
[ 469 ]

A PRINCIPLE IN CLASSICAL MECHANICS WITH A
'RELATIVISTIC PATH-ELEMENT EXTENDING THE

PRINCIPLE OF LEAST ACTION

B Y EDGAR B. SCHIELDROP

Communicated by L. M. MILNE-THOMSON

Received 3 February 1954; and in revised form 22 November 1954

1. A particle with mass m and coordinates xx, x2, x3 relative to a set of rectangular
axes fixed in Newtonian space is moving in a field of conservative forces with a
potential energy F(x1, x2, x3) and a kinetic energy

( ds\2

dt) '
The equations of motion, written

dd(T-V) 8(T-V) =

dt dx% bx
i

(representing the three equations i = l,i = 2, i = 3 in a way to be used in this paper),
constitute, as they stand, a sufficient condition in order to ensure

11

in the sense that the Hamiltonian integral has a stationary value if the actual motion
is compared with neighbouring motions with the same terminal positions and the
same terminal values of the time as in the actual motion.

In the actual motion we always have

' = h (2)

or T = h-V, (3)

so that - L _ 2 = _ V _ = l f (4)

and because the actual motion satisfies the equations of motion (1), it is consequently
also a solution to those equations multiplied by 1 expressed as in (4),

VT dt dxt *{h-V) dXi ~ K)

Since the fractions in (4) may be treated as constants, and since T is a function of the
velocities only and V a function of the coordinates only, the last equations may be
written d d f)

( V ( * F ) v r ) ( V ( * v)m = o, (6)
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470 EDGAB B. SCHIELDROP

which are the Eulerian equations of the variation problem in connexion with the
integral

\^(hV)^Td\F()d (7)

But this integral belongs to the well-known exceptional class in which, for K > 0,

F1(xi,Kzi)=KF1(xi,xi),

and where the variation problem only involves the geometrical curve of the extremal
and not its parametrical representation. In the present interpretation, that is to say:
the orbit and not the motion along the orbit.

Substituting ds for JTdt in the integral (7), we obtain the following principle,
quoted for comparison with one to be established presently.

PRINCIPLE OF LEAST ACTION IN JACOBI'S FORM. When a particle is moving under
the action of stationary conservative forces, the curve described in the space three-fold
between terminal points Px and P2 renders

-V)ds = 0, ds = 4{dx\ + dx\ + dx\),

as compared with all neighbouring curves with the same terminal points, V being the
potential energy and h the total energy of the moving particle in the actual motion.

2. What has been shown up to now is only a direct way of establishing the principle
of least action in Jacobi's form by a simple transcription of the equation of energy (2).
But there is an obvious alternative to (3), namely, to write

V = h-T, (8)

IV
so as to have = = i.

Multiplying the equations of motion (1) by — 1 as here expressed, we get

VF d8(T-V) J(h-T)8(T-V)

or, by the same reasoning as before,

8
UV J(h-T)) = 0, (11)

which constitute the Eulerian equations connected with the integral

(12)

Here, however, Fz is not, as F1 in (7) above, positively homogeneous of the first order
in the xt, and the integral (12) lends itself to an ordinary variation problem involving
the time as well as the spatial coordinates.

The Eulerian equations (11) have been derived from the equations of motion (1) by
a procedure which is not a mere transcription of those equations. The systems of
equations (1) and (11) are, therefore, not equivalent. The difference is strikingly
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revealed by the fact that in relation to the equations of motion h is a constant of
integration dependent upon the terminal conditions in each solution, whereas in the
Eulerian equations h figures as an ordinary constant, common to all integrals. But an
actual motion with a constant of energy h, which we denote by

xt{t\ h), (13)
will satisfy the Eulerian equations (11) and thus make

Di(h) = 0, (14)
if h in (13) and (14) has the same value.

This is sufficient to establish the following principle, in the formulation of which the
term' event' has been used for the sake of brevity, the event Ex to signify the departure
of the particle from a certain position P1 at a certain time £1; and E2 the arrival in some
other position P2 at the time t2 > tv

PRINCIPLE (G). FIRST FORMULATION. When a particle is moving under the action of
stationary conservative forces, the actual motion between terminal events Ex and E2 renders

J E

as compared with all neighbouring motions with the same terminal events, V being the
potential energy and h the total energy of the moving particle in the actual motion.

In fact, comparing the actual motion xt(t; h), taking place with a constant of energy h
with neighbouring motions with the same terminal events, namely,

x^t; h) + £i(t) Sec, {^(t-d = &iih) = °)>

where we thus have 8xi = ^Scc, 8xt = £j,8oi,

the application of the classical formula for the first variation of an integral with fixed
limits leads to

[E'jVJ(h-T)dt = -8z fB'
JE1 J Ei

d« = 0, (15)

the latter integral being zero because the actual motion x^t; h) makes Dt(h) = 0
according to (14).

Since, for m = 1, ST 8T _ 8V _

the Eulerian equations (11) may be written

with U =

Multiplying (16) by Z7i4 we get

and, adding up, *<17T+ V)^^j = 0.
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The general integral of (16) will, therefore, satisfy

U2_ V _ 1
~h-T K'

where A: is a constant of integration; and utilizing this result in the equations (16)
themselves, we see that the Eulerian equations connected with the integral

4= P
J E,

are equivalent to the system

h, . (176))

where, to repeat, K is a constant of integration and h the constant appearing in the
integral Ih.

All motions complying with the terminal conditions and satisfying (17) will, and
only such motions can, be extremals to an integral Ih. Because (17 a) are the equations
of motion in a conservative field KV, we shall always have

T + KV = C = constant

in any solution of (17 a). Then if we make h = C the solution will be an extremal to the
corresponding Ih.

But such a solution could, according to the principle (G), be accepted as the actual
motion on one condition only: that h = G represents the total energy T+ V of the
moving particle. This will only be the case in solutions of (11 a) with K = 1, which then
leads to the final conclusion:

(1) The principle (G) attributes a certain property to the actual motion, and the
actual motion has been shown above (see (15)) to have that property.

(2) The said property belongs to the actual motion exclusively, because, as it has now
further been shown, no motion can be an extremal to an integral Ih with h equal to the
total energy in the motion itself, unless it satisfies the equations (17a) with K = 1, that
is to say, d?x _ JY_

the equations of motion in Newtonian mechanics.
To realize the true implication of the principle (G) it is essential to note that the

field of alternative motions with which the actual motion is compared is not restricted
by any condition a priori to satisfy a certain equation of energy. The variation problem
itself is not that of an 'extremum lie'. Of course, since the constant h in the integral
Ih is stated to be the total energy in the actual motion, it is evidently implied that the
actual motion satisfies • T+V = h

But, and this is the main point, with this h appearing in it, the integral Ih has a stationary
value for the actual motion as compared with all neighbouring motions, whether they
satisfy such an equation of energy or not.
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3. The property thus attributed to the actual motion by the principle {G) is not
revealed by the principle of least action, the latter principle being, in fact, contained
in the former as a specialization. Because an arbitrary additive constant is always
attached to the specification of the potential, V — C and h — G may be substituted
for V and h in the integral Ih without impairing the principle in the sense that if

holds true, then also 8 f ' J(C- V) J(T-(h-C))dt = O
JE,

for any value of C. Choosing C = h, we have

O = d(E'j(h-V)JTdt or S f ' J(h- V)ds = 0,
J Et J Pi

the substituting of terminal positions Px and P2 for terminal events Ex and E2 following
as a matter of course because in the present form of the integral the time-element
drops out.

The principle (G) has thus been shown to contain the principle of least action. But
the inverse reasoning, leading from least action to (6?), is not possible, because the
adding of the same constant amount to V and h leaves unchanged the integral (7)
expressing the 'action'.

4. The principle of Jacobi is essentially a geometrical proposition in three-dimen-
sional space, whereas in the principle (G) the extremals may be regarded as curves in
the space-time four-fold. It may, therefore, be of a certain interest to put

h = \m&,

which makes it possible to present the principle in the following form:

PRINCIPLE (G). SECOND FORMULATION. When a particle is moving under the action
of stationary conservative forces, the curve described in the space-time four-fold between
terminal points ^>

1 and 3P% renders

S f '
i3[

= 0, da = J(c2dt2-dz\-dzl-da%), (18)

as compared with all neighbouring curves with the same terminal points, V being the
potential energy and \c2 the total energy per unit of mass of the moving particle in the
actual motion.

In this form the principle ((?) lends itself to a direct comparison with that of Jacobi,
revealing itself as a very close four-dimensional analogy to the three-dimensional
principle of least action.

The path-element do~ in the integral in (18) may, perhaps, lay claim to a certain
interest, being in fact formally identical with that in the special theory of relativity.
In that theory such an element is said to be 'time-like' if it is real. The path-element
of the 'world-line' in a material motion will then always be time-like, because c, as
representing the velocity of light, is an unattainable speed limit in any such motion.
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The c figuring in the path-element da in the principle (G) has, of course, no such
universal character, being only a measure of the total energy in each individual case.
Even in a specific actual motion the fixing of the numerical value to be attributed to c
contains an element of arbitrary choice, as it depends on the arbitrary additive constant
in the potential energy V. In classical mechanical theory there is admittedly nothing
to guide us in this matter of choice. There is, nevertheless, a certain reason, furnished
by the principle (G) itself, for so utilizing the element of arbitrary choice as to have the
path-element da time-like for any actual motion in the region considered.

The Eulerian equations in their original form (11), considered as algebraic equations
in the accelerations x\, have determinant

Now, in the theory of variation a problem like the present one is termed 'regular'
within a region {B} if this determinant cannot become zero for any finite values of
the xt. But in this larger sense the variation problem posed by the principle (G) cannot
be 'regularized'. If, however, da is required to be time-like for any actual motion
considered, h — T and consequently also V would have to be finite and positive, and
the same would apply to h = T + V, primarily, it is true, only for the actual motion,
but then also for all' neighbouring' motions in the mathematical sense of the term. The
determinant D could not then become zero for any values of the xt considered in the
principle (G). A necessary and sufficient condition in order to ensure this result is to
choose the arbitrary additive constant in the potential so as to have V finite and
positive within the whole region in question.

MOTION OF A MATERIAL SYSTEM

The principle (G) is valid also for a system of mass points, the rectangular coordinates of
which can be expressed as functions of k parameters qlt q%,..., qk. With potential energy

F(?i. ft. •••»&)
and kinetic energy T = %Aafqaqfi,

where the Aa/} are functions of the qv only and two equal indices signify a summation
from 1 to k, the Eulerian equations corresponding to the integral

Ih= f*
J E,

d ( V F 8 T \ y F 8T .yv. ^ , » .
^ dt\j(h-T)8q~J~J(h-T)dql+ 7 T^^~ ~ °'a?.

Remembering q—- = 2T,
oqv

we see that the sum of these equations after they have been multiplied by
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from which it follows, as in the case of a single particle, that

V 1
h-T~ K'

where /c, as before, is a constant of integration.
Hence the Eulerian equations to the integral Ih are equivalent to the system

dt 8qv 8qv ~ °' (™a)l (19)
T + K~V = h. (196)1

This set of equations is the obvious generalization of (17) above; (19a) are the
equations of motion in a conservative field K V, and (19 b) is the corresponding equation
of energy. With K = 1 they become respectively the actual equations of motion and
the equation of energy in the actual motion. These points established, the argument
proceeds as for a single particle. The principle (G) is consequently also valid in the
mechanics of material systems of the kind stated (holonomic and scleronomic systems).

In the second formulation one would have for

to substitute dS = V(c2 dt2 - dS2)
with ^ d82 = Aapdqadqfi.

But this second formulation is rather artificial when applied to the motion of material
systems. The first formulation, however, can be taken over directly as it stands by
only replacing the word 'particle' by 'material system', meaning, of course, systems
of the type specified above.
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