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SUMMARY

Agricultural crop management decisions often require data on hydraulic properties of soils. Little
information is available on hydraulic properties of clay soils that are impounded by rainwater
(known as ‘Haveli ’ lands) every year during the monsoon season in large tracts of Madhya Pradesh in
India. Estimating hydraulic properties using global pedotransfer functions (PTFs) is one possible way
to collect such information. Rules in the widely used global PTF Rosetta were executed to obtain
estimates of two important hydraulic properties, namely soil water retention characteristics (SWRC)
and saturated hydraulic conductivity (Ks). SWRC estimates obtained with maximum input (particle
size distribution, bulk density, field capacity and permanent wilting point) in Rosetta were relatively
closer to the laboratory-measured data as compared with the estimates obtained with lower levels of
input. Root mean square error (RMSE) of estimates ranged from 0.01 to 0.05 m3/m3. Hierarchical
PTFs to predict Ks from basic soil properties were derived using statistical regression and artificial
neural networks. Evaluation of these indicated that neural PTFs were acceptable and hence could be
used without loss of accuracy.

INTRODUCTION

Enhancing agricultural productivity through scientific
water management is one of the challenges confront-
ing India. Rainfed agriculture remains the most im-
portant livelihood for most farmers. Soil moisture
conservation for agricultural crops has therefore at-
tracted major research interest ; however, problems
caused by excess rainwater have received little atten-
tion. Understanding the water dynamics of soils that
are subjected to seasonal impounding is a prerequisite
for crop planning, yield simulations or water man-
agement decisions.
Soil water retention characteristics (SWRC) and

saturated hydraulic conductivity (Ks) are the two soil
properties that are vital to any such simulation.
Measurement of soil hydraulic properties in the lab-
oratory is complex, time-consuming and arduous.
Therefore, over the last two decades, the use of pedo-
transfer functions (PTFs) to estimate the hydraulic
properties from basic soil data has increased (Rawls

& Brakensiek 1983; Cosby et al. 1984; Saxton et al.
1986; Vereecken et al. 1990; vanGenuchten 1992; Leij
et al. 2002; Jain et al. 2004; Pachepsky et al. 2006).
PTFs relate hydraulic properties to easily measured
or available soil properties. PTFs have been developed
using different techniques (Wösten et al. 2001) such as
regression (Rawls & Brakensiek 1985; Wösten et al.
1995) or artificial neural networks (ANN; Pachepsky
et al. 1996; Schaap et al. 1998; Minasny et al. 1999;
Minasny & McBratney 2002; Jain et al. 2004).
Recently, genetic programming was employed
(Parasuraman et al. 2007) to estimate Ks from basic
soil data. Most of the reported studies, however,
make use of neural networks (ANNs). For instance,
Schaap et al. (1998) developed an ANN-based PTF,
using a dataset of 4515 samples in the USA, which
reportedly performed better than four published
PTFs in estimating water retention data and six pub-
lished PTFs in estimating Ks. Later, Schaap et al.
(2001) developed an ANN-based computer code,
Rosetta (public domain), which implements five
hierarchical PTFs for the estimation of water reten-
tion and the saturated and unsaturated hydraulic
conductivity. The dataset used for calibrating Rosetta
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was derived from soils in temperate to subtropical
climates of North America and Europe. These studies
have shown the effectiveness of ANNs in prediction
of hydraulic properties. However, the PTFs were
based on large datasets.
Unfortunately, in India, no large datasets on soils

are available. Routinely collected information gener-
ally includes particle size distribution, bulk density
(dry) together with intermittent data on water held at
x33 kPa (field capacity) and x1500 kPa (permanent
wilting point). In the absence of hydraulic infor-
mation, use of generic PTF is an attractive option to
predict properties such as SWRC and Ks, which are
difficult to measure. However, estimation of proper-
ties using PTFs developed elsewhere is often fraught
with errors of unacceptable magnitude. The PTFs
developed at one scale (regional, national and conti-
nental) may not be suitable for another (Nemes et al.
2003). For example, Romano & Palladino (2002) ex-
amined the prediction of soil hydraulic properties
from soil physical properties and terrain information.
They concluded that the use of ‘external ’ PTFs was
not advisable if the scale varied. PTFs derived from a
small local database were shown to perform better
than the large but general database. Recent publi-
cations focus on comparing PTF predictions with in-
dependent datasets of hydraulic properties measured
in the laboratory. Some publications indicate good
(Schaap & Leij 2000; Cornelius et al. 2001; Rawls
et al. 2001;Wagner et al. 2001) ormoderate agreement
(Givi et al. 2004), while some discrepancies are also
reported (Chen & Payne 2001; Pachepsky & Rawls
2003; Soet & Stricker 2003).
The very popular PTF Rosetta (Schaap et al. 2001)

was selected for the present work because it has been
developed from large multinational databases con-
taining soil data from a wide range of soil types. The
main advantage of such a PTF is that the soils for
which it is applied need not be similar in characteristics
(or be subjected to similar soil forming conditions)
to the database soils included in the calibration of
PTF. Rosetta constitutes one of the most recent
PTFs which, overall, has shown reasonable predic-
tions in evaluation studies (Gérard et al. 2004). The
functional performance of Rosetta was shown to be
reasonably good by Nemes et al. (2003) in a four-year
study that simulated soil moisture variations in the
field with different sets of input data. The hierarchical
structure of Rosetta enables the use of flexible input
of limited and more extended sets of predictors. The
available reports on evaluation of Rosetta indicate
improvements in its performance with increases
(hierarchical) in input. A trend of improvement was
reported by Nemes et al. (2003) with an increasing
number of predictors. Rawls et al. (2001) and Wösten
et al. (2001) have also reported such a trend in evalu-
ation studies of PTFs. In some of the studies in which
validation was not possible, researchers opted for

Rosetta because of its wider database. Vanderlinden
et al. (2005) preferred Rosetta for estimating available
water capacity (difference between water content at
field capacity and at wilting point) in preparing a map
of soil water holding capacity for southern Spain.
Gérard et al. (2004), in an attempt to avoid measure-
ment of hydraulic characteristics, identified Rosetta
as a PTF recognized for its predicting capacity in
the context of great scarcity of information on soil
properties and stated that Rosetta showed good pre-
dictive ability for simulating daily average values of
the measured water content over a four-year period in
the field site at Rhone, France. In another evaluation
study, Rubio & Llorens (2005) concluded that the
Rosetta model is adequate for the estimation of water
content at field capacity, but underestimates perma-
nent wilting point.
Little is known about the predictive quality of

generic PTFs when employed to predict hydraulic
characteristics of problem soils such as seasonally
impounded clay soils. The present study was con-
ducted: (i) to evaluate the performance of Rosetta
in predicting SWRC and Ks and (ii) to calibrate PTF
for predicting saturated hydraulic conductivity Ks

from readily available soil properties data including
particle size distribution, bulk density, organic car-
bon content, field capacity (soil water retained at
x33 kPa) and permanent wilting point (soil water
retained at x1500 kPa).

MATERIALS AND METHODS

The study area is located in the Jabalpur district,
Madhya Pradesh state, India (22x49k to 24x80kN
and 78x21k to 80x58kE). Average annual rainfall is
1300–1500 mm, falling mostly during rainy season
(June to September). The soils of the area are mainly
clayey and classified as Vertisols and associated soils
(Tomar et al. 1996). Low infiltration rate (poor ver-
tical drainage) of the soils combined with flat terrain
(poor horizontal drainage) and high rainfall in a
relatively short period of time make nearly 50 000 km2

(0.5 of area of the district) agricultural lands season-
ally inundated. Crops are grown in winter using re-
sidual moisture in the soil. For sampling purposes,
a ‘Haveli ’ tract, delineated by Rajput et al. (2004),
was traversed to mark representative sites. Surface
(0–200 mm) soil samples at intervals of 3–6 km or
shorter intervals depending upon the soil heterogen-
eity were collected from 102 fields. The bulk sample
(approx. 2–3 kg) collected from each site was air dried
and ground to pass though a 2 mm sieve. All the
samples were analysed for particle size distribution
by the International Pipette method using sodium
hexametaphosphate as a dispersing agent (Black et al.
1965). The textural classes used were those of USDA
(Soil Survey Staff 2006). Bulk density was determined
by a dry clod (25–30 g natural cleavage clod collected
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during sampling) coating technique (Black et al.
1965). Organic carbon content was determined by the
Walkley and Black rapid titration method (Jackson
1973). A nine point soil water retention curve was de-
rived by measuring water retained atx10,x20,x33,
x50, x100, x300, x500, x1000 and x1500 kPa
using pressure plate apparatus. The sieved soil sam-
ple(s) were placed in rubber soil retainer rings (60 mm
diameter, 10 mm high) on ceramic plates at the
requisite capacity. The soil in the ring was allowed to
saturate for 24 h with an excess of water and the pre-
determined pressure from a source of compressed air
was applied the next day. Moisture was determined
gravimetrically after the soils had attained equilib-
rium at the particular pressure. Since soils of the study
area are of a shrink-swell type (smectitic clay), mea-
surements on water retention at various suction points
were corrected for overburden caused by soil swelling.
Coefficient of linear extensibility (COLE) was calcu-
lated as suggested by Schafer & Singer (1976) :

COLE=(LmxLd)=Ld

where Lm is moist soil–cylinder length (mm) and Ld
is the dry soil–cylinder length (mm). Soil porosity was
assumed at 0.5 for calculating overburden caused by
swelling. At each suction point, water-retaining pores
were calculated using a standard capillary equation.
Positive potential created by overburden of water re-
tained in the swelled portion was calculated as a pro-
duct of mass of water in pores (g) and linear swelling
(mm/mm). These values were converted to Pascals
and added to the applied equilibrium pressure. Soil
water characteristics curves were thus obtained using
the corrected nine-point data applying varied suction.
Saturated hydraulic conductivity was determined

using the constant head permeameter method. Water
was introduced into the soil sample by maintaining
inflow and outflow reservoirs at constant positions
relative to the sample. The steady flow rate, sample
length and cross-sectional area, and difference in res-
ervoir elevations were used to calculate hydraulic
conductivity according to Darcy’s equation.

Deriving PTF

Statistical and neural regression PTFs were derived.
Five levels of input information were identified for
establishing dependencies between basic soil proper-
ties and saturated hydraulic conductivity (Ks).

’ Input level 1: textural data (data on sand, silt and
clay fraction-SSC)

’ Input level 2: level 1+bulk density data (1+BD)
’ Input level 3: level 2+organic carbon content

(2+OC)
’ Input level 4: level 3+field capacity data (3+FC)
’ Input level 5: level 4+permanent wilting point

data (4+PWP)

In neural regression, the feed forward neural network
(FF-NN) model with three hidden nodes (Schaap
et al. 1998) was preferred. According to Maier &
Dandy (2000), FF-NNs are the most widely adopted
network architecture for the prediction and forecast-
ing of geophysical variables. Typical FF-NN consists
of three layers : an input layer, a hidden layer and an
output layer. The number of nodes in an input layer
corresponds to the number of inputs considered for
the PTF. The input layer is connected to the hidden
layer with weights that determine the strength of the
connections. The hidden layer provides the network’s
non-linear modelling capabilities. As a general rule,
the hidden units should be half the number of input
units. Thus, because the maximum inputs in the pres-
ent analysis were seven, three hidden units were con-
sidered optimum. The data set was partitioned into
‘training’ (76 samples) and ‘test ’ (26 samples) sets.
Upon finding an appropriate network model (ANN),
the PTF was derived. For network training, the
Levenberg–Marquardt (L–M) algorithm was chosen
because the dataset was small. Mayr & Jarvis (1999),
vanGenuchten et al. (1992) and other researchers have
used the same algorithm to develop PTFs. Further,
for fair comparison between regression and ANN
PTF, it was desirable to seek minimization of sum of
squares error. Estimates of SWRC and Ks were ob-
tained using hierarchical rules in the PTF Rosetta,
beginning with textural composition (sand, silt, clay
content-input level 1), adding incremental variable
bulk density (BD-input level 2), field capacity (FC-
input level 3) and permanent wilting point (PWP-
input level 4) at each step. Thus, the input levels in
derived PTF and Rosetta predictions were identical
(except level 3) to facilitate comparison of perform-
ance.

Performance evaluation

Performance of the PTF was evaluated based on one
to one correspondence between measured and pre-
dicted values of SWRC and Ks. The statistical index
root mean square error (RMSE) is commonly used
for such evaluations and the linear correlation coef-
ficient (r), was also calculated to compare measured
and predicted data. The RMSE statistic indicates the
model’s ability to predict away from the mean. It im-
parts more weight to high values because it involves
square of the difference between observed and pre-
dicted values. Ideally, the model should have the
smallest overall dispersion (RMSE).

RESULTS

Descriptive statistics of the entire dataset are pre-
sented in Table 1. Particle size distribution revealed
that clay content in surface soils of the seasonally in-
undated tract ranged from 0.40 to 0.71. While clay
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content and bulk density showed the least variation,
sand content showed the highest variation. Inhibited
drainage in the tract was corroborated by low satu-
rated hydraulic conductivity values (Table 1). Units
of SWRC and Ks in the present paper are m3/m3 and
mm/day.
Irrespective of suction pressure, moisture retention

was positively correlated with clay fraction. The re-
gression coefficients ranged from 0.38 to 0.42 (P<
0.01) except at x50 kPa, where it was relatively low
(R2=0.23). Sand fraction was negatively correlated
(R2=0.51–0.59), again with an exception at x50 kPa
(R2=x0.34). The influence of silt fraction was rela-
tively low (R2=0.19–0.34). Thus, the moisture reten-
tion was affected in order by sand, clay and silt
content.
Water retention estimates obtained with maximum

input (level 4) in Rosetta were closer to the labora-
tory-measured data as compared with the estimates
obtained with lower levels of input. In general, the
predictions improved with increases in input variables
(Figs 1–4) as r increased from 0.88 to 0.97. The

RMSE in estimation of water retention ranged from
0.0121 to 0.0549 m3/m3 (Table 2). The standard devi-
ation in measured soil water retention data ranged
from 0.03 to 0.04 m3/m3 ; an RMSE limit of 0.05 m3/
m3 was considered appropriate to accept predictions
by Rosetta. It can be seen from Fig. 3 that there was
underestimation in moisture content above 0.3 m3/m3

when FC was used as the input in hierarchical PTF,
while inclusion of PWP resulted in underprediction in
a lower range (0.1–0.25 m3/m3).
Inclusion of bulk density as an input variable

did not improve the predictions in greater suction
(<x300 kPa), but predictions improved in ranges
with lower suction. A similar trend was observed when
FC and PWP were included as predictor variables.
These findings indicate that the bulk density data of
these soils is not necessary and data on particle size
distribution could also be used for estimating SWRC
without loss of acceptable accuracy.
Though the estimates improved with increases in

input, the difference in error indicated that at lower
suction ranges (<x300 kPa) the estimates from input

Table 1. Statistical summary of basic properties of 102 clay soil samples from Jabalpur district, Madhya Pradesh,
India

Sand
(%)

Silt
(%)

Clay
(%)

BDr10x3

(g/mm3)
OC

(g/kg)
FC

(m3/m3)
PWP

(m3/m3)
Ks

(mm/day)

Mean 21 26 54 1.4 4.0 0.3 0.2 63
S.E. 0.9 0.5 0.9 <0.01 0.01 0.01 0.01 2.3
S.D. 8.8 5.5 8.7 0.10 0.20 0.07 0.05 24.8
CV 0.4 0.2 0.2 0.1 0.4 0.1 0.2 0.4
Minimum 3 8 41 1.2 0.2 0.2 0.1 13
Maximum 37 39 72 1.7 0.9 0.4 0.2 108
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Fig. 1. Measured and estimated soil water retention in seasonally impounded clay soils using textural composition as an input
in Rosetta.
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Fig. 2. Measured and estimated soil water retention in seasonally impounded clay soils using textural composition and bulk
density as an input in Rosetta.

Table 2. RMSE indicating accuracy of Rosetta in predicting soil water retention at varied suction pressure(s)

Suction pressure (xkPa) 10 20 33 50 100 300 500 1000 1500

Input in Rosetta
SSC 0.036 0.038 0.042 0.042 0.039 0.044 0.045 0.045 0.042
SSC+BD 0.042 0.043 0.042 0.038 0.035 0.035 0.033 0.032 0.032
SSC+BD+FC 0.053 0.055 0.045 0.039 0.033 0.032 0.026 0.024 0.030
SSCBD+FC+PWP 0.021 0.016 0.012 0.015 0.022 0.039 0.038 0.043 0.038

SSC, percentages of sand, silt and clay; BD, bulk density; FC, field capacity; PWP, permanent wilting point.
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Fig. 3. Measured and estimated soil water retention in seasonally impounded clay soils using textural composition, bulk
density and field capacity as an input in Rosetta.
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level 3 (texture, BD and FC) were better than those
from input level 4. Inclusion of input data on the
permanent wilting point (x1500 kPa) improved esti-
mates in higher suction ranges, but under-estimated
retention in lower suction ranges. Similarly, inclusion
of information on field capacity (input level 3) did not
lower RMSE in the suction range >x500 kPa. At
this input level, SWRC were mostly underestimated
(Fig. 3).

PTF to predict Ks

PTFs derived using statistical regressions are pres-
ented in Table 3. Evaluation of derived regression and
neural PTFs against Rosetta can be judged from the
RMSE values presented (Table 4). When textural data
(input level 1) was used for training, the neural mod-
els performed better (lower RMSE) than regression
models. However, testing of the models using subsets
indicated that regression and a neural PTF did not
differ in their predictive ability. It was interesting that
the performance of Rosetta in predicting Ks using
textural data as input was better (Table 4, Figs 5 and
6) with lower RMSE (2.5) than the derived PTF
(RMSE 4.1 and 4.0). This was unexpected as Rosetta
is developed using external data in contrast to the PTF
which, being based on local data, was expected to
perform better.
While the RMSE values suggested a definitive im-

provement in predictions by Rosetta with increased
input, the r values (Fig. 5) denote relatively poor
agreement between measured and predicted Ks. Best
estimates of Ks using Rosetta were obtained with in-
put level 2 (textural data and BD), as indicated by r.
The derived PTFs were less precise than the Rosetta

predictions (r=0.6 for Rosetta and r=0.52 and 0.3
for neural and regression PTFs, respectively, for the
same input level (Figs 6 and 7). Inclusion of BD along
with textural data in training improved performance
of the neural PTF, while the performance of the re-
gression PTF was almost unchanged. Again, the
RMSE in predictions using Rosetta with input level 2
(RMSE=2.8) compared with input level 1 (RMSE=
4.0) was lower than the regression PTF. The RMSE
in neural PTF (training) was reduced from 1.6 to 0.8.
However, the estimates of Ks by Rosetta were less
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Fig. 4. Measured and estimated soil water retention in seasonally impounded clay soils using textural composition, bulk
density field capacity and permanent wilting point as an input in Rosetta.

Table 3. Regression PTF to estimate saturated
hydraulic conductivity

PTF
Input
level Input

Log Ks=1.411+0.013sand+
0.010silt+0.003clay

1 Textural
data
(level 1)

Log Ks=2.278+0.015sand+
0.011silt+0.010clay-928.46BD

2 1+BD

Log Ks=2.134+0.016sand+
0.011silt+0.011clay-899.35BD+
0.008OC

3 2+OC

Log Ks=2.11+0.016sand+
0.011silt+0.011clay-899.65BD+
0.008OC+0.052FC

4 3+FC

Log Ks=2.77+0.010sand+
0.005silt+0.005clay-975.71BD+
0.005OC-0.257FC+0.838PWP

5 4+PWP

Ks : mm/day, soil fractions in % by volume; OC in g/kg;
BD: g/mm3 ; FC and PWP m3/m3.
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precise (higher RMSE), despite the input of ad-
ditional information. The greatest RMSE (2.8) for
predictions by Rosetta was at input level 2. The cor-
responding RMSE for the neural PTF was 0.9.
The impounded clay soils of the tract were very

poor in organic carbon (<10 g/kg) status. The data
(Table 4) indicates no significant change in predictive
ability of PTF after including OC as a predictor
variable.
Inclusion of FC and PWP as predictor variables

resulted in overprediction of Ks by Rosetta. A slight

improvement was noted with inclusion of PWP at
input level 4 (r=0.51) as compared to input level 3
(r=0.49). The derived neural PTFs were almost
the same as Rosetta, as indicated by the r values. The
samples associated with overpredictions by Rosetta
were separated and compared with the rest of the
samples for their properties. Mean sand content in
these was almost 4% by volume higher (23% as
against 19%) than the other samples. There was little
change in silt content (<1% by volume) and the
increase in sand content was almost entirely at the

Table 4. RMSE denoting ‘accuracy ’ and ‘reliability ’ of the derived PTF using different input levels of prediction

Input level 1 2 3 4 5

Input Textural data 1+BD 2+OC 3+FC 4+PWP
PTF Trg. Test Trg. Test Trg. Test Trg. Test Trg. Test
RPTF 1.9 4.1 1.9 4 1.7 3.8 1.7 3.6 1.7 4.1
NPTF 1.6 4 0.8 0.9 1.5 1.4 0.7 1.3 0.7 0.9

Input level* 1 2 3 4
Input Textural data 1+BD 2+FC 4+PWP
Rosetta 2.5 2.8 1.2 0.6

RPTF, regression PTF; NPTFs, neural PTFs; Trg., training set.
* Rosetta does not include OC as a predictor variable.
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Fig. 5. Measured and predicted saturated hydraulic conductivity log (cm/day) using hierarchical inputs – input level 1 (tex-
tural data), level 2 (1+BD), level 3 (2+FC) and level 4 (3+PWP) in Rosetta.
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expense of decreased clay content (from 54 to 51% by
volume). Thus, the overpredictions by Rosetta could
not be explained by the available data. The measured
SWRC of the two soil groups clearly indicated a de-
cline in retention (Fig. 8) for samples associated with

overpredictions, as the mean sand content increased.
Thus, it was evident that the predictions of SWRC
correspond well with the measured data. Estimates of
Ks, however, illustrated limitations of Rosetta and
derived PTFs. The hydraulic behaviour of the study
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soils is thus unique and it will be interesting to inves-
tigate further, to understand factors influencing Ks of
these soils.
Rosetta does not include OC as an input variable

so its performance with OC as one of the inputs could
not be compared. The neural networks are expected
to improve in modelling ability with increases in input
variables that are believed to affect the predicted
property. The present results were mixed, with RMSE
(testing) in prediction of Ks being 0.9, 1.4, 1.3 and 0.9

with incremental inclusion of BD, OC, FC and PWP,
respectively, as against 4.0 with the lowest input level
1 (textural data only). Thus, an increase in the
number of variables did not lead to consistent im-
provements in performance. Rosetta estimates of Ks

were closest to the measured data when the number
of input variables was increased to include two soil
moisture constants, FC and PWP (RMSE 1.2 with
inclusion of FC and 0.6 with inclusion of PWP).
While these results were expected, the relatively
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poor performance of the neural PTF, despite in-
creased variable inputs, indicated that the soils were
unique in their hydraulic behaviour (especiallyKs) and
the neural networks could not be trained for precise
predictions. However, neural models outperformed
regression models, as indicated by lower RMSE
(0.7–1.6) in training and almost same range (0.9–4.0)
for testing dataset.

DISCUSSION

The derived PTF were judged to be acceptable for
prediction based on the upper limit of RMSE in pre-
diction of SWRC (0.055 m3/m3). This was marginally
higher than the generally reported limit of 0.05 m3/m3

(Wösten et al. 2001) in PTFs. Evaluation of Rosetta
indicated agreement with earlier results of improve-
ment with an increasing number of predictors (Rawls
et al. 2001; Wösten et al. 2001; Nemes et al. 2003). In
the present study, using the FC together with other
soil physical properties in Rosetta increased the pre-
cision of SWRC predictions. This could be due to
better information provided by these soil moisture
constants about soil pore structure. However, sys-
tematic errors in underestimation were observed at
the dry (Fig. 3) and the wet (Fig. 4) ends of SWRC
after inclusion of soil moisture constants FC and
PWP. This could be attributed to the shrink-swell
nature of the study soils. While laboratory measured
SWRC were corrected for possible underestimation,
Rosetta predictions did not account for shrink-swell
characteristics.
However, the errors were within acceptable limits

and hence Rosetta could be used for estimating water

retention in soils of the study area. Thus, resource-
intensive laboratory work to measure SWRC could
be avoided. In a similar, previous study Givi et al.
(2004) evaluated 13 PTFs and concluded that Rosetta
was of intermediate value in estimating FC and PWP
of the fine textured soils of ‘Zagros’ in Iran. The
present study suggests that the entire water retention
curve, including FC and PWP, could be predicted
using Rosetta with acceptable accuracy. Although
there have generally been reports of improvement
in predictions by Rosetta with hierarchical increases
in predictor variables (e.g. Parasuraman et al. 2007),
in contrast, the present results showed no improve-
ment.
Performance of Rosetta in predicting Ks was worse

at input level 2 with an input of texture and soil bulk
density. This could again be attributed to the shrink-
swell nature of the study soils. It can be observed
(Fig. 5) that all the estimates of Ks with an input of
texture only (input level 1) and texture plus BD (input
level 2) varied within a narrow range of 10–12.5 mm/
day. Estimates improved only after inclusion of
moisture constants as an input, implying that the
measures of soil structure had less influence in pre-
dicting Ks of the soils. This could partly be due to lack
of adequate data on shrink-swell soils in the devel-
opment of Rosetta. However, PTFs derived using
statistical regression improved prediction to a limited
extent, despite inclusion of FC and PWP as input
variables, perhaps suggesting the spread of data was
insufficient to develop robust regression equations.
The coefficient of variation (CV) for measured Ks

data was relatively low (0.39). These limitations had
less effect in neural regression. However, the addition
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of OC as a predictor variable did not improve the
neural PTF derived (Table 4, Figs 6 and 7). Contrary
to expectations, the error increased. Soil aggregation
is assumed to improve with increased organic matter,
which is confirmed by several reports finding positive
correlation between Ks and OM or OC (e.g.
Auerswald 1995; Mbagwu & Auerswald 1999; Lado
et al. 2004).
The present study demonstrated the successful ap-

plication of Rosetta and neural PTFs to predict two
fundamental soil hydraulic properties, namely SWRC
and Ks. It has implications in water management op-
tions in seasonally impounded soils. Currently,
farmers rely on their experience to take decisions re-
garding the drainage schedule and decide on the crop
to be raised depending on the residual moisture likely
to be available. Information on basic hydraulic
properties will help in better simulations of soil water
dynamics and hence better assessment of residual
moisture. The crop plan then could be altered to suit
the hydromorphic environment.

The main conclusions from the present work are
that the global PTF Rosetta could be used to estimate
SWRC of seasonally impounded clay soils, while the
neural PTF proposed could be used to predict Ks.
Estimates obtained with inputs maximal information
(particle size distribution, bulk density, field capacity
and permanent wilting point) in Rosetta were closer
to the laboratory measured data than estimates ob-
tained with fewer inputs. It was significant that
Rosetta predicted SWRC with acceptable accuracy
even with data on soil texture only. Therefore, the use
of Rosetta is recommended to predict SWRC of the
study soils. The derived neural PTF performed better
in predicting Ks. Comparison of Rosetta and statisti-
cal regression PTF to predict Ks was inconclusive.

The study resulted in a better understanding of
hydraulic properties of seasonally impounded clay
soils and indicated possible estimation of these
properties using PTF that will help in assessing water
management options for large area.
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