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A well-documented property of the Beveridge–Nelson trend–cycle decomposition is the
perfect negative correlation between trend and cycle innovations. We show how this may
be consistent with a structural model where permanent innovations enter the cycle or
transitory innovations enter the trend, and that identification restrictions are necessary to
make this structural distinction. A reduced-form unrestricted version is compatible with
either option, but cannot distinguish which is relevant. We discuss economic
interpretations and implications using U.S. real GDP data.
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1. INTRODUCTION

Decomposing macroeconomic time series into trend (permanent) and cycle (tran-
sitory) components has a significant history. Macroeconomics is vitally interested
in distinguishing between trends and cycles in series such as GDP and employ-
ment as the profession attempts to align theory, policy, and empirical estimation.
Econometrics has responded with a basket of different methods including sim-
ple moving averages, fitted linear trends, and sophisticated linear filters such as
the Hodrick–Prescott filter, the bandpass filters of Baxter and King (1999) and
Christiano and Fitzgerald (2003) and the uncorrelated unobserved components
models associated with structural time series analysis in Harvey (1989).1 The
Beveridge–Nelson (1981) decomposition, which specifically accounts for the unit
root properties of many macroeconomic time series, has become a particularly
useful tool, decomposing series into a deterministic trend, a random walk, and a
cycle.2 Morley et al. (2003; MNZ) were the first to investigate the equivalence
between the unobserved components and Beveridge–Nelson approaches.

This paper considers identification of trend–cycle decompositions cast in a
state-space form. We take the state-space version of the Beveridge–Nelson de-
composition first provided by Morley (2002) and introduce identification insights
drawn from the data revisions literature, in particular Jacobs and van Norden
(2011; JvN). An important feature of this approach is that unlike the structural
time series approach, where innovations to trends and cycles are typically assumed
to be uncorrelated, such innovations are negatively correlated. Several recent pa-
pers argue that output data are better fit by models with negatively correlated
innovations, including MNZ, Oh et al. (2008), Sinclair (2009), Jun et al. (2012),
and Morley (2011), whereas Nelson (2008) also finds that models with negatively
correlated innovations do as well at forecasting cyclic movements as models with
uncorrelated innovations, or better.3 Nonzero correlations between innovations
in state-space models result in unequal weights on future and past values in the
Kalman smoother [see Harvey and Koopman (2000)]. Proietti (2006) notes that
negative correlations lead to higher weights on future observations in the Kalman
smoother, resulting in relatively large revisions to filtered estimates.

In spite of the preceding evidence favoring negatively correlated innovations
to trend and cycle, the economic interpretation of this correlation is the subject
of considerable debate. The dominant view is that trend innovations lead to a
requirement for cycles to “catch up,” so that the deviation of the cycle from the
shifted long-run path diminishes over time, resulting in a negative correlation.
However, cycle innovations do not cause an analogous movement in trend. This
view (long associated with Charles Nelson) implies that potential output is more
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volatile than observed output. This is consistent with the predominance of real
shocks that directly affect potential output but not actual output.

In contrast, transitory innovations may be considered to influence the trend. In
this case the literature interprets the results as supporting the effect of nominal
shocks in determining long-term economic outcomes and as supporting a stronger
role for macroeconomic policy, particularly in that monetary policy decisions
or government expenditure or income changes may influence the equilibrium
outcome path for an economy. Other options place emphasis on adjustments
in the economy—for example, defense purchases, which may be stimulatory in
the short run but detrimental in the long run [Clark (1987)], or increased long-
term uncertainty created by short-run monetary policy actions [Weber (2011)].
Whether shocks to the trend influence cycle or shocks to the cycle influence trend
has important implications for both policy and economic forecasting.

We show the difficulties in obtaining a structural form identification for the
interactions between permanent and transitory innovations in the general state-
space form of the Beveridge–Nelson decomposition as provided in MNZ, also
noted by Proietti (2006) and Weber (2011), and how these may be resolved with
assumptions adopted from JvN. By way of illustration, we apply these to U.S. GDP
and show that the data support the interpretation of transitory innovations influ-
encing trend rather than the alternative that permanent innovations influence cycle.
This conclusion contributes to the ongoing debate about whether real shocks drive
the economy, and nominal shocks are only temporary, or alternatively, nominal
(cycle) shocks may indeed influence long-term economic outcomes.

The remainder of this paper is structured as follows. First, in Section 2, we
introduce the modeling framework to illustrate different assumptions that may be
used in trend–cycle decompositions and consider different interpretations associ-
ated with these assumptions. Section 3 provides the empirical application to U.S.
real GDP data and discusses the evidence for whether transitory innovations enter
trend or permanent innovations enter cycle. Section 4 concludes.

2. A SIMPLE MODEL FOR DECOMPOSITIONS WITH MULTIPLE
INTERPRETATIONS

Consider the decomposition

yt = ỹt + et ,

where yt is observable, ỹt is a latent variable, and et ≡ yt − ỹt . We will assume that
ỹt is a random walk—which is equivalent to �ỹt being i.i.d.—but we will make
no identifying assumptions about et for the moment. Although macroeconomists
can easily think of ỹt as trend (permanent component) and et as cycle (transitory
component), this decomposition is also entirely compatible with the JvN approach
of ỹt as the “truth” and et as measurement errors, as will be shown later.
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We can write one such very simple model in state-space form as

Measurement Equation yt = [
1 1

] ·
[
ỹt

et

]
, (1)

Transition Equation

[
ỹt

et

]
=

[
1 0
0 0

]
·
[
ỹt−1

et−1

]
+

[
ση 0
0 σν

]
·
[
ηt

νt

]
, (2)

where [ηt νt ]′ ∼ i.i.d. N (0, I2). Note that because yt is just ỹt plus i.i.d. noise,
var (�yt ) > var (�ỹt ) , ∀σν > 0.

The model implies that yt ∼ IMA(1, 1), which might not be realistic. In partic-
ular, if yt is thought to contain cycles, we can nest this possibility by allowing et to
follow an AR(2) process, as in MNZ.4 Now the measurement equation becomes

yt = [
1 1 0

] ·
⎡
⎣ ỹt

et

et−1

⎤
⎦ , (3)

with transition equation⎡
⎣ ỹt

et

et−1

⎤
⎦ =

⎡
⎣1 0 0

0 φ1 φ2

0 1 0

⎤
⎦ ·

⎡
⎣ỹt−1

et−1

et−2

⎤
⎦ +

⎡
⎣ση 0

0 σν

0 0

⎤
⎦ ·

[
ηt

νt

]
. (4)

In the trend–cycle decomposition literature the final term in (4) is usually expressed
as ⎡

⎣η̃t

ν̃t

0

⎤
⎦ =

⎡
⎣ση 0

0 σν

0 0

⎤
⎦ ·

[
ηt

νt

]
,

where η̃t is the “trend” or permanent innovation and ν̃t is the “cycle” or transitory
innovation.

Although this is consistent with the prototypical unobserved-components model
of the business cycle with orthogonal innovations, i.e., the seminal model of
Watson (1986), orthogonality is not essential. We could instead assume that the
innovations are perfectly correlated, which results in a restricted single source of
error (SSE) decomposition as in Anderson et al. (2006),5 with transition equation⎡

⎣ ỹt

et

et−1

⎤
⎦ =

⎡
⎣1 0 0

0 φ1 φ2

0 1 0

⎤
⎦ ·

⎡
⎣ỹt−1

et−1

et−2

⎤
⎦ +

⎡
⎣ση

σν

0

⎤
⎦ · [ηt ] . (5)

We could also consider the polar opposite case, where the innovations are perfectly
negatively correlated:⎡

⎣ ỹt

et

et−1

⎤
⎦ =

⎡
⎣1 0 0

0 φ1 φ2

0 1 0

⎤
⎦ ·

⎡
⎣ỹt−1
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et−2

⎤
⎦ +

⎡
⎣ ση

−σν

0

⎤
⎦ · [ηt ] . (6)
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Alternatively, following MNZ, we can encompass (4), (5), and (6) in the form⎡
⎣ ỹt

et

et−1

⎤
⎦ =

⎡
⎣1 0 0

0 φ1 φ2

0 1 0

⎤
⎦ ·

⎡
⎣ỹt−1

et−1

et−2

⎤
⎦ +

⎡
⎣ση r12

r21 σν

0 0

⎤
⎦ ·

[
ηt

νt

]
, (7)

where r12 and r21 are nonzero. In the following, we will refer to the model with
(6) as the original BN model and that with (7) as the MNZ model.6

The critical component for estimating such models in state-space format is the
variance–covariance matrix of the innovations, denoted by Q. In our most general
case, given in (7), the relevant form is given as

E

⎛
⎝

⎡
⎣ση r12

r21 σν

0 0

⎤
⎦[

ηt

νt

] [
ηt

νt

]′
⎡
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r21 σν

0 0

⎤
⎦

′⎞
⎠ =

⎡
⎣ σ 2

η + r2
12 σηr21 + σνr12 0

σηr21 + σνr12 σ 2
ν + r2

21 0
0 0 0

⎤
⎦,

(8)

that is, E
(
Rεε

′
R

′) = Q.
Estimation of (7) allows us to exactly identify the three elements in Q. However,

the four elements in R are not identified. We may instead entertain a number of
restrictions on R consistent with the economic argument. For example, if only
permanent (or real) economic innovations have long-term effects, then transitory
(or nominal) innovations will not have a sustained influence. This implies that
r12 = 0 and Q simplifies to

E

⎛
⎝

⎡
⎣ση 0

r21 σν

0 0

⎤
⎦[

ηt

νt

] [
ηt
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⎡
⎣ σ 2
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21 + σ 2
ν 0

0 0 0

⎤
⎦ . (9)

We also entertain the opposite case, where permanent innovations do not in-
fluence the cycle but transitory innovations affect the trend, which implies that
r21 = 0 and Q simplifies to

E

⎛
⎝

⎡
⎣ση r12

0 σν

0 0

⎤
⎦ [

ηt

νt

] [
ηt

νt

]′
⎡
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0 0

⎤
⎦

′⎞
⎠ =

⎡
⎣σ 2

η + r2
12 σνr12 0

σνr12 σ 2
ν 0

0 0 0

⎤
⎦ . (10)

These two models are observationally equivalent to the unrestricted unobserved-
components model of MNZ, and are hence labeled unrestricted trend-in-cycle
(UT2C) and unrestricted cycle-in-trend (UC2T) models, respectively. This is con-
sistent with the fact that, whereas MNZ (p. 241) write, “If we accept the implication
that innovations to trend are strongly negatively correlated with innovations to the
cycle, then the case for the importance of real shocks in the macro economy is
strengthened,” Proietti (2006) shows that this need not always be the case.

An alternative interpretation of our original model is as a measurement error
model where et is the measurement error in observing our object of interest ỹt .
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Typical measurement error models assume that E (ỹt · et ) = 0, so that what we
observe is the “truth” plus a random “noise” term et . However, we might prefer to
think of measurement error as “news” rather than “noise,” so that E (yt · et ) = 0.
This would be more consistent with the idea of an “efficient” statistical agency,
as suggested by Sargent (1989), for example. In that case, the transition equations
become ⎡

⎣ ỹt

et

et−1

⎤
⎦ =

⎡
⎣1 0 0

0 φ1 φ2

0 1 0

⎤
⎦ ·

⎡
⎣ỹt−1

et−1

et−2

⎤
⎦ +

⎡
⎣ση −σν

0 σν

0 0

⎤
⎦ ·

[
ηt

νt

]
, (11)

where now ηt is the “truth” shock and νt is the “news” shock, and we have allowed
the measurement errors to be correlated over time. Note that for any observation yt ,
the news shock in the “truth” ỹt is exactly offset by the shock in the measurement
error et , so that only the portion of the shock due to ηt is initially observable. This
model is a special case of the UC2T model introduced earlier, with the additional
restriction r12 = −σν , so that

Q =
⎡
⎣σ 2

η + σ 2
ν −σ 2

ν 0
−σ 2

ν σ 2
ν 0

0 0 0

⎤
⎦ .

We refer to this as the restricted cycle-in-trend (RC2T) model. Alternatively, we
could impose the restriction r21 = −ση on the UT2C model, to obtain the restricted
trend-in-cycle (RT2C) model, with

Q =
⎡
⎣ σ 2

η −σ 2
η 0

−σ 2
η σ 2

η + σ 2
ν 0

0 0 0

⎤
⎦ .

In this case, in any observation yt , the shock to the “truth” ỹt is exactly offset by
the shock in the measurement error et , so that only the portion of the shock due to
the transitory shock νt is initially observable. Both the RC2T and RT2C models
imply that var(�yt ) < var(�ỹt ) for all σν > 0.

The different assumptions and interpretations just described capture the essential
differences between a number of important and much more general state-space
models. The difference between E (ỹt · et ) = 0 and E (yt · et ) = 0 captures the
essential difference between structural time series models (which use the former
assumption) and the Beveridge–Nelson decomposition (which typically imposes
the latter in estimation). The Beveridge–Nelson trend–cycle decomposition in-
terprets the results as a stochastic trend and a cycle, whereas the JvN approach
interprets them as a “true value” contaminated by measurement error. All of these
models also have multivariate extensions that may play important roles in the
identification of the model; for example, see Sinclair (2009) and Morley (2011).
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TABLE 1. Observationally equivalent trend–cycle decomposition models

MNZ UT2C UC2T

Trend process
Drift μ 0.78 0.78 0.78
Variance of shocks Q11 1.53 1.53∗ 1.53∗

Cycle process
φ1 1.25 1.25 1.25
φ2 −0.65 −0.65 −0.65
Variance of shocks Q22 0.68 0.68∗ 0.68∗

Correlation −0.92 −0.92∗ −0.92∗

Matrix R
ση 1.24 0.48
r12 −1.14
r21 −0.76
σν 0.32 0.82

Log likelihood −334.18 −334.18 −334.18

Notes: UT2C refers to the unrestricted trend-cycle model. UC2T refers to the unrestricted cycle-in-trend
model. An asterisk indicates that a parameter is not estimated, but calculated from the elements of the R
matrix.

3. ESTIMATES

To examine these findings, we estimate various specifications of the unobserved-
component models that were discussed in the previous section, using U.S. real
GDP data from 1947Q1 to 2012Q3.7 Table 1 compares the implied estimates of the
R matrix across the three observationally equivalent models discussed previously
(MNZ), the unrestricted trend-into-cycle model (UT2C) associated with the Q
matrix in (9), and the unrestricted cycles-into-trend model (UC2T) with the Q
matrix in (10). Estimates for the drift term in the trend process, the autoregressive
parameters for the cycle process, and the log likelihood value are the same for all
three models. The estimates for the elements of R show that the MNZ specification
is compatible with very different structural models of cycle and trends. On one
hand, the UT2C model has a relatively small coefficient (0.32) on the transitory
component ν, whereas the impact of the permanent innovation η is more than
twice as large (−0.76). This is consistent with the view that business cycles
are dominated by the impact of permanent, real shocks. On the other hand, the
UC2T model has the opposite result, with innovations to the trend dominated by
transitory, nominal shocks (−1.14) rather than permanent real shocks (0.48).8

Table 2 compares the estimated parameters of the MNZ model with five nested
models, each of which imposes a different restriction. In addition to the RT2C
and RC2T models, the table shows the original BN model, the SSE model, and
the Watson (1986) model; t-ratios (using standard errors estimated from the outer
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TABLE 2. Restricted trend–cycle decomposition models

MNZ Watson (1986) RT2C RC2T BN SSE

Trend process
μ 0.78 [10.11] 0.79 [19.47] 0.79 [20.67] 0.78 [10.20] 0.77 [10.31] 0.79 [22.99]
Q11 1.53 [3.37] 0.24 [1.79] 0.05 [3.06] 1.51 [2.63] 1.47 [3.97] 0.07 [0.96]

Cycle process
φ1 1.25 [5.59] 1.50 [15.35] 1.37 [20.30] 1.19 [6.60] 1.34 [20.44] 1.50 [15.95]
φ2 −0.65 [−2.66] −0.51 [−5.03] −0.38 [−5.46] −0.50 [−3.82] −0.74 [−8.42] −0.51 [−5.30]
Q22 0.68 [1.05] 0.54 [3.31] 0.87 [8.71] 1.08 [1.86] 0.48 [1.40] 0.41 [2.27]

Covariance Q21 −0.94 [−1.83] — . −0.05 [−3.06] −1.08 [−1.86] −0.84 [−2.10] 0.17 [3.06]

Log
likelihood −344.18 −347.32 −348.01 −345.23 −344.49 −347.26

LR stat 6.28 7.66 2.11 0.63 6.16
P -value 0.012 0.006 0.146 0.428 0.013

Notes: RT2C refers to the restricted trend-cycle model. RC2T refers to the restricted cycle-trend model. The table shows parameter estimates with t-ratios (based on standard errors
estimated from the outer product of the score matrix), the value of the log likelihood function, and the likelihood ratio (LR) test statistics comparing each restricted model against the MNZ
model. Parameter estimates that are significantly different from zero at the 5% level are in bold. P -values indicated for the LR statistics are based on the χ2(1) distribution.
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product of the score matrix) are reported in brackets next to each parameter
estimate, and parameters significantly different from zero based on a two-sided
standard normal distribution are indicated in boldface.9 Likelihood-ratio (LR)
statistics test the restrictions imposed by each model on the MNZ model.

The parameter estimates for the MNZ model are similar to those reported by
MNZ (2003). In addition to the familiar “hump-shaped” AR(2) coefficients, we
find the variance of permanent innovations to be just over double the variance of
transitory innovations, and the covariance of the innovations is strongly negative.
Although the covariance of −0.94 is not (quite) significantly different from zero
at the 5% level, based on its t-ratio, the LR test comparing the Watson and MNZ
models allows a rejection of the same hypothesis at almost the 1% level and
is typically considered to be more reliable in finite samples. Note also that the
variance of innovations to the cycle is very imprecisely estimated; this reflects in
part a high correlation between the estimated variance and the estimated covariance
of the innovations.

Two models fit the data almost as well as the MNZ model: the original BN model
and the RC2T model. LR statistics are unable to reject either model at even the
10% significance level. An examination of (11) reveals that this model incorporates
both permanent innovations and transitory innovations in determining the growth
of U.S. GDP, a result consistent with both Sinclair (2010) and the findings of
Weber (2011). Weber (2011) shows support for a switch between a cycle-into-
trend specification and a trend-into-cycle specification over the postwar sample,
but does not allow the possibility of influences in both directions.

In addition to having estimated cyclic dynamics similar to that of the MNZ
model, both Sinclair and Weber also estimate permanent innovations to be much
more variable than transitory innovations. The ability of the RC2T model to fit the
variance properties of the data, particularly that Q11 exceeds Q22, as present in the
MNZ results, may be a contributing factor. Although the variance of the transitory
innovations remained imprecise, higher estimated variances were associated with
more negative covariances.10

Figure 1 compares the smoothed and filtered estimates of the cycle for the
MNZ, BN, and RC2T models and shows that they are extremely similar. All three
models produce smoothed estimates of the cycle that are much more variable than
filtered estimates, implying that although cycles are initially estimated to be quite
small, these estimates subsequently undergo substantial revision. As the figure
shows, although filtered estimates of the cycle only rarely exceed 1% of GDP,
smoothed estimates are occasionally four times as large. For example, during the
most recent recession, filtered estimates from all three models initially indicated
a large recession, with output roughly 1% below trend in early 2009. Recent
smoothed estimates, however, revise that figure to near-zero and instead put 2008
output at 4% above trend (the highest cyclic peak in the post-1947 period).11

In contrast to these three similar models, the other three models (Watson, RT2C,
and SSE) do not fit the data as well and produce distinctly different results. All
three produce cycles with very highly persistent AR(2) dynamics. (The sum of
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FIGURE 1. Smoothed and filtered estimates of the cycle for the MNZ and the RC2T models
(100 × ln real GDP).
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FIGURE 2. Smoothed and filtered estimates of the cycle for the Watson and the RT2C
models (100 × ln real GDP).
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the AR coefficients is 0.99 for all three models.) Each estimates the variance of
innovations to the cycle to be at least twice that of the innovations to the trend; in
the case of the RT2C model, they are more than 10 times larger. However, when
compared with the MNZ model, each of these models is strongly rejected by the
data.12

Figure 2 compares the smoothed and filtered estimates of the cycle for the
Watson, the RT2C, and the SSE models. Estimated cycles are large and highly
persistent; filtered estimates were consistently positive for twenty years, starting
in the early 1960s. Filtered estimates of the most recent recession are without
precedent, implying nonstop decline relative to trend since 2006, culminating in a
cycle 8% below trend by 2012Q3.13 The largest revisions of the filtered estimates
occur at the start of the sample, with estimates for the 1940s and early 1950s
revised downward by 5% of GDP or more. Although the estimated standard
errors for both the smoothed and filtered estimates from these models are large,
smoothed estimates are occasionally significantly different from zero at the 5%
level, as are filtered estimates from the SSE model. Neither the Watson nor the
RT2C model finds that current estimates of the cycle are significantly different
from zero, which is perhaps surprising, given their size.

4. CONCLUSION

Trend–cycle decompositions are deeply important to macroeconomics and econo-
metrics, and the implementation and identification assumptions used in cycle
extraction influence the estimated outcomes. This paper draws insights from the
identification conditions used in the state-space formulation of the structure of data
revisions in JvN to motivate an identification scheme in the Beveridge–Nelson
equivalent state-space formulation of trend–cycle decomposition, ensuring nega-
tive correlation between trend and cycle innovations. Most authors are agreed that
innovations to GDP are predominantly permanent and negatively correlated. In-
deed, recently Sinclair (2009) has found the same for unemployment, and noted the
importance of this commonality between GDP and unemployment for Okun’s law.

We show that using a state-space formulation for trend–cycle time series, such
as GDP, will not ensure a structural interpretation of whether transitory innovations
enter trend or permanent innovations enter cycle. Instead, we implement restricted
models that do admit such an interpretation. When they are applied to U.S. GDP
data, we find that the results for 1947Q1 to 2012Q3 are more consistent with
a model where transitory innovations enter trend, rather than where permanent
innovations enter cycle. There is some support for this result in the existing
literature in the two-regime model for industrial production of Weber (2011)
and the importance of incorporating both types of innovations to explain U.S.
recessions in Sinclair (2010). Furthermore, all of the models consistent with the
data (BN, MNZ, and RC2T) imply that smoothed cyclical fluctuations are many
times larger than filtered cycles, reflecting that filtered estimates are not reliable
indicators of business cycles.
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The paper shows how the parallels between the trend–cycle decompositions
literature and the data revisions literature may be used to aid in identification
when there is assumed to be a negative correlation between the two types of
innovations—the common presumption in both literatures. Using these parallels,
we explore the relationships between permanent and transitory innovations, which
may provide the driving influence in an economy. In this way, the paper seeks to
align economic theory and econometric technique in the spirit of, for example,
Murray and Nelson (2004) and Lee and Nelson (2007).

NOTES

1. See Jacobs (1998), Mills (2003), and Harvey (2006) for further information.
2. However, Nelson (2008) notes that it was left on the shelf for nearly a decade.
3. Perron and Wada (2009) take a different view, and emphasize the role of breaks.
4. Ma and Wohar (2013) take an alternative route by adding AR dynamics to the trend.
5. Anderson et al. (2006) consider a more general model in which the cycle follows an ARMA(2,1)

process. This more general model is observationally equivalent to the MNZ model of random walk
plus AR(2) cycle, as discussed in Morley (2011).

6. MNZ and Morley (2011) provide insightful and nuanced discussions of the relationships between
the Beveridge–Nelson decomposition and the BN and MNZ models described here.

7. MNZ used the same data series ending in 1998Q2. We follow them in fitting the model to
100 times the natural logarithm of the series. We also reestimated all our models on the 1947–1998
sample used by MNZ and obtained results very similar to those reported here. All estimates were
produced using the CMLmt package in GAUSS to maximize the likelihood function. Two constraints
were imposed in estimation: The AR(2) coefficients were constrained to ensure a stationary cycle and
models with multiple sources of innovations were constrained to have a positive definite innovation
covariance matrix. These constraints were never binding at the maximum likelihood estimates.

8. The UC2T model estimates imply that positive transitory shocks permanently “lower” trend
output.

9. As in all state-space models, caution should be exercised in testing the null hypothesis that one
or more variances are zero, as standard asymptotic inference theory is not generally applicable when
parameters are constrained to lie on the boundary of the parameter set under the null. See Morley et
al. (2013) for a recent discussion of the problem.

10. The covariance for the RC2T model implies a correlation of −0.85 between the two innovations.
11. The extensive revision of filtered estimates is reflected in their estimated standard errors. Filtered

estimates of the cycle for these three models are not presented with their standard errors to conserve
space; however, they are never close to being statistically different from zero at conventional levels of
significance. These results are available from the authors on request.

12. This may reflect the weakness of these models in explaining the time-varying trend growth rate
of output over the past sixty years. Faced with faster growth in the earlier part of the sample, they use
a nearly nonstationary cycle to capture an upward trend that plateaus in the early 1970s, coincident
with the growth slowdown. This is related to the critiques of the inability of unobserved component
models to capture structural breaks; see Perron and Wada (2009).

13. Smoothed estimates imply a deeper recession in 1950. However, caution should be exercised in
making this comparison, as recent estimates of the cycle may yet undergo substantial revision.
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