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Abstract A theory of infinite spanning sets and bases is developed for the first-order flex space of an infi-
nite bar-joint framework, together with space group symmetric versions for a crystallographic bar-joint
framework C. The existence of a crystal flex basis for C is shown to be closely related to the spectral anal-
ysis of the rigid unit mode (RUM) spectrum of C and an associated geometric flex spectrum. Additionally,
infinite spanning sets and bases are computed for a range of fundamental crystallographic bar-joint frame-
works, including the honeycomb (graphene) framework, the octahedron (perovskite) framework and the
2D and 3D kagome frameworks.
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1. Introduction

The analysis of the rigidity and flexibility of periodic infinite bond-node structures is an
ongoing endeavour in materials science and pure mathematics (Connelly, Ivić and White-
ley [2], Guest, Fowler and Power [7]). In this connection, it is well known in crystallography
and engineering that many crystals and periodic structures which are critically coordi-
nated exhibit a rich set of localized zero energy crystal vibrations (phonons) (Giddy et al.
[5], Dove et al. [3, 4], Wegner [17]) and localized infinitesimal mechanisms (Hutchinson
and Fleck [8]). Inspired by this, we wish to understand for which crystal frameworks
there exists a finite or countable set of localized modes u1, u2, . . . which tells the
whole story, so to speak, by providing a complete set in the sense that every first-order
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(i.e. infinitesimal) flex may be expressed as an infinite linear combination

u =
∞∑

n=1

αnun, αn ∈ R.

In the dynamical theory of a crystal framework C, it is common to limit attention to
first-order motions with some form of periodicity, or periodicity up to a phase factor for
a Bloch wave vector. However, one of our motivations is to determine the structure of the
space F(C; R) of all first-order flexes, including unbounded ones, as well as the structure
of the space F∞(C; R) of all bounded first-order flexes.

To approach these problems, we formalize, in § 2, the notions of a free spanning set and
a free basis for a space of velocity fields for an arbitrary countable bar-joint framework,
with no periodicity assumptions, while in § 4, we define their space group symmetric
counterparts in the case of crystal frameworks. Also, in § 5, we determine such spanning
sets and bases for a range of fundamental examples, including the honeycomb (graphene)
framework, the octahedron (perovskite) framework and the 2D and 3D kagome frame-
works. Our main result, Theorem 4.4, shows that if the infinitesimal flex space of a
crystallographic bar-joint framework is infinite dimensional then in any space group sym-
metric free spanning set, there necessarily exists a band-limited flex, that is, one whose
support lies uniformly close to a proper linear subspace. We show that this requirement
implies that there can be obstacles to the existence of crystal flex bases which arise from
nonlinearity in the RUM spectrum Ω(C) or nonlinearity in a more general geometric flex
spectrum Γ(C) which we introduce here. These obstacles are expressed in Theorems 4.9
and 4.11.

The rigid unit modes, or RUMs, of a material crystal are the zero energy oscillation
modes observed in the long-wavelength limit [4, 5, 17]. These vibration modes are bounded
and periodic modulo a multiphase factor and in fact, they correspond precisely to non-
zero infinitesimal flexes with the corresponding boundedness and periodicity properties
(see [1, 14, 15]). The spectrum of multiphase factors for such modes is a subset of the
d -torus known as the RUM spectrum and it corresponds to the points of rank degeneracy
of a matrix function ΦC(z) computable from a building block unit for C. In this way, the
study of RUM modes is reduced to the spectral analysis of function matrices and their
associated eigenspaces.

The determination of the space of all real or complex infinitesimal flexes requires
an understanding of unbounded flexes, possibly localized to a hyperplane, and in this
connection, we introduce the transfer function ΨC(z) associated with C and a building
block unit. This is an analytic matrix-valued function on the d -fold product C

d
∗ of the

punctured complex plane C∗ = C\{0} defined as the unique extension of ΦC(z). The
points z = ω of rank degeneracy of the transfer function indicate the presence of non-zero
geometrically periodic flexes. Such periodicity is characterized by a set of equations of the
form

u(pk) = ωku(p0) = ωk1
1 · · ·ωkd

d u(p0)

which relate the velocity u(p0) of a node p0 in the base unit cell to the velocity u(pk) of
the corresponding node pk in the cell with label k ∈ Z

d. In particular, if the multifactor
ω = (ω1, . . . , ωd) has |ωi|> 1 for some i then the local velocities u(pk) are unbounded
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(or zero) as k i→+∞, with k j fixed for j �= i, and are geometrically decaying as
k i→−∞. The geometrically periodic flexes are also referred to as factor periodic flexes
with multifactor ω. The novel geometric spectrum Γ(C) referred to above is the set
of such multifactors, that is, the set of points of rank degeneracy of the transfer
function.

The development is organized as follows. In § 2, we show, using an abstract non-
constructive argument, that for any countable bar-joint framework, periodic or not, every
infinite dimensional linear subspace of the space of velocity fields has a free basis in the
sense of Definition 2.3. In § 3, we consider group actions on free spanning sets, proving
several key results which are then applied in § 4 to crystal flex spanning sets for periodic
frameworks. Our first main result, Theorem 4.4, shows that a crystal flex spanning set for
an infinite dimensional space of flexes necessarily contains localized velocity fields which
moreover have geometric periodicity relative to their support. We also show that the exis-
tence of a natural crystal flex basis can lead to a simple description of the bounded flexes
as those whose infinite expansion in the basis have bounded coefficients. Following this,
the RUM spectrum and the geometric flex spectrum, associated with a periodic structure
for C, are introduced and we obtain necessary spectral conditions for the existence of
various crystal spanning sets. We also pose here the intriguing problem of determining
sufficient conditions, including spectral conditions, which ensure the existence of a crystal
flex basis. In the final section, which is largely independent of earlier results, we compute
crystal flex bases and spanning sets for several fundamental examples.

2. Free spanning sets and free bases

Let A be a non-empty set and let X be a finite-dimensional vector space over a field
K, where K = R or C. Endow X with a norm and the norm topology. Let XA denote
the topological vector space of maps f :A→X with the usual pointwise vector space
operations and the topology of pointwise convergence (i.e. the product topology). The
support of a map f is denoted supp(f).

Definition 2.1. A sequence (f n) in XA\{0} tends to zero strictly if, for each a ∈A,
the sequence (f n(a)) in X has at most finitely many non-zero terms.

Lemma 2.2. Let (fn) be a sequence in XA\{0}. The following conditions are
equivalent.

(i) (fn) tends to zero strictly.

(ii)
∑∞

n=1 αnfn(a) converges in X for every sequence of scalars (αn) in K and every
a∈A.

Proof. If (i) holds and (αn) is an arbitrary sequence of scalars then, for each a ∈A,
the series

∑∞
n=1 αnfn(a) has finitely many non-zero terms and hence converges in X. This

establishes (ii). If (i) does not hold, then there exists a ∈A and a subsequence (fnj
) such
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that fnj
(a) is non-zero for each j. Choose a norm ‖ · ‖ on X and for each n ∈ N define,

αn =

⎧⎪⎨
⎪⎩

1
‖fnj

(a)‖ if n = nj for some j ∈ N,

0 otherwise.

Then the series
∑∞

n=1 αnfn(a) fails to converge in X and so (ii) is not satisfied. �

If a sequence (f n) in XA\{0} tends to zero strictly then, by Lemma 2.2, for every
sequence of scalars (αn) in K the sum

∑∞
n=1 αnfn represents an element of XA. Note

that the partial sums, sN =
∑N

n=1 αnfn, converge to s =
∑∞

n=1 αnfn in the strict sense
that the sequence (s − sN) tends to zero strictly in XA. Also note that, setting S = {fn :
n ∈ N}, the set M(S) = {

∑∞
n=1 αnfn : αn ∈ K} is a vector subspace of XA.

In the next definition, the term free for a countable set of vectors is used in the
sense that there are no coefficient restrictions needed to ensure that an infinite linear
combination of the vectors is pointwise convergent.

Definition 2.3. Let W be an infinite-dimensional vector subspace of XA.

(a) A free spanning set for W is a countable subset S = {f 1, f 2, . . . } of W\{0} for
which the sequence (f n) tends to zero strictly and satisfies W ⊆M(S).

(b) A free basis for W is a free spanning set S = {f 1, f 2, . . . } for W such that each
w ∈W has a unique representation,

w =
∞∑

n=1

αnfn, αn ∈ K.

Example 2.4. Let A = {ak : k ∈ N} be a countable set and let x 1, . . . , xd be a basis
for X. For each n ∈ N and each σ ∈{1, . . . , d} define,

en,σ(ak) =
{

xσ if n = k,
0 otherwise.

Then {en,σ : n ∈ N, σ ∈ {1, . . . , d}} is a free basis for XA.

2.1. Existence of free bases

Let A be a countably infinite set and let α = (Ai) be an increasing sequence of finite
subsets of A which cover A (i.e. Ai⊂Ai+1 for all i ∈ N and A = ∪i∈NAi). For each i ∈ N,
let πi : XA → XAi denote the natural restriction map. Let W be an infinite dimensional
vector subspace of XA and let W i =πi(W ) for each i ∈ N. For all i, j ∈ N with j ≥ i,
let πj,i:W j→W i be the natural restriction maps. Note that the pair ((W i), (πj,i)) is an
inverse sequence of finite dimensional vector spaces.
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Lemma 2.5. There exists a sequence (Bj) of disjoint finite sets in W with the following
properties.

(i) πi(Bj) = {0} for all i< j.

(ii) πj(B1 ∪ · · · ∪Bj) is a basis for Wj.

(iii) |B1 ∪ · · · ∪Bj | = dim Wj for each j ∈ N.

Proof. Choose a minimal finite subset B1⊂W with the property that π1(B1) is a
basis for W 1. Note that π1(w) = π2,1 ◦ π2(w) for all w ∈W and so it follows that π2(B1)
is a linearly independent set in W 2. Let Y 2 be the linear span of π2(B1) in W 2. Since
the restriction map π2,1:W 2→W 1 is linear and surjective we have W2 = Y2 ⊕ ker π2,1

and dimY2 = dim W1. Now choose a minimal finite subset B2⊂W with the property
that π2(B2) is a basis for ker π2,1. Note that B1 and B2 are disjoint. Then π1(B2) =
π2,1 ◦ π2(B2) = 0, π2(B1 ∪B2) is a basis for W 2 and |B1 ∪B2| = dim W2. Repeating
these arguments, the sequence (B j) can now be constructed inductively. �

Theorem 2.6. If A is a countably infinite set then every infinite dimensional vector
subspace of XA has a free basis.

Proof. Let W be a subspace of XA and let α = (Ai) be an increasing sequence of
finite subsets which cover A. There exists a sequence (B j) of disjoint finite sets in W
with properties (i)–(iii) as in the statement of Lemma 2.5. It remains only to show
that the countable set ∪j∈NBj = {fn : n ∈ N} is a free basis for W. By property (i), the
sequence (f n) tends to zero strictly. Suppose w ∈W. By properties (i)-(iii), there exists
a unique sequence (hj) in W such that hj ∈ span(Bj) and πj(w) =πj(h1 + · · ·+ hj) for
each j ∈ N. Define h =

∑∞
j=1 hj . Then w = h ∈M(S), where S = {fn : n ∈ N}, and so

W ⊆M(S). �

Remark 2.7. Note that the proof of Theorem 2.6 is non-constructive in the sense
that the resulting free basis depends both on a choice of covering sequence α = (Ai) and
a process of selection for the sequence (B j).

Given W and α as above, denote by lim←−Wi the inverse limit of the inverse sequence
((W i), (πj,i)). Thus lim←−Wi is the vector space of all (f i) in the Cartesian product Πi∈NWi

with the property that πj,i(f j) = f i whenever j ≥ i. In the following, we consider the linear
map Φα : XA → Πi∈NWi, f �→ (πi(f)).

Lemma 2.8. The following statements are equivalent.

(i) W is closed, with respect to the product topology on XA.

(ii) Φα(W ) = lim←−Wi.

Proof. To show (i) � (ii), suppose W is closed in XA. Let (πi(wi)) ∈ lim←−Wi, where
w i ∈W for each i ∈ N, and define w ∈XA by setting w(a) =w j(a) for all a ∈Aj, and all
j ∈ N. Note that the sequence (w j) converges pointwise to w. Thus, w ∈W and Φα(w) =
(πi(wi)).
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To show (ii) � (i), suppose Φα(W ) = lim←−Wi and let (wn) be a sequence in W which
converges pointwise to h ∈XA. For each i ∈ N, the sequence (πi(wn)) in W i converges
pointwise to πi(h) ∈ XAi . Since XAi is finite dimensional, W i is closed and so πi(h)∈W i.
Thus, the sequence (πi(h)) lies in the inverse limit lim←−Wi and so there exists w ∈W such
that Φα(w) = (πi(h)). Note that πi(h) =πi(w) for all i ∈ N and so h =w ∈W. �

Theorem 2.9. If A is a countably infinite set then every infinite dimensional closed
vector subspace W of XA has a free basis S = {fn : n ∈ N} with W =M(S).

Proof. Let W be a closed subspace of XA and let S = {fn : n ∈ N} be the free basis
for W obtained from a sequence (B j) as in the proof of Theorem 2.6. Then W ⊆M(S)
and so it only remains to show the reverse inclusion holds. Let h ∈M(S). By properties
(i) and (ii) of the sequence (B j), πi(h)∈W i for each i ∈ N and so (πi(h)) ∈ lim←−Wi.
Since W is closed, by Lemma 2.8 there exists w ∈W such that Φα(w) = (πi(h)). Now
h =w ∈W and soM(S) ⊆W . �

Given f ∈XA we write ‖f‖∞ = supa∈A ‖f(a)‖. A mapping f ∈XA is bounded if
‖f‖∞ <∞. Otherwise, f is said to be unbounded.

Corollary 2.10. Let A be a countably infinite set. If W is an infinite dimensional
closed subspace of XA then W contains a countable linearly independent set of unbounded
elements.

Proof. By Theorem 2.9, there exists a free basis S for W with the property that
W =M(S). Since S is countably infinite, we may choose a sequence (hk) in S and a
sequence (ak) in A so that

hk(ak) �= 0 and hk(aj) = 0, for 1 ≤ j ≤ k − 1.

Replacing hk by a scalar multiple of hk, we may assume for convenience that ‖hk(ak)‖ = 1
for all k. Choose non-zero scalars (α1,n) successively such that α1,1 = 1 and |α1,n| ≥
n + ‖

∑n−1
k=1 α1,khk(an)‖ for each n ≥ 2. Let g1 =

∑∞
k=1 α1,khk ∈W and note that for

each n ∈ N,

‖g1(an)‖ = ‖
n∑

k=1

α1,khk(an)‖ ≥ ‖α1,nhn(an)‖ − ‖
n−1∑
k=1

α1,khk(an)‖ ≥ n.

Thus, g1 is unbounded. For m ≥ 2, similarly define gm =
∑∞

k=m αm,khk with non-zero
scalars (αm,k) chosen so that gm is unbounded. To see that the set {gm : m ∈ N} is linearly
independent note that if

∑d
m=1 λmgm = 0 for some λ1, . . . , λd ∈ K then λ1α1,1h1(a1) =∑d

m=1 λmgm(an1) = 0 and so λ1 = 0. By similar arguments it follows that λj = 0 for each
j = 2, . . . , d. �

2.2. Application to bar-joint frameworks

The results of the previous section apply to the infinitesimal flex spaces of countable
bar-joint frameworks (and in particular, to crystallographic bar-joint frameworks). Let
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Figure 1. A motif for the bar-joint framework Ckite together with four velocity vectors from the
unbounded infinitesimal flex akite.

G = (V, E ) be a simple graph with vertex set V and edge set E. A bar-joint framework
for G in R

d is a pair G = (G, p) where p : V → R
d, v �→ pv, is an injective map. The

points pv are referred to as joints of G and the line segments (pv, pw), where vw ∈E,
are referred to as bars. Let V(G; K) = XA where A= p(V ) and X = K

d (for K = R or
C). The elements of V(G; K) are referred to as velocity fields for G over K. If u ∈ V(G; K)
then u(pv) is referred to as the velocity vector for u at pv. An infinitesimal flex (or first
order flex ) for G over K is a velocity field u ∈ V(G; K) with the property that 〈pv− pw,
u(pv)〉= 〈pv− pw, u(pw)〉 for each edge vw ∈E. The set of infinitesimal flexes for G is
a closed vector subspace of V(G; K), denoted F(G; K). The vector subspace of bounded
infinitesimal flexes for G is denoted F∞(G; K).

Example 2.11. Consider the crystallographic bar-joint framework Ckite in the
Euclidean plane which is defined by the kite-shaped motif indicated in Figure 1 con-
sisting of two joints and five bars. We assume that the vertical crossbar is closer to the
apex joint, positioned to the left, than it is to the tail joint on the right. The figure also
indicates a pair of periodicity vectors {a1, a2} and four velocity vectors at the four joints
of a kite subframework of Cnkite. These velocity vectors are indicative of an infinitesimal
rotational flex of this subframework about the centre of the crossbar.

Let �x, �y be a choice of non-zero infinitesimal translation flexes of Ckite, for the x and
y directions, respectively, and let �r be a non-zero infinitesimal rotation flex of Ckite.
Additionally, note that there is an unbounded infinitesimal flex akite in F(nnCkite; R)
which restricts to alternating rotations of the 5-bar kite framework and its translates,
each of these restriction flexes being rotational about the centre of the crossbar. The
magnitude of these rotations tends to infinity exponentially in the positive x -direction
and is constant in magnitude in the y-direction.

It is straightforward to show that the finite set {�x, �y, �r, akite} is a vector space basis for
F(Ckite; R). Indeed, let G be a finite subframework of Ckite formed by 2 kite subframeworks
which meet at a common joint. The infinitesimal flex space of G is four-dimensional and
is spanned by the restrictions of the quartet �x, �y, �r, akite. Thus, if u is an infinitesimal
flex of Ckite then we may subtract from u a linear combination of this quartet to obtain
a flex u1 whose restriction to G is 0. One can see readily from the geometry of Ckite and
the rigidity of the kite subframeworks that this implies that u1 = 0.
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Let G = (G, p) be a finite or countable bar-joint framework whose joints do not lie in a
hyperplane. The space Frig(G; R) of trivial infinitesimal flexes, or rigid motion infinitesi-
mal flexes, is the vector subspace of F(G; R) consisting of real infinitesimal flexes of the
complete graph bar-joint framework (KV, p). Here KV is the complete graph on the
vertex set V. The bar-joint framework G is infinitesimally rigid if F(G; R) = Frig(G; R)
and boundedly infinitesimally rigid if F∞(G; R) ⊂ Frig(G; R).

Example 2.12. The three velocity fields �x, �y, �r in Example 2.11 span Frig(Ckite; R).
Also akite is not a bounded infinitesimal flex. It follows that Ckite is boundedly
infinitesimally rigid, but not infinitesimally rigid.

In contrast to this, consider the semi-crystallographic framework Cx≤0
kite which is formed

by removing from Ckite all the 5-bar kite frameworks not lying in the half-plane x ≤ 0. This
is not boundedly infinitesimally rigid. Indeed it can be shown, as in the consideration of
Ckite, that the flex space is four-dimensional with basis given by the restrictions to Cx≤0

kite

of the quartet �x, �y, �r, akite. Since the restriction of akite to Cx≤0
kite is bounded, the semi-

crystallographic framework is not boundedly rigid. One may view this restriction infinites-
imal flex (and its associated zero energy mechanical mode) as a bounded surface flex (or
surface mode), of the bulk crystal Ckite, which is associated with the domain wall x = 0.

Theorem 2.13. Let G = (G, p) be a bar-joint framework in R
d with a countable set

of joints. If the space of infinitesimal flexes F(G; K) is infinite dimensional then,

(i) F(G; K) has a free basis, and,

(ii) F(G; K) contains a countable linearly independent set of unbounded infinitesimal
flexes.

Proof. The statements follow from Theorem 2.9 and Corollary 2.10 since F(G, K) is
closed in V(G; K). �

Several examples of free bases for the infinitesimal flex spaces of crystallographic
bar-joint frameworks are presented in § 5.

3. Group actions on free spanning sets

Once again let A be a countably infinite set and X a finite-dimensional normed space over
K. Throughout this section, Γ denotes a multiplicative free abelian group with identity
element 1, θ:Γ×A→A is a free group action on A and π:Γ×XA→XA is the induced
faithful group action on XA given by π(γ, f )(a) = f (γ−1a) for all a ∈A. To simplify
notation, θ(γ, a) will be written as γa for all γ ∈Γ and a ∈A. Similarly, π(γ, f ) will be
written as γf for all γ ∈Γ and f ∈XA. The orbit of an element a ∈A under the group
action θ is the set Γa = {γa:γ ∈Γ} and the quotient set A/Γ = {Γa:a ∈A} is the set of
all such orbits.

Definition 3.1. A geometric direction for f ∈ XA\{0} is an element γ ∈Γ such that
γf is a non-zero scalar multiple of f.

The set of all geometric directions for f is denoted Γf.
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Lemma 3.2. Let f ∈ XA\{0}.

(i) Γf is a subgroup of Γ.

(ii) Γf = Γλ(γf) for all non-zero scalars λ ∈ K and all γ ∈Γ.

(iii) If f has finite support then Γf = {1}.

Proof. The proofs of parts (i) and (ii) are elementary and left to the reader. To
show (iii), suppose γ ∈Γ is a geometric direction for f and choose a ∈ supp(f). Then
γka ∈ supp(f) for each k ∈ Z. Since θ is a free group action, the elements γka, k ∈ Z, are
distinct unless γ = 1. �

Definition 3.3. Let S ⊂ XA\{0}. A group action π:Γ×XA→XA acts on S (up to
scalar multiples) if for each f ∈S and each γ ∈Γ there exists a scalar λ ∈ K and g ∈S
such that γf =λg.

Lemma 3.4. Let S be a free spanning set for an infinite-dimensional vector subspace
of XA and let f∈S. If the quotient set A/Γ under the action θ is finite and the induced
action π acts on S up to scalar multiples then the following statements are equivalent.

(i) f has finite support.

(ii) Γf = {1}.

Proof. The implication (i) � (ii) is Lemma 3.2(iii). To show (ii) � (i), suppose
Γf = {1}. Let S = {fn : n ∈ N} and let a1, . . . , ar be a set of representatives for the
finitely many orbits in A/Γ. For i ∈{1, . . . , r}, define Ci = {γf : γ ∈ Γ, (γf)(ai) �= 0}.
Note that, since the sequence (f n) tends to zero strictly, the set Si = {g ∈ S : g(ai) �= 0}
is finite and, since π acts on S, each element of C i is a scalar multiple of an element of
S i. If C i is not finite, for some i ∈{1, . . . , r}, then there exist distinct elements γ1 f, γ2

f ∈C i and a non-zero scalar λ ∈ K such that γ1 f =λ(γ2 f ). Thus (γ1γ
−1
2 )f = λf and so

γ1γ
−1
2 is a geometric direction for f, which contradicts Γf = {1}. Thus C i must be finite

for each i ∈{1, . . . , r}. Now for each C i, either γ1f = γ2f for some distinct γ1, γ2 ∈Γ or
there are only finitely many γ ∈Γ with (γf)(ai) �= 0. If the former case holds for some
C i, then f = (γ1γ

−1
2 )f and so γ1γ

−1
2 is a geometric direction for f, which contradicts

Γf = {1}. Thus, the latter case holds for each C i. Since f (γ−1 ai) = (γf )(ai) for all γ ∈Γ
and i ∈{1, . . . , r}, and since A= {γai:γ ∈Γ, i ∈{1, . . . , r}}, it follows that f has finite
support. �

Definition 3.5. A set S ⊂ XA\{0} is finitely generated by a group action
π:Γ×XA→XA (up to scalar multiples) if π acts on S, and, there is a finite subset
S 0⊂S such that for every f ∈S there exists γ ∈Γ, f 0 ∈S 0, and a scalar λ ∈ K, with
f = λ(γf 0).

Lemma 3.6. Let S be a free spanning set for an infinite-dimensional vector subspace
of XA. If S is finitely generated by a group action π then there exists f∈S such that the
quotient group Γ/Γf has infinite order.
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Proof. Let I = {Kf : f ∈ S} where Kf denotes the one-dimensional subspace of XA

spanned by f. If I is a finite set, then there exists a sequence (f n) in S for which the
one-dimensional spaces Kfn are equal. In particular, the support sets supp(fn) are equal
for all n ∈ N. This is a contradiction since (f n) tends to zero strictly and so I is countably
infinite. Since S is finitely generated by π, there exists a finite subset S 0⊂S such that
I = {K(γf) : γ ∈ Γ, f ∈ S0}. Note that, for each f 0 ∈S 0, the cardinality of {K(γf0) : γ ∈
Γ} is bounded by the order of Γ/Γf0 . Thus, Γ/Γf0 has infinite order for some f 0 ∈S 0. �

3.1. Lattice group actions

Let L = {
∑m

i=1 nibi : ni ∈ Z} be a rank m lattice in R
d determined by linearly inde-

pendent vectors b1, . . . , bm ∈ R
d. For each b ∈L, let Tb : R

d → R
d denote the translation

T b(x ) = x + b. The translation group associated with L is the multiplicative abelian group
T = {Tb : b ∈ L}. A multilattice on L is a set A = A1 ∪ . . . ∪As where A1, . . . , As are
pairwise disjoint translates of L. Define a free group action θL : T ×A→ A by setting
θL(T, ai) =T (ai) for ai ∈Ai, 1≤ i ≤ s. The lattice group action on XA induced by θL

is the group action πL : T ×XA → XA with πL(T, f ) = f ° T−1. Note that the quotient
set A/T is finite and a translation Tb ∈ T is a geometric direction for f ∈XA if and only
if there exists a non-zero scalar λ such that f (a − b) =λf (a) for all a ∈A. If Γf �= {1}
then the sublattice Lf = {b ∈L:T b ∈Γf} is referred to as the lattice of geometric directions
for f.

Definition 3.7. Let L′ be a rank n sublattice of L with basis b1, . . . , bn ∈ R
d.

A mapping f ∈XA is factor periodic on L′ if there exists ω = (ω1, . . . , ωn) ∈ K
n
∗ such

that Tbf = ωk1
1 · · ·ωkn

n f for all b =
∑n

j=1 kjbj ∈ L′. In this case, ω is referred to as the
periodicity multifactor for f determined by the basis b1, . . . , bn ∈ R

d.

Lemma 3.8. Let A be a multilattice on L and let f ∈ XA\{0}.

(i) If Γf �= {1} then f is factor periodic on Lf.

(ii) If f is bounded and factor periodic, with periodicity multifactor ω, then the
components of ω are unimodular.

Proof. (i) If Γf �= {1} then Lf is a lattice of rank n say. Let b1, . . . , bn ∈ R
d be a set of

generators for the lattice Lf. For each i = 1, . . . , n, Tbi
is a geometric direction for f and

so Tbi
f = ωif for some non-zero scalar ωi ∈ K. Thus, Tbf = T k1

b1
· · ·T kn

bn
f = ωk1

1 · · ·ωkn
n f

for all b =
∑n

j=1 kjbj ∈ Lf .
(ii) Suppose f is factor periodic on the lattice L′ and let ω = (ω1, . . . , ωn) ∈ K

n
∗ be the

periodicity factor for f determined by a basis b1, . . . , bn for L′. Let a ∈ supp(f). Note
that, for each j = 1, . . . , n, ‖f(a− kbj)‖ = ‖T k

bj
(a)‖ = |ωj |k‖f(a)‖ for all k ∈ Z. Thus, if

|ωj | �= 1 for some j then f is clearly unbounded. �

If S ⊂XA then, for each a ∈A, let Sa = {f ∈ S : f(a) �= 0}.

Lemma 3.9. Let A be a multilattice on L and let S be a free spanning set for an
infinite-dimensional subspace of XA. If the lattice group action πL acts on S then each
f∈S satisfies one of the following conditions.
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(i) f is finitely supported.

(ii) f is factor periodic on Lf and the support of f is a multilattice on Lf.

Proof. Suppose f ∈S is not finitely supported. By Lemma 3.4, Γf �= {1}. Thus, by
Lemma 3.8, f is factor periodic on Lf. Choose a1, . . . , as ∈A such that A = ∪s

i=1(ai +
L). Since S is a free spanning set, Sai

is finite and so Sai
= {gai,1, . . . , gai,si

} say. By
Lemma 3.4, the subgroup Lf is a non-zero sublattice of L. Let Lai,k = {b ∈ L : T−1

b f =
λgai,k, for some λ �= 0} for k = 1, . . . , s i. Note that (T−1

b f)(ai) = f(a) �= 0 for each a ∈
supp(f) with a = ai + b and b ∈L. Thus, since πL acts on S, it follows that supp(f) =
∪s

i=1 ∪si

k=1 (ai + Lai,k). If b, b′ ∈ Lai,k then T bf = λ(T b′ f ) for some non-zero scalar λ ∈ K

and so T b−b′ is a geometric direction for f. In particular, b− b′ ∈Lf. Thus, if bai,k ∈ Lai,k

then it follows that Lai,k = bai,k + Lf , and so supp(f) is a finite union of translates of
the lattice Lf. �

In the following, R
d is endowed with a norm and dist(a,E) = infx∈E ‖a− x‖ denotes

the distance between a point a ∈ R
d and a subset E ⊂ R

d.

Definition 3.10. Let A be a multilattice in R
d. A mapping f ∈XA is band-limited

with respect to a proper linear subspace K of R
d if there exists C > 0 such that the

support of f is contained in the ‘band’ {x ∈ R
d : dist(x,K) ≤ C}.

Theorem 3.11. Let A be a multilattice and let S be a free spanning set for an infinite-
dimensional vector subspace of XA. If S is finitely generated by the lattice group action
πL, and contains no finitely supported elements, then there exists f∈S such that the
linear span K of Lf is a proper subspace of R

d and f is band-limited with respect to K.

Proof. Suppose no element of S has finite support. By Lemma 3.6, there exists f ∈S
such that the quotient group Γ/Γf has infinite order. Recall that a quotient of two free
abelian groups with equal rank has finite order. Thus, Γf has rank k strictly less than d.
Let K be the proper linear subspace in R

d spanned by Lf. By Lemma 3.9, the support
of f is a multilattice on Lf and hence is contained in a band {x ∈ R

d : d(x,K) ≤ C} for
some C > 0. �

A subset S of XA is bounded if each element of S is bounded and supf∈S ‖f‖∞ <∞.

Lemma 3.12. Let A be a multilattice on L and let S = {fn : n ∈ N} be a bounded
free spanning set for an infinite-dimensional subspace of XA. If the lattice group action
πL acts on S and (αn) ∈ 
∞(N) is a bounded sequence of scalars then

∑∞
n=1 αnfn is

bounded.

Proof. Suppose f =
∑∞

n=1 αnfn for some α = (αn) ∈ 
∞(N). Since (f n) tends to zero
strictly, Sa is a finite set for each a ∈A. Note that for each b ∈L, f(a + b) �= 0 if and
only if (T−1

b f)(a) �= 0. Thus, since πL acts on S, the set Sa+b has the same cardinal-
ity as Sa. Choose a1, . . . , as ∈A such that A = ∪s

i=1(ai + L). Let N = supa∈A |Sa| =
maxi=1,...,s |Sai

| and let M = supn ‖fn‖∞. Then ‖f‖∞ = supa∈A ‖f(a)‖ ≤ NM‖α‖∞ and
so f is bounded. �
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In the following, a set S ⊂ XA\{0} has the local basis property if, for each a ∈A, the
set {f (a):f ∈Sa} is a basis for X. Also, W ∞ denotes the set of bounded elements in a
subspace W of XA.

Theorem 3.13. Let A be a multilattice on L and let S = {fn : n ∈ N} be a
free spanning set for an infinite-dimensional subspace W of XA with the following
properties.

(i) The lattice group action πL acts on S.

(ii) S is bounded and has the local basis property.

(iii) No element of S is finitely supported.

(iv) inf{‖g(a)‖ : a ∈ A, g ∈ Sa} > 0.

Then,

W∞ = {f ∈W : f =
∞∑

n=1

αnfn and (αn) ∈ 
∞(N)}.

Proof. Let f ∈W ∞. Then f =
∑∞

n=1 αnfn for some sequence of scalars (αn) and
‖f‖∞ <∞. Since S has the local basis property, given any a ∈A, the set {g(a):g ∈Sa}
is a basis for X and so we may consider the norm on X given by ‖x‖a = maxg∈Sa

|λg|
where x =

∑
g∈Sa

λgg(a). Moreover, since X is finite-dimensional, there exists ca > 0 such
that ca‖x‖a ≤ ‖x‖ for all x ∈X. Suppose αm �= 0 and choose a ∈A with f m(a) �= 0. Since
the lattice group action πL acts on S and no element of S is finitely supported, it fol-
lows from Lemmas 3.4 and 3.8(i) that each g ∈Sa is factor periodic on Lg. Moreover,
since each element of S is bounded, it follows from Lemma 3.8(ii) that the compo-
nents of the periodicity factors for each g ∈Sa are unimodular. Choose a1, . . . , as ∈A
such that A = ∪s

i=1(ai + L). Then a = aj + b for some j and some b ∈L. Thus, since the
lattice group action πL acts on S, there exist scalars µg such that Sa = {μgg : g ∈ Saj

}.
It follows that ‖x‖a ≤ 1

M ‖x‖aj
where M > 0 is a lower bound for {‖g(a)‖ : a ∈ A, g ∈

Sa}. Thus, caj
‖x‖a ≤ caj

( 1
M )‖x‖aj

≤ 1
M ‖x‖ for each x ∈X. Note that |αm| ≤ ‖f(a)‖a ≤

1
cM ‖f(a)‖ ≤ 1

cM ‖f‖∞ where c = mini=1,...,s cai
. Thus (αn) ∈ 
∞(N).

For the reverse inclusion, apply Lemma 3.12. �

4. Crystal flex bases and the RUM spectrum

An automorphism of a graph G = (V, E ) is a bijection β:V →V with the property that
vw ∈E if and only if β(v)β(w)∈E. The space group for a bar-joint framework G = (G, p)
in R

d is the group S(G) of Euclidean isometries T : R
d → R

d with the property that
T (p(V )) = p(V ) and the induced map β:V →V, v �→ p−1(T (pv)) is an automorphism of
G. The subgroup of S(G) consisting of translations is denoted T (G).

Definition 4.1. A bar-joint framework C = (G, p) in R
d is referred to as a crystal

framework if there exists a rank d lattice L in R
d with the following properties.
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(a) The translation group T = {Tb : b ∈ L} is a subgroup of T (C).

(b) C has only finitely many distinct vertex orbits and edge orbits under T .

In this case, the lattice L (or equivalently, the translation group T ) is referred to as a
periodic structure for C.

Let C be a crystal framework in R
d. The space group action on V(C; R) is the faith-

ful group action πS(C) : S(C)× V(C; R)→ V(C; R) with πS(C)(T, f) = T2 ◦ f ◦ T−1 where
T =T 1T 2 is the unique factorization of the Euclidean isometry T with T 1 a transla-
tion and T 2 an orthogonal linear transformation. Also, we define the space group action
on V(C; C) as the natural induced action. Alternatively, for f ∈ V(C; C) we may define
πS(C)(T, f) = T̃2 ◦ f ◦ T−1 where T̃2 has the diagonal action T2 ⊕ T2 on the direct sum
C

d = R
d ⊕ iRd. The lattice group action on V(C; K) determined by a periodic structure L

with translation group T = {Tb : b ∈ L} is the group action πT : T × V(C; K)→ V(C; K),
πT (T, f) = f ◦ T−1.

Lemma 4.2. Let C = (G, p) be a crystal framework in R
d and let S ⊂ V(C; K). If S

is finitely generated by the space group action πS(C) then S is finitely generated by the
lattice group action πT for any choice of periodic structure T .

Proof. Suppose S is finitely generated by πS(C) and let T be a periodic structure for C.
Then given any f ∈S and any T ∈ S(C) there exists λ ∈ K and g ∈S such that Tf = λg.
In particular, this holds for all T ∈ T and so πT acts on S. Also, there exists a finite
subset S 0⊂S such that every member of S can be expressed as a scalar multiple of Tf
for some T ∈ S(C) and some f ∈S 0. Note that the set of joints of C is a multilattice and
the quotient group S(C)/T acts faithfully on the finite set of translation orbits. It follows
that the quotient group S(C)/T is finite. Let R1, . . . , Rm be a set of representatives for
the finitely many elements in S(C)/T and let S 0

′ = {Rjf : f ∈S 0, j = 1, . . . , m}. Then
every member of S is a scalar multiple of Tf for some T ∈ T and some f ∈S 0

′ and so S
is finitely generated over T . �

A geometric flex for a crystal framework C is an infinitesimal flex which is factor
periodic with respect to a sublattice of a periodic structure for C. A local geometric
flex for C is an infinitesimal flex which is factor periodic with respect to a lower rank
sublattice of a periodic structure for C. A band-limited flex for C is an infinitesimal flex
which is also a band-limited vector field in V(C; K). For crystal frameworks, it is of interest
to determine free bases for F(C, K) which incorporate localized or band-limited flexes,
should such flexes exist, and which, moreover, incorporate the crystallographic symmetry
group. Accordingly, we make the following definitions.

Definition 4.3. Let C be a crystal framework and let W be an infinite-dimensional
vector subspace of V(C; K).

(a) A crystal spanning set (respectively, crystal basis) for W is a free spanning set
(respectively, free basis) which is finitely generated by the space group action πS(C).
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(a) A crystal spanning set (respectively crystal basis) for W = F(C; K) is also referred
to as a crystal flex spanning set (respectively crystal flex basis) for C.

In the next section, we identify a number of crystal frameworks, such as the grid
frameworks and the kagome frameworks which possess a crystal flex basis in the sense
above. In several cases, these bases consist entirely of local geometric flexes. Also, we see
that the flex space of the octahedron framework has a free basis which is an essential
crystal flex basis in the sense that there is a subset which is a crystal flex basis for a
vector subspace of F(C; R) which is complementary to the three-dimensional space of
infinitesimal rotation flexes.

Theorem 4.4. Let C = (G, p) be a crystal framework in R
d and suppose F(C; K) is

infinite dimensional. Let S be a crystal flex spanning set for C.

(i) If f∈S then f is either finitely supported or a geometric flex for C.

(ii) S must contain a band-limited flex. Moreover, f∈S is a band-limited flex if and only
if it is either finitely supported, or, a local geometric flex which, for any periodic
structure L, is band-limited with respect to the linear span of Lf.

(iii) If S is bounded, has the local basis property, has no finitely supported elements,
and inf{‖f(p(v))‖ : v ∈ V, f ∈ Sp(v)} > 0, then,

F∞(C; K) = {f ∈ F(C; K) : f =
∞∑

n=1

αnfn and (αn) ∈ 
∞(N)}.

Proof. By Lemma 4.2, S is finitely generated by the lattice group action πT for any
choice of periodic structure T . The set of joints of C is a multilattice in R

d and so the
results of § 3 may be applied with A= p(V ) and X = K

d. Statement (i) follows from
Lemmas 3.4, 3.8 and 3.9. In particular, given any periodic structure L for C, if f ∈S and
f is not finitely supported then f is factor periodic for the sublattice Lf of L. Statement
(ii) now follows since, by Lemma 3.9, the support of f is a multilattice on Lf. Thus, if
f is band-limited then Lf must have rank t, where t < d, and so f is band-limited with
respect to the linear span of Lf. Statement (iii) follows from Theorem 3.13. �

We now define a transfer function ΨC(z) associated with a crystal framework C, a
choice of periodic structure L with translation group T and a choice of basis b1, . . . , bd

for the lattice L. Let Fv = {pκ : 1 ≤ κ ≤ |Fv|} be a finite set of joints representing the
T -translation classes of the joints of C. Then we may conveniently label the joints of C
as,

{pκ,k : 1 ≤ κ ≤ |Fv|, k ∈ Z
d},

where pκ,k = Tkpκ. Also let F e be a finite set of representative bars for the translation
classes of the bars. The pair (F v, F e), referred to as a motif for C, together with the
periodic structure T carries the essential geometric information which defines C [14, 15].

Definition 4.5. Let C be a crystal framework in R
d with motif (F v, F e) and for

e = vw ∈F e let p(e) = p(v)− p(w). The transfer function ΨC(z) is a matrix-valued func-
tion on C

d
∗ whose rows are labelled by the edges of F e and whose columns are labelled
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by the vertex-coordinate pairs in F v×{1, . . . , d}. The row for an edge e = (v, k)(w, l)
with v �=w takes the form,

[ v w

e 0 · · · 0 p(e)z−k · · · 0 −p(e)z−l · · · 0
]
,

while if v =w it takes the form,

[ v

e 0 · · · 0 p(e)(z−k − z−l) · · · 0
]
.

The restriction of ΨC(z) to the d -torus T
d gives the symbol function ΦC(z) considered

in [1, 14, 15]. With the labelling of the joints of C given above, note that a complex velocity
field u ∈ V(C, C) is a map u : Fv × Z

d → C
d where u(pκ, k) is the velocity vector assigned

to the joint pκ,k. Note that u is factor periodic, with periodicity multifactor ω ∈ C
d
∗, if

u(pκ, k) = ωku(pκ, 0) for all pκ ∈ Fv, k ∈ Z
d. Here ωk is the product ωk1

1 . . . ωkd

d . We write
u = b⊗ eω for this vector field, where b is the vector (u(pκ, 0))κ∈Fv

in C
d|Fv| and eω is

the multi-sequence (ωk)k∈Zd .

Theorem 4.6. Let C be a crystal framework in R
d with motif (Fv, Fe) and let u =

b⊗ eω where ω ∈ C
d
∗ and b ∈ C

d|Fv|. The following conditions are equivalent.

(i) u ∈ F(C, C).

(ii) Ψ(ω−1)b= 0.

Proof. The proof is similar to the unimodular case given in Power [15]. �

Definition 4.7. Let C be a crystal framework in R
d with a transfer function ΨC(z).

(a) The geometric flex spectrum Γ(C) of C is defined to be the set,

Γ(C) := {ω ∈ C
d
∗ : ker ΨC(ω−1) �= {0}}.

(b) The rigid unit mode spectrum, or RUM spectrum, of C is the set,

Ω(C) := {ω ∈ T
d : ker ΦC(ω) �= {0}},

where ΦC(z) is the restriction of ΨC(z) to the d -torus.

Note that Γ(C) is the set of points ω ∈ C
d
∗ for which there exists a non-zero factor

periodic infinitesimal flex with periodicity multifactor ω. This set depends both on the
choice of periodic structure L for C and the choice of basis b1, . . . , bd for L. The RUM
spectrum is the subset Ω(C) = Γ(C) ∩ T

d of multifactors ω with unimodular coordinates.
Such multifactors are also referred to as multi-phases, or simply phases. Note also that
for a critically coordinated crystal framework, in the elementary sense that |F e|= d |F v|,
the transfer function is a square matrix-valued analytic function on its domain. It follows
in this case that the determinant provides a multivariable analytic function and that the
geometric spectrum is given by its set of zeros.
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A small gallery of crystal frameworks and their transfer functions is given in Badri,
Kitson and Power [1] and their RUM spectra are determined. See also Power [15] where
the connection with mode vibrations in materials science is discussed. In § 5, we examine
the geometric flex spectrum and the RUM spectrum of a novel bipyramid framework.
In close analogy with the semi-crystallographic kite framework of Example 2.12, we see
that there are geometrically decaying surface flexes associated with directions with no
half-turn symmetry.

Definition 4.8. Let C be a crystal framework in R
d with a transfer function ΨC(z). The

RUM spectrum Ω(C) is said to contain linear structure if the logarithmic representation
of Ω(C) in [0, 2π)d contains a t-dimensional set of the form [0, 2π)d ∩H where H is an
affine subspace of R

d and 1≤ t ≤ d.

If the RUM spectrum for a particular periodic structure contains linear structure then
the same is true for the RUM spectrum for any periodic structure. This follows from the
fact that the RUM spectrum for a periodic structure arises as the image of the primitive
RUM spectrum under a natural surjective map [15].

Theorem 4.9. Let C be a crystal framework in R
d and let S be a crystal flex spanning

set for C. If S contains a bounded band-limited flex then Ω(C) contains the linear structure.

Proof. Let u ∈S be a bounded band-limited flex for C. If u is finitely supported then,
by [15, Theorem 5.6], Ω(C) = T

d and so Ω(C) contains the linear structure. Suppose u is
not finitely supported. By Theorem 4.4(ii) and its proof, given a periodic structure L for
C, the sublattice Lu has rank t, where 1≤ t ≤ d − 1, and u is factor periodic with respect
to Lu. Moreover, u is band-limited with respect to the proper subspace K of R

d spanned
by Lu.

Let Tu = {Tb ∈ T : b ∈ Lu} be the subgroup of the translation group T determined by
this sublattice. Also, let ω0 = (ω1, . . . , ωt) be the periodicity multifactor. By Lemma 3.8,
since u is bounded, ω0 ∈ T

t. Assume that Tu has generators T g(1), . . . , T g(t) and choose
translations T g(t+1). . . , T g(d) such that T g(1), . . . , T g(d) is a set of generators for a full
rank subgroup T ′ of T . Let ω∗ = (ωt+1, . . . , ωd) be an arbitrary point in T

d−t and define

w =
∑

k′∈Zd−t

ωk′
∗ Xk′u,

where X k′ = k ′
1T g(t+1) + . . . + k ′

d−tT g(d). This velocity field is well defined, since u is
band-limited relative to K and is an infinitesimal flex since F(C; K) is invariant under
the lattice group action πT . Also, w is factor periodic for ω = (ω0, ω∗) and the periodic
structure T ′. It follows that Ω(C) contains (ω0, ω∗) for every point ω∗ and so the RUM
spectrum contains the linear structure of dimension d − t. �

Corollary 4.10. Let C be a crystal framework in R
2 whose RUM spectrum in [0, 2π)2

is a proper infinite subset which contains no line segments. Then C does not possess a
crystal flex spanning set which includes a bounded band-limited flex.
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This corollary applies in particular to the 2D zeolite framework Coct whose motif has
bars belonging to a regular octagonal ring of equilateral triangles. Indeed the RUM
spectrum of Coct has been shown to be a curve containing no line segments [1, 15].

The same argument in the proof of Theorem 4.9 gives a parallel corollary for the
geometric flex spectrum. Indeed, let us say that the geometric flex spectrum Γ(C) con-
tains linear structure if there exists a point ω = (r1e

iη1 , . . . , rde
iηd) in Γ(C) such that the

intersection of Γ(C) with the torus

T
d
ω := {(r1e

iθ1 , . . . , rde
iθd) : θ1, . . . , θd ∈ [0, 2π)}

contains t-dimensional linear structure in the sense above for T
d. Then if there is a crystal

spanning set for C which contains a band-limited flex it follows, as in the proof of Theorem
4.9, that Γ(C) contains the linear structure.

We can use this observation together with Theorem 4.4 to obtain the following necessary
condition for the existence of a crystal flex spanning set or basis.

Theorem 4.11. Let C be a crystal framework in R
d whose geometric flex spectrum

is a proper infinite subset which contains no linear structure. Then C does not possess a
crystal flex spanning set.

Proof. A finite set of geometric flexes u1, . . . , ur with distinct periodicity multifactors
ω1, . . . , ωr is linearly independent and so, by the hypotheses, the infinitesimal flex space
of C is infinite dimensional. By Theorem 4.4, any crystal flex spanning set for C contains
a band-limited flex. By the discussion above, it follows that the geometric flex spectrum
contains linear structure, a contradiction. �

Remark 4.12. We recall that early experimental and computational studies of rigid
unit modes in silicates typically revealed linear structure in the RUM spectrum for their
high-temperature phases. See, for example, Dove et al. [3] where studies of curved RUM
surfaces, occurring in tridymite, for example, are also indicated.

It is natural to pose the following questions regarding converse implications to the
statements in the results above. If the geometric flex spectrum (respectively RUM spec-
trum) has linear structure does it follow that there exists a band-limited flex (respectively
bounded band-limited flex)? More generally, it would be of interest to obtain sufficient
conditions, including linear structure conditions on the geometric flex spectrum, for the
existence of a crystal flex basis or an essential crystal flex basis. Such sufficient conditions
would explain more fully the nature of the experimental phenomenon in terms of the
existence and non-existence of flexes which are band-limited with respect to lines and
planes in the crystal structure.

Remark 4.13. We remark that while unbounded flexes do not correspond to physical
modes for the bulk crystal their consideration is nevertheless important for the identi-
fication of surface modes associated with a boundary wall or free surface. Indeed, such
modes can be identified with bounded restrictions of unbounded flexes of the bulk crys-
tal. In particular, in three dimensions, a point ω = (ω1, ω2, ω3) in Γ(C) with |ωi| �= 1 for
a single value of i indicates the existence of a first-order surface mode associated with
a hyperplane boundary wall which is normal to the period vector of the bulk crystal

https://doi.org/10.1017/S0013091521000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000389


752 G. Badri, D. Kitson and S. C. Power

corresponding to i. Thus, a further motivation for the introduction of the geometric flex
spectrum and the identification of crystal flex spanning sets lies in their connections with
surface modes and isolated Weyl modes (Rocklin et al. [16]), and their analogies with
boundary modes for topological insulators (Graf and Porter [6], Lubensky et al. [13]).

5. Examples

We now determine crystal flex spanning sets and bases for a number of elementary crystal
frameworks. In these examples, the spanning sets are finitely generated by a small number
of band-limited flexes. To quantify this, we introduce the following associated measure of
flex complexity for any crystal framework C.

Definition 5.1. The flex complexity cpx(C) is the minimum of the cardinalities of the
generating sets for a crystal spanning set for F(C; R). Moreover, cpx(C) =∞ if there is
no such generating set.

5.1. The frameworks CZ2 and Chex

Let CZ2 be the grid framework in two dimensions, that is, the framework with joints
located on the Z

2 lattice and bars between nearest neighbours. Let Sgrid = {un, vn : n ∈
Z} be a set of velocity fields with un (respectively vm) supported by the joints on the
line y =n (respectively x =m) and with unit velocities in the direction of the support
line. Then it is elementary to check, by an exhaustion argument in the style of the proofs
below, that Sgrid is a crystal basis for the space F(CZ2 ; R).

Let Chex be the honeycomb framework associated with the regular hexagonal tiling
of the plane. Note that any hexagon ring subframework, H say, is the support of a
(normalised) local infinitesimal flex, uH say, which acts as infinitesimal rotation of H.
Let Shex be a set of identical non-zero flexes of this type for all the honeycomb cells. We
claim this is a crystal flex spanning set. We give the argument for this since it is typical
of the simple exhaustion argument needed to show that a given set is a free spanning
set or a free basis. Note also that

∑
H uH is the zero infinitesimal flex of Chex so Shex is

not a free basis. On the other hand, as the proof below shows, it has a curious minimal
redundancy property, in the sense that the removal of any flex from Shex gives a free
basis, although not a crystal basis.

From these observations and Proposition 5.2, it follows that cpx(CZ2) = cpx(Chex) = 1.

Proposition 5.2. Shex is a crystal flex spanning set for the space F(Chex; R) of real
infinitesimal flexes of Chex.

Proof. Let z be an infinitesimal flex of Chex. Subtracting a linear combination of the
local flexes for the cells A and B indicated in Figure 2, we may assume that the velocity
field for z at the origin is 0. Consider the infinite path of framework points to the right of
the origin, lying on cells 1, 2, 3, . . . , as indicated in Figure 2. We may subtract a multiple
of the local flex for cell 1 to ‘fix’ the first joint, that is, to create a flex with zero velocities
at O and at the first joint of the path. We may continue similarly to see that there is an
infinite linear combination w of the local flexes for cells 1, 2, 3, . . . such that z −w has
zero velocity at each joint of the infinite path.
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Figure 2. Part of Chex.

In the same manner, we can subtract an infinite linear combination of the local flexes to
the left of cells A and B to obtain a new flex which fixes all the framework points on the
two-way infinite horizontal path, π say, through O. This may be achieved without making
use of the local flex uC for the other hexagon incident to the origin. We may assume then
that z has zero velocities on the joints on π. The line of joints on y = 1 may be now be
‘fixed’ by subtraction of a unique infinite linear combination of the local flexes for the
next horizontal line of cells, a, b, c, . . . etc. At this point, the next horizontal line of
joints is necessarily fixed by z, in view of the flex condition. Continuing this process with
the horizontal hexagonal strips above and below π we see that there is an infinite linear
combination of the local flexes which is equal to the original flex. Also, the coefficients of
this infinite linear combination are determined uniquely, with the proviso that the local
flex uC is not used in the representation. It follows that Shex is a crystal flex spanning
set. �

5.2. The 2D kagome framework

We next consider the kagome framework in two dimensions, part of which is indicated in
Figure 3. Let a, b, c be the vertices of a triangular subframework of Ckag, with horizontal
base edge [pa, pb], and let L0

u be the (infinite) linear subframework which contains this
edge. Note that there is an evident one-dimensional subspace of infinitesimal flexes of
Ckag that are supported on this linear subframework. Consider the non-zero element u0

in this space which acts on alternate joints of L0
u with unit norm velocity fields, with

u0(pa) = (cos π/6,− sin π/6), u0(pb) = (cos π/6, sin π/6).

Let un, where n ∈ Z, be the parallel translates of u, naturally labelled, with u1 supported
by the first linear subframework L1

u above L0
u. Also, let {vn : n ∈ Z} (respectively {wn :

n ∈ Z}) be obtained from {un : n ∈ Z} by rotation about the centroid of the triangle abc
by 2π/3 (respectively by 4π/3).

The next theorem is due to A. Sait [9] from which it follows that cpx(Ckag) = 1.

Theorem 5.3. The set Bkag = {un, vn, wn : n ∈ Z} is a crystal flex basis for F(Ckag; R).

Proof. Since the space group acts on the set it will be sufficient to show that Bkag is a
free basis. Write Ln

u (respectively Ln
v ,Ln

w), for n ∈ Z, for the supporting linear subframe-
works for un (respectively vn, wn). Let z be an infinitesimal flex of Ckag. By subtracting
an appropriate linear combination of the three infinitesimal flexes u0, v0, w0, we may
assume that the three velocity vectors za, z b, z c for the joints pa, pb, pc of a central
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Figure 3. The horizontal band-limited flexes un for n ∈ Z.

triangle subframework are zero. Subtracting an appropriate multiple of w1 we may then
arrange zd = 0, where d is the next vertex in the direction from a to b. Following this,
subtracting an appropriate multiple of v−1, we may arrange z e = 0 for the next vertex.
Continuing in this way, we obtain an infinite linear combination

z′ =
∑
n∈Z

βnvn + γnwn

such that the infinitesimal flex z ′′ = z − z ′ imparts only zero velocities to the joints of L0
u.

From the flex condition and the rigidity of triangles, we deduce that the flex velocities
are also zero on the apex vertices for the triangle subframeworks, such as def, which
are horizontal translates of abc. Now subtract an appropriate multiple of u1 so that the
resulting flex is zero on L1

u. Continuing upwards in this manner, and similarly downwards,
we obtain an infinite sum representation for z ′′ in terms of the infinitesimal flexes un, n ∈
Z. Thus, the original flex z is an infinite sum of the basis vectors. Also, the representation
is unique and so the proof is complete. �

Combining this result with Theorem 4.4(iii), we obtain the following description of the
space of bounded infinitesimal flexes.

Corollary 5.4. With Bkag = {un, vn, wn : n ∈ Z} as above,

F∞(Ckag; R)

=

{
u ∈ F(Ckag; R) : u =

∑
n∈Z

(αnun + βnvn + γnwn) : (αn), (βn), (γn) ∈ 
∞(Z)

}
.
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Figure 4. A motif of 3 joints and 12 bars for the framework COct.

5.3. The octahedron crystal framework COct

We now consider some crystal frameworks in three dimensions.
Write COct for the crystal framework of corner-connected regular octahedra, in the

symmetric placement for which there is one translation class for them. The construction of
a crystal flex basis for COct may be determined by viewing COct as the union of countably
many copies of the 2D grid framework whose orientations and joint connections are
consistent with Figure 4.

To be precise, assume that the period vectors for COct are (2, 0, 0), (0, 2, 0), (0, 0, 2)
and let Cz denote the grid framework in the xy-plane which contains the adjacent joints
p1 = (0,− 1, 0), p2 = (1, 0, 0), p3 = (0, 1, 0) and p4 = (− 1, 0, 0). These joints lie on a
4-cycle of bars in the xy-plane. Similarly, let Cx denote the 2D grid framework in the
yz -plane which contains the adjacent joints p1, p5 = (0, 0,− 1), p3 and p6 = (0, 0, 1), and
let Cy denote the 2D grid framework parallel to the zx -plane which contains the adjacent
joints p2, p5, p4 and p6.

Let Cn
x be the translated bar-joint frameworks Cx + (2n, 0, 0), for n ∈ Z, and similarly

define Cn
y and Cn

z . Then COct is the union of all of these frameworks, that is, it is the
bar-joint framework whose joint set is the union of the joints (without multiplicity) and
whose set of bars is the union of all the bars.

Let us also define C+
Oct as the augmented framework in which each regular octahedron

is augmented by three bars parallel to the coordinate axes. In view of the infinitesimal
rigidity of a convex octahedron it follows that the vector spaces F(COct; R) and F(C+

Oct; R)
are equal.

Let us write Csq for a 2D bar-joint framework composed of corner-connected rigid
squares. This is obtained from the 2D grid framework by adding an edge to each alternate
square. Let C+

sq be the related framework which has both cross diagonals added to the
rigid squares. We may thus view C+

Oct as the union of copies of C+
sq, where these copies
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are augmentation frameworks, C̃n
x , C̃n

y and C̃n
z say, of the frameworks Cn

x , Cn
y and Cn

z .
It follows immediately that the alternation flex a of C̃n

x extends to a flex ax
n of C+

Oct which
has zero velocities on all the other vertices. Let us similarly define the ‘local alternation
flexes’ ay

n and az
n for n ∈ Z.

Let rx, ry, r z be infinitesimal flexes for axial rotations of COct about the principal
axes of the central octahedron. These infinitesimal flexes act on the entire framework and
are unbounded flexes. Also, we assume the normalization such that for σ = x, y or z the
restrictions of aσ

n to the octahedron meeting the σ-axis agrees with the restriction of rσ.
Finally, let �x be the velocity field in F(COct; R) with joint velocities (1, 0, 0) and let �y

and �z be analogous velocity fields for the y and z directions.
In the next proof, we use the following elementary flex projection principle. If the bar

[pa, pb] lies in a plane P of R
3 and if the joint velocities va, vb in R

3 give an infinitesimal
flex of the bar [pa, pb] then the P components va

′, vb
′ of va, vb also give an infinitesimal

flex of the bar. We say that such a flex is an in-plane flex when the plane in question is
understood.

Theorem 5.5. The set S of velocity fields

{rx, ry, rz} ∪ {�x, �y, �z} ∪ {ax
n, ay

n, az
n : n ∈ Z}

is an essential crystal flex basis for F(COct; R).

Proof. The subset S0 ⊆ S of non-rotational flexes has the crystallographic group
action property and so it will suffice to show that S is a free basis for COct. Equivalently,
we show that S is a free basis for C+

Oct.
Let z be an infinitesimal flex in F(C+

Oct; R). There is a linear combination z rig of
�x, �y, �z, rx, ry, rz which agrees with z on the joints p1, . . . , p6. Replacing z by z − z rig, for
some rigid motion infinitesimal flex z rig, we may assume that these velocities for z are
zero.

We now make use of the flex projection principle. Note that the velocity field z xy given
by the xy-plane projection of the joint velocities z (p), for joints in C̃0

z , is an infinitesimal
flex of C̃0

z . Since z has zero velocity vectors on the central octahedron it follows that the
xy-plane projection of z also has zero velocities on the central square of C̃0

z . It follows
that this in-plane flex is equal to the restriction of a scalar multiple of az

0 − rz. In this
way, we obtain scalar multiples α0(az

0 − rz), β0(ax
0 − rx) and γ0(a

y
0 − ry) which provide

the in-plane flexes of z for the planes z = 0, x = 0 and y = 0.
Consider now the tower subframework given by the tower of octahedra whose connect-

ing joints lie on the z -axis. Since z is zero on the central octahedron supported by p1, . . . ,
p6, denoted O (0,0,0), it follows that the z component of the joint velocity for a joint on
this line is zero. It also follows that there is an infinitesimal flex β0(ax

0 − rx) + γ0(a
y
0 − ry)

with joint velocities agreeing with those of z for the joints on the axial line. It follows
similarly that there is a flex of the form

w = α(az
0 − rz) + β0(ax

0 − rx) + γ0(a
y
0 − ry)

with this agreement property for the three axial lines through O(0,0,0).

https://doi.org/10.1017/S0013091521000389 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000389


Crystal flex bases and the RUM spectrum 757

Replacing z by z −w, we may assume that z is zero on O(0,0,0) and on the joints of
the three axial lines of O (0,0,0). Note that the restriction of such a flex z to any other
octahedron O with an axis on the coordinate axes must be an infinitesimal rotation flex
of the octahedron about this axis. Also each such flex of an individual octahedron O, on
the σ-axis say, agrees with the restriction of a scalar multiple of the local alternation flex
aσ

n, for some n �= 0. Evidently, these infinitesimal flexes act on distinct octahedra on the
axial lines.

It follows that there is an infinite linear combination of these flexes, w2 say, whose
restriction to any octahedron on a coordinate axis is equal to the restriction of z. Replacing
z by z −w2, we may assume that z is zero on this triple tower, TOct say. We now observe
that any infinitesimal flex which is zero on TOct is the zero flex. This follows from the fact
that the entire framework may be built up from TOct by attaching octahedra in groups
of four such that at each stage every flex which is zero on TOct is the zero flex. It follows
that z must be identically zero. Thus, every velocity field z in F(COct; R) is an infinite
linear combination of the vectors in the set S.

Note that S is a countable set of velocity fields which tend to zero strictly and is a free
spanning set for a vector space of infinitesimal flexes. Also, the scalar coefficients in the
identifications above are determined uniquely by the joint velocities of the flex z. Thus,
S is a free infinitesimal flex basis, as required. �

Remark 5.6. From a simple adaptation of the above proof, it follows that the space
F∞(COct; R) of bounded infinitesimal flexes is the space of infinitesimal flexes of the form

u = α�x + β�y + γ�z +
∑
n∈Z

αnax
n + βnay

n + γnaz
n, (αn), (βn), (γn) ∈ 
∞(Z)

The octahedral framework serves to model the rigid unit atomic structure of the crystal
perovskite. Its zero mode (or RUM mode) phonon spectrum was among early examples to
be computed by experiment and simulation. Other examples were quartz and cristobalite.
See Giddy et al. [5]. The RUM spectrum for crystobalite has complete linear structure
in [0, 2π)3, being the union of the three line segments (t, 0, 0), (0, t, 0), (0, 0, t), for
0≤ t < 2π. The existence of this linear structure in the RUM spectrum also follows from
the band-limited flexes in S.

5.4. The 3D kagome framework

The kagome framework in three dimensions, CKag, has the structure of the kagome net,
a network of regular tetrahedral units connected pairwise at their vertices. It may be
constructed from the 2D kagome net by first completing its triangles to tetrahedra with
alternating up and down orientations to create a horizontal layer framework, and then
joining translational copies of such layers. The period vectors determine a parallelepiped
unit which is occupied by a single tetrahedron and one can determine a motif for CKag with
a corresponding 12-by-12 matrix-valued symbol function on the 3-torus [14]. However, the
simple layer structure description, together with the symmetry of CKag, are sufficient to
determine a crystal basis by an exhaustion argument, as before, as we now sketch.

For m ∈ Z, let {um
n , vm

n , wm
n : n ∈ Z} be the crystal flex bases for the in-plane infinites-

imal flex space of the mth layer and note that the infinitesimal flexes in these sets extend
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Figure 5. A motif of 2 joints and 9 bars for the bipyramid framework.

(by zero velocity specifications) to infinitesimal flexes of CKag. If w is an arbitrary infinites-
imal flex of CKag, we may subtract an appropriate infinite linear combination of these
flexes to replace w by a flex w1 with the property that the velocity vectors at each joint
in the horizontal layers are in the vertical direction. Let us make a distinction between
the ‘thick’ horizontal layer frameworks and their ‘thin’ kagome subframeworks (which
support the added tetrahedra). For layer m = 0, fix a triangle subframework in the thin
layer to be a base triangle. Its tetrahedron has three additional bars. Each of these bars
indicates the direction of a linearly localized flex, each of which is a space group element
image of u0

0. We may choose a linear combination of these flexes and subtract them from
w1 to obtain a flex w2 so that the tetrahedron has zero velocities (under w2) at all four
of its joints.

Continuing in this way we see that, as in the 2D kagome, there is a crystal flex basis with
a single generator and it consists of the space group element images of u0

0. In particular,
cpx(CKag) = 1.

5.5. The bipyramid framework CBipyr

We next define the bipyramid crystal framework CBipyr and compute the transfer func-
tion associated with the natural primitive periodic structure. An appropriate basis of
period vectors takes the form

(1, 0, 0), (1/2,
√

3/2, 0), (0, 0, 2h)

and we consider a motif (F v, F e) where F v consists of the two joints p1 = (0, 0, 0),
p2 = (1/2, α,− h) and F e consists of the nine bars pipj associated with the nine directed
bars indicated in Figure 5. Here h =

√
2/3 is the height of a regular tetrahedron of unit

sidelength and α =
√

3/6 is the distance from B to C, that is, the distance of the centroid
of a unit sidelength equilateral triangle to the triangle boundary.

The following data for the motif edges will suffice for the computation of the associated
transfer function ΨBipyr(z ).

A factor-periodic infinitesimal flex, with factor ω = (ω1, ω2, ω3) ∈ C
3
∗, has the form

u = (uκ,k) = (ωka) = (ωk1
1 ωk2

2 ωk3
3 a), k ∈ Z

3,
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i p(ei) k = (k1, k2, k3) l = (l1, l2, l3)

1 (− 1, 0, 0) (0, 0, 0) (1, 0, 0)

2 (1/2,−√
3/2, 0) (1, 0, 0) (0, 1, 0)

3 (−1/2,−√
3/2, 0) (0, 0, 0) (0, 1, 0)

4 (− 1/2,−α, h) (0, 0, 0) (0, 0, 0)
5 (1/2,−α, h) (1, 0, 0) (0, 0, 0)
6 (0, 2α, h) (0, 1, 0) (0, 0, 0)
7 (− 1/2,−α,− h) (0, 0, 0) (0, 0, 1)
8 (1/2,−α,− h) (1, 0, 0) (0, 0, 1)
9 (0, 2α,− h) (0, 1, 0) (0, 0, 1)

where a = (u1,x, u1,y, u1,z, u2,x, u2,y, u2,z) ∈ R
6 is the velocity field for the motif joints,

being the list of the coordinate velocities of u at the joints p1 and p2. We have,

ΨBipyr(z−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1,x v1,y v1,z v2,x v2,y v2,z

e1 −(1− z1) 0 0 0 0 0
e2 (z1 − z2)/2 −(z1 − z2)

√
3/2 0 0 0 0

e3 (1− z2)/2 −(1− z2)
√

3/2 0 0 0 0
e4 −1/2 −α h 1/2 α −h
e5 z1/2 −αz1 z1h −1/2 α −h
e6 0 2z2α z2h 0 −2α −h
e7 −1/2 −α −h z3/2 z3α z3h
e8 z1/2 −z1α −z1h −z3/2 z3α z3h
e9 0 2z2α −z2h 0 −2z3α z3h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The submatrix of ΨBipyr(z−1) for columns 3, 4, 5 is a 9× 3 function matrix. We note
that the first three rows are zero. Indeed, the three edges e1 = (v1, (0, 0, 0))(v1, (1, 0,
0)), e2 = (v1, (1, 0, 0))(v1, (0, 1, 0)) and e3 = (v1, (0, 0, 0))(v1, (0, 0, 1)) are of v =w
type and so the entries for columns 4, 5, 6 are zero. Also, the entries for column 3 are
zero since the z -component is zero for the vectors p(ei), for i = 1, 2, 3.

We next determine the set of factors ω ∈ C
3
∗ for which ΨBipyr(ω−1)a = 0 for some non-

zero vector of the form a = (0, 0, u1,z, u2,x, u2,y, 0). In doing so, we shall determine the
factor periodic infinitesimal flexes u with the property that their velocity fields impart
only vertical velocities to the joints that lie in the horizontal copies of the fully triangu-
lated framework Ctri and impart only horizontal velocities to the other joints, the polar
joints of the constituent bipyramids. In view of the latter condition, we refer to these
infinitesimal flexes simply as sheering flexes. The required solutions for ω are the values
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of z = (z 1, z 2, z 3) for which the submatrix Ψsub(z−1) has non-zero kernel, where

Ψsub(z−1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

v1,z v2,x v2,y

e4 h 1/2 α
e5 z1h −1/2 α
e6 z2h 0 −2α
e7 −h z3/2 z3α
e8 −z1h −z3/2 z3α
e9 −z2h 0 −2z3α

⎤
⎥⎥⎥⎥⎥⎥⎦

Noting the similarity between the rows for e6 and e9, it follows that if z 3 is not equal to
−1 then the kernel is trivial. On the other hand if z 3 =−1 then the rows for e7, e8, e9

are the negatives of the rows for e4, e5, e6. We conclude that (ω1, ω2, ω3) is a periodicity
multifactor for a sheering flex u if and only if ω3 =−1 and the determinant of the 3× 3
submatrix for the first 3 rows is zero at ω1, ω2. This determinant is αh(1 + z 1 + z 2).
We conclude that when z 1 and z 2 are unimodular then there are exactly two solutions
and so the RUM spectrum Ω(CBipyr) contains the set

{(1, 1, 1), (e2πi/3, e4πi/3, eπi), (e4πi/3, e2πi/3, eπi)}.

We also note that there are unbounded geometric flexes associated with the solutions
(ω1, ω2) of the equation of 1 + z 1 + z 2 = 0, where ω1 = r, ω2 =−(1 + r), and 0< r < 1.
These infinitesimal flexes bear some analogy with the unbounded flex of the kite
framework considered in Example 2.11. Since there are uncountably many linearly inde-
pendent unbounded flexes of this type the infinitesimal flex space F(CBipyr; R) is infinite
dimensional.

5.6. Two crystal extensions of CBipyr

Consider the crystal framework Ce
Bipyr which is obtained from CBipyr by adding bonds

of length 1 between polar joints whenever this is possible. It is straightforward to see
that Ce

Bipyr is sequentially infinitesimally rigid [12, 14] and so is infinitesimally rigid in
the strongest possible sense. Note that every 2D subframework parallel to the xy-plane
is a copy of the fully triangulated framework Ctri. Let C+

Bipyr be obtained from CBipyr by
adding edges and vertices so that every triangle in the horizontal copies of Ctri in CBipyr is
the equator of a bipyramid. This framework may be described as having horizontal layers
of maximally packed bipyramids. The joints are once again of two types, with polar joints
having degree 6, as before, and equatorial joints having degree 18. One can observe that
in fact the two sheering RUMs of CBipyr extend to this framework and so, despite the
edge rich structure, C+

Bipyr is not infinitesimally rigid.
Added in proof. The geometric spectrum has been used by the third author and E.

Kastis [10, 11] to obtain necessary and sufficient conditions for the infinitesimal rigidity
of a crystallographic bar-joint framework.
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