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Abstract

We present methods and tools from the Soft Computing~SC! domain, which is used within the diagnostics and
prognostics framework to accommodate imprecision of real systems. SC is an association of computing methodologies
that includes as its principal members fuzzy, neural, evolutionary, and probabilistic computing. These methodologies
enable us to deal with imprecise, uncertain data and incomplete domain knowledge typically encountered in real-world
applications. We outline the advantages and disadvantages of these methodologies and show how they can be combined
to create synergistic hybrid SC systems. We conclude the paper with a description of successful SC case study
applications to equipment diagnostics.
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1. INTRODUCTION

In the industrial world, we encounter a wide range of mod-
eling problems that require the analysis of uncertain and im-
precise information. Usually, an incomplete understanding
of theproblemdomain furthercompounds thismodelingprob-
lem. For example, to support the service of equipment, we
need to generate models that can analyze the equipment data,
interpreting their past behavior and predicting their future be-
havior. These problems pose a challenge to traditional mod-
eling techniques and represent a great opportunity for the
application of soft computing methodologies.

In an effort to yield higher margins, many manufacturing
companies are shifting their operation to the service field.
Therefore, diagnostics and prognostics play a significant
role in this paradigm shift. A typical example of this service
focus is the use of long-term service agreement~LTSA!
contracts with guaranteed uptime. These contracts strongly
motivate the service provider to keep equipment in working
order as opposed to performing a maintenance action once
a failure has occurred. As a consequence, service should be
optimized to prevent failures and to maximize uptime while
avoiding superfluous maintenance. Some of these objec-
tives can be accomplished by using tools that measure the
system state and indicate incipient failures. Such tools must

have a high level of sophistication and must be able to
incorporate monitoring, fault detection, decision making
about possible preventive or corrective action, and execu-
tion monitoring. Because of the complexity of the task,
AI and in particular Soft Computing have been leveraged
in the implementation of these tools. Some applications of
Soft Computing techniques in support of service tasks, such
as anomaly detection and identification, diagnostics, prog-
nostics, estimation and control, have been reported in Bo-
nissone et al.~1995!, Chen and Bonissone~1998!, and
Bonissone et al.~1999a!. In this paper, we will briefly de-
scribe the components of Soft Computing and illustrate some
of their most successful applications to equipment service.

1.1. Soft computing

The termSoft Computing~SC!, a subfield of Artificial In-
telligence, was originally coined by Zadeh~1994! as an
association of computing methodologies that “. . . exploit
the tolerance for imprecision, uncertainty, and partial truth
to achieve tractability, robustness, low solution cost, and
better rapport with reality.~p. 1!”According to Zadeh~1998!,
Soft Computing “includes as its principal members fuzzy
logics ~FL!, neuro-computing~NC!, evolutionary comput-
ing ~EC! and probabilistic computing~PC!. ~p. 23!” It should
be noted, however, that we have not reached a consensus
yet as to the exact scope or definition of SC~see, e.g.,
Dubois & Prade, 1998!.

Reprint requests to: Dr. Kai Goebel, GE CR&D, Information Systems
Lab, K1-5C4A, One Research Circle, Niskayuna, NY 12309, USA. E-mail:
goebelk@crd.ge.com

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2001!, 15, 267–279. Printed in the USA.
Copyright © 2001 Cambridge University Press 0890-0604001 $12.50

267

https://doi.org/10.1017/S0890060401154028 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154028


A reason for SC’s success is thesynergyderived from its
components. SC’s main characteristics are its intrinsic ca-
pability to createhybrid systemsthat are based on a loose
~or tight! integration of these technologies. This integration
provides complementary reasoning and searching methods
that allow the combination of domain knowledge and em-
pirical data to develop flexible computing tools and solve
complex problems. Figure 1 portrays a categorization of
these SC algorithms and their hybrid combinations. Exten-
sive coverage of this topic can be found in Bouchon-
Meunier et al.~1995!, Bonissone~1997!, and Bonissone
et al.~1999a!.

1.2. SC components and taxonomy

Fuzzy logic~FL!, introduced by Zadeh~1965!, gives us a
language, with syntax and local semantics, in which we can
translate qualitative knowledge about the problem to be
solved. FL’s main characteristic is the robustness of its in-
terpolative reasoning mechanism. A comprehensive review
of fuzzy computing can be found in Ruspini et al.~1998!.

Probabilistic Reasoning~PR! such as Bayesian Belief
Networks~BBN!, based on the original work of Bayes~1763!
and refined by Pearl~1982!, and Dempster–Shafer’s theory
of belief, independently developed by Dempster~1967! and
Shafer~1976!, gives us the mechanism to evaluate the out-

come of systems affected by randomness or other types of
probabilistic uncertainty. PR’s main characteristic is its abil-
ity to update previous outcome estimates by conditioning
them with newly available evidence.

Neural networks~NN!, a major component of neuro-
computing, can be traced back to the work of McCulloch
and Pitts~1943!, who showed that a network of binary de-
cision units~BDNs! could implement any logical function.
Neural networks were further explored by Rosenblatt~1959!
and Widrow and Hoff~1960!. NN are computational struc-
tures that can be trained to learn patterns from examples.
By using a training set that samples the relation between
inputs and outputs, and a learning method, for example a
back-propagation type of algorithm introduced by Werbos
~1974!, neuro-computing~and in particular neural net-
works! give us a supervised learning algorithm that per-
forms fine-granule local optimization. A comprehensive
current review of neuro-computing can be found in Fiesler
and Beale~1997!.

Evolutionary Computing covers many important fami-
lies of stochastic algorithms, includingevolutionary strat-
egies~ES!, proposed by Rechenberg~1965! and Schwefel
~1965!, evolutionary programming~EP!, introduced by Fo-
gel ~1962!, and genetic algorithms~GAs!, based on the
work of Fraser~1957! and Holland~1962, 1975!, which
contain as a subsetgenetic programming~GP!, introduced

Fig. 1. Soft Computing components and hybrid systems.
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by Koza~1992!. Genetic Algorithms~GA!, a major compo-
nent of evolutionary computing, give us a method to per-
form a randomized global search in a solution space. In
such a space, a population of candidate solutions, encoded
as chromosomes, is evaluated by a fitness function in terms
of its performance. The best candidatesevolveand pass
some of their genetic characteristics to theiroffsprings, who
form the next generation of potential solutions. For a cur-
rent review of Evolutionary Computing, the reader is re-
ferred to Back et al.~1997!.

The common denominator of these technologies is their
departure from classical reasoning and modeling approaches
that are usually based on Boolean logic, analytical models,
crisp classifications, and deterministic search. In ideal prob-
lem formulations, the systems to be modeled or controlled
are described by complete and precise information. In these
cases, formal reasoning systems, such as theorem provers,
can be used to attach binary truth values to statements de-
scribing the state or behavior of the physical system.

When we solve real-world problems, we realize that they
are typically ill-defined systems, difficult to model and with
large-scale solution spaces. In these cases, precise models
are impractical, too expensive, or nonexistent. Our solution
must be generated by leveraging two kinds of resources:
problem domain knowledgeof the process0product that we
want to improve0fix and field data that characterize the
behavior of such process0product. The relevant available
domain knowledge is typically a combination of first prin-
ciples and experiential0empirical knowledge, and is usu-
ally incomplete and sometimes erroneous. The available
data are typically a collection of input–output measure-
ments, representing instances of the system’s behavior, and
are usually incomplete and noisy. These two kinds of re-
sources determine the two main approaches found in Soft
Computing:knowledge-drivenreasoning systems~such as
Probabilistic and Multivalued Systems! and data-driven
search and optimization approaches~such as Neuro- and
Evolutionary Computing!. This taxonomy, however, is soft
in nature, given the existence of many hybrid systems that
span more than one field, as we will see in a subsequent
section.

1.3. Alternative approaches to SC

The alternative approaches to SC are the traditional
knowledge-driven reasoning systems and the data-driven
systems. The first class of approaches is exemplified by
first-principle derived models~based on differential or dif-
ference equations!, by first-principle qualitative models
~based on symbolic, qualitative calculi—see Forbus~1981!
and Kuipers~1985!!, by classical Boolean systems, such
as theorem provers~based on unification and resolution
mechanisms!, or by expert systems embodying empirical
or experiential knowledge. All these approaches are char-
acterized by the encoding of problem domain knowledge
into a model that tries to replicate the system’s behavior.

The second class of approaches is represented by the re-
gression models and crisp clustering techniques that at-
tempt to derive models from any information available
from ~or usually buried in! the data.

Knowledge-driven systems, however, have limitations,
as their underlying knowledge is usually incomplete. Some-
times, these systems require the use of simplifying assump-
tions to keep the problem tractable~e.g., linearization,
hierarchy of local models, use of default values!. Theoret-
ically derived knowledge may even be inconsistent with the
real system’s behavior. Experiential knowledge, on the other
hand, could be static, represented by a collection of in-
stances of relationships among the system variables~some-
times pointing to causality, more often just highlighting
correlation!. The result is the creation of precise but simpli-
fied models that do not properly reflect reality or the cre-
ation of approximate models that tend to become stale with
time and are difficult to maintain.

Data-driven methods also have their drawbacks, since
data tend to be high dimensional, noisy, incomplete~e.g.,
DBs with empty fields in their records!, wrong~e.g., outli-
ers due to malfunctioning0failing sensors, transmission prob-
lems, erroneous manual data entries!, and so forth. Some
techniques, such as feature extraction, filtering and valida-
tion gates, imputation models, and virtual sensors~which
model the recorded data as a function of others variables!
have been developed to address these problems.

The fundamental problem of these classic approaches re-
sides in the difficulty to represent and integrate uncertain,
imprecise knowledge in data-driven methods or to make
use of somewhat unreliable data in a knowledge-driven ap-
proach. Although it would be presumptuous to claim that
Soft Computingsolvesthis problem, it is reasonable to state
that SC provides a different paradigm in terms of represen-
tation and methodologies, which facilitates these integra-
tion attempts. For instance, in classical control theory the
problem of developing models is decomposed into system
identification and parameter estimation. Usually the first
one is used to determine the order of the differential equa-
tions and the second one to determine its coefficients. Hence,
in this traditional approach we havemodel5 structure1
parameters. This equation does not change with the advent
of Soft Computing. However, we now have a much richer
repertoire to represent the structure, to search for the best
parameters, and to iterate in this process. For example, the
knowledge base~KB! in a Mamdani type fuzzy system
~Mamdani & Assilian, 1975! is typically used to approxi-
mate a relationship between a stateX and an outputY. The
KB is completely defined by a set ofscaling factors~SF!,
determining the ranges of values for the state and output
variables; atermset~TS!, defining the membership distri-
bution of the values taken by each state and output variable;
and by aruleset~RS!, characterizing a syntactic mapping
of symbols fromX to Y. The structureof the underlying
model is the ruleset, while the modelparametersare the
scaling factors and termsets. The inference obtained from
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such system is the result of interpolating among the outputs
of all relevant rules. This results in a membership distribu-
tion defined on the output space, which is then aggregated
~de-fuzzified! to produce a crisp output. With this inference
mechanism we can define a deterministic mapping between
each point in the state space and their corresponding out-
put. Therefore, we can now equate a fuzzy KB to a response
surface in the cross product of state and output spaces, which
approximates the original relationship.

A Takagi–Sugeno–Kang~TSK! type of fuzzy systems
~Takagi & Sugeno, 1985! increases its representational power
by allowing the use of a first-order polynomial, defined on
the state space, to be the output of each rule in the ruleset.
This enhanced representational power~at the expense of
local legibility! results in a model that is equivalent to Ra-
dial Basis Function~Bersini et al., 1995!. The same model
can be translated into a structured network, such as Adap-
tive Neural Fuzzy Inference Systems~ANFIS; Jang, 1993!,
in which the ruleset determines the topology of the net~model
structure!, while the termsets and the polynomial coeffi-
cients are defined by dedicated nodes in the corresponding
layers of the net~model parameters!. Similarly, in the tra-
ditional neural networks, the topology represents the model
structure and the links’ weights represent the model param-
eters. While NN and structured nets use local search meth-
ods, such as back-propagation, to tune their parameters, it
is possible to use global search methods, such as genetic
algorithms, to achieve the same parametric tuning or to
postulate new structures. An extensive coverage of these
approaches can be found in Bonissone~1997!.

2. HYBRID ALGORITHMS: THE SYMBIOSIS

Over the past few years we have seen an increasing number
of hybrid algorithms, in which two or more Soft Computing
technologies have been integrated. The motivation is to le-
verage the advantages of individual approaches to combine
smoothness and embedded empirical qualitative knowl-
edge with adaptability and general learning ability to achieve
improvement of overall algorithm performance. We will
now analyze a few such combinations, as depicted in the
lower box of Figure 1. First we will illustrate the use of NN
and GA to tune FL systems, as well as the use of GA to
generate0tune NN. Then, we will see how fuzzy systems
can control the learning of NN and the run-time perfor-
mance of GAs.

2.1. FL tuned by NN

Within the limited scope of using NNs to tune FL control-
lers, we want to mention the seminal work on ANFIS, pro-
posed by Jang~1993!. ANFIS is a representative hybrid
system in which NNs are used to tune a FLC. ANFIS con-
sists of a six-layer generalized network. The first and sixth
layers correspond to the system inputs and outputs. The
second layer defines the fuzzy partitions~termsets! on the
input space, while the third layer performs a differentiable

T-norm operation, such as the product or the soft-minimum.
The fourth layer normalizes the evaluation of the left-hand
side of each rule, so that their degrees of applicability will
add up to one. The fifth layer computes the polynomial
coefficients in the right-hand side of each Takagi–Sugeno
rule. Jang’s approach is based on a two-stroke optimization
process. During the forward stroke, the termsets of the sec-
ond layer are kept equal to their previous iteration value
while the coefficients of the fifth layer are computed using
a Least Mean Square method. At this point, ANFIS gener-
ates an output, which is compared with the one from the
training set to produce an error. The error gradient informa-
tion is then used in the backward stroke to modify the fuzzy
partitions of the second layer. This process is continued
until convergence is reached.

2.2. FL tuned by GAs

Many researchers have explored the use of genetic algo-
rithms to tune fuzzy logic controllers. Cordon et al.~1995!
have produced an updated bibliography of over 300 papers
combining GAs with fuzzy logic, of which at least half are
specific to the tuning and design of fuzzy controllers by
GAs. For brevity’s sake we will limit this section to a few
contributions. These methods differ mostly in the order or
the selection of the various FC components that are tuned
~termsets, rules, scaling factors!.

Karr, one of the precursors in this quest, used GAs to
modify the membership functions in the termsets of the
variables used by the FCs~see Karr, 1991!. In his work,
Karr used binary encoding to represent three parameters
defining a membership value in each termset. The binary
chromosome was the concatenation of all termsets. The fit-
ness function was a quadratic error calculated for four ran-
domly chosen initial conditions.

Kinzel et al.~1994! tuned both rules and termsets. They
departed from the string representation and used a cross-
product matrix to encode the rule set~as if it were in table
form!. They also proposed customized~point-radius! cross-
over operators, which were similar to the two-point cross-
over for string encoding. They first initialized the rule base
according to intuitive heuristics, used GAs to generate a
better rule base, and finally tuned the membership func-
tions of the best rule base. This order of the tuning process
is similar to that typically used by self-organizing control-
lers, as illustrated in Burkhardt and Bonissone~1992!.

Lee and Takagi~1993! also tuned the rule base and the
termsets. They used binary encoding for each three-tuple
characterizing a triangular membership distribution. Each
chromosome represents a TSK rule, concatenating the mem-
bership distributions in the rule antecedent with the poly-
nomial coefficients of the consequent.

Bonissone et al.~1996! followed the tuning order sug-
gested by Zheng~1992! for manual tuning. They began
with macroscopic effects by tuning the FC state and control
variablescaling factorswhile using a standard uniformly
spread termset and a homogeneous rule base. After obtain-
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ing the best scaling factors, they proceeded to tune the term-
sets, causing medium-size effects. Finally, if additional
improvements were needed, they tuned therule baseto
achieve microscopic effects. This parameter sensitivity or-
der can be easily understood if we visualize a homogeneous
rule base as a rule table: a modified scaling factor affects
the entire rule table; a modified term in a termset affects
one row, column, or diagonal in the table; a modified rule
only affects one table cell.

This approach exemplifies the synergy of SC technolo-
gies, as it was used in the development of a fuzzy PI control
to synthesize a freight train handling controller. This com-
plex, real-world application could not have been addressed
by classical analytical modeling techniques~without recur-
ring to many simplifying assumptions!. Furthermore, its
solution space was too large for a pure data-driven ap-
proach. By using a fuzzy controller, Bonissone~Bonissone
et al., 1996! was able to translate locomotive engineers train-
ing procedures into an executable model that exhibited a
reasonable performance. However, this performance, was
far from optimal, even after manual tuning of the model.
This shortcoming was addressed by using a genetic algo-
rithm to tune the model’s scaling factors and membership
functions.

2.3. NNs generated by GAs

There are many forms in which GAs can be used to synthe-
size or tune NN: to evolve the networktopology~number of
hidden layers, hidden nodes, and number of links! letting
the Back-Propagation~BP! learning algorithm tune the net;
to find the optimal set of weights for a given topology, thus
replacing BP; and to evolve the reward function, making it
adaptive. The GA chromosome needed to directly encode
both NN topology and parameters is usually too large to
allow the GAs to perform an efficient global search. This
problem has been partially resolved by using variable weight
granularity or by switching from direct binary encoding to
parametric or grammar encoding~see Bonissone et al.,
1999b, for a more complete review!.

Montana and Davis~1989! were among the first to pro-
pose the use of GAs to train a feedforward NN with a given
topology. Typically NNs using BP converge faster than GAs
due to their exploitation of local knowledge. However this
local search frequently causes the NNs to get stuck in a
local minima. On the other hand, GAs are slower, since
they perform a global search. Thus GAs perform efficient
coarse-granularity search~finding the promising region
where the global minimum is located! but they are very
inefficient in the fine-granularity search~finding the mini-
mum!. These characteristics motivated Kitano~1990! to pro-
pose an interesting hybrid algorithm in which the GA would
find a goodparameter region, which was then used to ini-
tialize the NN. At that point, BP would perform the final
parameter tuning.

McInerney and Dhawan~1993! improved Kitano’s algo-
rithm by using the GA to escape from the local minima

found by the BP during the training of the NNs~rather than
initializing the NNs using the GAs and then tuning it using
BP!. They also provided a dynamic adaptation of the NN
learning rate. For an extensive review of the use of GAs in
NNs, the reader is encouraged to consult the work of Vonk
et al.~1997! and Yao~1999!.

2.4. NN controlled by FL

Fuzzy logic enables us to easily translate our qualitative
knowledge about the problem to be solved, such as re-
source allocation strategies, performance evaluation, and
performance control, into an executable rule set. This char-
acteristic has been the basis for the successful development
and deployment of fuzzy controllers.

Typically this knowledge is used to synthesize fuzzy con-
trollers for dynamic systems~see Bonissone et al., 1995!.
However, in this case, the knowledge is used to implement
a smart algorithm-controller that allocates the algorithm’s
resources to improve its convergence and performance. As
a result, fuzzy rule bases and fuzzy algorithms have been
used to monitor the performance of NNs or GAs and mod-
ify their control parameters. For instance, FL controllers
have been used to control the learning rate of Neural Net-
works to improve the crawling behavior typically exhibited
by NNs, as they are getting closer to the~local! minimum.
The learning rate is a function of the step size and deter-
mines how fast the algorithm will move along the error
surface, following its gradient. Therefore the choice of the
learning rate has an impact on the accuracy of the final
approximation and on the speed of convergence. The smaller
its value, the better the approximation, but the slower the
convergence. The momentum represents the fraction of the
previous changes to the weight vector, which will still be
used to compute the current change. As implied by its name,
the momentum tends to maintain changes moving along the
same direction thus preventing oscillations in shallow re-
gions of the error surface and often resulting in faster con-
vergence. Jacobs~1988! established a heuristic rule, known
as theDelta-bar-deltarule to increase the size of the learn-
ing rate if the sign of the error gradient was the same over
several consecutive steps. Arabshahi et al.~1992! devel-
oped a simple fuzzy controller to modify the learning rate
as a function of the error and its derivative, considerably
improving Jacobs’ heuristics. The selection of these param-
eters involves a trade-off: in general, large values of learn-
ing rate and momentum result in fast error convergence, but
poor accuracy. On the contrary, small values lead to better
accuracy but slow training, as proved by Wasserman~1989!.

2.5. GAs controlled by FL

The use of Fuzzy Logic to translate and improve heuristic
rules has also been applied to manage GA’s resources~pop-
ulation size, selection pressure, probabilities of crossover
and mutation! during their transition fromexploration~glo-
bal search in the solution space! to exploitation~localized
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search in the discovered promising regions of that space;
see Cordon et al., 1995, and Lee and Tagaki, 1993!.

The management of GA resources gives the algorithm an
adaptability that improves its efficiency and converge speed.
According to Herrera and Lozano~1996!, this adaptability
can be used in the GA’s parameter settings, genetic opera-
tors selection, genetic operators behavior, solution repre-
sentation, and fitness function. The crucial aspect of this
approach is to find the correct balance between the compu-
tational resources allocated to the meta-reasoning~e.g., the
fuzzy controller! and to the object-level problem solving
~e.g., the GA!. This additional investment of resources will
pay off if the controller is extendible to other object-level
problem domains and if its run-time overhead is offset by
the run-time performance improvement of the algorithm.

This brief review of hybrid systems illustrates the roles
interaction of knowledge and data play in SC. To tune
knowledge-derived modelswe first translate domain knowl-
edge into an initial structure and parameters and then use
global or local data search to tune the parameters. To con-
trol or limit search by using prior knowledge we first use
global or local search to derive the models~structure1
parameters!, we embed knowledge in operators to improve
global search, and we translate domain knowledge into a
controller to manage the solution convergence and quality
of the search algorithm. All these facets have been ex-
ploited in some of the service applications described below.

3. DIAGNOSTICS AND PROGNOSTICS TASKS

The task of diagnosis is to find an explanation for a set of
observations and—in the case of prognosis—to forecast
the course of events. Diagnosis can further be broken down
into anomaly detection and failure identification, depend-
ing on the desired granularity of information required. Prog-
nosis is concerned with incipient failure detection, margin
prediction, or overall performance prediction. The latter
can be prediction of efficiency, current system status, and
so forth.

The outcome of diagnosis and prognosis drives planning
and execution. Possible planning includes planning of cor-
rective action that can be either reactive or proactive. Cor-
rective action includes reconfiguration of the current system
or subsystem, derating the setpoint, or changing the goal.
Another possible plan is maintenance planning, which has
to take into consideration not only the current system sta-
tus, but also the cost of maintenance~out of sequence vs.
routine!, disruption of service, and the cost of further dam-
age. All these steps can be interim fixes or tactical decisions.

Some of the challenges that diagnosis and prognosis sys-
tems face~besides imprecise data and incomplete under-
standing of the problem domain! are the ability to adjust to
a changing environment which must allow the distinction
between “normal” wear or desired system changes and the
reportable system deviation. The transients are often times
very similar and a proper distinction becomes important.

Environments do not only change with time but also in
space. Mobile diagnosis or remote monitoring and diagno-
sis systems are one possible answer. However, accessibility
and transmittability are limited by bandwidth and cost. There-
fore, the system may be equipped with remote repair capa-
bilities, which is a step towards an autarkic system. This
implies a more sophisticated decision maker that can rea-
son about the information gathered and come to an optimal
judgment within the constraints of the system.

The following section shows some case studies of SC
applications to diagnostics and maintenance. In particular,
we show the use of neuro-fuzzy solutions for voltage break-
down prediction, a joint neural network and decision tree
solution for paper mill web breakage prediction, automated
tuning of fuzzy controller via genetic algorithms, generator
diagnostics using Bayesian Belief Nets, and adaptive fuzzy
classification for aircraft engine diagnostics.

4. CASE STUDIES OF SC APPLICATIONS IN
DIAGNOSTICS AND MAINTENANCE

4.1. Distributed ANFIS models to predict voltage
breakdown in power distribution network

4.1.1. Problem

Power systems consist typically of a complex web of
interconnected components such as bulk transmission and
local power generation. Power blackouts are often times
started by the spread of initially localized events. These
events are caused by voltage instabilities, which then ex-
tend to voltage collapses~Yabe et al., 1995!. For example,
problems at an urban subsystem can percolate through the
system and lead to a blackout of a larger area. The vulner-
ability of the system to voltage collapse depends on system
operating conditions and customer behavior. Initial voltage
collapse symptoms are not very easily distinguishable from
normal operating conditions. Conventional countermea-
sures are limited by the cost involved and the allowable
operating points. It is therefore desired to monitor and pre-
dict voltage stability of power systems.

4.1.2. Solution

Most techniques for voltage stability calculation com-
pute the point of collapse or the reactive power margin. For
a given system configuration, the interaction between volt-
age, reactive power, and active power are defined in a three-
dimensional surface. Load variation results in a trajectory
on that surface~Fig. 2!. It is assumed that the collapse line
is located at points of infinite voltage derivatives. Different
system configurations~other than changes in load, which is
simply movement on the local surface! result in different
surfaces and it is the goal to provide monitoring and pre-
diction of local subsystems.

To start, each surface was represented via ANFIS~Yabe
et al., 1995!. Training was performed using a range of power
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system configurations and recording local observations while
the system was driven to collapse. An inference module
was used to infer the margin to collapse for the current state
of the system. If the state lies on one of the surfaces, then
several parameters can be computed, such as directional
vector, minimum dS, and constant power factor~PF! as
displayed in Figure 3 in the reactive power versus active
power space, which describes the relationship between cur-
rent point and collapse point.

In addition to the configuration modeling, a load predic-
tion module was employed using a fuzzy exponential
weighted moving average predictor that utilized an adap-
tive smoothing parameter~Khedkar & Keshav, 1992!. The
parameter changed its value based on the system status,
which is captured in fuzzy rules. Finally, a self-diagnosis
module was used to calculate several indices~equivocation,
inapplicability, urgency! and to evaluate how well the sys-

tem performs its monitoring task. It used these indices to
assess its own reliability in predicting a voltage collapse.

4.1.3. Results

The system was tested on a variety of different settings
ranging from small to large systems. Noteworthy is the
interpolative power of the overall system, which compen-
sates for a lack of being able to cover all possible scenarios
with empirical data for training and the ability to inter-
polate between rules. Figure 4 shows the interaction of the
different modules employed in this scheme where a small,
two-power-plants system test was modeled each with a gen-
erator, an exciter, a power system stabilizer, a turbine, and a
boiler. The network configuration was used to test the pre-
dictive capability of the system, which performed very well.
A different setup with a different amount of shunt compen-
sation was used as a test for the fuzzy inference, since the
predictive system had never seen this configuration before.
Collapse was predicted when subject to different load con-
ditions about one minute before the actual event. For a large
system test, 25 machines, 91 buses, and 109 branches were
modeled to reflect a location between a bulk transmission
and a large urban subsystem with both load and local gen-
eration. The load at all buses was ramped in this case. Test
cases included changes in generation dispatch, strength of
the transmission system, and so forth.

4.2. Prediction of paper web breakage in paper mill
using neural nets and induction trees

4.2.1. Problem

Paper mills have enormous size, oftentimes 100 meters
in length or more. Making paper involves running miles of
wet and dry webs over and between large cylinders that
convert pulp into the final product. The speed of the web
can reach 60 mph. Under those conditions, it is not surpris-
ing that the web breaks about once a day. Breakage results
in a machinery standstill of about 90 minutes, which in turn

Fig. 2. Load-voltage surface with trajectories and collapse line.

Fig. 3. Collapse points.

Fig. 4. Architecture of the system.
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causes plant-wide revenue loss of several million dollars
per year. It is therefore desirable to prevent breakage by
predicting imminent breakage and being able to take pre-
ventive action.

Breakage occurs when the roll draw is larger than per-
missible. Draw is necessary to stretch the paper to acquire
desired properties and the force exerted is ideally held be-
tween certain minimum and maximum values. These val-
ues are determined by the tendency of the web to stick to a
roll and the maximum force, which depends on nonconstant
web properties~tear strength, tensile strength, and dry con-
tent! and external factors~e.g., temperature, lubricant, rough-
ness, ash content, and retention!. For maximum yield, it is
desirable to run the machines at the upper operating point
~Chen & Bonissone, 1998!.

4.2.2. Solution

A number of approaches were considered, such as fuzzy
causal modeling, principal component analysis, and learn-
ing vector quantization. After initial down select, two ap-
proaches were chosen because of their complementary
nature: 1! neural nets with fuzzy accelerators and 2! induc-
tion trees derived from decision trees. Both help in predict-
ing some aspect of the web breakage. The former is more
accurate and provides a finer estimate of the break ten-
dency while the latter is more useful for diagnosis and for
finding relevant features related to breakage. The two ap-
proaches were then combined to give different types of in-
formation about the system state~Fig. 5!. The neural net
output was used to indicate the possibility of a break in the
short term using a continuous number. The output of the
induction tree was interpreted as a description of the sensi-
tivity relationships between the current break tendency and
the current values of the input sensor readings.

4.2.3. Results

The neural net was trained via back-propagation algo-
rithm using normalized input sensor data. Output was a

quantized measure before breakage. This measure was de-
signed such that the last 10 readings before breakage at-
tained a value of 0.9, the next to the last 20 readings a value
of 0.5 and the 10 readings before that a value of 0.1. The
interpretation could be little, medium, and long time to break-
age. Training was carried out using fuzzy accelerators that
adaptively adjust momentum, learning rate, and steepness
parameters after each iteration. These accelerators react to
the rate at which learning commences. For example, if the
error derivative was the same over several learning epochs
and the decrease of the error was small, the learning rate
was increased. The other parameters were adjusted in a
similar fashion whereby the condition was evaluated using
fuzzy reasoning. During training, a correct classification of
99.1% was achieved for the neural network while the vali-
dation set achieved 86.8% correct classification.

For the induction tree, C4.5 was used. It was trained and
tested with the same data as the neural net. Classes were
assigned the linguistic labels “low,” “medium,” and “high.”
A subset of the classification rules was then used in the
on-line detection as a fault isolator to explain the current
situation. A typical classification rule was:

IF: Wire water pH, 0.104
AND: Retention aid flow. 0.260
THEN: classification5 high

This method achieved a 95.3% and 87.2% correct classifi-
cation for training and testing, respectively.

The supplemental nature of neural nets and decision trees
allows a high classification rate with simultaneous expla-
nation of the outcome by aggregating the result. Further
details on this application can be found in Bonissone et al.
~1999b!.

4.3. Method for automated tuning of a raw mix
proportioning controller in cement plants

4.3.1. Problem

A cement plant basically grinds limestone, sandstone,
and sweetener in a mill, and processes the resulting powder
in a kiln. To ensure the correct mix and proportions of chem-
ical elements for making cement, it is critical to control the
Raw Mix Proportioning~RMP! by keeping the output of
the raw mill to be close to specified set points of physical
properties~i.e., Lime Saturation Factor~LSF!, Alumina
Modulus~ALM !, and Silica Modulus~SIM!!. These prop-
erties are all functions of the fractions of four metallic ox-
ides present in the material and can be picked up by sensors
~IMACON and Quarcon! with a time delay of a few min-
utes. The control objective is then to regulate the values of
LSF, ALM, and SIM, as they appear after the raw mill, so
that they are close to the set points and fluctuate as little as
possible. This can be done by continually changing the pro-
portion in which the three raw materials are mixed before
they enter the raw mill.Fig. 5. Hybrid system for breakage detection.
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4.3.2. Solution

The proposed controller employs two fuzzy logic super-
visory controls to minimize set-point tracking error, while
providing a smooth control action and insuring that there
is no sudden control change that imposes shock to the
system. The fuzzy logic supervisory controller~FLSC! uses
the tracking error and its change-in-error to recommend a
change in the control output that modifies the current con-
trol settings. Specifically, the FLSC consists of three pairs
of fuzzy proportional integral~FPI! controllers. In the
method described here, the FPI is tuned off-line using ge-
netic algorithms to modify FPI’s most sensitive param-
eters: scaling factors~SF! and membership functions~MF!.

The overall scheme is shown in Figure 6. It consists of
FLSC closing the loop around the plant simulation~PSIM!,
using only the current set points as its state input. The ac-
tual set points are compared with the desired set points to
generate an error as input to the FLSC, which in turn out-
puts control actions back to the simulator. Off-line, a GA
uses the setup for evaluating various FPI parameters.

The design of the control algorithm requires a hierarchi-
cal system for handling multiple, possibly conflicting goals.
The latter arise because the three properties~LSF, SIM, and
ALM ! have to be controlled simultaneously, and each may
require a different proportion to be accurately controlled.
The hierarchical controller module is illustrated in Fig-
ure 7, where the low-level controllers control the output to
minimize the error in each of the three set points of LSF,
SIM, and ALM, while the supervisory controller deter-
mines the best compromise among these control actions.
This hierarchical control scheme permits the decomposi-
tion of complex problems into a series of smaller and sim-
pler ones. As these simpler problems are solved, typically
by using low-level controllers, they are recombined to ad-

dress the larger problem. The fuzzy logic supervisory con-
troller governs this recombination by performing soft
switching between different modes of operation. The soft
switching allows more than one mode of operation~with its
corresponding controller! to be active at any one time.
Through the assignment of a linear combination of low
level controllers to a given mode, the engineer can trade off
safety and efficiency against performance.

We adopted GAlib, a C11 library of genetic algorithm
objects, as the software development tool~developed at MIT
to promote the study of genetic algorithms for general pur-
pose optimization!. To study the effects of different objec-
tives, we minimized four fitness functions, considering
tracking accuracy, throttle jockeying, raw material cost, and
combining a weighted sum of the first three. For compari-
son purposes, 16 tests were conducted by taking a cross-
product of the scaling factor values before and after GA
tuning, the membership function parameter values before
and after GA tuning, and the four fitness functions.

4.3.3. Results

The GA parameters were: population size5 50, number
of generations5 25, crossover rate5 0.6, and mutation
rate5 0.001. All structures in each generation were evalu-
ated and an elitist strategy was used to guarantee mono-
tonic convergence. It was shown that this approach resulted
in a controller that was superior to the manually designed
one, and with only modest computational effort. This makes
it possible to customize automated tuning to a variety of
different cement plants. The tests demonstrated that GAs
are powerful search methods and are very suitable for au-
tomated tuning of FPI controllers. The Genetic Algorithms
were able to come up with near-optimal FPI controllers
within a reasonable amount of time according to different
search criteria. In addition, the tests were also designed to
demonstrate that parameters tuning should be performed in
the order of their significance. In particular, tuning of scal-
ing factors should come first, since they have global effects

Fig. 6. System schematic for automatic tuning of a fuzzy supervisory
controller in cement plants.

Fig. 7. Fuzzy logic supervisory controller module.
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on all the control rules in a rule base. Tuning membership
functions will only give marginal improvements for an FPI
with tuned scaling factors.

The tuning of the supervisory fuzzy controller, in con-
junction with a plant simulator, had the objective of verify-
ing that the system could exhibit stable operation for more
than a week under severe external disturbances in the oxide
content of the raw material as well as under parameter noise.
The control system was tested in the Gujarat Ambuja Ce-
ment Limited~GACL! plant in Kodinar, India and is now
commercially available from IMA. The interested reader
can obtain further details about the control system in Bon-
issone and Chen~2000a, 2000b, 2000c!.

4.4. Generator diagnosis using BBN

4.4.1. Problem

Complex industrial systems such as utility turbine sys-
tems are often monitored to detect incipient faults and to
prevent catastrophic failure. Generators are fairly large de-
vices that consist of a few basic components: inlet system,
compressor, combustor, turbine, and exhaust system. The
goal is to operate the turbine at maximum allowable tem-
perature and to keep emissions within desired range while
delivering maximum power. Generators can deliver power
in a wide range. Often they are bundled in a series of gen-
erators that are switched on and off according to demand
while the process of the individual generator is ideally run
at a steady state.

Due to a large number of moving parts and large forces
and speeds at work, there is always the potential for failure
such as shaft cracks, bearing failures, blade failures, nozzle
failures, and so forth. As in many diagnostic systems, the
individual component cannot be observed directly. For ex-
ample, it is not possible to visually inspect the turbine shaft
in operation. Indirect measurements, however, can give clues
to a potential problem. Therefore, reasoning systems have
to be built which use these clues to come up with an expla-
nation. In complex systems, such as a generator, there are a
large number of causal interconnections between system
components, which makes approaches like rule-based ex-
pert systems hard to set up and to manage. Thousands of
those relations exist and correspondingly many rules. The
problem is worsened because the magnitude of the relation-
ship is often times only poorly understood and because dif-
ferent types of relations~denoting flow of information or an
actual physical influence! are not easy to distinguish.

4.4.2. Solution

A modeling tool that addresses the needs outlined above
is the Bayesian Belief Net. BBNs have been successfully
used in diagnostic tasks for generators~Morjaria & San-
tosa, 1996!. For the generator considered, interdependen-
cies were initially modeled using causal nets. Later, the

network was amended with probabilistic information. Cause-
and-effect relations~such as shown simplified in Fig. 8! can
be set up to model particular behavior. In the example shown,
a blade fault may cause both an increase in boiler temper-
ature and vibration. However, as indicated before, one can-
not directly observe the blade fault. Therefore, it is necessary
to use the measurable units to perform diagnostic reason-
ing. Because a shaft fault may also cause an increase in
vibration, a decision has to be made whether a blade fault
or a shaft fault is present.

BBNs use probabilistic information to solve this
problem. Both prior probabilities—probabilities in the ab-
sence of any additional information—and conditional
probabilities— explaining relationships between pairs of
nodes— can be used via mathematical manipulations to
reverse the arcs and reason about the fault given symptoms.

The solution of a network with several thousand nodes—as
is the case of a generator—is NP-hard. Another issue is
finding the conditional probabilities, which is not always
straightforward. However, finding good approximate solu-
tions rather than insisting on exact solutions~Morjaria &
Santosa, 1996! appears to give acceptable results, and even
a network setup with gross simplifications where probabil-
ities are assigned values based on heuristics~high0 low!
performs oftentimes in a reasonable manner.

Some design rules have to be observed when setting up a
BBN. For example, no cycles may be introduced into the
network. An extension to the BBN includes the introduc-
tion of decision nodes, which allow the incorporation of
potential action to be taken based on a current situation.
The decision node would then perform a local optimization
based on the data at hand. A BBN with decision nodes is
called an Influence Diagram.

Today, monitoring BBNs have been deployed to many
generators around the world~Morjaria & Santosa, 1996!
and are observed remotely to deliver diagnostic informa-
tion in a timely and cost-efficient fashion. Besides genera-
tors, BBNs have also been successfully used in several other
large-scale systems such as locomotives~Morjaria et al.,
1998!.

Fig. 8. Example BBN used for generators.
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4.5. Adaptive classification for gas turbines’
anomalies

4.5.1. Problem

Gas turbines are used in many applications. They can
range from stationary power plants to use in airplanes or
helicopters. Depending on the particular use, the design
and size of the gas turbine will vary. On a coarse level,
however, gas turbines use the same operating principles. To
detect incipient failures, service providers have long tracked
the behavior of the engine by measuring many system pa-
rameters and by using trend analysis to detect changes that
might be indicative of developing failures~Doel, 1990!.
Challenges of these schemes are that faults may not be
recognized distinctively due to large amounts of noise as
well as changing operating conditions that constantly move
the estimate for “normal” operation. The former are caused
in part by changing environmental conditions for which
corrections with first-principle models or regression mod-
els work only to some extent. The latter are due to changes
of schedules, maintenance, and so on, which are not neces-
sarily known to the analyst.

4.5.2. Solution

The solution used employed fuzzy clusters, a digital
filter, and allowed the cluster to adapt to changing envi-
ronments. Evaluation in multivariate feature space helped
distinguish some faults because system variables are cor-
related. For example, a bleed problem, where air leaks
from the compressor, will result in a less efficient engine.
However, in the case of an aircraft engine, the controller
demands a certain thrust level and will cause more fuel to
be injected into the combustors. This, in turn, will raise
both the turbine speed as well as the exhaust gas temper-
ature. Any particular change may be too small to be picked
up alone. However, in a three-dimensional space, the change
is more pronounced and can be detected more easily. How-
ever, there is still the potential for high misclassification
and a crisp classifier will not work very well. The ap-
proach chosen uses fuzzy clusters that have a lower degree
of membership in the region of overlap. Figure 9 shows
fuzzy clusters in the exhaust gas temperature~EGT! ver-
sus turbine speed~N2! space. A digital filter was added to
the scheme, thus introducing a small lag. However, the
misclassification was further reduced because noise in the
overlapping region was decreased as well. The adaptive
properties of the clusters allowed the centroids to move
and their shape to change. To achieve this goal, the cen-
troid was superimposed with an exponential filter with
small parameter, which forced the centroid to be updated
according to the current data. Data were used for updating
only when they are classified as part of a particular clus-
ter. Specifically, data of type “normal” were used to up-
date the cluster “normal” but not the cluster “bleed valve
fault” and vice versa.

4.5.3. Results

The system was tested with historical gas turbine data. It
showed superior behavior compared to traditional trending
approaches, which was manifested in a low false negative
rate ~none observed with the data available! and a much
reduced false positive rate, which improved by several or-
ders of magnitude. Figure 10 shows the adaptation of a
cluster during operation. The “x” denotes the location of
the centroid of cluster “normal” and the squares denote the
location of a fault cluster. During a software change, the
normal region changes considerably in one dimension as
seen by the vertical jump of the operating point in the graph.
Because there were no changes in the other two dimen-
sions, the algorithm adapts correctly to the new location
while retaining the ability to detect faults.

Fig. 9. Fuzzy clusters in multidimensional space.

Fig. 10. Adaptation of clusters during operation.
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5. FINAL REMARKS

Soft Computing is having an impact on many diagnostic
industrial and commercial operations. It provides alterna-
tive approaches to traditional knowledge-driven reasoning
systems or pure data-driven systems and it overcomes their
shortcomings by synthesizing a number of complementary
reasoning and searching methods over a large spectrum of
problem domains. We have reviewed Soft Computing’s main
components~Fuzzy Logic, Probabilistic Reasoning, Neural
Networks, and Evolutionary Computing! and surveyed some
of their successful applications for equipment monitoring,
diagnostics, and control, where SC components were used
either alone or in a hybrid fashion. These studies stem from
real-world, high-impact business problems, such as gas tur-
bine service and diagnosis, voltage breakdown prediction,
generator diagnostics, cement kiln controller tuning, and
paper web breakage prediction.

The SC components leverage the tolerance for impreci-
sion, uncertainty, and incompleteness, which is intrinsic to
the problems to be solved, and generate tractable, low-cost,
robust solutions to such problems. The synergy derived from
hybrid systems stems from the relative ease with which we
can translate problem domain knowledge into initial model
structures whose parameters are further tuned by local or
global search methods. The payoff for a conjunctive use of
techniques is a more accurate and robust solution than a
solution derived from the use of any single technique alone.
This synergy comes at comparatively little expense because
typically the methods do not try to solve the same problem
in parallel but they do it in a mutually complementary fash-
ion. In other words, no single technique should be expected
to be the best for finding every model structure and tuning
all system parameters.

A step in further improving system performance is the
exploitation of parallel systems. These systems may be de-
signed to rely to the maximum amount on nonoverlapping
data and use different techniques to arrive at their conclu-
sions. Ininformation fusion, the outputs of these heteroge-
neous models will be compared, contrasted, and aggregated.

The future appears to hold much promise for the novel
use and combinations of SC applications. The circle of SC’s
related technologies will probably widen beyond its current
constituents. The push for low-cost solutions combined with
the need for intelligent tools will result in the deployment
of hybrid systems that efficiently integrate reasoning and
search techniques.

On the application front, we will likely see a drive to-
wards prognostic and autonomous capabilities. With an in-
crease of service-related operations, it will be increasingly
attractive to be able to forecast anomalous trends and con-
ditions, and correct them before their effects are fully de-
veloped. In addition, remotely monitored systems will bear
the need to operate autonomously, thus requiring intelligent
agents to regulate their operations.

In the future, we expect that the combination of Soft
Computing with advances in the areas of computer vision,
voice recognition, natural language processing, and so on,
will further improve and expand our problem-solving capa-
bility to a large spectrum of industrial and commercial
problems.

REFERENCES

Arabshahi, P., Choi, J.J., Marks, R.J., & Caudell, T.P~1992!. Fuzzy control
of backpropagation.First IEEE Int. Conf. Fuzzy Systems (FUZZ-
IEEE’92), San Diego, CA, pp. 967–972.

Back, T., Fogel, D., & Michalewicz, Z.~1997!. Handbook of evolutionary
computation, Bristol, UK: Institute of Physics, and New York: Oxford
University Press.

Bayes, T.~1763!. An essay towards solving a problem in the doctrine of
chances,Philosophical Transactions of the Royal Society of London
53, 370–418. Facsimile reproduction with commentary by E.C. Mo-
lina in Facsimiles of Two Papers by Bayes, E. Deming, Washington,
D.C., 1940, New York, 1963. Also reprinted with commentary by G.A.
Barnard inBiometrika~1970! 25, pp. 293–215.

Bersini, H., Bontempi, G., & Decaestecker, C.~1995!. Comparing RBF
and fuzzy inference systems on theoretical and practical basis.Proc.
Int. Conf. Artificial Neural Networks. ICANN ’95, Paris, France, Vol.1,
pp. 169–174.

Bonissone, P.~1997!. Soft Computing: The convergence of emerging rea-
soning technologies.Soft Computing: A Fusion of Foundations, Meth-
odologies and Applications, 1(1), 6–18.

Bonissone, P., Badami, V., Chiang, K.H., Khedkar, P.S., Marcelle, K., &
Schutten, M.J.~1995!. Industrial applications of fuzzy logic at General
Electric.Proceedings of the IEEE, 83(3), 450–465.

Bonissone, P., & Chen, Y.-T.~2000a!, System and method for providing
raw mix proportioning control in a cement plant with a fuzzy logic
supervisory control. US Patent #6,113,256.

Bonissone, P., & Chen Y.-T.~2000b!. System and method for providing
raw mix proportioning control in a cement plant with gradient-based
predictive controller. US Patent #6,120,173.

Bonissone, P., & Chen, Y.-T.~2000c!. System and method for providing
raw mix proportioning control in a cement plant. US Patent #6,120,172.

Bonissone, P., Chen, Y.-T., Goebel K., & Khedkar, P.~1999a!. Hybrid soft
computing systems: Industrial and commercial applications.Proceed-
ings of the IEEE 87~9!, 1641–1667.

Bonissone, P., Chen, Y.-T., & Khedkar, P.~1999b! System and method for
predicting a web break in a paper machine, US Patent #5,942,689.

Bonissone, P., Khedkar, P., & Chen, Y.-T.~1996!. Genetic algorithms for
automated tuning of fuzzy controllers, A transportation application.
Fifth IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE’96), New Orleans,
LA. pp. 674–680.

Bouchon-Meunier, B., Yager, R., & Zadeh, L.~1995!. Fuzzy logic and soft
computing. Singapore: World Scientific.

Burkhardt, D., & Bonissone, P.~1992!. Automated fuzzy knowledge base
generation and tuning,First IEEE Int. Conf. Fuzzy Systems (FUZZ-
IEEE’92), San Diego, CA, pp. 179–188.

Chen, Y.-T., & Bonissone, P.~1998!. Industrial applications of neural net-
works at General Electric, Technical Information Series, 98CRD79,
General Electric CRD, Schenectady, NY.

Cordon, O., Herrera, H., & Lozano, M.~1995!. A classified review on the
combination fuzzy logic-genetic algorithms bibliography.Tech. Re-
port 95129, URL:http:00decsai.ugr.s0;herrera0flga.html, Department
of Computer Science and AI, Universidad de Granada, Granada, Spain.

Dempster, A.P.~1967!. Upper and lower probabilities induced by a multi-
valued mapping.Annals of Mathematical Statistics 38, 325–339.

Doel, D. ~1990!. The role for expert systems in commercial gas turbine
engine monitoring.Proc. Gas Turbine and Aeroengine Congress and
Exposition, Brussels, Belgium.

Dubois, D., & Prade, H.~1998!. Soft computing, fuzzy logic, and artificial
intelligence.Soft Computing: A Fusion of Foundations, Methodolo-
gies and Applications, 2(1), 7–11.

Fiesler, E., & Beale, R.~1997!. Handbook of neural computation, Bristol,
UK: Institute of Physics, and New York: Oxford University Press.

278 P. Bonissone and K. Goebel

https://doi.org/10.1017/S0890060401154028 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154028


Fogel, L.J. ~1962!. Autonomous automata,Industrial Research 4,
14–19.

Forbus, K.~1981!. Qualitative reasoning about physical processes.Proc.
Seventh Int. Joint Conf. Artificial Intelligence, Karlsruhe, Germany.

Fraser, A.S.~1957!. Simulation of genetic systems by automatic digital
computers. I. Introduction.Australian Journal of Biological Sciences
10, 484–491.

Herrera, F., & Lozano, M.~1996!. Adaptive genetic algorithms based on
fuzzy techniques.Proc. IPMU’96, Granada, Spain, pp. 775–780.

Holland, J.H.~1962!. Outline of a logical theory of adaptive systems,
Journal of the ACM 9, 297–314.

Holland, J.H.~1975! Adaptation in natural and artificial systems, Cam-
bridge, MA: MIT Press.

Jacobs, R.A.~1988!. Increased rates of convergence through learning rate
adaptation.Neural Networks 1, 295–307.

Jang, J.S.R.~1993!. ANFIS: Adaptive-network-based-fuzzy-inference-
system.IEEE Transactions on Systems, Man, and Cybernetics, 23(3),
665–685.

Karr C.L. ~1991!. Design of an adaptive fuzzy logic controller using ge-
netic algorithms,Proc. Int. Conf. on Genetic Algorithms (ICGA’91),
San Diego, CA, pp. 450–456.

Khedkar, P.S., & Keshav, S.~1992!. Fuzzy prediction of timeseries.Proc.
First IEEE Int. Conf Fuzzy Systems, pp. 281–288.

Kinzel J., Klawoon, F., and Kruse, R.~1994!. Modifications of genetic
algorithms for designing and optimizing fuzzy controllers.Proc. First
IEEE Conf. on Evolutionary Computing (ICEC’94), Orlando, FL,
pp. 28–33.

Kitano, H. ~1990!. Empirical studies on the speed of convergence of neu-
ral network training using genetic algorithms.AAAI-90 Proc. Eighth
Natl. Conf. Artificial Intelligence, vol. 2, pp. 789–795.

Koza, J.~1992!. Genetic programming: On the programming of computers
by means of natural selection, Cambridge, MA: MIT Press.

Kuipers, B. ~1985!. Commonsense reasoning about causality: Deriving
behavior from structure. InQualitative reasoning about physical sys-
tems, ~Bobrow, D., Ed.! pp. 169–203. Cambridge, MA: MIT Press.

Lee, M.A., & Tagaki, H.~1993!. Dynamic control of genetic algorithm
using fuzzy logic techniques. InProc. Fifth Int. Conf. Genetic Algo-
rithms, ~Forrest, S., Ed.!, pp. 76–83.

Mamdani E.H., & Assilian, S.~1975!. An experiment in linguistic synthe-
sis with a fuzzy logic controller.International Journal of Man Ma-
chine Studies 7(1), 1–13.

McCulloch W.S., & Pitts, W.~1943!. A logical calculus of the ideas im-
manent in nervous activityBulletin of Mathematical Biophysics 5,
115–133.

McInerney, M., Dhawan, A.P.~1993!. Use of genetic algorithms with back-
propagation in training of feedforward neural networks. Proc. 1993
IEEE Int. Conf. Neural Networks (ICNN ’93), San Francisco, CA, vol.1,
pp. 203–208.

Montana, D.J., & Davis, L.~1989!. Training feedforward neural networks
using genetic algorithms.IJCAI-89 Proc. Eleventh Int. Joint Conf.
Artificial Intelligence, vol. 1, pp. 762–767. San Francisco: Morgan
Kaufmann.

Morjaria, M., Azzaro, S., Bush, J., Nash, J., Smith, M., & Smith, W.~1998!.
System and method for isolating failures in a locomotive. US Patent
5,845272.

Morjaria, M., & Santosa, F.~1996!. Monitoring complex systems with
causal networks.IEEE Computer Science and Engineering 3(4), 9–10.

Pearl, J.~1982!. Reverend Bayes on inference engines: A distributed hier-
archical approach,Proc. 2nd Natl. Conf. on Artificial Intelligence,
pp. 133–136, Menlo Park, CA: AAAI.

Rechenberg, I.~1965!. Cybernetic solution path of an experimental prob-
lem. Royal Aircraft Establishment, Library Translation no. 1122.

Rosenblatt, F.~1959!. Two theorems of statistical separability in the per-
ceptron. InMechanization of thought processes, Symposium held at
the National Physical Laboratory, pp. 421–456. London: HM Station-
ary Office.

Ruspini, E., Bonissone, P., & Pedycz, W.~1998!. Handbook of fuzzy com-
putation, Bristol, UK: Institute of Physics.

Schwefel, H.-P.~1965!. Kybernetische Evolution als Strategie der exper-
imentellen Forschung in der Stromungstechnik. Diploma Thesis, Tech-
nical University of Berlin, Germany.

Shafer, G.~1976!. A mathematical theory of evidence. Princeton, NJ: Prince-
ton University Press.

Takagi, T., & Sugeno, M.~1985!. Fuzzy identification of systems and its
applications to modeling and control.IEEE Transactions on Systems,
Man, and Cybernetics 151, 116–132.

Vonk, E., Jain, L.C., & Johnson, R.P.~1997!. Automatic generation of
neural network architecture using evolutionary computation. Singa-
pore: World Scientific Publ. Co.

Wasserman, P.D.~1989!. Neural computing: Theory and practice. Van
Nostrand Reinhold, New York.

Werbos, P.~1974!. Beyond regression: New tools for predictions and analy-
sis in the behavioral sciences. PhD Thesis, Cambridge, MA: Harvard
University.

Widrow, B., & Hoff, M.E. ~1960!. Adaptive switching circuits,IRE West-
ern Electric Show and Convention Record, Part 4, pp. 96–104.

Yabe, K., Koda, J., Yoshida, K., Chiang, K.H., Khedkar, P., Leonard, D., &
Miller, N.W. ~1995!. Conceptual designs of AI-based systems for local
prediction of voltage collapse.IEEE Transactions on Power Systems
11(1), pp. 137–145.

Yao, X. ~1999!. Evolving artificial neural networks,Proceedings of the
IEEE 87(9), 1423–1447.

Zadeh, L.A.~1965!. Fuzzy sets.Inf. Cont 8, 338–353.
Zadeh, L.A.~1994!. Fuzzy logic and soft computing: Issues, contentions

and perspectives,IIZUKA’94: 3rd Int. Conf. Fuzzy Logic, Neural Nets
and Soft Computing, Iizuka, Japan, pp. 1–2.

Zadeh, L.A. ~1998!. Some reflection on soft computing, granular
computing and their roles in the conception, design and utilization
of information0 intelligent systems,Soft computing: A fusion of
foundations, methodologies and applications, Vol. 2, pp. 23–25.
Springer-Verlag.

Zheng L.~1992!. A practical guide to tune proportional and integral~PI!
like fuzzy controllers.First IEEE Int. Conf. Fuzzy Systems, (FUZZ-
IEEE’92), San Diego, CA, pp. 633–640.

Piero P. Bonissone, Ph.D. in EECS, University of Califor-
nia, Berkeley, 1979, has been a computer scientist at GE
Corporate Research and Development since 1979. Dr. Bo-
nissone has carried out research in AI, expert systems, sim-
ulation, fuzzy sets, and Soft Computing. In 1993, he received
the Coolidge Fellowship from GE for overall technical ac-
complishments. In 1996, he became a Fellow of the Amer-
ican Association for Artificial Intelligence. He is the
President Elect of the IEEE Neural Network Council and an
Adjunct Professor of ECSE at the Rensselaer Polytechnic
Institute, in Troy, NY. Dr. Bonissone has coedited four books
and published more than 100 articles. He received 19 pat-
ents from the U.S. Patent Office for his work on reasoning
with uncertainty and fuzzy control.

Kai Goebel received the degree of Diplom-Ingenieur from
the Technische Universität München, Germany in 1990. He
received the M.S. and Ph.D. from the University of Califor-
nia at Berkeley in 1993 and 1996, respectively. He is cur-
rently with General Electric’s Corporate Research and
Development. His research interests include classification,
information fusion, and Soft Computing. Dr. Goebel has
been an adjunct professor of the CS Department at Rensse-
laer Polytechnic Institute~RPI!, Troy, NY, since 1998, where
he teaches classes in Soft Computing. He is a member of
ASME, VDI, and AAAI.

Soft Computing for diagnostics in equipment service 279

https://doi.org/10.1017/S0890060401154028 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154028

