
O(α3/8) by (3.40). Moreover, it recasts (3.43b)–(3.43e) into the canonical form of the
momentum equations,

m̄(f̄ η f̄ R̄η − f̄ R̄ f̄ ηη)− m̄′ f̄ 2
η − R̄ m̄3ḡ2

= R̄2 f̄ ηηη, (4.10a)

m̄(f̄ η ḡR̄ − f̄ R̄ ḡη + 2f̄ η ḡ/R̄)= R̄2ḡηη, (4.10b)

formally unaltered BCs,

η= 0 : f̄ = f̄ η = 0, ḡ= 1, η= 1 : f̄ = 1, f̄ ηη = ḡη = 0, (4.10c)

and ICs (3.43e) apart from m̄∼α3/8m0 (R̄→0). By (4.10a), the perturbations of O(R3)
about f̄ ∼ f0 then account for viscous effects for any howsoever small finite value of
α. Consequently, the problem is singular in the limit α→ 0 as the above structure
of the flow captures its transition for R� α−1/8 towards a state close to Watson’s
self-preserving one. To leading order, the ICs have to be replaced by

[f̄ , ḡ](R̄, η)→[ fW, gW](η), m̄∼ hW R̄3/3 (R̄→ 0). (4.10d,e)

Herein the remainder terms of O(R̄8) satisfy the hierarchy of inhomogeneous equations
arising from (4.10a) and (4.10b): Watson’s solution is attracting, and no branching
eigensolutions arise by linearisation about it in the limit R̄ → 0 (confirmed by
extending the analysis of § 4.1 to the case x→ 0, ω< 0). This slow, regular departure
from it due to disc rotation complies with matching the expansions (4.9) and (4.5).
However, plugging (4.10d,e) into (4.10a) renders the problem (4.10) a singular one.
In applying the numerical schemes (I) and (II), one combines (4.10d,e) in the first
R̄-step with the more relaxed condition m̄(0) = 0. For R̄ = 0, Watson’s solution,
obtained earlier, is interpolated at the points of the η-grid.

Figure 5 shows the key quantities resolved by the numerical solution of (4.10).
These consist of H, the surface speed Ūs(R̄) := f̄ η(R̄, 1)/m̄(R̄) and the radial and
circumferential components of the shear at the disc here represented by [σ̄ , τ̄ ] :=
[f̄ ηη,−ḡη](R̄, 0). They inherit all the exciting features of the film flow originating in
its departure from Watson’s solution, essentially characterised by the initial growth of
H̄ with R̄2. However, the radially increasing strength of the centrifugal and thus the
shear forces finally amplifies the radial flow and so decreases the film height. This
implies a local maximum of the latter for [R̄, H̄] = [R̄∗, H̄∗] ' [1.7000, 1.1906], a
striking feature of the flow observed in some previous computations (cf. Prieling &
Steiner 2013a,b). Eventually, the flow becomes fully developed as the fluid particles
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FIGURE 5. Canonical representation of film flow including leading-order asymptotes
(dotted).
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FIGURE 6. Flow profiles: canonical limits in radial (a) and azimuthal (b) directions.

assume a solid-body rotation, ḡ ∼ 1, and their centripetal acceleration balancing the
shear stress gradient predominates in (4.10a). One spots the behaviour

[f̄ , R̄8/3(ḡ− 1), R̄2/3H̄] ∼ [ f∞(η), g∞(η), 31/3
] +O(R̄−8/3) (R̄→∞), (4.11a)

[ f∞, g∞](η)= [(3η2
− η3)/2,−31/3(2η− η3

+ η4/4)]. (4.11b)

From this and the preceding analysis of Watson’s solution the asymptotes for R̄→ 0
and R̄ → ∞ included in figure 5 are extracted. These complete the qualitative
behaviour of the film flow as already made evident in figure 1. The latter limit
implies Ūs∼ (9/R̄)1/3/2. Figure 6 displays both limits in terms of the scaled velocity
profiles f̄ η and ḡ. We find gW(1) ' 0.53718, but for f̄ η their relative difference is
remarkably small; the flow profiles do not alter so much qualitatively with R̄ in both
the radial and the circumferential direction.
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The following observation deserves mentioning. The novel scaling (4.9) of the
radius and the streamwise flow velocity describes a deviation from Watson’s flow
state still far from a fully developed one, expected to hold further downstream. In
both of these limiting cases, however, the flow quantities obey laws of full similarity,
whereas their R̄-dependence represents incomplete similarity according to the presence
of the two disparate scalings expressed by (4.10d,e) and (4.11).

The aforementioned leading-order equilibrium expressed by f̂ ∼ f̂∞ has attracted
attention previously. For instance, Aroesty et al. (1967) and Brauer (1971, p. 323 ff.)
considered it as a model for spraying along a rotating disc. Specifically, perturbations
of the fully developed state die out with integer powers of R̄−8/3. This has provided
the starting point when it comes to the rigorous higher-order analysis of spinning-disc
flow available in the literature; see the note on Rauscher et al. (1973) in § 1. Further,
Needham & Merkin (1987) studied the stability and the development of surface waves
by imposing localised disturbances and deriving a simple kinematic wave equation. In
general, all the virtually self-preserving or universal solutions to (3.43) we dealt with
above might provide base states in forthcoming studies on the spatial/temporal stability
of the axisymmetric film.

4.3. General case of modest to rapid film rotation: α > 0
In general, equation (3.43) must be solved for some given value of α and (3.43e)
specified. Fortunately, numerical experiments suggest a very weak influence of
the choice of m0 for a given value of σ , see (3.19a) and (3.19b), on the film
flow. Therefore, it is essentially parametrised by the latter parameter apart from α.
Accordingly, the downstream influence of the jet is just felt via Λ0 and µ. This
observation prompts us to focus on the systematic variation of

√
α = 1/Ro and

σ (= 0, −2/3, −2) with m0 fixed by unity. For α increasing and & 1000, stable
downstream integration requires a progressively refined resolution of the η-direction.
It is quite amazing however, that it was found possible to achieve converged solutions
for values of α up to the magnitude of 104. This refers to a regime for α� 1 where
(4.11) and the transformation underlying (4.9) allow for the asymptotic representation

[U,W, g− 1,H] ∼

[( α
3R

)1/3
f ′
∞
,−

ηf ′
∞

3R2
,

g∞
(αR8)1/3

,

(
3
αR2

)1/3
]

(R̄→∞). (4.12)

For sufficiently large distances from the jet, the key properties of the universal
solution to (3.43) discussed above are recovered for any non-zero (and not too large)
value of α. However, the deviation from Watson’s solution and, consequently, the
maximum film height and hence the state of the flow close to a fully developed one
are shifted upstream as α increases. The rich variety of flow details, in dependence of
R and α, is essentially reflected by the distributions of m, the radial flow component
U(R, η) and the associated speed Us(R) :=U(R,1)=α3/8Ūs(R̄) at the surface Σ . These
features are exemplified first for the case where the inviscid upstream flow is free of
vorticity.

4.3.1. Irrotational jet: σ = 0, m0 = 1
We refer to figure 7 with the asymptotes A1–A4 defined in the following.

Figure 7(a) illustrates, amongst others, the rather fast transition between Watson’s
solution (A1, see § 4.1) and the canonical state even for not so small values of α. It
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R
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12(a)

(b)
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FIGURE 7. Solutions of (3.43) for σ = 0 and α= 0 (dashed),
√
α= 0.01, 0.02, 0.05, 0.2,

0.723, 2, 10, 100; asymptotes A1–A4 (dotted) discussed in body text: α increases from
(a) top to bottom with ◦ indicating maxima, (b) bottom to top with right ordinate referring
to α = 100 and 104.

is concentrated increasingly close to the disc centre for α becoming larger. Applying
the similarity law H/H̄∗ ∼ (R/R̄∗)2 (A2) ensuing from (4.9) to the position of the
maximum film height H serves to assess the deviation from that limiting behaviour.
If α increases, Watson’s solution becomes less attracting as that local maximum
of H becomes less pronounced. It finally collapses with the minimum located by
forming a flat point upstream as early as for α = α∗ with α∗ ' 0.7232

' 0.5227;
for larger values of α, H(R) decreases strictly monotonically. The surface speed
shown in figure 7(b) exhibits a local maximum for all values of α and a minimum
upstream for not too large ones, as does Ūs(r̄). For α� 1, H and Us initially follow
closely the inviscid-flow asymptotes [H, Us] ∼ [1/R, 1] (A3) before they undergo a
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UU
2.5 2.60.90 0.92 0.94 0.96 0.98 1.00 1.02

FIGURE 8. Solutions of (3.43) for σ = 0 and α= 36: (a) R= 0.02, 0.721, 0.046+ 0.05i6
0.746 (i = 0, 1, . . . , 14); (b) R = 0.746 + 0.05i 6 1.096 (i = 0, 1, . . . , 7, solid), 1.121 +
0.05i6 1.821 (i= 0, 1, . . . , 14, dashed), 7 (dash–dotted); (c) as (a) and (b) combined but
with 2i replacing i; (d) R= 0.02, 0.196, 1.221, 7 (dash-dotted); note asymptotes for R→ 0
and R→∞ (dotted).

rather instantaneous turn to already assume their terminal states given by (4.12) with
Us ∼ (9α/R)1/3/2 (A4: α = 100, 104) for moderate values of R.

Figure 8 displays the velocity components, see (3.40) and (3.42), for the case α=36
and values of R ranging from 0.02 up to 7. Here α is large enough that a wall jet
forms but still so small that the evolution of the BL towards the developed film and
the overshooting are recognised in great detail. Moreover, the salient properties of
the flow are qualitatively representative also for other values of α. The modification
of the flow with R is inferred from that of Us (see upper abscissae in U-plots
in figure 8a,b) as follows. For sufficiently small and increasing values of R, the
velocity deficit 1 − Us is positive and increases monotonically; it is exponentially
small as long as a BL can be discerned. Eventually, the U-profile in disc-normal
direction forms a minimum and a maximum. The latter lies more close to the disc
and initiates the internal radial jet. The minimum vanishes approximately for those
radial positions where Us undergoes its local minimum and the maximum value of
U again reaches unity: R ' 0.721. Further downstream, the flow accelerates rapidly
as the maximum exceeds unity and the jet becomes more pronounced. However, it
dies out for R ' 1.096, so U is again strictly convex in η for R being larger. For
R ' 1.821, Us attains its maximum. More outwards, the flow becomes rapidly fully
developed. The corresponding distributions of g in dependence of η in figure 8(c) are
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shifted monotonically towards g ∼ 1 as R increases. Specifically, figure 8(d) shows
selected profiles of R2W versus η: for R= 0.02, with their limiting value −m0 ηf ′0/2
for R→ 0 as lying very close, for R= 0.196 and R= 1.221 where they now assume
a maximum and minimum respectively at the free surface, and R = 7. The flow is
towards the disc as w is negative throughout the film. The same is true for wz, so ru
increases with the radius according to (2.4). Finally, one cannot distinguish visually
the results from their asymptotic representations in (4.12) as early as for the terminal
R-value. This is demonstrated for good measure in figure 8(c) where the plot of
(αR8)1/3[1 − g(R, η)]/2 for R = 7 coincides with that for R = ∞ as given by the
asymptote ga(η) :=−g∞(η)/2.

4.3.2. Influence of nozzle shape: −2 6 σ 6 0, m0 = 1
Sufficient vorticity at the nozzle outlet and thus the inlet of the film region, here

(3.20) gives σ = 2µ − 2, provokes the formation of an internal wall jet by viscous
diffusion. As mentioned earlier, this consolidates the possibility of controlling the
strength of the radial flow even for moderate values of α. More precisely, a targeted
enhancement of the associated shear rates adjacent to the disc and, consequently,
the diffusive–convective mass transfer of some specific constituent of the fluid (cf.
Prieling & Steiner 2013a) becomes attainable. Maintaining an axisymmetric wall jet
in some annular region without the need to keep the rotational speed over some
threshold, seen critical for other practical reasons, could provide an efficient strategy
to homogenise cleansing and etching the surface of e.g. a silicium wafer.

Choosing α as 1, 100 and 400 results in figure 9 (cf. figure 3d), allowing for
the following discussion. The individual U-profiles are identified advantageously by
their radial positions R = Ri (i = 0, 1, . . . , 21) defined by R0 = 0.01, Ri = 0.011 +
0.1(i − 1) 6 1.911 (i = 1, . . . , 20), R21 = 2. For the sake of clarity, the labels i =
2, 3, 4, 5 are omitted in figure 9(b) for σ = −2/3 but can be assigned readily to
the curves lying very close together, given the evident monotonic dependence on i
maintained for different values of σ . Although the curves for i=0 and i=1 are hardly
distinguishable, a pronounced wall jet, already emerging rapidly for small values of
R and rather low levels of inlet vorticity, here represented by σ = −2/3, is clearly
discernible. The curves for the extreme case σ =−2 of vanishing Us(0) refer to the
same i-values and give qualitatively the same picture as those for σ = −2/3 and,
therefore, are not indexed at all. The numerical runs predict the local extrema of Us(R)
to occur at radial positions largely independent of σ . For α= 1, the current resolution
predicts the local minimum at R ' R17 = 1.611. In accordance with our previous
findings, cf. figure 7(b), both the minimum and maximum are shifted upstream when
α is increased; a minimum is yet barely recognised for α = 100 and σ = 0 at R '
R6= 0.511 besides the maximum, detected for all three cases at R' R16= 1.511. For
α equal to 1 and 100, the plots for σ = −2/3 and σ = −2 show qualitatively very
similar results by resorting to identical values of i. The minimum has disappeared
once α has been increased up to 400. For this value, only increasing instances of Us
are plotted: i= 0, . . . , 10 and also R= 1 for σ = 0 and σ =−2/3; i= 0, 2, 4, 6, 8, 10,
12, 13 for σ =−2. In the last case, Us assumes its maximum for R'R13= 1.211. As
an overall tendency, a sufficient increase of the imposed vorticity upstream suppresses
the advent of a minimum as do larger values of α. In any case, however, the jet dies
out at R. 1, which complies with the results for σ = 0 shown in figure 8(b), and the
flow is essentially independent of its history further downstream as quickly morphed
into its terminal asymptotic state. Hence, a sufficiently large disc spin fortifies the
generation of a wall jet induced by upstream vorticity, but the associated flattening of
the film limits its persistence, turned off at a distance almost independent of the flow
parameters.
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FIGURE 9. Solutions of (3.43) for α = 1 (a), α = 100 (b), α = 400 (c): left-/rightmost
abscissae values slightly right-/left-shifted, discussion in body text.
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FIGURE 10. Solutions of (3.43) (H̄: dashed) including asymptotes given by (4.11)
(dotted).

4.4. Rapidly rotating film: α� 1

It is noted that (4.11a) invokes integer powers of (Ro/R4)2/3 as gauge functions
governing perturbations about the fully developed state (4.12) for Ro→ 0 and R kept
fixed, conflicting with those proposed by Rauscher et al. (1973). However, that state
inevitably represents the far-downstream form of one governed by (3.43b) and (3.43c)
restored in full. We here recognise the significance of the canonical transformation
tied in with (4.9), but with R̄ now being a likewise stretched radial coordinate and
f̄ , ḡ, m̄, H̄ redefined accordingly in the compressed region R̄ = O(1). There again
(4.10a)–(4.10c) and (4.11) hold.

However, the match with the predominantly inviscid flow further upstream is a
non-trivial matter, as inferred from the mismatch of m ∼ m0 and m ∼ α−3/8m̄(R̄).
Here a more severe form of non-uniformity of the expansion (4.9) applies given the
horizontal two-layer splitting of the flow upstream analysed in § 3.3.3, promoting the
formation of a wall jet. Most important, the exponentially growing BL displacement
provokes a ‘frozen’, still essentially inviscid, state of the flow in a further, relatively
small region around a small value of R̄. This explains the observed abrupt departure
from the inviscid-flow asymptotes in figure 7, shifted closer to jet impingement for
larger values of α, before transition towards the fully developed flow sets in but
shall be specified in a separate study. Putting previous results in the affine scaling
provided by (4.9) indicates both the attraction to that similarity for small but growing
values of R and a fast approach of the anticipated master function [Ūs, H̄ ](R̄) towards
[(9/R̄)1/3/2, 31/3/R̄2/3

]: see figure 10.
We are now able to precisely assess the validity of the current flow structure, which

might also be of practical value. At first, the shallow-water regime remains intact as
long as h � r holds. Given the scaling (3.40) and the quadratic growth rate of H
predicted by Watson’s self-similar state of the flow in § 4.1, this requires R� ε−2 for
α= 0. However, it is maintained for R<∞ for quite slow but still sufficiently strong
disc rotation expressed by α� ε1/4 according to (4.9). Here the current inspection of
very rapid rotation yields the second constraint, namely the region having R̄ = O(1)
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must not collapse with the square region of inviscid jet impingement having r̄=O(1).
This requires Ro0� Re1/12

0 and, in combination with the first bound,

ε1/4
� α� ε−1/8. (4.13)

As indicated by the values in table 3 (a0 ' 0.8), the latter estimate might be violated
in a realistic scenario. However, this paves the way to a new flow structure in the
immediate vicinity of jet impingement. Not covered at all by the present analysis, this
flow regime is defined by ultimately strong rotation of the film, a notion coined to
complete the categorisation of the flow ending § 3.3.1 and referenced in future efforts.

5. Summary and further outlook
A most comprehensive rigorous study of the problem formulated in § 2 is presented.

The largeness of the Reynolds number characteristic of the jet flow allows for utilising
of the power of asymptotic methods by dividing the flow into regions on account
of the different essential physical effects, especially of viscous competing with
centrifugal forces under the predominance of inertial ones. Specific attention is paid
to the outward spread of the slender film adjacent to the disc.

The suitably defined Rossby number Ro appears as the most prominent parameter
controlling the jet-driven developed film flow. This is investigated numerically by
means of two distinct sophisticated high-resolution schemes. As an exciting leap
forward, a similarity law obeyed in the developed-film regime in the limit of very
small and large values of Ro was deduced. In the first case, this takes place at an
accordingly stretched, in the second at a likewise compressed radial scale. In both, it
governs the evolution of the flow towards its fully developed state with the difference
only manifested by the upstream conditions. In the second situation of strong disc
rotation, the building block of the boundary layer downstream of jet impingement
is a von Kármán flow with a comparatively weak radial motion on its top. Here
an intrinsically different dependence of film formation on Ro is responsible for an
upstream discrepancy in the collapse of the data (incomplete similarity). To complete
and extend the flow structure by detailing the origin of the slender layer underneath
the region of jet impingement in that situation, specified by case (d) in § 3.3.3, and
for ultimately strong rotation merits utmost attention. Also, more careful experiments
are required so as to verify the manifold of flow phenomena associated with different
radial positions and disc speeds. Future theoretical activities should complete the
description of jet formation at the nozzle exit under gravity and include a thorough
analysis of unsteady and symmetry-breaking effects (spiral waves, striation).

In appendix A, two effects and their subtle interplay in the thin-film regime, all
neglected throughout so far, are highlighted in brief: that of gravity and surface
tension; the upstream influence exerted by the abrupt edge of a real disc. The
promising findings tie in with the quite recent ones by Wang & Khayat (2018),
complete the present rigorous analysis, point to our current efforts, and encourage
further ones.
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Appendix A. Elliptic effects
Global upstream influence is owed to the hydrostatic and capillary contributions to

the pressure made explicit in (3.45). We conveniently define

P(R̄) := SH̄− T(R̄H̄′)′/R̄ ∼ p̄(r̄, 0)/α3/4, [S, T] := [ε/(αFr2
0), ε

3/(α3/4We0)]/2. (A 1)

As readily derived from the requirement p̄ � ū2 and the scalings given by (3.40)
and (4.9), they remain asymptotically small (arbitrarily far from the disc centre) for
S � 1 and T � 1. Hence, strongly supercritical flow is maintained, described by
the present parabolic limit, as long as the maximum film height does not exceed
a certain level or, equivalently, the disc exhibits sufficient, although quite low, spin.
Relating typical dimensions of real discs to those of the nozzle orifice demonstrates
practical relevance: the radial extent of the viscosity-dictated film flow given by
(3.31), specified in table 3, is much smaller than realistic values of the disc perimeter,
re. However, this contrasts with Higuera’s original analysis (1994) for the planar flow
configuration (applied to the axisymmetric case by Higuera (1997)), which delineates
how even strongly supercritical flow immediately downstream of jet impingement at
a plate at rest is eventually subjected to marked pressure variations, owing to the
growth of the viscous layer, for a plate edge placed sufficiently remote from the jet.
The following preliminary analysis unravels the crucial aspects; future efforts shall
elucidate how sufficiently high but (in the present context) still low disc rotation
modifies Higuera’s theory.

A.1. On the viscous hydraulic jump

According to (2.5c), assuming S=O(1) and/or T =O(1) (ε→ 0) adds −m̄3P′ to the
right-hand side of (4.10a). But this renders the initial-value problem (4.10) ill-posed
for howsoever small but non-zero values of S and T . Hence, it no longer poses an
evolution problem having a solution just depending on its initial condition, where one
has to treat the two types (A) and (B) of the associated non-uniqueness scrutinised
next. In both, eigensolutions of the linearised operator represent local irregular radial
variations of f̄ tied in with those of H̄ of the same strength and thus inviscid flow
disturbances in the core region, η=O(1).

(A) The first kind resorts to two one-parameter families of eigensolutions occurring
in the limit R̄ → 0. Unaffected by disc rotation, they are merely controlled by
the inertia terms in (4.10a) in the core region. However, the responsible pressure
variations become dominant in their representations adjacent to the disc such that
these perturbations proved inexistent in § 4.2 even for arbitrarily large values of −ω.
Here f̄ and H̄ vary like

f̄ ∼ fW(η)+ γ̄ S,T(R̄)f ′W(η)(η− 1), H̄ ∼ hW R̄3
[1+ γ̄ S,T(R̄)]/3. (A 2a,b)

From here on, the subscripts S, T indicate the contribution to P in (A 1) underlying the
respective class and physical origin of eigensolutions. Their representations in local
viscous sublayers of thicknesses δ̄S,T := [3γ̄ S,T/(hW f ′′W(0)R̄γ̄

′

S,T)]
1/3 fix the generically

super-algebraic variation of the gauge functions γ̄ S,T :

f̄
f ′′W(0)

∼ δ2
S,T
ζ̄ 2

2
− 3δS,T γ̄ S,T

∫ ζ̄

0
(ζ̄ − t)Ai(t) dt, ζ̄ :=

η

δS,T
=O(1), (A 3a)

γ̄ S =CS exp[−λS/(S3R̄24)], γ̄ T =CT exp[−λT/(TR̄16/9)]. (A 3b)
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Herein, the parameters CS,T take on arbitrary values, and the positive constants λS,T
are determined by the match with the core region (involving some lengthy algebra).
One also finds δS = O(SR̄8), δT = O(T1/3R̄16/27), and corresponding variations of H̄
of O(R̄2γ̄ S,T). For instance, one obtains λS = 311f ′′W(0)

5/[80(1/3)3h10
W ] ' 184.094 and

δS/(SR̄8) = 0(1/3)h3
W/[3

11/3f ′′W(0)
2
] ' 0.054759. This virtually predicts an initially

extremely slow prior to an extremely sharp growth of hydrostatically excited
disturbances. In general, the solutions branch off drastically from their regular member
specified by CS =CT = 0 when the exponents in (A 3b) become numerically of O(1).

(B) The second type of bifurcation can occur sufficiently far downstream of
separation and typically reflects the upstream influence of reversed flow. In contrast to
situation (A), here the dominant inviscid-flow perturbation must balance the pressure
gradient across the core layer. A scaling analysis reveals its radial variations, left
unspecified here, as algebraic in the associated sublayer, which grows laterally with
the third power of its radial extent. Its disc-normal one is hence described by confluent
hypergeometric functions with the oscillatory behaviour confined to the reversed flow.
(Its non-smooth modification of algebraic–logarithmic radial variation might also occur
spontaneously at any R̄ > 0.) As a corollary, these again describe rapid disturbances
but about a flow having (negative) constant shear (f̄ ∼ f̄ ηη(R̄, 0)η2/2).

These eigensolutions unveil a globally destabilising effect of viscosity in an already
developed flow as they strongly modify the present solution further downstream. It
is first noted that the far-field equilibrium describing fully developed flow cannot
be altered by the pressure term. In agreement with Higuera (1994), however, we
conclude (and have confirmed by numerical experiments) that the solutions terminate
at variable positions R̄ = R̄e, say, in the form of an expansive singularity exhibiting
a universal structure and beyond which they cannot be extended. Apart from the
latter, this situation resembles that of freely interacting BLs. One is tempted to
master it numerically by means of downstream marching having selecting a specific
eigensolution of type (A) above as close as possible to the singular point R̄ = 0.
However, this shooting strategy does not guarantee a smooth unique solution for
0 < R̄ < R̄e once a weaker ill-posedness of the operator manifested by case (B)
emerges also at regular points. Following Higuera (1994), R̄e is construed as the edge
radius α1/8 re/rν and prescribed in a manner such that f̄ , H̄ approach the singularity
there. This ought to anticipate the upstream influence on a shorted streamwise
scale (given by the local film height) of the flow immediately downstream of the
edge. As a result, the shallow-water problem is confidently closed to a well-posed
and thus weakly elliptic one given finite pressure variations. It governs the circular
undular form of the hydraulic jump within the shallow-water limit, blurred by viscous
diffusion and tied in with flow reversal at its base for sufficiently large values of
G. This was investigated extensively by Higuera (1994), who solved the counterpart
to (4.10) governing planar flow for α = 0 by a time-transient numerical scheme; see
Thomas et al. (1991) and Liu & Lienhard (1993) for an experimental confirmation,
with the first reference indicating modifications by disc rotation: the flow is super-,
then subcritical, and finally criticality is conditioned at R̄ = R̄e by the singularity.
The critical film thickness correctly restores the upstream influence as accounted for
originally per (2.5p).

We remark that Fanno flow (Higuera & Liñán 1993) and mixed thermal convection
of BL type past a finite inclined plate (Higuera 1993) or a horizontal one (see
Steinrück 1994; Lagrée 1999) also suffer from a closely related difficile loss of
parabolicity. The first two of these studies demonstrate its resolution in both situations,
though differing strongly by the underlying physics, by the same type of intrinsic
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singularity to achieve critical conditions, thus either at the duct outlet or the trailing
edge of the plate. Hence, this is accomplished in a generic manner, i.e. only dependent
weakly on upstream conditions, and finally motivated Higuera (1994).

Furthermore, as demonstrated in the latter study by the ad hoc inclusion of
streamline curvature into the numerical discretisation, a surface roller is expected to
accompany the onset of a hydraulic jump for sufficiently large values of T . Since
short-scale effects then dominantly at play might advocate rapid laminar–turbulent
transition and thus a complete rearrangement of the flow to be controlled, a hydraulic
jump is very undesired in engineering circumstances. For instance, flow reversal
prevents convective removal of dissolved species or particles from the disc.

The bad news is that a developed layer is susceptible to a jump as it is weakly
elliptic given the intrinsic upstream influence of gravity and surface tension. Strictly
speaking, it is locally always subcritical for any finite value of G or T and becomes
only supercritical if these parameters vanish (cf. Brotherthon-Ratcliffe & Smith 1989).
(We adhere to the notation ‘critical’ and with prefixes in the classical sense of
propagation of small-amplitude disturbances.) The good news is, however, that the
smooth solution constructed by the above procedure is asymptotically consistent
with our parabolic limit insofar as the strengths of the eigensolutions (A 3) vanish
for G→ 0 and T → 0. By its universal strength, the edge singularity squashes the
jump more and more towards the edge. For sufficiently small values of G and T , it
is finally superseded by the effects of streamline curvature. At the same time, the
shallow-water approximation and the asymptotic hierarchy insinuated above (3.45)
stay intact for values of R̄ sufficiently far from but still close to R̄e. Then the
conventional notion ‘strongly supercritical’ used above to indicate this limit has the
well-defined meaning of near-supercritical flow in the strict sense. Moreover, since
the leading-order problem (3.43) has a solution valid for 0< R̄<∞, the trailing edge
can be placed somewhere in a self-consistent manner.

A.2. A closer view of the flow passing the edge
In any case, the classical shallow-water approach ceases to be valid within a
thin annulus encompassing the edge where streamline curvature compensates the
disc-normal pressure variation due to gravity and capillarity. Let us finally outline
the situation in slightly more detail, where three regimes have to be distinguished:
(i) G= T = 0, (ii) sufficiently small values of G and T , (iii) moderately large values
of G (and T). For an extensive study on the case (i) and on the forerunner to situation
(ii) we refer to Scheichl et al. (2018).

(i) The fluid is slightly shifted from the disc and accelerated as the detaching
streamline forms a cusp convex to it immediately downstream of the edge
(opposite Coanda effect). The associated Goldstein-type near wake is uniquely
defined by zero streamline deflection on its top. A full wake emerges not earlier
as for R̄ − R̄e = O(1), and the shallow-water approximation stays intact apart
from a tiny Navier–Stokes region encompassing the edge and accounting for a
smooth passage from no slip to free slip.

(ii) The above near-supercritical regime raises a square Euler region around the
edge with an extent measured by the local film height. There linearisation about
the oncoming-flow profile, defined by the solution of (4.10), yields a Rayleigh
problem with mixed boundary conditions satisfied at the detaching streamline.
It governs the transition of the pressure disturbances towards a jump across the
layer, just defined by surface tension, in a sufficiently smooth fashion. However,
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it gives rise to an accordingly weak singularity at the edge and a complex
substructure due to viscous shear along the bottom streamline.

(iii) The Euler stage describing the layer just thrown off the disc and its modification
into a downfall (regular Coanda effect) becomes a fully nonlinear one. Simulta-
neously, the incident flow is subject to the edge singularity so that the inviscid
flow assumes critical conditions at the upstream edge of the Euler region. The
transition between this and the shallow-water region is accomplished on a new
streamwise length scale by strong viscous–inviscid interaction due to streamline
curvature (cf. Higuera 1994).

We think that completing this local theory in necessary detail should also be
regarded as the discovery of a missing link.
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