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Results on the behaviour of a pendulum which is parametrically excited by large amplitude random
loads at its pivot are presented, including a novel experimental case study. Thereby, it is dealt with
a random excitation by a non-white Gaussian stochastic process with prescribed spectral density.
Special focus is devoted to stochastic processes resulting from random sea wave elevation and the
question whether random sea waves can lead to rotational motion of the parametrically excited
pendulum. The motivation for such an experimental study is energy harvesting from ocean waves.
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1 Introduction

The present analysis deals with the general dynamics of a randomly excited pendulum which is
parametrically excited by large amplitude loads at its pivot. The parametric pendulum has a very
rich dynamical behaviour [6] and has applications in various other problems, such as mechanical,
electrical, microelectromechanical, optical and other systems, cf. [8,12]. Another fundamental
problem involving random pendulum dynamics is energy harvesting from a source whose nature
is random. Since wave energy has been recognised as one of the most promising resources of
renewable energy due to the notably high power density [10], several new concepts of ocean
wave energy converters were recently developed and studied [2,14]. One possible method of
energy generation is to use ocean gravity waves to excite the pivot of a pendulum in order to
induce and maintain rotational motion.

Due to its complicated nonlinear dynamics, there is still further research necessary if the source
of excitation is random. In the case of harmonic excitation, approximate analytical solutions for
oscillatory and rotational motion of a parametric pendulum were obtained in [15] by using the
method of multiple scales. Because of the significant nonlinearity and the involved random exci-
tation, researchers relied on numerical methods and Monte Carlo simulation in order to obtain
new results for large amplitude oscillations of a randomly excited pendulum [1,11]. Recently, in
[9], a pendulum which is acted on by a small additive white noise has been considered. In the
same time, results on white and non-white parametric Gaussian noise excitation of a pendulum
have been obtained in [5]. In the present study, we deal with pendulum motion in the case of
excitation by a non-white Gaussian random process which results from a floating body in real
sea states.

https://doi.org/10.1017/S0956792518000529 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000529
mailto:dostal@tuhh.de
mailto:pick@tuhh.de
https://doi.org/10.1017/S0956792518000529


Study of a pendulum excited by random loads 913

2 Tilted stochastic pendulum model

We are interested in the dynamical behaviour of a damped pendulum with lumped mass M at a
distance l from the suspension point which is initially restricted to move vertically on a line with
a vertical randomly time-varying displacement f . This line can be tilted together with the plane
of oscillation of the pendulum by the angle θ = 90◦ − β. The corresponding dynamical system
can be represented by the following equation of motion:

Ml2 d2ϕ

dt̄2
+ b1

dϕ

dt̄
+ b2

dϕ

dt̄

∣∣∣∣dϕdt̄

∣∣∣∣+ M gl sin β sin ϕ = Ml

sin β

d2f

dt̄2
sin ϕ. (2.1)

Here, ϕ is the pendulum angle, b1 is a damping parameter, t̄ is a standard (unscaled) time and f (t̄ )
is the randomly time-varying vertical displacement of the suspension point. In order to account
for nonlinearities in damping, a nonlinear damping term with the damping parameter b2 is also
included. For the random excitation of the suspension point, we introduce the noise intensity ν
and a Gaussian stochastic process ξt̄ with zero mean and spectral density Sξξ and set

d2f

dt̄2
:= νξt̄.

Due to the possibility of tilting the plane of oscillation and the direction of the pivot motion,
the restoring force due to gravity is reduced to M gl sin β, which lowers the natural frequency
of the pendulum. For example, if the pendulum is excited by a randomly varying force with a
mean frequency of 1.6 rad/s, then the length l of the pendulum is around 15 m when it is tuned to
meet the primary parametric resonance. With an inclination angle of β = 9◦, the length reduces to
about 2.4 m. Moreover, the displacement of the suspension point along the inclined plane is given
by f ∗(t̄ ) = f (t̄ )/ sin β and therefore the amplitude of the excitation will be enhanced according to

d2

dt̄2
f ∗(t̄ ) = d2

dt̄2

f (t̄ )

sin β
,

if the angle β is lowered. Such a design has been proposed in [4,17] for a wave energy
converter. Thereby, a floating body is mounted on an inclined ramp, such that the wave elevation
induces a displacement f ∗(t̄ ) along the ramp, which is higher than the corresponding vertical
displacement f (t̄ ). The increased motion of the floating body is useful for the design of efficient
wave energy converters.

3 Energy-based stochastic averaging of random pendulum dynamics

The stochastic averaging method has been well established as a powerful, approximate technique
for prediction of the response statistics of nonlinear dynamical systems. This method is focused
on the energy envelope process of the dynamics by which means the problem is simplified to a
lower-dimensional problem. Using such a stochastic averaging procedure, a perturbation param-
eter ε� 1 is introduced in the pendulum model, equation (2.1). Then, the scaled system with
t = εt̄ is given as

d

dt
x = y,

d

dt
y = −α sin x − ε(γ1y + γ2y|y|) + √

ελξt sin x,

(3.1)
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FIGURE 1. Contour lines of H(x, y) for ᾱ = 1.

where we set x = ϕ and y = ϕ̇, using �̇ := d
dt� as a shorthand for ε scaled time derivative, where

� is an arbitrary function of real numbers. Moreover, ξt is the corresponding time-scaled stochas-
tic process and

ᾱ= g

l
sin β, α= ᾱ

ε2
, γ̄1 = b1

Ml2
, γ1 = γ̄1

ε2
, (3.2)

γ̄2 = b2

Ml2
, γ2 = γ̄2

ε
, λ̄= ν

l sin β
, λ= λ̄

ε5/2
. (3.3)

We are interested in the total energy of the pendulum dynamics, which is given by the Hamilton
function

H(x, y) := y2

2
+ α(1 − cos x) = y2

2
+ 2α sin2

( x

2

)
. (3.4)

The contour lines of the Hamilton function, H(x, y) are shown in Figure 1. The fixed points of
equation in equation (3.1) without dissipation and random perturbation (i.e. ε= 0) are

Pi = ((2i − 1)π , 0) ; Si = (2iπ , 0); i ∈Z. (3.5)

Furthermore, the change in the total energy is the time derivative of the Hamilton function

d

dt
H = −ε (γ1y2 + γ2y3

)+ √
ε λξty sin x. (3.6)

From the Hamiltonian function, we introduce the following relationship:

Q(x, H) := y2 = 2H + 2α(cos x − 1) = 2H − 4α sin2
( x

2

)
. (3.7)

Then, combining the first equation of (3.1) and equation (3.5), the following system is obtained:

d

dt
x =√

Q(x, H),

d

dt
H = −ε

(
γ1 + γ2

√
Q(x, H)

)
Q(x, H) + √

ε λξt

√
Q(x, H) sin x,

(3.8)

in which the variable y was eliminated by using the function Q(x, H). The scaling parame-
ter ε, in equation (3.1), helps to indicate the relative order of magnitude of the damping term
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and the external excitation term. An important property of the reformulated system in equation
(3.7) is that the energy level H changes slowly compared to the oscillations of the variable x.
This enables the application of the stochastic averaging method to this system, since the fast
oscillatory dynamics can be averaged over the pendulum period.

Let Hc be the energy level corresponding to the separatrix γ between libration and rotation
of the pendulum, as indicated in Figure 1. This energy level is given by Hc = 2α. For the undis-
turbed libration motion of the pendulum, the period T(H) at the energy level H (0 ≤ H ≤ Hc)
of one oscillation of the fast variable x in the absence of noise and damping (i.e. ε= 0) is
given as [5]:

T(H) =
∫ T(H)

0
dτ = 2√

α

∫ b(H)

−b(H)

dx√
k2 − sin2

(
x
2

) = 4K(k)√
α

, (3.9)

where K is the complete elliptic integral of the first kind, as described in [3], with elliptic
modulus

k =
√

H

2α
. (3.10)

The limits of integration ±b(H) in equation (3.8) are the points where y = √
Q(x, H) = 0 and the

periodic orbit intersects the x-axis, i.e. b(H) is the maximum value of x for each energy level H
and is given by

b = 2 arcsin(k). (3.11)

We can now use stochastic averaging of the pendulum energy in the case of libration of the
pendulum for the energy domain H ∈ [0; 2α), following [5]. Let therefore ξt in (3.1) be an
absolutely regular zero-mean stationary stochastic process with sufficient mixing properties and
autocorrelation Rξtξt . Let further H be the solution of system (3.7). Then, for fixed 0 ≤ H < 2α,
the integrals

m(H) = 8λ2k2

√
α T(H)

∫ 0

−∞
Rξtξt (s)

∫ K(k)

−K(k)
sn
√

1 − k2sn2snt+s

√
1 − k2sn2

t+s
cnt+s

cn
du ds

+ 1

T(H)

∫ T(H)

0
Q(x(t), H)G(x(t), H)dt, (3.12)

σ 2(H) = 64λ2k4√α
T(H)

∫ ∞

−∞
Rξtξt (s)

∫ K(k)

0
sn
√

1 − k2sn2snt+s

√
1 − k2sn2

t+scncnt+sdu ds (3.13)

exist, and the process H converges, as ε→ 0, weakly on the time interval of order O(1/ε) to a
diffusion Markov process H satisfying the Itô stochastic differential equation

dH = m(H)dt + σ (H)dWt. (3.14)

Thereby, dWt is a standard Wiener process, m(H) is the drift, σ (H) is the diffusion of equation
(3.13) for the one-dimensional energy process H and

G(x, H) = −
(
γ1 + γ2

√
Q(x, H)

)
. (3.15)
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In equations (3.11) and (3.12), sn(·, k) and cn(·, k) are the Jacobian elliptic functions and the
abbreviations u := √

αt, sn := sn(u, k), snt+s := sn(u + √
αs, k), cn := cn(u, k) and cnt+s :=

cn(u + √
αs, k) are used.

4 First-passage probability

With the stochastic averaging results from Section 3, we have obtained a one-dimensional Itô
stochastic differential equation for the pendulum energy H in the cases of libration. Using results
on one-dimensional diffusion processes, we can state analytical formulas for the first-passage
probabilities of the pendulum energy H .

Following [7], the differential generator L for a function p(H) of the averaged process H
defined by the Itô equation (3.13) is given by

Lp(H) = m(H)
∂

∂H
p(H) + 1

2
σ 2(H)

∂2

∂H2
p(H) (4.1)

and the associated adjoint operator is

L∗p(H) = − ∂

∂H
(m(H)p(H))+ 1

2

∂2

∂H2

(
σ 2(H)p(H)

)
. (4.2)

We introduce the scale measure

S(x) =
∫ x

s( y)dy, (4.3)

where

s(y) = exp

(
−2

∫ y m(θ )

σ 2(θ )
dθ

)
(4.4)

is the scale density. After defining the speed density

μ(y) = 1/(σ 2(y)s( y)) (4.5)

and the speed measure M by

dM( y) =μ( y)dy, (4.6)

we can transform the operator L to

Lp(H) = 1

2

∂

∂M

(
∂p(H)

∂S

)
, (4.7)

such that the drift is identically zero. We are interested in the first-passage probability of energy
levels of the randomly excited parametric pendulum, in order to obtain the probability of reaching
rotational pendulum motion starting from an initial energy level H0. The necessary energy for
rotational motion of the pendulum has to be greater than Hc = 2α, which is the energy level at
the heteroclinic orbit γ . Therefore, we consider the energy interval [Ha; Hb], where 0<Ha <

Hb ≤ Hc. Following [7], the probability to reach the energy Hb before the energy Ha, starting at
H0 ∈ [Ha; Hb] is the solution of the differential equation

Lu(H0) = 0, (4.8)
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with boundary conditions u(Ha) = 0 and u(Hb) = 1. The solution follows directly from two suc-
cessive integrations of the corresponding transformed operator from equation (4.7) and is
given by

u(H0) = S[Ha, H0]

S[Ha, Hb]
, (4.9)

where we have used the abbreviation

S[a, b] :=
∫ b

a
s( y) dy, a, b ∈R. (4.10)

With this result, we are able to calculate the first-passage probability to reach the energy Hc,
where the pendulum starts to rotate, before reaching a very small energy level of small pendulum
motion.

5 Pendulum wave energy converter

A possible physical application of our results is harvesting energy from ocean waves using a
pendulum wave energy converter design. Therefore, we are also interested in a case study with
realistic random excitation due to ocean waves. We assume that the pendulum energy converter
is mounted on a floating body whose degrees of freedom are limited to heave and whose mass
is much greater than the pendulum mass. With these assumptions, the influence of the pendulum
motion on the heave motion is negligible. Moreover, we assume linear dynamics of the floating
body. The parametric excitation due to ocean waves is modelled by a Gaussian stochastic process
with a given spectral density. Various spectral densities were defined to describe different sea
states.

Common sea spectral densities are the Pierson–Moskowitz spectrum for deep water waves and
the JONSWAP spectrum for shallow water waves. We use the following two-parameter version
of the JONSWAP spectrum with significant wave height Hs and modal frequency ωm:

Sjon(ω) = 0.2059 H2
s

ω4
m

ω5
exp

{
−1.25

(ωm

ω

)4
}
γ

exp
{
−0.5(ω−ωm)2/(σωm)2

}
, (5.1)

where σ = 0.07 is set forω<ωm and σ = 0.09 forω>ωm. The peak shape parameter γ is chosen
as 3.3. The spectral density of the heave displacement of the floating body due to a JONSWAP
sea state is given by

Sf (ω) = |RAOf (ω)|2S(ω), (5.2)

where

RAOf (ω) = f̂ (ω)

−ω2(M + Ah(ω)) + iωBh(ω) + Ch
(5.3)

is the response amplitude operator (RAO) of the heave displacement of the floating body with the
hydrodynamic excitation force complex amplitude per wave height f̂ (ω), mass M , added mass
Ah, hydrodynamic damping Bh and restoring coefficient Ch. The hydrodynamic parameters f̂ (ω),
Ah(ω), Bh(ω) and Ch can, for example, be determined by strip theory.
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FIGURE 2. Sketch of the experimental setup of a pendulum energy converter, side view.

The heave acceleration RAO is easily obtained from RAOf (ω) by

RAOf̈ (ω) =ω2RAOf (ω). (5.4)

The spectral density of the heave acceleration of the floating body due to a JONSWAP sea
state is then given by

Sf̈ (ω) = |RAOf̈ (ω)|2S(ω). (5.5)

From a spectral density Sξξ (ω) of a Gaussian process ξ , the corresponding autocorrelation func-
tion Rξξ is obtained by Fourier transformation, such that Rξξ can be used for the determination
of m(H) and σ (H) in equations (3.11) and (3.12).

6 Experimental setup for a pendulum energy converter

The models and results from Sections 3 and 4 are evaluated by experiments. In preliminary stud-
ies [2,17], experimental setups with harmonic excitation using a motor driving a crank shaft were
conducted. In our case, random excitations due to motions of a floating body in real sea states
must be applied to the pendulum’s pivot. Ocean wave-induced motions are low in frequency
and require high amplitudes of the motion in order to achieve a certain level of acceleration. For
this reason, the pivot is mounted onto a sled that is guided by a set of linear ball bearings, as
sketched in Figure 2. The sled is driven by a ball screw with a thread of 10 mm per revolution.
The ball screw itself is driven by a Siemens 1FT7034 high dynamic servomotor with a maxi-
mum rotational speed of 6000 rpm, so a maximum sled speed of 1000 mm/s can be achieved.
The maximum travelling distance of the sled is 2000 mm. The motor is powered by a Siemens
Sinamics S120 drive and controlled by a Siemens Simotion D435, so the difficult requirements
on dynamics and accuracy of the desired motion are fulfilled. In order to realise any pivot motion
from horizontal to vertical, the linear guides are mounted on a massive tilt table from a former
boring and milling machine. This very stiff table’s mass is about 700 kg and the tilt angle is
adjusted very precisely by crank handle turning a worm gear. With these industrial components
a rigid, simple and very flexible setup for experiments with one translational motion was created.
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FIGURE 3. Sketch of the pendulum and the flywheel component mounted on the sled.

One major goal for the pendulum’s design is a low eigenfrequency which is easily tunable
in a wide range towards zero. This requirement is met using a balanced three-arm pendulum
which is cut by laser from a 3-mm stainless steel sheet, as shown in Figure 3. For safety reasons
and in order to increase the pendulum’s stiffness and moment of inertia, the ends of the pendu-
lum arms are connected by a 3-mm circular flywheel. In this configuration, there is no certain
position of equilibrium and the lowest possible eigenfrequency is achieved. Adding weight to
the arms, the pendulum gets unbalanced and nearly every eigenfrequency below a maximum
one can be achieved by adjusting the weights at each arm individually [5,16]. The experiments
described here were done with one weight as shown in Figure 3. The distance from the weight’s
centre of gravity to the pivot is l. The pendulum’s pivot is realised by shaft mounted between
a set of smooth running roller bearings, just oiled, not greased. The pendulum is mounted to
the shaft’s upper end with two bolts. Between the bearings, a contactless magnetic induction
encoder (Zettlex Incoder) is placed in order to measure the rotation angle ϕ of the pendulum
with a resolution of 16 bit per revolution. As the Zettlex Incoders are absolute encoders, no ref-
erencing at the beginning of an experiment is required. The encoder signals are digital according
to the Synchronous Serial Interface standard. Data of the sled’s kinematic are received from the
Simotion controller by Profibus with a frequency of 50 Hz. With this frequency, the set point for
the sled’s velocity is sent to the controller. The time vector of position or velocity set points is
precalculated for every experiment as we assume no influence of the pendulum’s motion on the
pivot’s motion. The total view of the experimental rig is shown in Figure 4 and a picture of the
pendulum and the flywheel component of the experimental rig is given in Figure 5.

The processing of the measurements and the Profibus communication is done by a National
Instruments compact reconfigurable input-output real-time device programmed in Labview. With
the chosen setup the best results for a smooth motion were achieved by sending velocity instead
of position setpoints. Due to mechanical restrictions in acceleration and jerk, negligibly small
drift of the pivot’s position can be observed which is shown in Figure 6. In order to better main-
tain rotational motion of the pendulum, a flywheel is added whose moment of inertia is denoted
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FIGURE 4. Experimental rig of the pendulum energy converter.

as If . This changes the total moment of inertia of the rotating part to (Ml2 + If ). In addition to the
damping coefficients c and d, we consider a generator with a nonlinear function for the torque
Tg due to energy generation, given by Tg = cgϕ̇ + dgϕ̇ |ϕ̇|. The resulting equation of motion for
the angle ϕ of the pendulum can be written as

(Ml2 + If )
d2ϕ

dt̄2
+ (c + cg)

dϕ

dt̄
+ (d + dg)

dϕ

dt̄

∣∣∣∣dϕdt̄

∣∣∣∣+ Ml

(
g sin β + 1

sin β

d2f

dt̄2

)
sin(ϕ) = 0, (6.1)

using again the vertical displacement f (t) of the pendulum pivot and the pendulum mass M as
in equation (2.1). With this, the scaling coefficients in equation (3.2) for the dynamics of the
experimental rig have to be changed to
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FIGURE 5. Pendulum and the flywheel component of the experimental rig.

FIGURE 6. Comparison between the desired random trajectory of the sled and the measured sled position
during experimental run.

ᾱ= Mgl

Ml2 + If
sin β, α= ᾱ

ε2
, γ̄ 1 = b1

Ml2 + If
, γ1 = γ̄ 1

ε2
,

γ̄ 2 = b2

Ml2 + If
, γ2 = γ̄ 2

ε
, λ̄= νMl

(Ml2 + If ) sin β
, λ= λ̄

ε5/2
, (6.2)

in order to arrive at the scaled equation (3.1). The harvestable electrical power Pel of such a
pendulum energy converter is the product of the generator torque Tg, the angular velocity ϕ̇ and
the energy conversion efficiency η of the generator, such that

Pel = η Tg ϕ̇. (6.3)
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FIGURE 7. Vertical heave displacement RAO |RAOf | of a vertical cylinder.

7 Theoretical and experimental results

With the theory from Sections 3 and 4, we calculate the first-passage probability of the pendulum
to reach the energy Hc, where the pendulum starts to rotate, before reaching a very small energy
level of small pendulum motion.

In order to produce the highest amount of electrical energy, the pendulum has to reach rota-
tional motion. Therefore, we need to set up the pendulum, such that the probability to reach
rotational motion is as high as possible for the given random excitation. We consider JONSWAP
sea states with arbitrary significant wave heights Hs and different modal frequencies ωm. As the
floating body, we use a vertical cylinder which is described in [13]. A wave elevation induces
forces and moments on a floating body. Assuming linear dynamics, the heave displacement spec-
tral density Sf (ω) of the floating cylinder is determined using equation (5.2). Thereby, the heave
displacement RAO of the vertical cylinder is used, as shown in Figure 7. An example wave ele-
vation for a JONSWAP sea state with Hs = 0.19 m and ωm = 1.4 rad/s is shown in Figure 8(a).
A typical heave displacement time series of the floating cylinder in such a JONSWAP sea state
is shown in Figure 8(b). Note, that this time series was generated from the corresponding spec-
trum Sf (ω) and not from the wave elevation as shown in Figure 8(a). As can be seen in Figure 8,
typical wave excitations lead to dynamics of the floating body, which significantly deviate from
a harmonic excitation. Thereby, the floating body response can be seen as a filter of the wave
excitation input.

Using equation (4.9), we have calculated the first-passage probability of the pendulum for
variable initial energy levels H0 and the set of fixed parameters

ᾱ = 1, γ̄ 1 = 0.01, γ̄ 2 = 0.

Results for the variation of the first-passage probability with respect to initial pendulum energy
H0 and different modal frequencies ωm are shown in Figure 9, for a fixed λ̄= 0.1 and for a
fixed λ̄= 0.16 in Figure 10. Thereby, the random excitation process ξ is normalised, such that
its spectrum is a JONSWAP spectrum with Hs = 1. Then the desired significant wave height
Hs is adjusted by setting the noise intensity to ν = Hs [m]. In addition, we have calculated the
first-passage probability for a fixed low initial energy of H0 = 0.2, variable λ̄, and different
modal frequencies ωm, as shown in Figure 11. It can be seen from these figures that a region
with a high probability of reaching rotational motion of the pendulum exists for the chosen
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FIGURE 8. For a JONSWAP sea state with Hs = 0.19 m and ωm = 1.4 rad/s, a typical wave elevation is
shown in (a) and a typical time series of the vertical position of a floating cylinder with RAO according to
Figure 7 is shown in (b).

FIGURE 9. Variation of first-passage probability with respect to initial pendulum energy H0 and different
modal frequencies ωm, for a JONSWAP sea state with λ̄= 0.1, γ̄1 = 0.01, γ̄2 = 0 and RAOf̈ .

parameter set. We also observe regions with almost zero probability for reaching rotational
motion. Based on these results, we have chosen specific parameters for the initial energy level
H0, the modal frequency ωm and significant wave height Hs of the JONSWAP sea state, as well
as the following parameters for the experimental setup:

M = 0.1 kg, l = 0.15 m, If = 0.036 kgm2, β = 15◦. (7.1)
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FIGURE 10. Variation of first-passage probability with respect to initial pendulum energy H0 and different
modal frequencies ωm, for a JONSWAP sea state with λ̄= 0.16, γ̄1 = 0.01, γ̄2 = 0 and RAOf̈ .

FIGURE 11. First-passage probability map for low initial energy H0 = 0.2 and a JONSWAP sea state with
variable λ̄, different modal frequencies ωm, γ̄ 1 = 0.01, γ̄ 2 = 0 and RAOf̈ . The parameter combinations of λ̄
and ωm, which were used for the experiments from Figure 12, are marked by a white cross.

Then we have generated the corresponding time series for the large amplitude random excitation.
As can be seen in Figure 6, an influence of the pendulum dynamics on the sled position during
experimental runs is not observed and the error between the measured sled position and the
desired sled position is very small and insignificant.

As the outcome of the experiment, we have measured the random time series of pendulum
angle ϕ in JONSWAP sea states with the modal frequencies ωm = 1.4, 1.9, 2.2, 2.5, 2.7, 3.0
rad/s and a significant wave height of 19 cm, which corresponds to λ̄= 0.29 for the parameter
set in equation (7.1). The first-passage probabilities for this choice of parameters are marked in
Figure 11 by white crosses. The results are shown in Figure 12, where a sufficient percentage of
rotational motion can be observed for the cases (a)–(d). As has been predicted by first-passage
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FIGURE 12. Measured pendulum angle for a sled trajectory due to a JONSWAP wave elevation with
Hs = 19 cm and (a) ωm = 1.4 rad/s, (b) ωm = 1.9 rad/s, (c) ωm = 2.2 rad/s, (d) ωm = 2.5 rad/s, (e) ωm =
2.7 rad/s and (f ) ωm = 3.0 rad/s. The green regions indicate rotation of the pendulum.

probability results in Figure 11, these results show that it is possible to generate a rotational
motion of the pendulum due to large amplitude parametric excitation in the proposed experiment.

We have also obtained experimental results for an eigenfrequency ᾱ= 1.3 of the pendulum,
which was obtained by setting the parameters of the experimental rig to

M = 0.1 kg, l = 0.30 m, If = 0.036 kgm2, β = 15◦.
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FIGURE 13. Measured pendulum angle for a sled position along the inclined rail due to a JONSWAP wave
elevation with Hs = 12.5 cm and ωm = 2.4 [rad/s]. The green regions indicate rotation of the pendulum.

For this case, a time series of the pendulum angle is shown in Figure 13, resulting from a random
motion of the pendulum pivot due to a JONSWAP wave elevation with significant wave height
Hs = 12.5 cm and modal frequency ωm = 2.4 rad/s. The green regions indicate rotation of the
pendulum which occurs with a percentage of 89.5. This percentage is large considering the small
significant wave height of the wave elevation.

8 Conclusion

Specific results on the random dynamics of a pendulum are obtained, including random excitation
due to ocean waves. It is also shown that rotational motion of a specific inclined pendulum
setup is possible even for low-to-moderate random excitation, including excitation due to random
ocean waves. Experimental results for the proposed pendulum setup which is excited by a large
amplitude random excitation were not obtained before.
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