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Rejecting situational specificity (SS) in meta-analysis requires assuming that resid-
ual variance in observed correlations is due to uncorrected artifacts (e.g., calculation
errors). To test that assumption, 741 aggregations from 24 meta-analytic articles
representing seven industrial and organizational (I-O) psychology domains (e.g.,
cognitive ability, job interviews) were coded for moderator subgroup specificity. In
support of SS, increasing subgroup specificity yields lower mean residual variance
per domain, averaging a 73.1% drop. Precision in mean rho (i.e., low SD(rho)) ade-
quate to permit generalizability is typically reached at SS levels high enough to chal-
lenge generalizability inferences (hence, the “myth of generalizability”). Further, and
somewhat paradoxically, decreasing K with increasing precision undermines cer-
tainty in mean r and Var(r) as meta-analytic starting points. In support of the noted
concerns, only 4.6% of the 741 aggregations met defensibly rigorous generalizability
standards. Four key questions guiding generalizability inferences are identified in
advancing meta-analysis as a knowledge source.

Keywords: meta-analysis, validity generalization, situational specificity, moderator subgroup,
quantitative literature review

There is little doubt that meta-analysis has greatly benefited the science
of work behavior. The major take-home message from the earliest appli-
cations in industrial and organizational (I-O) psychology (Schmidt, Gast-
Rosenberg, & Hunter, 1980; Schmidt & Hunter, 1977, 1978, 1984; Schmidt,
Hunter, & Caplan, 1981; Schmidt, Hunter, & Pearlman, 1981; Schmidt,
Hunter, Pearlman, & Shane, 1979; Schmidt, Ocasio, Hillery, &Hunter, 1985)
was that, of all the variability observed across studies in validity estimates
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for cognitive ability tests, the lion’s share is due to sampling error and other
artifacts. Thus, the doctrine of situational specificity gave way to one of valid-
ity generalization, which diminished the need (and value) of local validation
and strengthened the credibility of research findings through aggregation.
Given the celebrated gains of validity generalization in the realm of abil-
ity testing, it is understandable that mean validity is the most cited meta-
analytic output (Carlson & Ji, 2011).

Past debates on generalizability inferences in meta-analysis (e.g., James,
Demaree,&Mulaik, 1986; Sackett, Tenopyr, Schmitt, Kehoe,&Zedeck, 1985;
Schmidt, Hunter, Pearlman, & Rothstein-Hirsh, 1985) tended to resolve to-
ward rejection of situational specificity (in support of generalizability), albeit
with unsettled questions. More recent perspectives (e.g., James & McIntyre,
2010; Murphy, 2003; Steel & Kammeyer-Mueller, 2008) echo the challenges
of generalizing meta-analytic findings. Sackett (2003) states:

Validity generalization is still wrongly viewed by many, not as a theory about the process of
drawing inferences from cumulative data, but as a general statement that the bulk of the vari-
ability in research findings is due to statistical artifacts. (p. 111)

Review of meta-analytic findings published over the past 35 years confirms
the need to revisit this issue as, in many cases, substantial variance in va-
lidity estimates remains after accounting for artifacts, rendering the strong
focus onmean effect sizes potentially tenuous if notmisguided. It is our hope
that renewed discussion of generalizability will promote the value of meta-
analysis as a knowledge-generating framework.

Our specific aims are to (a) raise awareness of the potential confusion
arising from use of the terms “validity generalization” and “situational speci-
ficity” in interpreting meta-analytic results; (b) emphasize generalizability
of mean rho as the key meta-analytic inference; (c) show, by review of 24
published meta-analytic studies, how generalizability inferences tend to be
treated in I-O psychology, as well as the complex effects of increasing mod-
erator specificity on those inferences; and (d) offer recommendations re-
garding how meta-analytic findings are reported and how such findings are
interpreted with respect to generalizability. In the process, we (e) provide
evidence that substantial residual variance is attributable to moderators, in
support of situational specificity; (f) show how generalizability of mean rho
is achieved with adequate precision typically under highly specified moder-
ator conditions (ergo, “the myth of generalizability”); and (g) identify and
explain a further paradox of low-K specificity, in which increasing con-
ditional specificity serving precision in generalizability is undermined by
corresponding increases in second-order sampling error in deriving mean
r and Var(r) as analytic starting points. We begin with an overview of
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Hunter–Schmidt (HS) meta-analytic methods, those most often used in I-O
psychology.

How Meta-Analysis Works1

HS meta-analysis takes a distribution of observed validity estimates (rxys),
drawn from one or more populations of such estimates, and manipulates
the resulting sample-weighted mean r and Var(r) to generate two important
outputs: (a) mean rho and (b) Var(rho). Mean rho is derived as mean r cor-
rected for systematic attenuation from correctible artifacts (rxx, ryy, range re-
striction, dichotomization2), and, quite independently, Var(rho) is derived
by subtracting Var(e), composed of sampling and other artifact error vari-
ances, from Var(r) and then adjusting this residual variance (Var(res)) up-
ward to account for differential artifact effects. As Var(e) approaches Var(r),
Var(res) decreases, leaving little or no room formoderators to operate. A low
Var(rho), following the upward adjustment, favors the inference that mean
rho is generalizable. That is, a user may safely assume that mean rho (and
mean r) applies to his or her situation because the relationship is claimed to
hold across all conditions represented in the aggregation.

Figure 1 depicts the major meta-analytic elements, processes, and vari-
ance sources. Notably, there are two levels of variance in meta-analysis that
can affect generalizability inferences: (Level 1) Var(r) due to (a) study-level
(first-order) sampling error, (b) differential effects of other correctable ar-
tifacts, (c) differential effects of uncorrectable artifacts (e.g., human error
in calculating rxy), and (d) differences in moderator standing; and (Level
2) second-order variance due to (a) second-order sampling error, in turn
a function ofK andN per rxy, and (b) bias in generatingmean r and Var(r) as
the starting points for the first-level derivations. We address first-level pro-
cesses before returning to consider how second-level sampling of rxys (fur-
ther) affects generalizability ofmeta-analytic findings. For now, let us assume
that mean r and Var(r) are derived from large-K aggregation (i.e., K > 100)
of rxys, each based on relatively large N (min = 150).3

In addition to mean rho and Var(rho), several related indices are pro-
duced as aids in judging generalizability. The square root of Var(rho),

1 Meta-analytic methods are described in detail by Hunter and Schmidt (2004) and others
(e.g., Card, 2012; Hedges & Olkin, 2005; Lipsey & Wilson, 2001). Here, we focus on aggre-
gation of rxy; ourmain points likely apply to d aswell.We focus onHSprocedures over others
(e.g., Raju, Burke, Normand, & Langlois, 1991) due to their prominence in I-O psychology.

2 Dichotomization is best corrected at the study level prior to deriving mean r (Hunter &
Schmidt, 2004).

3 These numbers are not intended as uniquely defensible standards for meta-analysis but
rather to support an assumption of low second-order sampling error to promote initial ex-
amination of first-level processes. For the noted K and N, the maximum 95% confidence
interval width, assuming homogeneity (see Whitener, 1990), is ± .016 around mean r.
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Figure 1. Meta-analysis in a nutshell.

SD(rho), is often used to create a credibility interval around mean rho. A
credibility interval does not reflect variability due to sampling error and
corrected artifacts because such variability has been removed in deriving
SD(rho). It informs as to the likely presence or absence of moderators of
rho, which speaks directly to the question of generalizability (Schmidt &
Hunter, 1977; Whitener, 1990). The most commonly reported is the 80%
credibility interval (80% CI), calculated as mean rho ± 1.28× SD(rho). The
80% CI specifies the range within which 80% of population validities are ex-
pected to fall. The lower boundary of the 80% CI is the 90% credibility value
(90% CV), the point below which 10% of population validities are expected
to fall.

As a further marker for the possible operation of moderators, “%VE” is
often derived as the percentage of Var(r) due to Var(e). As Var(e) approaches
or exceeds Var(r), %VE approaches or exceeds 100%, and mean validity is
inferred as situationally generalizable. If Var(e) > Var(r) (i.e., observed rxys
are less variable than expected due to artifacts), %VE is often truncated at
100%. A cutoff of 75% is frequently invoked in judging generalizability. The
“75% rule” (Schmidt & Hunter, 1977) holds that, if %VE > 75%, situational
generalizability of mean rho may be inferred, as the remainder of Var(r) can
be attributed to uncorrected artifacts.
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Selected moderators are tested as either subgroup differences or study-
level correlations. The former are far more common. Hunter and Schmidt
(2004) offer a nonstatistical test based on an analysis of variancemodel. Sub-
groupmoderators are supported to the degree subgroups of rxys yield (a) dif-
ferent mean rhos and (b) SD(rho)s that average lower than SD(rho) for the
combined (i.e., broader) aggregation. This latter marker for moderation—
shrinking SD(rho) with increasing moderator specificity—is key to evaluat-
ing generalizability in our survey of I-O meta-analyses, to which we return
later on.

Validity Generalization and Situational Specificity
Themajor aim of most r-focusedmeta-analyses is to discover the true linear
relationship, rho, between two variables by correcting mean r for systematic
attenuation due to measurement artifacts. A further aim is to identify the
consistency of rho across conditions after filtering out noise in estimation
due to sampling error and cross-study differences in one ormore correctable
artifacts. These two aims are combined in generalization: mean rho is often
a major subject of generalization, and moderators specify the conditions to
which mean rho can be generalized.

Two key concepts relating to generalizability in meta-analysis are valid-
ity generalization (VG) and situational specificity (SS). Taken at face value,
VG and SS seem like polar opposites: If one has a validity estimate that gener-
alizes across all conditions (e.g., jobs, demographics, measurement formats),
this would appear to imply simultaneously both VG and a lack of SS. Con-
versely, if one observes substantial SS in population validity, it is not obvious
how validity can be understood as generalizable.

Despite the strong (negative) surface connection between VG and SS,
they are formally distinct concepts in HS meta-analysis (e.g., Schmidt &
Hunter, 1977): VG is inferred when a lower bound estimate of population
validity exceeds someminimal value (most often 0), and SS is inferred when
Var(r) is not completely attributable to sampling error and other artifacts.
Thus, onemay observe bothVG and SS, as when population validity is found
to be at least .10 in the large majority of applications and yet also varies, even
substantially, as a possible function of one or more moderators (whether or
not they are identified and/or tested).

Most HS meta-analysts are well aware of the VG/SS distinction and re-
port results separately for those two inferences. There is, nonetheless, oppor-
tunity for confusion among consumers of meta-analytic findings, as noted
by Murphy (2000). Perhaps reflecting some of that confusion, Carlson and
Ji (2011) reported that, out of 1,489 citations of meta-analytic findings in
top I-O psychology outlets, only 7 (.47%) noted variability in effect sizes,
far underrepresenting cases where SD(rho) > 0. Part of the problem may
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be that meta-analysts themselves tend to downplay or ignore their own SS
results.4 We argue that, contrary to the way it tends to be treated in many
meta-analyses and as cited by others, SS is more critical than VG in drawing
meta-analytic inferences.

To be clear, both VG and SS inferences are useful. Consider a case where
mean rho is .25 and the 80% CI ranges from .10 to .40 (based on SD(rho) =
.117). It is helpful to know that population validity can be expected to be at
least .10 in 90%of conditions represented in the aggregation (whether overall
or in a specific moderator subgroup), as the predictor may be a safe bet for
inclusion in an assessment battery5 and for citing as relevant in subsequent
research. It is also useful to know, independent of the VG inference, that rho
varies between .10 and .40 in 80%of cases, as researchers and consumers seek
to estimate what validity is likely to be in a given situation, and the .30-unit
width of the interval precludes precision in that judgment. TheVG inference,
despite its merit, suffers from several limitations relative to the SS inference,
as follows.

First, VG dichotomizes the continuum of correlation strength (James &
McIntyre, 2010): In terms of the “90% > 0” rule, either the 90% CV falls
above 0, conferring VG, or it does not, failing to confer VG. As occurs in
other types of inquiry (e.g., correlation), dichotomization entails a loss of
information (e.g., degrading a normally distributed test score to pass/fail).
The VG inference offers a basic (and easily communicated) on/off heuristic
regarding a specific lower-bound value, but the SS inference, represented by
the 80% CI, more fully captures generalizability in terms of the full correla-
tion continuum.6

Second, whether or not unidirectional (positive or negative) validity is
generalizable is irrelevant in some applications of meta-analysis. Consider
the general personality factor of Agreeableness (A) in relation with job per-
formance. Good reasons can be offered for expecting a positive rxy in jobs
where caring for others (i.e., high A) is especially valued and a negative rxy
where being tough skinned (i.e., low A) is favored (cf., Tett & Christiansen,
2007; Tett, Jackson, Rothstein, & Reddon, 1999). Meta-analytic means for
A in predicting work criteria under the assumption of unidirectionality (cf.
Tett et al., 1999) are often close to zero, with 80% CIs extending in both di-
rections (e.g., Barrick & Mount, 1991; Hough, Ones, & Viswesvaran, 1998;
Judge, Bono, Ilies, &Gerhardt, 2002; Vinchur, Schippmann, Switzer, & Roth,
1998). In such cases, the 90% CV rule is moot and mean rho is especially

4 We offer evidence for this in our brief survey of I-O meta-analyses, presented below.
5 Validity expected in actual applications should be centered onuncorrectedmean r, notmean
rho.

6 Half the 80%CI is identified by the lower bound 90%CV. The 80%CI is, thus, less a replace-
ment than an extension of the 90% CV.
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diminished as a focus of generalization. The 80% CI, in contrast, is relevant
in all cases regardless of directionality and, where bidirectionality is evident,
drives pursuit of directional moderators.

Third, the VG inference sets a low standard for generalizability (Mur-
phy, 2003). In terms of our earlier example, finding that population validity
> .10 more than 90% of the time is helpful, but one cannot infer from this
that rho = .25 is generalizable. Concluding that mean validity “generalizes”
would be a misrepresentation of the data, given that 80% of rhos are esti-
mated to fall between .10 and .40 (and 10% below .10 and another 10% above
.40).

Finally, the VG inference focuses attention on the weaker end of the rho
distribution. The stronger end is important because it shows validity under
potentially favorable conditions. That rho in our example is greater than .40
in 10% of conditions represented in the aggregation should encourage ef-
forts to identify what those conditions are so we might improve predictions
and explanations of targeted criteria. Most meta-analysts are keen to iden-
tify moderators, and many such efforts are supported. Credibility intervals
within moderator subgroups, however, are still often wide enough to com-
promise meaningful generalizability of mean rho.

In sum,meta-analysis offers uniquely powerful estimates of the strength
and direction of relationship between targeted variables. Finding that 90% of
rhos fall above zero (or on one side of it) is useful when otherwise so much
noise in findings across studies undermines certainty affording practical and
theoretic advance. Generalizing validity, however, means more than where
the 90% CV falls in relation to zero; its broader meaning entails stability in
rho across conditions, as conferred by how close SD(rho) is to 0, yielding a
narrow credibility interval, no matter whether (mean) rho is strong or weak
(Carlson & Ji, 2011).

A high SD(rho) limits generalizability by the possibility that substan-
tive moderators may be responsible for some large proportion of residual
variance. This feature of generalizability, quantified by proximity of SD(rho)
to 0, may be denoted as precision.7 Low precision (i.e., high SD(rho)) does
not render mean rho uninterpretable. It does, however, render the mean less
useful in application to particular settings because it then is not clear which
rho is the one most applicable to a given situation. Low precision impedes
generalizability, favoring SS albeit not guaranteeing it.

7 Nunnally (1978) and Cortina (1993) discuss “precision” in terms of variability of inter-item
rs in estimating internal consistency reliability. McDaniel, Rothstein, and Whetzel (2006),
citing Sterne and Egger (2005), use it in discussing funnel plots in trim-and-fill methods of
detecting publication bias. Its meaning here is similar to those other uses, but close mathe-
matical parallels to either should not be inferred.
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A Fly in the Ointment
SD(rho) > 0 indicates SS only to the degree that all of Var(e) is subtracted
from Var(r). Unfortunately, some sources of Var(e) are difficult to estimate:
variance due to differences in uncorrectable (or hard-to-correct) artifacts
(e.g., criterion factor structure, errors in calculating and communicating rxy).
Arguments for rejecting SS (e.g., Schmidt & Hunter, 1977) emphasize that
SD(rho) may be > 0 not due to moderators but due to unclaimed Var(e).
This is the basis for the 75% rule and is an important assumption because it
confers rejection of SS despite SD(rho) > 0.

By their nature, these artifact variances are difficult to estimate directly.
An indirect test of the composition of SD(rho) is offered, however, by ex-
amining the effects of moderator specificity on SD(rho) within and across
multiple meta-analytic studies. If residual Var(r) is due solely to unclaimed
error, then SD(rho) should show no reduction with increasing specificity
in moderator subgrouping. Conversely, as per Hunter and Schmidt’s (2004)
second criterion for inferring moderation, if SD(rho) drops with increasing
specificity, then this would offer support for the effects of moderators. This
question is pursued in a later section.

Second-Level Variance
Our main points up to now apply to the Level 1 variance sources captured
by Var(r) in deriving Var(rho) and SD(rho). Level 2 warrants consideration
because it addresses the robustness of mean r and Var(r) as starting points
for first-level calculations. Two major sources of second-level error are (a)
random error in sampling rxys from the population of rxys and (b) systematic
sampling bias. As to the former, when K is small and/or N per input study
is small, mean r is uncertain (as per SE(rxy) and the 95% confidence interval
aroundmean r) and somean rho is uncertain; smallK and smallN alsomake
Var(r) uncertain and so also Var(rho) and SD(rho).

Regarding sampling bias, mean r and Var(r) are products of both the
meta-analyst’s choice of rxy estimates to include in the aggregation and the
availability of rxys. The “bias” in rxy choice is generally not problematic, with
the understanding that such choices largely determine the actual population
of conditions to which generalizations can be made. Results based on rxys
from only civilian settings, for example, are of questionable generalizability
to military settings (whether or not military findings were deliberately ex-
cluded).

Other biases in selecting rxy can be more problematic. Publication bias,
“the possibility that not all completed studies on a topic are published in the
literature and that these studies are systematically different from published
studies” (McDaniel, Rothstein, &Whetzel, 2006, p. 927), has been a growing
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target of research. It has traditionally and most often been pursued as “fail-
safeN” in the context of “the file-drawer problem” (e.g., Rosenthal, 1979), but
several new approaches have been taken more recently (e.g., Coburn & Ve-
vea, 2015). With fewmajor exceptions (e.g., Dalton, Aguinis, Dalton, Bosco,
& Pierce, 2012), evidence suggests that publication bias is a problem inmeta-
analysis (Hedges & Vevea, 1996; Kepes, Banks, McDaniel, & Whetzel, 2012;
Kromrey & Rendina-Gobioff, 2006; van Assen, van Aert, &Wicherts, 2015),
albeit less so under some conditions than others (Coburn & Vevea, 2015;
Ferguson & Brannick, 2012; McDaniel et al., 2006). Besides editorial screen-
ing, a similar bias occurs when researchers use a “Texas shooter” strategy to
identify from an array of available results just those judged worthy of report-
ing (Biemann, 2013).

To the degree such biases operate, as awhole and differentially across do-
mains, mean r and Var(r) become uncertain as starting points for the main
analyses from which mean rho and Var(rho) are derived. For example, if
stronger rxys are selected for publication (by “Texas shooters” and/or review-
ers and editors), mean rho will be overestimated. SD(rho), in addition, will
be underestimated, and so also inferences of SS. As methods for detecting
selection biases and evidence regarding the extent of the problem continue
to be developed, the importance and nature of such biases will better inform
meta-analytic generalizations going forward.

To recap, there are two broad levels of variance affecting generalizability
inferences inmeta-analysis: Level 1 variance sources include first-order sam-
pling error, other artifact error (claimed and unclaimed), and moderators.
Level 2 variance sources include second-order sampling error and sampling
biases in derivingmean r andVar(r) as starting points for Level 1 procedures.
Two keymeta-analytic outcomes bearing on generalizability at the two levels
are SD(rho) and SE(rxy), respectively. SD(rho) (Level 1) speaks to precision in
generalizing mean rho (lower SD(rho) = higher precision), whereas SE(rxy)
(Level 2) speaks to certainty in mean r and Var(r) as foundations for gener-
alizability inferences (lower SE(rxy) = higher certainty).

A Brief Survey of Meta-Analyses in I-O Psychology
To get a sense for how issues of generalizability are dealt with in meta-
analysis applied in the field of I-O psychology, we surveyed 24 such studies
published in four predictor content domains (cognitive ability, personality,
work attitudes, and leadership) and three method domains (job interview,
assessment centers, and situational judgment tests).Our specific aims in con-
ducting the survey were to (a) assess the effects of increasing aggregation
specificity on SD(rho) and SE(rxy) within and across I-O research domains
and (b) estimate normative practices regarding emphasis on VG and SS
inferences.
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Key to understanding generalizability inferences in meta-analysis is the
effect of increasingly specified conditions represented in a given aggregation.
This is broadly referred to as situational specificity as discussed above and
includes a variety of moderator classes: (a) Main situational moderators in-
clude general setting (e.g., civilian vs. military, public vs. private sector), job
family (e.g., professional vs. nonprofessional), specific jobs nested within a
family (e.g., computer programmer), job complexity, and so on. Other mod-
erator classes include (b) predictor constructs (e.g., the five-factor model
of personality and nested facet traits; general mental ability (GMA) and its
facets), (c) criterion constructs (e.g., personnel data vs. job performance and
nested task vs. contextual facets), (d) general methods (e.g., situational vs.
behavioral interviews; assessment center overall ratings and nested exer-
cise ratings), (e) measurement features (e.g., follower- vs. leader-rated LMX,
nine-item vs. 15-item OCQ), (f) research design and purpose (e.g., concur-
rent vs. predictive, research vs. administrative), (g) demographics (e.g., age,
gender), and (h) sources (e.g., peer-reviewed articles vs. conference papers).
Each prospective moderator offers opportunity for greater specification of
the conditions affecting the generalizability of the given mean rho.8

Building onHunter and Schmidt’s (2004) analysis-of-variance approach
to identifying moderators, the expectation favoring SS is that SD(rho) will
shrink with increasing moderator specificity. This is because group mean
differences should account for a portion of overall variance, leaving smaller
mean Var(r) and so also mean Var(rho) and mean SD(rho). We tracked this
effect by comparing SD(rho) across meta-analytic aggregations differenti-
ated in terms of “specificity level,” operationalized as follows.

First, using moderators reported in the 24 source articles as input, we
created a multilevel taxonomy of sequentially nested moderator subgroups
per moderator class. This taxonomy is presented in Table 1. Note that nest-
ing level (e.g., 0 to 3) is shown at the top of each moderator class. Aggrega-
tions typically combinemoderators frommultiple classes (e.g., predictor and
criterion facets) and often from multiple subcategories within a given class.
Specificity level per aggregation was indexed by adding the values (i.e., 0 to
3) for each moderator subgroup involved in that aggregation. The scheme
yields specificity level 1 when aggregating, for example, GMA validity in
predicting all work criteria. Specificity values increase with each narrowing
of conditions represented in the aggregation. For clarification, consider the
following examples.

8 All but the last moderator class (“sources”) can be understood broadly as “situational” by
defining the conditions of generalization (e.g., targeting predictor X and criterion Y using
method A in setting B). “Sources,” which speaks more to publication bias, is involved in
only 22 of the 741 aggregations (3%). Excluding it from the specificity analyses would have
a trivial impact on current findings.
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Table 1. Seven Classes of Subgroup Moderators with Specificity Levels

Criterion constructs and methods Predictor constructs and methods

0 1 2 3 0 1 2 3 0 1 2 3
All work-related criteria All predictor constructs/methods
Job performance/proficiency (general) Predictor construct Predictor method
Task performance Cognitive ability/GMA Job interview

Task performance facets (e.g., analyzing) GMA facets (e.g., verbal reasoning) Situational
Contextual performance/OCB Personality Job related

Contextual performance facets (e.g., supporting) Extraversion Psychological
Adaptive performance E facets (e.g., sociability) Structured
Managerial/leadership performance Conscientiousness Unstructured

M/L performance facets (e.g., decision making) C facets (e.g., order) Individual
Rated performance (subjective) Agreeableness Board
Other than rated performance (objective) A facets (e.g., nurturance) Averaging

Counterproductive work behavior Emotional stability/neuroticism Consensus
CWB facets (e.g. theft) ES/N facets (e.g., anxiety) Cognitive ability test available

Training performance/proficiency Openness to experience Cognitive ability test unavailable
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Table 1. Continued

Criterion constructs and methods Predictor constructs and methods

Personnel data/career advancement O facets (e.g., creative thinking) Cognitive ability test availability unknown
Productivity Masculinity–femininity Assessment center (OAR)
Withdrawal Competency Particular exercises (e.g., in-basket)
Withdrawal cognitions Management/leadership Situational judgment test
Turnover intention M/L facet (e.g., leading/influencing) Knowledge based
Turnover LMX Behavior/tendency based
Tenure Drive Constant content (SJT-DV)
Absenteeism Job knowledge Personality composite
Lateness Interpersonal skill Heterogeneous composite

Status/level/promotions Teamwork
Salary Attitudes

Safety/accidents Job satisfaction
Safe/unsafe behavior Organizational commitment
Safe Safety climate
Unsafe Other
Driving e.g., Role clarity, trust
Non-driving

Accidents
Subjective
Objective
External
Management potential
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Table 1. Continued

Situational features Meaurement features Research design features Sources

0 1 2 0 1 0 1 2 3 0 1 2 3
Job type/family Rating source Main design All sources
Professional Self-rated Cross sectional Articles
Scientists/engineers Other rated Longitudinal Top tier
Teachers Follower rated Exploratory/confirmatory Other ranked
Nurses Leader rated Exploratory Unranked

Nonprofessional IV/DV shared/common Confirmatory Theses/dissertations
Laborers IV/DV independent/noncommon Job analysis Presentations

Management/leadership Measurement length Formal job analysis Book chapters
Low Multi-item Armchair job analysis Unpublished
Middle Single item No job analysis Technical reports
High Instrument Unknown Government

Nonmanagerial LMX-7 Validation strategy Proprietary
Police LMX-MDM Concurrent/incumbents Test vendor manuals
Sales LMX-Other Predictive/recruits
Skilled or semi-skilled 9-item OCQ With feedback
Computing and account recording clerical 15-item OCQ Without feedback
Steno typing and filing clerical Global job satisfaction Experimental
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Table 1. Continued

Situational features Meaurement features Research design features Demographics

Miscellaneous/mixed Facet job satisfaction Purpose 0 1
Male dominated CA-WPT Research Age
Female dominated CA-Other Administrative Adult
Gender neutral CWB-Bennett and Robinson Promotion Young adult

General setting CWB-Other Early identification Sex
Civilian Selection Male
Military Female
Business
College
Public sector
Private sector
Collectivistic culture
Individualistic culture

Job complexity
High
Medium
Low
Observer rated
Objectively rated (e.g., ONET)
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Barrick and Mount (1991) aggregated validity estimates by general per-
sonality factor crossed with job family or criterion type. Their meta-analysis
for Conscientiousness in predicting assorted work outcomes of profession-
als, for example, was coded as specificity Level 3, given that Conscientious-
ness falls at Level 2 in the predictor taxonomy (nested within the personality
domain) and professionals fall at Level 1 of job type/family within the sit-
uational taxonomy. Greater specificity is evident in aggregations reported
by Martin, Guillaume, Thomas, Lee, and Epitropaki (2016) on LMX in rela-
tions with different types of job performance (e.g., task vs. contextual) under
various conditions (e.g., leader- vs. follower-rated LMX, common vs. non-
common rating sources, three different LMXmeasures) crossed as far as per-
mitted by available input sources. Specificity levels in Martin et al. (2016)
range from 5 (e.g., LMX= 3, under predictors; task performance= 2, under
criteria) to 9 (involving sequentially nested combinations of several predic-
tor, criterion, and measurement moderators).

Overall, specificity values range from 1 to 9 in the 741 aggregations re-
ported in the 24 studies. Clearly, this method of assessing conditional speci-
ficity leaves room for improvement. A major limitation is the untested as-
sumption of equal intervals within and across classes. For example, it is not
clear that specificity gained moving from Extraversion to one of its facets
(e.g., sociability) is equal to specificity gained moving from GMA to, say,
verbal ability or moving from unpublished sources to technical reports. The
coding also ignores the possibility of interactions amongmoderators in their
effects on SD(rho). For example, the impact of increased specificity moving
from Extraversion to sociability might vary by criterion type. Notwithstand-
ing these limitations, the proposed system permits initial evaluation ofmod-
erator specificity in relations with SD(rho) and other meta-analytic outputs.

Study Selection
Hundreds of meta-analyses have been published in I-O psychology since the
method was introduced in the late 1970s. Our selection of studies within
each of the seven domains was limited to applications of standard HS pro-
cedures targeting relationships at the individual level of analysis (e.g., ex-
cluding team- and organization-level studies). We further targeted (mostly)
influential articles (e.g., from Journal of Applied Psychology, Personnel Psy-
chology, Psychological Bulletin) and sought to assemble sets of studies within
each domain that collectively covered a variety of criteria and moderators.
Finally, where possible, we sought representation across the decades. Criti-
cally for current aims, our choice of studies, although not random, was blind
to meta-analytic treatment of VG and SS. We expect that our sample is fairly
representative of peer-reviewed, individual-level meta-analyses in I-O psy-
chology regarding generalizability estimates and inferences.
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Coding
Each study reported results for multiple aggregations. For each aggregation,
we recorded (a) the predictor and criterion and classified those variables by
general domain (e.g., ability, personality, job performance, withdrawal); (b)
main meta-analytic output, including K, totalN, mean r, mean rho, SD(rho)
and artifacts used to derive it,9 %VE, and 80% CI; missing data were calcu-
lated directly, if possible, from available data (e.g., 80%CI=mean rho± 1.28
× SD(rho)); given our focus on SD(rho), aggregations lacking SD(rho) and
ways to derive it were dropped; and (c) moderator subgroup combinations
from which specificity level could be derived (described above). We further
noted, per article, (d) several other features relevant to generalizability in-
ferences, including use of the 90% CV rule, 75% rule, Q (a chi-square test
for homogeneity; Cochran, 1954), degree of emphasis placed on SS in light
of SD(rho) > 0, and entry of mean rhos into tertiary analyses (e.g., multiple
regression, path analysis).10

Regarding %VE, some authors reported a maximum of 100% when
Var(e) exceededVar(r). To avoid underestimatingmean%VE (Schmidt et al.,
1985), we calculated it directly where possible and otherwise estimated it
as the reciprocal of the mean of reciprocals (Barrick & Mount, 1991) from
cases where %VE> 100%. A total of 35 missing values were estimated as the
overall mean (i.e., 151%) derived from 27 cases with %VE> 100%.11 SE(rxy)
was calculated using the reportedmean r, totalN, andK. We used the homo-
geneity case equation (Whitener, 1990) to avoid directly confounding SE(rxy)
with SD(rho). Reliance on the heterogeneity case equation would increase
SE, strengthening later arguments regarding limits to generalizability. As-
suming homogeneity thus renders current arguments regarding SE(rxy) con-
servative. For degree of emphasis on SS, we coded each article as either 0 =
SS completely ignored; 1= SS noted in passing (e.g., in defining the 80%CI),
but otherwise ignored; 2= SS discussed briefly (e.g., two or three sentences);
3 = SS discussed in moderate detail (e.g., in interpreting observed SD(rho)
> 0); or 4 = SS emphasized as limiting the generalizability of mean rho.

Results
Table 2 summarizes selected features of the 24 studies included in the review.
Results for the entire set include the following: (a) Eight studies (33%) used

9 Our aim in coding psychometric artifacts corrected in deriving SD(rho) was to examine
and possibly adjust for effects of those corrections on SD(rho) across cases. However, point-
biserial rs between correction for each artifact (0/1) and SD(rho) are weak overall and
present no discernable pattern of effects across or within domains. Accordingly, we did not
control for differences in reliance on artifacts in deriving SD(rho).

10 The relevance of tertiary analyses is discussed later on.
11We considered usingmeans based on available values from the samedomain, but insufficient
cases permitted this.
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Table 2. Summary of 24 Meta-Analytic Studies in I-O Psychology

Main variables
N Spec Mean 90% 75% 90% 80% Tertiary SS

Area/domain/article Journal Predictors Criteria MAs rangeb SD(rho) rule rule CV CI Q analysis emph.c

Content
Cognitive ability
Schmidt et al. (1979) PPsych GMA, facets Job performance 14 4–5 .22 Yes Yes Yes No No No 2
Rothstein & McDaniel (1992) JBP Cognitive ability, facets Job performance 72 4–7 .07 No No No No No No 2
Salgado et al. (2003) PPsych GMA, facets Job perf, training success 12 2–3 .17 No No Yes No No No 2
Gonzalez-Mulé et al. (2014) JAP GMA CWB, OCB 33 2–4 .17 Yes No No Yes No Yes 2

Personality
Barrick & Mount (1991) PPsych FFM Assorted criteria 65 3–4 .09 No Yes Yes No No No 1
Bartram (2005) JAP Great 8 pers facets, ability Great 8 perf dimensions 8 4–6 .11 No Yes Yes No No No 2
Zimmerman (2008) PPsych FFM, job complexity TOI, turnover 14 1–5 .08 Yes Yes No Yes No Yes 2
Beus et al. (2015) JAP FFM Safety behaviors, accidents 41 4–5 .07 No No No Yes No Yes 2

Work attitudes
Tett & Meyer (1993) PPsych Job sat, org commitment TOI/WC, turnover 39 4–7 .11 Yes Yes No Yes Yes Yes 2
Judge et al. (2001) Psych Bull Job sat Job performance 29 3–5 .20 Yes No No Yes Yes No 2
Judge et al. (2002) JAP FFM Job satisfaction 5 4 .18 Yes No No Yes No Yes 2
Choi et al. (2015) JAP FFM Org commitment facets 20 4–5 .12 Yes No No Yes No Yes 3
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Table 2. Continued

Main variables
N Spec Mean 90% 75% 90% 80% Tertiary SS

Area/domain/article Journal Predictors Criteria MAs rangeb SD(rho) rule rule CV CI Q analysis emph.c

Leadership
Lord et al. (1986) JAP Personality facets Leadership perceptions 10 4 .10 Yes Yes Yes No No No 4
Lowe et al. (1996) LQ Leadership facets Leadership effectiveness 35 5–6 .21 Yes No Yes Yes No No 4
Judge & Piccolo (2004) JAP Leadership facets Job performance 9 4–8 .26 Yes No No Yes No Yes 2
Martin et al. (2016) PPsych LMX Performance facets 133 5–9 .10 Yes Yes No Yes No Yes 1

Methods
Job interview

Weisner & Cronshaw (1988) J Occ Psych Job interview Work-related criteria 14 1–4 .16 No No No No No No 3
McDaniel et al. (1994) JAP Job interview Job perf, training perf 37 2–5 .17 No No Yes No No No 2
Huffcutt et al. (2004) IJSA Job interview Job performance 15 3–5 .09 No Yes No Yes No No 2

Assessment centers
Gaugler et al. (1987) JAP AC overall rating Various work criteria 17 1–3 .12 Yes No Yes No No No 3
Arthur et al. (2003) PPsych AC dimensions Various job-related criteria 22 1–3 .11 Yes No Yes No No Yes 3
Hoffman et al. (2015) JAP AC exercises Job performance 21 3–4 .08 No No No Yes Yes Yes 1

Situational judgment tests
McDaniel et al. (2007) PPsych FFM, ability SJT, job performance 54 2–5 .08 Yes No No Yes No Yes 3
Christian et al. (2010) PPsych SJT Job performance, facets 22 3–4 .09 No No No Yes No No 1

Totals 741 1–9 .12 58% 33% 38% 58% 13% 46% M=2.2

aModerators include those explicitly tested for subgroup moderation and construct specificities (e.g., FFM factors, performance facets); excluded are continuous
moderators tested by moderator correlation.
bSpecificity level range: see text for operationalization of specificity level per aggregation.
cSS emphasis: 0 = SS completely ignored; 1 = SS noted in passing but otherwise ignored; 2 = SS discussed briefly; 3 = SS discussed in moderate detail; 4 = SS
emphasized as limiting the generalizability of mean rho.
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Figure 2. Shrinking SD(rho) with increasing aggregation specificity by research
domain.

the 75% rule and three (13%) reported Q to judge the presence or absence
of moderators; (b) 14 (58%) used the 90% rule in judging VG, 14 (58%) re-
ported the 80% CI, and five (21%) used both the 90%CV and 80% CI. (c)
Regardless of whether or not the 90% CV rule was invoked, 83.1% of the
741 aggregations met the 90% CV standard for VG. (d) Of the 410 cases
with available %VE, 307 (74.9%) had values less than 75%. Finally, (e) re-
garding treatment of residual variance, four studies (17%) briefly noted its
connection tomoderators but ignored it when interpreting observed results,
13 (54%) briefly discussed the possibility of moderators in light of observed
residual variance, five (21%) discussed the issue in moderate detail, and the
remaining two (8%) emphasized that SD(rho) > 0 limits generalizability of
mean rho.

Effects ofmoderator specificity on SD(rho), SE(rxy), and%VE are shown
in Table 3 for each of the seven domains and all sources combined. Sev-
eral points bear noting here. First, with few exceptions, mean SD(rho) drops
within each domain and overall as moderator specificity increases. Figure 2
plots this effect per domain. The far-right column of Table 3 includes three
values per block. The upper value is the percentage drop in Var(rho) going
from lowest to highest specified conditions. Values range from40.5% (assess-
ment center) to 97.7% (SJT), averaging 73.1%. Correspondingly, the pooled
within-domain correlation between specificity level and SD(rho) (involving
all 741 cases, controlling for between-domain differences in mean SD(rho))
= −.39 (p < .001)). Contrary to SD(rho) > 0 being due to unclaimed ar-
tifacts, current results suggest that residual variance is at least partially at-
tributable to combinations of moderators, in general support of SS.

Second, although mean SD(rho) shrinks with increasing moderator
specificity, it does not drop to 0 at even the highest specificity level per
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Table 3. Mean SD(rho), Mean %VE, Mean K, and Mean SE(rxy) by Aggregation Specificity Level

Specificity level Change from
broadest to

Domain/variable 1 2 3 4 5 6 7 8 9 Total narrowesta

Cognitive ability (4 studies)
Count SD(rho) 0 3 28 20 24 32 24 0 0 131
Mean SD(rho) .19 .17 .18 .13 .07 .07 .12 86.6%
Count %VE 0 2 10 4 10 0 0 0 0 26
Mean%VE 57.8 52.1 53.3 63.5 57.1 9.9%
Mean K 75.0 25.6 25.9 80.4 18.4 9.9 50.5
Mean SE(rxy) .009 .016 .018 .016 .031 .045 .016 5.19

Personality (4 studies)
Count 0 1 44 35 40 8 0 0 0 128
Mean SD(rho) .15 .10 .07 .08 .11 .08 44.1%
Count %VE 0 1 44 22 12 8 0 0 0 87
Mean%VE 41.0 60.0 58.6 44.2 52.8 56.6 28.9%
Mean K 17.0 36.5 11.7 10.5 26.4 25.5
Mean SE(rxy) .016 .018 .027 .022 .017 .021 1.01

Work attitudes (4 studies)
Count 0 0 5 33 26 20 9 0 0 93
Mean SD(rho) .19 .19 .13 .11 .07 .14 86.9%
Count %VE 0 0 1 8 20 3 0 0 0 32
Mean%VE 25.2 18.7 23.2 21.6 22.0 -14.3%
Mean K 214.4 65.5 28.2 21.6 14.4 42.7
Mean SE(rxy) .006 .012 .014 .012 .017 .013 2.59

https://doi.org/10.1017/iop.2017.26 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/iop.2017.26


m
eta-a

na
lysis

a
n
d

th
e
m
yth

o
f
g
en

era
liza

bility
441

Table 3. Continued

Specificity level Change from
broadest to

Domain/variable 1 2 3 4 5 6 7 8 9 Total narrowesta

Leadership (4 studies)
Count 0 0 0 12 11 57 45 45 17 187
Mean SD(rho) .13 .21 .17 .12 .09 .05 .13 87.1%
Count %VE 0 0 0 10 3 27 44 42 17 143
Mean%VE 44.1 14.6 16.3 18.9 27.6 57.8 27.3 31.0%
Mean K 16.9 51.8 27.5 23.8 20.2 15.4 22.5
Mean SE(rxy) .033 .010 .015 .020 .027 .038 .024 1.16

Job interview (3 studies)
Count 1 9 24 27 5 0 0 0 0 66
Mean SD(rho) .28 .19 .14 .13 .16 .15 68.5%
Count %VE 1 7 8 12 1 0 0 0 0 29
Mean%VE 14.0 27.8 53.6 52.2 68.0 45.9 385.7%
Mean K 150.0 54.0 45.0 25.3 27.0 42.0
Mean SE(rxy) .004 .011 .014 .023 .022 .017 5.38

Assessment center (3 studies)
Count 2 20 28 10 0 0 0 0 0 60
Mean SD(rho) .12 .11 .10 .09 .10 40.5%
Count %VE 2 20 17 0 0 0 0 0 0 39
Mean%VE 43.8 38.4 13.9 28.0 -68.2%
Mean K 182.5 29.8 17.1 9.4 32.1
Mean SE(rxy) .006 .017 .015 .020 .015 3.43
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Table 3. Continued

Specificity level Change from
broadest to

Domain/variable 1 2 3 4 5 6 7 8 9 Total narrowesta

SJT (2 studies)
Count 0 2 26 38 10 0 0 0 0 76
Mean SD(rho) .15 .11 .08 .02 .08 97.7%
Count %VE 0 2 19 23 10 0 0 0 0 54
Mean%VE 11.8 18.9 23.8 94.9 34.8 704.4%
Mean K 106.5 28.6 10.3 4.0 19.1
Mean SE(rxy) .006 .020 .028 .036 .026 6.41

All (24 studies)
Count 3 35 155 175 116 117 78 45 17 741
Mean SD(rho) .17 .14 .12 .12 .11 .13 .10 .09 .05 .12 92.1%
Count %VE 3 32 99 79 56 38 44 42 17 410
Mean%VE 33.87 35.71 42.53 41.36 48.05 24.41 18.90 27.64 57.77 37.4 70.6%
Mean K 171.7 43.9 36.7 25.5 33.0 23.9 18.4 20.2 15.4 29.9
Mean SE(rxy) .005 .014 .017 .023 .019 .019 .027 .027 .038 .021 7.34

aTop value per block = % decrease in Var (rho), middle value = % increase in %VE, bottom value = proportional increase in SE(rxy).
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domain. It is unclear how much of the remaining residual variance is due
to unclaimed artifacts or to further (untested) moderators. A moderator
strongly affecting personality-performance linkages is whether a given es-
timate was derived under confirmatory (e.g., job analysis-driven) or ex-
ploratory (i.e., hit-or-miss) conditions. Tett and colleagues (Tett, Jackson, &
Rothstein, 1991; Tett et al., 1999) show that the former, on average, are about
twice as strong as the latter. This effect might reasonably extend to other
domains.12 An important implication here is that combining confirmatory-
based and exploratory-based estimates in a single aggregation can substan-
tially underestimate mean rho applicable to confirmatory conditions alone
due to dilution from the weaker exploratory estimates. In such cases, the
upper 90% CVmight offer a better subject of generalizability over mean rho
for those researchers who have good reason to expect a stronger relationship.
The effect of the confirmatory/exploratory distinction and othermoderators
on further reductions in SD(rho) awaits additional study.

Third, consistent with the shrinking mean SD(rho), there is a corre-
sponding increase in mean %VE with increasing moderator specificity, al-
though the pattern is less clear. Notably, %VE is available for only 55% of
the 741 cases, rendering observed changes in %VE less reliable than those in
SD(rho). The correlation between the two indices is –.66. The middle value
in the far right columnof Table 3 (per block) indicates the percent increase in
%VE from the broadest to the narrowest aggregation for the given domain.
Averaging across domains yields a mean 154% increase (i.e., proportional
increase = 2.54).

Fourth, as might be expected, the reduction in SD(rho) and increase in
%VE with increasing specificity is accompanied by a general reduction in K
and, correspondingly, an increase in second-order sampling error reflected
in SE(rxy). The bottom value per block in the rightmost column of Table 3
shows the proportion increase in SE(rxy)moving from the least tomost spec-
ified aggregations. The range of proportional increases across the seven do-
mains is 1.01 (personality) to 6.41 (SJTs), with mean = 3.60.

Discussion
A key question driving every meta-analytic investigation is that of general-
izability. A common focus has been whether or not a lower bound estimate
of population validity (90% CV) falls above 0, as a basis for inferring VG.
Noted limitations in the technical VG inference (e.g., focus on weaker val-
ues) lead us to urge closer attention to SD(rho) and the 80% CI as critical in
judging the generalizability of mean rho (Higgins, Thompson, & Spiegelhal-
ter, 2009; Steel, Kammeyer-Mueller, & Paterson, 2015). In only seven of the

12 None of the 24 reviewed studies directly tested the C/E moderator effect.
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reviewed studies (29%) is SD(rho)> 0 acknowledged as grounds for caution
in generalizing mean rho, and in only two (8%) is this caution underscored.
This may help explain why variability in meta-analytic effect sizes is so in-
frequently cited (Carlson & Ji, 2011).

Results show further that, as conditional specificity increases, SD(rho)
tends to decrease. This suggests that SD(rho) > 0 represents a distribution
of rhos, not just of fallible rho estimates. Specifically, our review revealed an
average 73.1% drop in Var(rho) moving from low to high specificity within
research domains, which suggests that a large share of Var(rho) is due to
moderators, not unclaimed Var(e).

Our results suggest a fidelity-bandwidth trade-off between precision in
generalizingmean rho (as SD(rho) approaches 0) and the breadth or scope of
conditions to which generalizations can be made. Standards for precision in
generalizing mean rho are discussed below. A critical question at this point
is that, if precision sufficient to generalize mean rho is achieved only at high
levels of aggregation specificity, then in what sense is mean rho “generalizable”?
It is on these grounds that generalizability in meta-analysis might be judged
a myth. Broad-level aggregations may yield SD(rho) low enough to garner
high precision in generalizingmean rho across conditions (i.e., as essentially
a universal truth). More often, however, aggregations at the broadest levels,
as shown in Table 3, have SD(rho) too high to permit useable precision in
generalizing mean rho to any particular work setting.

The myth of generalizability emerges from recognition of the inverse
relationship between precision and scope of generalization: as precision in-
creases, scope decreases. A further inverse relationship leads to a second
challenge in meta-analytic generalization. As the available pool of input
rxys is split into increasingly narrowed moderator categories, K per mod-
erator subgroup drops (see Table 3). A paradox emerges in that, as SD(rho)
shrinks in providing greater precision, the corresponding reduction in K in-
creasingly undermines mean r and Var(r) as starting points for the main
(Level 1) calculations. This is similar to a bandwidth–fidelity trade-off ex-
cept, here, narrowing bandwidth from increasingly specifiedmoderator con-
ditions comes with lower fidelity due to corresponding decreases in K. Thus,
paradoxically, higher precision comes with lower certainty.13

Consistent with the paradox, our survey results show that moving from
broadest to narrowest aggregation conditions increases SE(rxy) by a factor of
3.6, averaging across research domains. To get a better sense of the implica-
tions for generalizing mean rho, consider the case of cognitive ability.

13 This is not a fundamental flaw inmeta-analysis; it is the result of a practically limited number
of input rxys available for aggregation. As available K increases, the noted paradox becomes
less problematic.
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At the broadest aggregation level (specificity = 2), GMA is linked to
job performance, training success (Salgado, Anderson, Moscoso, Bertua, &
de Fruyt, 2003), and counterproductive work behaviors (CWBs) (Gonzalez-
Mule, Mount, & Oh, 2014), without further specifications. Mean SE(rxy) for
these three cases = .009, yielding a 95% confidence interval with a relatively
narrow width of ±.017. Ignoring possible second-level biases in sampling
rxys, mean r and mean rho can be taken as reasonably robust estimates of
targeted population values. However, mean SD(rho) for those broad aggre-
gations = .19, yielding an 80% CI with width ±.239. Given that residual
variance is not readily attributable to unclaimed artifacts (as per results in
Table 3), generalizing mean rho from these aggregations to any actual spe-
cific work setting would be tenuous.

At the narrowest aggregation level in the cognitive ability domain (speci-
ficity = 7), facets of GMA are linked to job performance of, for example,
womenworking in high-complexity,male-dominated jobs (Rothstein&Mc-
Daniel, 1992). Mean SD(rho) for the 24 cases = .07, narrowing the 80% CI
to width±.087, which is a 64% decrease. The improved precision in general-
izing mean rho, however, comes at a price: mean SE(rxy) has increased from
.009 to .045, yielding a 95% confidence interval five times wider, at±.087 (up
from ±.017), around mean r. Thus, certainty in mean rho weakens despite
improved precision around that estimate at higher aggregation specificity.

Our findings and the issues that drove our survey promote more careful
attention to the concept and mechanics of generalizability in meta-analysis.
We suggest that there are four critical questions guiding generalizability in-
ferences.

Question 1: What Are We Generalizing?
In drawing inferences of generalizability from meta-analysis, it is important
to be clear regardingwhat exactly is being generalized.Use of the 90% rule, as
in technical VG inferences, draws attention, of course, to the 90% CV. What
is being generalized here is a judgment of reasonably minimal validity. One
might just as easily and informatively focus on the upper 90%CV (i.e., upper
boundary of the 80% CI) as rho achievable under favorable (e.g., confirma-
tory) conditions. By focusing on mean rho, in the context of technical SS
inferences, most meta-analyses implicitly promote the mean as what read-
ers can take as a generalizable “truth” from the meta-analysis. Consumers
need to be wary here, as a positive VG inference, bearing on the lower 90%
CV, does not by itself imply rejection of SS in promoting generalizability of
mean rho. Further defining the “what” of generalizability are the particu-
lar artifact corrections employed: Mean rho, reflecting such corrections, is a
theoretical ideal, whereasmean r, lacking corrections, permits more realistic
application.
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Question 2: To Where Are We Generalizing?
Just as important as the “what” of generalization is the “where.” This is a
function of factors operating at each of the two levels. Operating at Level 1
are all the various conditions defining the given aggregation (e.g., features
listed in Table 1). Conditional specificity is important to the degree the rho
targeted for generalization (e.g., mean, lower CV, upper CV) actually varies
betweenmoderator subgroups. Failed moderators introduce false specificity
in generalizations. Note, however, that comparison between subgroups can
extend beyond the means, depending on what is being generalized (as per
Q1). Subgroups might have identical mean rhos, but different SD(rhos) (i.e.,
because further moderators are operating differentially across subgroups).
These will yield different CVs even when mean rhos are the same. Accord-
ingly, care is needed in generalizing across subgroups beyond considering
only their means.

Operating at the second level are second-order sampling error, and
choices and biases determining the sample of rxys from which mean r and
Var(r) derive. Similar to what happens in primary-level research (i.e., with
people as units of analysis), conditions targeted for generalization from
meta-analysis may vary from the conditions actually represented in the rxy
sample: The intended population, for example, might not exclude military
settings, yet available rxysmay derive only from civilian settings.

Question 3: How Precise Is Our Generalization?
Precision of generalization is conferred by a low SD(rho) as a function of
(a) the specificity of the aggregation conditions (i.e., as per moderator sub-
groups) and (b) uncorrected artifacts, whether available or not. As SD(rho)
increases from 0, generalizing mean rho becomes less precise. How much
imprecision should be tolerated is difficult to nail down. Oswald and Mc-
Cloy (2003) cautiously suggest SD(rho) cutoffs of .125, .075, and .025 as
large, moderate, and small, corresponding to 95% intervals with widths of
±.25, ±.15, and ±.05 correlation units, respectively. Thus, where SD(rho)
= .125, 95% of rhos are understood to fall within ±.25 around mean rho.
Such imprecision severely limits meaningful generalizability of mean rho.
We suggest that Oswald and McCloy’s SD(rho) < .025 offers a reasonable,
albeit rigorous, standard, yielding an 80% CI with width ±.032.

Question 4: How Certain Is Our Generalization?
As noted above in discussing the paradox of low-K specificity, a further issue
to consider is SE(rxy), which reflects second-order sampling error in estimat-
ing population mean r as a foundation for mean rho. Standards for SE(rxy),
as far as we are aware, currently do not exist. Statistical standards (e.g., p
< .05, power > .80) are commonly used as inferential guideposts, and we
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suggest that an SE standard may prove useful in inferring generalizability
of mean r and mean rho. Borrowing from Oswald and McCloy (2003), we
tentatively offer as a criterion for inferential certainty that SE(rxy), as with
SD(rho), also not exceed .025, yielding a 95% confidence interval with width
±.05 around mean r.14 Softer standards in each case may be defensible but
only with reduced precision and/or certainty in generalization. Small-K ag-
gregations limit both certainty in representing the intended rxy distribution
and the power to detect moderators (e.g., Hedges & Pigott, 2004; Hunter &
Schmidt, 2004; Sackett, Harris, & Orr, 1986).

To summarize, generalizability inferences from meta-analysis can be
framed in terms of (a) what is being generalized, (b) the conditions spec-
ifying the scope of generalization, (c) precision of generalization as per
SD(rho), and (d) certainty of generalization as per SE(rxy). As meta-analysis
methods bring rigor to literature review, the four questions promote rigor in
the interpretation of meta-analytic results bearing on generalizability.

Application of the SD(rho) and SE(rxy) Standards
Applying the SD(rho) (Level 1) and SE(rxy) (Level 2) standards to the 24
studies in our survey identifies 113 of the 741 cases (15.2%) with SD(rho)
< .025 and 551 cases (74.4%) with SE(rxy) < .025. Cases meeting both con-
ditions number 34 (4.6%)—a surprisingly small proportion in light of the
strong focus on mean rho by those citing meta-analytic findings (Carlson &
Ji, 2011). The data permit a more detailed analysis, as follows.

Given that moderator specificity relates negatively with SD(rho) and
positively with SE(rxy) (see Table 3), we might expect results of broader ag-
gregations (at lower specificity) to more likely fail the L1 precision standard
(SD(rho) is too large) but pass the L2 certainty standard (SE(rxy) is small);
whereas, at the other end, narrower aggregations shouldmore likely pass the
precision standard (small SD(rho)) but fail the certainty standard (SE(rxy) is
too large). The top part of Figure 3 shows the percentages of cases passing
the .025 standards at each of the nine specificity levels. Corresponding per-
centages are shown as well for the .075 and .125 standards, from Oswald
and McCloy (2003). Clearly evident is how the precision and certainty cri-
teria operate in opposite directions as a function of aggregation specificity.
Notably, the specificity–SE(rxy) relationship would be expected even if mod-
erators have zero influence on rho. SD(rho), on the other hand, is not a direct
function of K; shrinking SD(rho) with increasing specificity offers empirical
support for SS, operating especially at lower levels of aggregation specificity.
14 SE(rxy) derived using the heterogeneous case equation includes SD(rho), which varies by
the artifacts included for correction. This complicates identification of standards for SE(rxy).
We offer the .025 criterion as a plausible focal point for discussion of certainty standards in
generalizing mean rho.
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Figure 3: Percentages of cases meeting three Level 1 and Level 2 generalizabil-
ity criteria at each of nine moderator specificity levels.

Also plotted is the percentage of cases that pass both criteria, per speci-
ficity level. Consider the top part of Figure 3, which shows results based on
the relatively rigorous .025 standards. Of the total 741 cases, only 34 (4.6%)
meet both conditions, and the highest percentage of cases meeting both is
8.6% at specificity Level 2. The middle and lower parts of the figure show
increasing percentages of cases meeting weaker standards: 28.2% of the 741
cases meet both .075 standards and 57.6% meet both .125 standards. Thus,
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even using relatively liberal precision and certainty standards, 42%of the 741
mean rhos fail to qualify for generalization.

The myth of generalizability is evident here in two respects. First, over-
all pass rates for generalizability are low, especially at the more robust levels
of precision and certainty. Second, pass rates generally improve as aggre-
gation specificity increases. The paradox of low-K specificity is evident as
well, in that increasing precision (i.e., shrinking SD(rho)) is met with loss
of certainty (i.e., increasing SE(rxy)) as specificity increases. That 34 cases
met both high-precision and high-certainty standards shows the paradox is
not absolute. Indeed, K may not be small (e.g., > 50) even for sequentially
nested moderator subgroups. K does naturally tend to drop, however, with
increasing specificity, given that input estimates, in practice, are of limited
supply. Effects on SE(rxy) should not be ignoredwhenmaking and evaluating
generalizability inferences in meta-analysis.

Utility Implications of Imprecision in Generalizing Validity Estimates
To see the practical merits of precision in generalizability, consider applica-
tion ofmean r15 in estimating utility (i.e., cost savings fromuse of a given pre-
dictor) using the Brogden–Cronbach–Gleser model (cf., Hoffman & Thorn-
ton, 1997, p. 461).With high precision (i.e., low SD(rho)), the user need only
confirm that the local setting is one represented in the aggregation. Mean r
in that case will yield a reliable estimate of utility (per selection ratio, $SDy,
and testing cost). Decreasing precision (i.e., increasing SD(rho)) creates am-
biguity in expected savings for the given predictor. Consider the moderate-
precision case where SD(rho)= .075, yielding an 80%CIwith width of±.10.
Assume further that mean r = .25, $SDy = $20,000, selection ratio = .20,
cost of testing = $20/applicant, and N applicants = 100. Using the upper
90% CV (i.e., r = .35), utility = $9,588/hire and $191,760 for all 20 hires.
Using the lower 90% CV (i.e., r = .15), utility = $4,212/hire and $84,240
for all 20 hires. The $107,520 difference in total utility (i.e., $5,376/hire) be-
tween the upper and lower estimates is far from trivial; users should be very
interested to know which estimate of r applies to their particular situation,
whether between .15 and .35 or outside that interval. Where SD(rho)= .025
(i.e., precision is high), the overall difference in utility between the upper and
lower 80% CI estimates= $35,840 (i.e., $1,792/hire). Although substantially
lower, this difference in savingsmight still drive identification of rmost likely
applicable to local conditions.

15 Practical applications call for generalizability of mean r, not mean rho.
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Tertiary Analyses Using Meta-Analytic Mean Correlations
Meta-analytic mean rs and rhos are often used as input into further analyses,
including regression to examine multivariate and incremental validity (e.g.,
Hoffman, Kennedy, LoPilato, Monahan, & Lance, 2015), and path analyses
in testing model fit (e.g., Tett & Meyer, 1993). Of the 24 studies examined
here, 11 (46%) entered means as input into such analyses. The attraction of
mean rho is understandable (i.e., reduced sampling error and control of arti-
facts). Such applications raise concerns, however, when SD(rho)> 0 for one
or more of the input estimates. Consider regression with three predictors, A,
B, and C, each in relation to Y.

The regression coefficients in a three-predictor equation are a function
of six bivariate rs (AY, BY, CY, AB, AC, and BC). When SD(rho) = 0 for all
six mean rs, regression coefficients can (also) be expected to be consistent
across conditions. However, as SD(rho) increases per mean r in the input
matrix, the regression coefficients will tend to be even less stable than the bi-
variate rs. This directly extends to analyses of incremental validity, whether
in terms of regression coefficients or changes in R2 (i.e., the squared semi-
partial r). Because the estimation of R involves all six mean rs in the matrix,
the variability in R across situations is compounded and the standard devi-
ation of these estimates will be much larger than the SD(rho)s in the input
matrix. Thus, regression results using meta-analytic mean rs are less gen-
eralizable than the mean rs are themselves, as SD(rho) increases per input
mean r.

Similarly, when using mean rs to run path analysis, resulting fit indices
apply to the model specified using those means. Given SD(rho) = 0 for all
input rs, fit indices may be considered generalizable to the conditions rep-
resented in the corresponding aggregations. To the degree SD(rho) > 0 per
input r, however, observed fit based on just the selected values is of question-
able generalizability. Fit, both permodel in absolute terms and comparatively
across models, is likely to vary substantially depending on one’s choice of
input values (e.g., mean rho, lower 90% CV, upper 90% CV).

For all tertiary analyses involving mean rs or rhos, some combinations
may be unlikely (e.g., involving the lower 90% CV for some linkages and
the upper 90% CV for others) or mathematically impossible. But if choices
are to be made among available input values that might narrow the range
of viable combinations, it is not clear on what grounds such choices might
be made. Viswesvaran and Ones (1995) suggest adding select moderators to
meta-analytically based path analysis. What to do when SD(rho)> 0 within
moderator subgroups, however, is far from clear, and the problem grows
multiplicatively where SD(rho) > 0 per input correlation. Relying on only
mean rho offers convenience but at best an incomplete test of targeted path
models with respect to generalizability.
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A related concern is thatmean rhos for different relationships, especially
if drawn from different meta-analytic studies, inevitably represent different
aggregation conditions, creating an apples and oranges problem when en-
tered into the same tertiary analysis. Thus, even if SD(rho) is small for all
input values, generalizability may be strained by heterogeneity across inputs
in the conditions to which generalizations can be aimed.

Recommendations on Reporting and Interpreting Meta-Analytic Inferences
Our analyses lead us to offer the following suggestions regarding how meta-
analytic results are presented and used with respect to generalizability.

1. Meta-analysts are urged to be clear about four outputs per aggregation:
(a) the subject of generalization, whether it is mean rho, mean r, the
lower or upper boundary of the 80% CI, or some other logically or em-
pirically relevant value; (b) the conditions to which generalizations can
reasonably be made, as per study inclusion and exclusion criteria, pos-
sible bias in source availability, and moderators; (c) precision of gen-
eralizability (e.g., SD(rho) < .025, .075, or .125); and (d) certainty of
generalizability (e.g., SE(rxy) < .025, .075, or .125).

2. Meta-analysts are encouraged to be cautious in enteringmean rhos into
tertiary analyses to the degree SD(rhos) and SE(rxy)s are > 0. Doing so
compounds imprecisions and uncertainties, yielding results even less
generalizable than the input estimates. Tertiary analyses, if run, might
be repeated using different combinations of estimates from the rho dis-
tributions. Managing results under such conditions can be expected to
pose interpretive challenges, particularly with respect to generalizing
tertiary analysis results.

3. Consumers of (I-O) meta-analytic findings are urged to consider
SD(rho) and SE(rxy) as equal in importance to mean rho when draw-
ing inferences (Higgins et al., 2009; Tett & Christiansen, 2007). Large
SD(rho)s and SE(rxy)s signal limitations in generalizing mean rho. The
larger SD(rho) is, the more attention needs to shift away from mean
rho and to the 80% CI, where upper and lower boundaries point to
rhos achievable under select conditions. Identifying those conditions
is a logical next step.

4. Meta-analytic consumers seeking to apply mean rho in particular sit-
uations need to be careful to consider how similar those situations are
to the conditions defining the source aggregation. The .025, .075, and
.125 standards offer initial guidance in judging generalizability. Where
SD(rho)> 0, practitionersmight have reason to believe the targeted sit-
uation is one where rho is especially strong (or weak). Local validation
offers viable confirmation only to the degree thatN is large. Reliance on
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multiple, preferably converging lines of evidence (e.g., predictive, con-
current, job analysis, expert linkage judgments) will often be the safer
bet.

Conclusions
Generalizability is a key aim in science, and aggregation of past findings
both promotes and frames generalizability inferences. That SD(rho) in each
of the seven targeted research domains shrinks with increasing moderator
specificity suggests prominent and replicable contributions of moderators to
Var(rho), in support of SS. Aggregations where SD(rho) > 0 call for further
research to identify the conditions affecting rho. Meta-analysis thus serves
less a terminal role in scientific discovery, as it is commonly treated with a
focus on mean rho and the 90% CV, than an intermediary role, offering dis-
ciplined summary of a literature in the identification of promising directions
for further research in light of SD(rho) and the 80%CI. This is not to suggest
a return to the old days of errant searches for generalizability via (small-N)
local validation, but rather it is an acknowledgment that the world (of work)
is complex; that targeted phenomena are affected by multiple, intersecting
(nonartifactual) forces; and thatmeta-analysis, contrary to the way it is often
expected to work, does not guarantee simple answers.

Our findings reveal a critical trade-off in meta-analysis between preci-
sion and scope of generalization: Reaching adequate precision typically re-
quires a level ofmoderator specificity that challenges the inference thatmean
rho is truly “generalizable.” The “myth of generalizability” is most clearly
evident in the 95% of the 741 aggregations that failed plausible, albeit rig-
orous, generalizability standards (L1: SD(rho) < .025; L2: SE(rxy) < .025).
Beyond themyth, increasing specificity, thus conferring increased precision,
also decreases certainty in mean r and Var(r) as starting points for precision
calculations, thereby creating a “paradox” of low-K specificity.

Despite the myth, the paradox, and the complexity of its answers, meta-
analysis is still a highly valuable tool, not only for what it generates in mean
rhos, SD(rhos), and moderator effects, but also for how it advances our
knowledge of what we know and how we come to know it. It is, as Sack-
ett (2003, p. 111) suggests, more “a theory about the process of drawing in-
ferences from cumulative data [than] a general statement that the bulk of
the variability in research findings is due to statistical artifacts.” Building on
Sackett’s point, we can ask several key questions framing generalizability in-
ferences in meta-analysis: “What is being generalized to where?” and “How
precise and how certain are those inferences?” Collectively, answering those
questions extends, to some degree, the rigor of meta-analytic methods to the
interpretation and use of meta-analytic findings.
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An important aim in offering this article is to spur discussion of con-
cepts and inferential processes in meta-analysis, such as VG and SS, and
to clarify the meaning of generalizability per se. What standards for pre-
cision and certainty are to be settled on as most defensible, whether .025,
.075, .125 or something else, and what conditions might drive that choice,
are key questions going forward. Also of interest is pursuit of refinements to
the measurement of aggregation/moderator specificity and replication of its
observed negative relationship with SD(rho), based on a broader represen-
tation of meta-analyses in I-O psychology and other disciplines. Exchanges
and advances along such lines, we hope, will promote the yields from meta-
analysis as a source of generalizable knowledge.
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