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A comprehensive study of the two-dimensional incompressible shear-driven flow in
an open square cavity is carried out. Two successive bifurcations lead to two limit
cycles with different frequencies and different numbers of structures which propagate
along the top of the cavity and circulate in its interior. A branch of quasi-periodic
states produced by secondary Hopf bifurcations transfers the stability from one limit
cycle to the other. A full analysis of this scenario is obtained by means of nonlinear
simulations, linear stability analysis and Floquet analysis. We characterize the temporal
behaviour of the limit cycles and quasi-periodic state via Fourier transforms and their
spatial behaviour via the Hilbert transform. We address the relevance of linearization
about the mean flow. Although here the nonlinear frequencies are not very far from
those obtained by linearization about the base flow, the difference is substantially
reduced when eigenvalues are obtained instead from linearization about the mean
and in addition, the corresponding growth rate is small, a combination of properties
called RZIF (real zero imaginary frequency). Moreover growth rates obtained by
linearization about the mean of one limit cycle are correlated with relative stability to
the other limit cycle. Finally, we show that the frequencies of the successive modes
are separated by a constant increment.

Key words: bifurcation, free shear layers, vortex shedding

1. Introduction
We consider the incompressible shear-driven flow in a cavity, also known as open

cavity flow. The first two-dimensional instability of the flow is localized along the
shear layer delimiting the outer boundary layer above the cavity and also along
the downstream side of the cavity (Sipp & Lebedev 2007; Sipp et al. 2010). This
instability relies essentially on two mechanisms. First, the convectively unstable nature
of the shear layer causes perturbations to grow as they travel downstream, essentially
due to the Kelvin–Helmholtz mechanism. Once they impinge on the downstream
corner of the cavity, the inner-cavity recirculating flow and the instantaneous pressure
feedback provide the mechanisms by which these perturbations re-excite the upstream
portion of the shear layer. At sufficiently high Reynolds numbers, the coupling of
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these mechanisms gives rise to a linearly unstable feedback loop. A similar unstable
loop exists for compressible shear-driven cavity flows in which the instantaneous
pressure feedback is replaced by upstream-propagating acoustic waves (Rossiter 1964;
Rockwell & Naudascher 1978; Rowley, Colonius & Basu 2002; Gloerfelt 2009;
Yamouni, Sipp & Jacquin 2013). The shear-driven open cavity flow has a number of
applications in aeronautics (Yu 1977) and in industry, where it can serve as a mixing
device (Chien, Rising & Ottino 1986).

Shear-driven instabilities in a cavity are often preceded by centrifugal instabilities
as the Reynolds number is increased. The two are easy to distinguish since the
shear-driven instabilities lead to streamwise travelling waves while the centrifugal
instabilities lead to steady oscillations which are spanwise periodic (away from
rigid boundaries if these are present). These spanwise oscillations are observed
in simulations (Aidun, Triantafillopoulos & Benson 1991; Theofilis, Duck &
Owen 2004; Picella et al. 2018) and in experiments (Shankar & Deshpande 2000;
Faure et al. 2007, 2009; Douay, Pastur & Lusseyran 2016). This could make the
two-dimensional (spanwise-independent) case seem academic. However, because the
spanwise oscillations are of low amplitude and are mainly located inside the cavity,
they have a minimal effect on the subsequent development of the flow for this range
of Reynolds numbers. As the Reynolds number is further increased, shear-driven
instabilities occur, leading to states resembling streamwise travelling waves (Basley
et al. 2013). The resulting streamwise wavelengths and temporal frequencies are
very similar to those observed in the spanwise-independent case, but the critical
Reynolds numbers are different (Basley et al. 2011, 2013). Experiments (Rossiter
1964; Rockwell 1977; Rockwell & Naudascher 1978; Basley et al. 2011, 2013) have
shown that over a large range of aspect ratios, the frequency of the dominant mode
is approximated quite well by a spanwise-independent approach. Rockwell (1977),
Rockwell & Naudascher (1978) showed that in a square cavity with a short spanwise
extent, the mode produced has a streamwise wavelength which is approximately half
the cavity length and a temporal period which is approximately one, in units of the
cavity length and imposed velocity. A closely related case is that of the double cavity,
in which a second cavity is located above the layer of imposed streamwise flow. The
numerical simulations of Tuerke et al. (2017) have shown that for both single and
double cavities, periodic dynamics appears in the Reynolds number range between
4000 and 4300, with a dominant Strouhal number close to one. This is consistent
with our numerical results.

The two-dimensional shear-driven cavity has served multiple theoretical modelling
purposes over the past decade, such as in optimal control, reduced-order modelling
(Barbagallo, Sipp & Schmid 2009; Loiseau & Brunton 2018) and dynamic mode
decomposition (Schmid 2010). Despite its use as a representative test case for
complex nonlinear dynamics in fluid mechanics, an extensive analysis of the first
few bifurcations experienced by the shear-driven cavity flow has never been carried
out. The primary aim of the present work is to fill this gap. We have been able to
determine the first primary and secondary bifurcations experienced by the flow and
to draw the associated bifurcation diagram. The combined use of nonlinear direct
numerical simulation, linear stability analysis and Floquet analysis then enabled us
to investigate the stability of the various solution branches. More specifically, we
have studied two limit cycles whose relative stability is mediated by an unstable
quasi-periodic state. Our study is thus complementary to those of Sipp & Lebedev
(2007) and Meliga (2017), each of which treats one of the two limit cycles covered
in this study. Another relevant numerical study is that of Tiesinga, Wubs & Veldman
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(2002), who conducted a bifurcation analysis of the two-dimensional lid-driven cavity
which, in the parameter range of our study, behaves very similarly to the open cavity.
Oscillations along the top of the cavity are, of course, ruled out, but the oscillations
that travel down the downstream side of the cavity are quite similar in appearance
and in behaviour. As in our case, two limit cycles and an intermediate quasi-periodic
state are found. Because of the viscous damping by the lid, the critical Reynolds
numbers are approximately twice those for the open cavity (Poliashenko & Aidun
1995; Fortin et al. 1997).

A second theme of our investigation, also previously addressed by Sipp & Lebedev
(2007) and Meliga (2017), is the relevance of linearization about the mean flow.
For a fully developed limit cycle, nonlinear interactions contribute to the mean
flow, leading to a deviation from the base flow called the distortion. In this way,
the mean flow inherits information from the nonlinearities (Maurel, Pagneux &
Wesfreid 1995; Zielinska et al. 1997). From this comes the idea to linearize about
the mean flow, despite the fact that the mean flow is not a solution of the stationary
Navier–Stokes equations. Although the empirical use of mean flows to study nonlinear
dynamics is long standing (Malkus 1956; Stuart 1958; Morris 1976), quantitative
computations and comparisons are more recent, and primarily for the wake of a
circular cylinder (Hammond & Redekopp 1997; Pier 2002; Barkley 2006; Mittal
2008). When successful, this procedure leads to an eigenvalue whose imaginary
part reproduces very well the frequency of the periodic orbit, even quite far from
its threshold. Moreover, the real part of this eigenvalue is close to zero (Barkley
2006), which would be called marginal stability if the linearization were about the
base flow. This property was named RZIF (a mnemonic for real zero imaginary
frequency) by Turton, Tuckerman & Barkley (2015). An extension of RZIF called
SCM (for self-consistent model) has been proposed by Mantič-Lugo, Arratia &
Gallaire (2014, 2015), in which the mean flow is computed, not as an average of
the full time-dependent flow, but precisely so that the RZIF property is satisfied, i.e.
such that the mean flow is marginally stable. Neither RZIF nor SCM are always
valid; counterexamples have been found for regimes in thermosolutal convection by
Turton et al. (2015) and Bengana (2019). Other flows for which these properties
or models have been tested are the compressible flow in the wake of a cylinder
(Fani et al. 2018) and counter-rotating Taylor–Couette flow (Bengana & Tuckerman
2019). Linearization about the mean flow has been applied to understanding the
temporal spectra of turbulent flows (McKeon & Sharma 2010; Hwang & Cossu 2010;
Beneddine et al. 2016; Symon et al. 2018).

The paper is organized as follows: § 2 introduces the configuration of the shear-
driven cavity flow and the governing equations and the tools for the various analyses
we have performed, i.e. linearization about the base and the mean flows, Floquet
analysis, the temporal Fourier transform and the spatial Hilbert transform. Our results
concerning the bifurcation scenario for this flow are presented in § 3, more specifically
two limit cycles produced by primary Hopf bifurcations and whose relative stability
is mediated by an unstable quasi-periodic state produced by secondary bifurcations. In
§ 4, we discuss linearization about the mean flow for both limit cycles, as well as the
formula of Rossiter (1964). We summarize our conclusions in § 5.

2. Governing equations and numerical methods
2.1. Problem definition

The configuration considered is the two-dimensional incompressible viscous shear-
driven flow of a Newtonian fluid over an open cavity with equal length and depth
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FIGURE 1. (Colour online) Geometry of our study. At the inlet (BCinlet) a uniform unit
velocity (u= 1; v = 0) is imposed. Dashed red line: free-slip condition (BCfree-slip). Thick
blue line: no-slip boundary condition (BCno-slip). A free-outflow boundary condition is
imposed at the outlet.

shown in figure 1. This configuration is the same as that considered by Sipp &
Lebedev (2007) and Barbagallo et al. (2009), or more recently by Meliga (2017).
We use the unperturbed upstream velocity U∞, the cavity length L and the resulting
advective time L/U∞ to non-dimensionalize the variables. The dynamics of the flow
is governed by the incompressible Navier–Stokes equations

∂U
∂t
=−∇P+

1
Re
∇

2U−∇ · (U⊗U),

0=∇ ·U,

 (2.1)

where U(x, t) = (U, V)T and P are the velocity and pressure fields. The Reynolds
number Re is defined as

Re=
U∞L
ν
, (2.2)

where ν is the kinematic viscosity of the fluid, and will range between Re= 4000 and
5000. The boundary conditions, illustrated in figure 1, are

U= ex on BCinlet,

U= 0 on BCno-slip,

∂yU = V = 0 on BCfree-slip,

∂xU= 0 on BCoutlet.

 (2.3)

The boundary conditions at the inlet and along the wall are crucial. The flow is given
a uniform profile at the inlet and develops a boundary layer structure as it advances
downstream. The instability occurs where the boundary layer reaches the upstream
corner of the cavity and it is the thickness of the boundary layer at this point that
controls the details of the transition. When free-slip conditions are imposed on the
wall close to the inlet, then a boundary layer of an appropriate thickness develops
over a shorter distance than would be the case if no-slip conditions were used over the
entire wall. A shorter domain can be used, making the calculation more economical.

The Navier–Stokes equations are solved using the incompressible flow solver
NEK5000 (Fischer, Lottes & Kerkemeir 2008) which is based on the spectral element
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method. A PN − PN−2 formulation has been used: the velocity field is discretized
using Nth-order Lagrange interpolants defined on the Gauss–Legendre–Lobatto
quadrature points as basis and trial functions while the pressure field is discretized
using Lagrange interpolants of degree N − 2 defined on the Gauss–Legendre
quadrature points. Finally, time integration is performed using the BDF3/EXT3
scheme: integration of the viscous term relies on backward differentiation while the
convective terms are integrated explicitly using a third-order accurate extrapolation.
In practice, the polynomial degree was set to N = 6 while the computational domain
was discretized using 4000 spectral elements. The resulting mesh refinement is thus
similar to that used in Sipp & Lebedev (2007).

2.2. Base flow and linearization
A base flow Ub(x) is a solution of the stationary Navier–Stokes equations

0=−∇Pb +
1

Re
∇

2Ub −∇ · (Ub ⊗Ub),

0=∇ ·Ub,

 (2.4)

with the boundary conditions again given by (2.3). Various techniques can be used
to compute the base flow Ub(x). Because of its simplicity, the selective frequency
damping (SFD) technique initially proposed by Åkervik et al. (2006) has been used;
see also Jordi, Cotter & Sherwin (2014, 2015), Cunha, Passaggia & Lazareff (2015).

Once the equilibrium Ub(x) has been computed, we determine its linear stability. To
do so, we consider an infinitesimal perturbation u(x, t) to the base flow Ub, whose
dynamics is governed by the linearized Navier–Stokes equations

∂u
∂t
=−∇p+

1
Re
∇

2u−∇ · (Ub ⊗ u+ u⊗Ub),

0=∇ · u.

 (2.5)

The boundary conditions are the homogeneous version of (2.3), i.e. we now prescribe
a zero velocity profile at the inlet.

u= 0 on BCinlet,

u= 0 on BCno-slip,

∂yu= v = 0 on BCfree-slip,

∂xu= 0 on BCoutlet.

 (2.6)

Solutions to (2.5)–(2.6) are of the form u(x, t) = û(x)e(σ+iω)t
+ c.c., p(x, t) =

p̂(x)e(σ+iω)t
+ c.c., from which we obtain the eigenvalue problem

(σ + iω)û=LUb û,
0=∇ · û,

}
(2.7)

where LUb is the Jacobian of the Navier–Stokes equations linearized around Ub,

LUb û≡−∇p̂+
1

Re
∇

2û−∇ · (Ub ⊗ û+ û⊗Ub). (2.8)
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The stability of the base flow is determined by the sign of the real part σ of the
leading eigenvalue, which is the growth rate of the perturbation. If σ crosses zero for
an eigenvalue with non-zero imaginary part ω, then a Hopf bifurcation leads to a limit
cycle whose frequency at onset is ω. In our case, the base flow undergoes a first Hopf
bifurcation at Re2= 4126, leading to a limit cycle LC2 and a second Hopf bifurcation
at Re3 = 4348 gives rise to LC3.

We computed the leading eigenvalues and eigenvectors using a time-stepper
approach; see, e.g. Edwards et al. (1994). Our stability calculation typically used
a Krylov subspace of dimension K = 256 and a sampling period 1T = 10−3

non-dimensional time units. Eigenvalues were considered to be converged if the
residual obtained from the Arnoldi decomposition was below 10−6.

2.3. Mean flow and linearization
At the threshold of a Hopf bifurcation, linearization about the base flow leads to an
eigenvalue whose real part is zero and whose imaginary part is the frequency of the
limit cycle which is produced. As the Reynolds number is increased and the limit
cycle develops nonlinearly and deviates from the base flow, eigenvalues obtained by
linearization about the base flow no longer correspond to the properties of the limit
cycle. However, linearization about the mean flow often leads to an eigenvalue whose
imaginary part is closer to the nonlinear frequency.

We consider a Reynolds decomposition of the instantaneous flow field, i.e.

U(x, t)=U(x)+ u(x, t), (2.9)

where U(x) is the mean flow and u(x, t) is the zero-mean fluctuation. Introducing
this decomposition into the Navier–Stokes equations and averaging shows that U is
governed by the Reynolds averaged Navier–Stokes (RANS) equations

0=−∇P+
1

Re
∇

2U−∇ · (U⊗U)−∇ · (u⊗ u),

0=∇ ·U,

 (2.10)

with inhomogeneous boundary conditions (2.3). The presence of the Reynolds stress
tensor u⊗ u of the fluctuation means that these equations are not closed. We compute
the mean flow U(x) of a period-T limit cycle by carrying out a full nonlinear
simulation via (2.1), (2.3) and time averaging,

U(x)=
1
T

∫ T

0
U(x, t) dt. (2.11)

The equations governing the dynamics of the fluctuation u(x, t) are obtained by
substituting U+ u for U into (2.1) and subtracting (2.10), leading to

∂u
∂t
=−∇p+

1
Re
∇

2u−∇ · (U⊗ u+ u⊗U)−∇ · (u⊗ u− u⊗ u)︸ ︷︷ ︸
f

,

0=∇ · u,

 (2.12)

with homogeneous boundary conditions (2.6). The equations differ from the linearized
Navier–Stokes equations by the presence of f . The term ∇ · (u ⊗ u), is the usual
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quadratic interaction term neglected in base flow linear stability analyses. The term
∇ · (u⊗ u) is the divergence of the Reynolds stress tensor of the fluctuation.

Studies carrying out mean flow stability analyses discard f , leading to the linearized
equations

∂u
∂t
=−∇p+

1
Re
∇

2u−∇ · (u⊗U+U⊗ u),

0=∇ · u.

 (2.13)

Using once again a normal mode ansatz, this set of equations is reduced to the
eigenvalue problem

(σ + iω)û=LUû,
0=∇ · û,

}
(2.14)

where LU is now the Navier–Stokes operator linearized around the mean flow, with
U substituted for Ub in (2.8).

Although the mean flow is not an equilibrium solution of the Navier–Stokes
solution, this approach has proved unexpectedly successful in characterizing the
frequencies of the full nonlinear solutions of the Navier–Stokes equations. (For a
counter-example, however, see Turton et al. (2015).) Various theoretical overlapping
justifications have been proposed for dropping or modelling f in (2.12), such as:

(i) The quadratic interaction of the fluctuation with itself is small and its temporal
mean does not appear in a linear stability analysis (Barkley 2006; Mantič-Lugo
et al. 2014, 2015).

(ii) The terms can be treated via an expansion in the distance from the threshold
(Sipp & Lebedev 2007).

(iii) The instantaneous Reynolds stress tensor u ⊗ u is approximately equal to its
temporal average u⊗ u so that they almost cancel out (Turton et al. 2015); see
also § 4.2.

(iv) The resolvent operator (iω−LU)
−1 is sharply peaked or of low rank. This implies

that its action on any vector, including f , is approximately a projection onto the
leading mode of the resolvent. The purpose of this procedure is not to eliminate
f , but to approximate it as a scalar multiple of the leading resolvent mode, and
then to treat f as a forcing input (McKeon & Sharma 2010; Hwang & Cossu
2010; Beneddine et al. 2016; Symon et al. 2018).

2.4. Floquet analysis
Our study of the shear-driven cavity focuses on two limit cycles, denoted by LC2 and
LC3, created by primary Hopf bifurcations and destabilized via secondary bifurcations.
Floquet analysis will be used to characterize this destabilization. The dynamics of an
infinitesimal perturbation u(x, t) evolving in the vicinity of a T-periodic limit cycle
U(x, t) is governed by the linearized Navier–Stokes equations

∂u
∂t
=LU(t)u,

0=∇ · u,

 (2.15)
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with homogeneous boundary conditions (2.6). This set of equations is non-autonomous,
as the operator LU(t) is T-periodic. Solutions to (2.15) are of the Floquet form

u(x, t)= û(x, t)e(σF+iωF)t + c.c., (2.16)

where û(x, t) are the T-periodic Floquet modes and (σF + iωF) the Floquet exponents.
The stability of U(t) is determined by the Floquet multipliers

µ= e(σF+iωF)T . (2.17)

If the moduli of the Floquet multipliers are smaller than one, perturbations will
decay exponentially fast and the orbit is stable. On the other hand, if at least one of
the Floquet multipliers has a modulus greater than one, then that perturbation will
grow exponentially and the orbit is unstable; see, e.g. Barkley & Henderson (1996)
and Gioria et al. (2009). In our study the Floquet exponents are complex and the
imaginary part ωF of the Floquet exponent is the argument (angle) of the Floquet
multiplier. The presence of an imaginary part leads to quasi-periodic behaviour. More
details and results are shown in § 3.4.

2.5. Edge state technique for computing the unstable quasi-periodic state

As will be shown in § 3, there is a range of Reynolds numbers over which limit
cycles LC2 and LC3 co-exist. In phase space, on the boundary between the basins
of attraction of these limit cycles, is an unstable quasi-periodic state QP. (More
specifically, QP is an edge state, meaning that within the boundary, trajectories are
attracted to it.) In order to compute QP, we use the same technique as in Itano & Toh
(2001) or Duguet, Willis & Kerswell (2008) for the laminar–turbulent edge state. In
such cases, whether a trajectory evolves towards a turbulent or laminar state depends
on the initial condition. Some initial conditions evolve directly to turbulence, others
decay directly to the laminar state. By appropriately weighting turbulent and laminar
solutions, an initial condition can be constructed so that the resulting trajectory
converges to and remains a long time on the edge state before diverging towards one
of these two attractors.

In our problem, a quasi-periodic state separates the two stable limit cycles LC2 and
LC3. Therefore we construct a weighted sum of the two, seeking an initial condition
U(x, 0) that will evolve after some time to QP and then remain as long as possible
before eventually converging to either limit cycle. Using the same bisection technique
as in Lopez et al. (2017), this initial condition is given by

U(x, t)= αULC2 + (1− α)ULC3 . (2.18)

For α = 1, the initial condition is LC2 and for α = 0, it is LC3. For each Reynolds
number considered, we successively delimit an interval of α by bisection to capture
the quasi-periodic state. As an illustration, we plot in figure 2 the time evolution
of streamwise velocity recorded by a probe located at (x1, y1) = (1.2, 0.2) for α =
0.47562027 and 0.47562256. A slight difference in α will bring the system after a
long transient regime to either LC2 or LC3.
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FIGURE 2. (Colour online) Time traces of streamwise velocity at Re = 4460 for two
simulations. The initial condition of the simulation is (2.18). For α = 0.47562027 the
system evolves towards LC2, shown as the black curve. For α = 0.47562256 it evolves
towards LC3, shown as the higher-amplitude red curve.

2.6. Standard deviation
To construct the bifurcation diagram, we seek an appropriate measure of the oscillation
amplitude as a function of Re. Time series from limit cycles LC2 and LC3 are shown
in figures 2 and 3(c). Their amplitudes are easily obtained by measuring the maxima
in a time series or the fundamental peak in the temporal Fourier spectrum. In contrast
to these, which have maxima of constant amplitudes, the quasi-periodic state existing
in the overlap region has maxima of varying heights as shown in figures 2 and 3(b).
To extract a single amplitude in their study of the cubic lid-driven cavity, Lopez et al.
(2017) used the standard deviation from the mean flow, defined as

ξ(U)=

[
1
N

N∑
n=0

(U(x1, y1, tn)−U(x1, y1))
2

]1/2

, (2.19)

where U(x1, y1, tn) the streamwise velocity measured at (x1, y1) = (1.2, 0.2) and at
each instant tn, N is the number of measurements in the time series and U(x1, y1) is
the temporal mean. We used the edge state technique described in § 2.5 to compute a
time series in which the QP is maintained for a long time. In figure 3(d), we show the
standard deviation of the time series plotted in figure 3(a). The standard deviation is
computed over all times of a sliding window containing fifty peaks. Once the deviation
is computed, the window is shifted by ten peaks and we compute the deviation again
over fifty peaks. Figure 3(d) shows two regimes of constant ξ(U) corresponding to
QP and LC2, justifying the choice of ξ(U) for the bifurcation diagram.

2.7. Hilbert transform
We use the Hilbert transform to obtain spatial characteristics of the flow. The Hilbert
transform is a useful means of extracting the local amplitude and phase from a signal.
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FIGURE 3. (Colour online) (a) Time series of streamwise velocity at (x1, y1)= (1.2, 0.2)
and Re= 4580 for a simulation with α= 0.829630407714844. The regimes corresponding
to QP and to LC3 are shown in (b,c). (d) The standard deviation is computed by a sliding
window.

A complex analytic signal fa(x) is constructed from real data f (x). In contrast to a real
signal that has negative and positive frequencies, fa is complex and has only positive
frequencies. This signal is obtained by

fa(x)= f (x)+ iH( f (x)). (2.20)

The imaginary part H( f (x)) is its Hilbert transform, defined by phase shifting the
positive and negative frequencies of the original real signal by −π/2 and π/2,
respectively. More details about the Hilbert transform can be found in Smith (2007).
Equation (2.20) is written in polar form

fa(x)= A(x)eiΦ(x). (2.21)

Thus we can extract the envelope (amplitude A(x)) and the phase Φ(x) from the
analytic signal at each location, which is the main interest in using the Hilbert
transform. We present the results in detail in § 3.3.

3. Bifurcation scenario
3.1. Overview

The flow over a shear-driven cavity at low Reynolds number consists of a free laminar
shear layer and one large recirculation within the cavity. As we increase the Reynolds
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number, the mixing layer is fed by the shear stress and its thickness develops over
the cavity. As widely presented in several studies (Rockwell & Naudascher 1978),
it is common to observe self-sustained oscillations in such configurations, in which
the flow impacts on a wall. In figure 4(a) we show the bifurcation diagram over the
range of Reynolds number Re∈[4000,5000]. We represent the standard deviation from
the mean of the streamwise velocity at a point as described in § 2.6. The standard
deviation is computed over all times tn of the time series corresponding to LC2, LC3
or QP. The line ξ(U) = 0 represents the solution of the stationary Navier–Stokes
equations (base flow). We plot the stable and unstable states with bold and dashed
curves, respectively.

The base flow is stable for Re < Re2 where Re2 ≈ 4126 is the critical Reynolds
number of the first Hopf bifurcation. This threshold is obtained by quadratic
interpolation of amplitudes and differs by only 0.34 % from that found by Sipp
& Lebedev (2007). Above this threshold, the base solution exists but is unstable. We
observe a second Hopf bifurcation at Re3 ≈ 4348, also from quadratic interpolation
of amplitudes, which agrees with the threshold measured by Meliga (2017), differing
only by 0.005 %. These successive Hopf bifurcations lead after saturation by nonlinear
interactions to two limit cycles which we name LC2 and LC3 because they display
two or three maxima of the vertical velocity fluctuations, as will be shown in the
next section.

Figure 4(b) shows the schematic phase portraits corresponding to the bifurcation
diagram. The stable base flow (i) loses its stability through a primary Hopf bifurcation
(ii) at Re2 producing the limit cycle LC2. (iii) Another primary Hopf bifurcation at Re3
produces the limit cycle LC3. (iv) A secondary subcritical Hopf bifurcation from LC3
at Re′3 produces the quasi-periodic state QP, which moves (v) in phase space towards
LC2 until it undergoes another secondary subcritical Hopf bifurcation (vi) at Re′2 which
destroys QP and destabilizes LC2. Above Re′3, LC3 is stable at least until Re= 5000.
Another Hopf bifurcation and interesting dynamics occur above Re= 5000 but these
will not be discussed in this paper.

This bifurcation diagram is very similar to that seen in the related configuration
of a lid-driven cavity (Tiesinga et al. 2002). These authors observed two successive
primary Hopf bifurcations leading to branches with different spatial characteristics.
Stability is transferred from the first branch to the second via a secondary branch,
which is itself created and destroyed via subcritical secondary Hopf bifurcations. The
Reynolds numbers they report for the lid-driven cavity are Re2 ≈ 8375, Re3 ≈ 8600,
Re′3= 8800, Re′2= 9150, quite close to twice those we find for the shear-driven cavity.
Indeed, this is a classic scenario which occurs in many hydrodynamic configurations;
see Kuznetsov (1998), Marques, Lopez & Shen (2002), Meliga, Gallaire & Chomaz
(2012). Representing the dynamics by two complex amplitudes r2eiφ2 , r3eiφ3 , the
dynamics is governed by the normal form,

ṙ2 = r2(µ2 − a22r2
2 − a23r2

3) φ̇2 =ω2 (3.1a)

ṙ3 = r3(µ3 − a32r2
2 − a33r2

3) φ̇3 =ω3. (3.1b)

where coefficients µj, aij depend on Re and a22 and a33 are positive. The diagrams of
figure 4(b) are projections of the dynamics onto the (r2, r3) plane.

The base flow is shown in figure 5. Figure 5(a) shows a visualization of its
spanwise vorticity Ωb(x, y) over our domain for Re= 4500. The change in the mixing
layer with increasing Re is not qualitatively visible on such a plot, so figure 5(b)
presents profiles Ωb(x = 0.5, y) at the midline for Reynolds numbers ranging from
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FIGURE 4. (Colour online) (a) Bifurcation diagram of the shear-driven cavity flow for
Re∈ [4000, 5000]. On the x-axis, we show the Reynolds number Re and on the y-axis the
standard deviation from the mean of the streamwise velocity at one point. The bold dots
on the curves and the thick ticks on the x-axis show the critical Reynolds numbers. The
integers show the number of unstable directions (counting a complex conjugate pair as a
single direction). We represent stable states by bold curves and unstable ones by dashed
curves. The line ξ(U) = 0 indicates the stationary base flow. The first Hopf bifurcation
occurs at Re2 ≈ 4126 and the second at Re3 ≈ 4348. These two thresholds have been
calculated by a quadratic interpolation from the amplitudes. The Hopf bifurcations give
rise to limit cycles LC2 and LC3. LC2 is stable from its threshold until Re′2 ≈ 4600
where it loses stability to LC3. LC3 is unstable from Re3 to Re′3 ≈ 4410 and above
this Reynolds number it becomes stable. Between LC2 and LC3 in the overlap region
Re ∈ [4400, 4600] there exists a quasi-periodic state QP, which has been computed by
using αLC2 + (1 − α)LC3 as an initial condition for the full nonlinear simulation where
α = α(Re). (b) From left to right, the schematic phase portraits corresponding to the
bifurcation diagram. The ordinate and abscissa can be considered to be projections onto
the eigenmodes leading to LC2 and LC3, respectively. The black dots and hollow circles
show the stable and unstable states. (i) Stable base flow. (ii) Limit cycle LC2 is shown
as bifurcating in the vertical direction. (iii) LC3 bifurcates in the horizontal direction.
(iv,v) The circle moving on the orbit indicates the quasi-periodic state QP. (vi) QP has
disappeared, stabilizing LC3.
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FIGURE 5. (Colour online) Stationary solution (base flow). (a) Ωb over the domain for
Re= 4500. (b) Vorticity profiles Ωb(x= 0.5, y) for Re= 4200, 4500, 5000, 6000. The major
change in the base flow with Reynolds number is localized on the shear layer region and
at the bottom of the cavity.

4200 to 6000. These profiles show the increasing steepness of the shear layer at the
top of the cavity.

In addition to base flows, we wish to show representations of the limit cycles LC2
and LC3. For the flows in our study, the fluctuations are always dominated by the
base or mean flow. In figure 6, we show visualizations of the vorticity Ω2, horizontal
velocity u2 and vertical velocity v2 for an instantaneous flow from LC2. Panels (a–c)
show the full fields and panels (d–f ) show the fluctuations obtained by subtracting
the temporal mean of each field. The temporal means are not shown, since they are
visually indistinguishable from the full fields. Although oscillations can be seen in
Ω2 in figure 6(a), these are very weak, and even less visible in u2, v2 in figure 6(b,c).
Therefore to distinguish between LC2 and LC3 and the base flow, we examine the
fluctuations, where the periodic structures along the top and downstream side of the
cavity are quite visible. Both Ω ′2 and u′2 in figure 6(d,e) display a two-layer structure
with an abrupt vertical change of sign at the top of the cavity. Since we are interested
primarily in the horizontal variation and propagation of structures along the top of the
cavity, we choose to plot the quantity which most emphasizes this feature, namely the
vertical velocity fluctuations v′2, as in figure 6( f ).

In figures 7 and 8 we show the instantaneous vertical velocity fluctuations for
LC2 and LC3 over one period. LC2 and LC3 are also depicted in the supplementary
movies available at https://doi.org/10.1017/jfm.2019.422. We observe four structures,
i.e. two maxima and two minima of the vertical velocity fluctuations, in LC2 and six
structures, i.e. three maxima and three minima of the vertical velocity fluctuations,
in LC3. Similar visualizations can be seen in calculations by Barbagallo et al. (2009)
and experiments by Basley et al. (2011, 2013).

The behaviour resembles that of travelling waves. The structures, produced by a
feedback mechanism, progress steadily to the right but the overall amplitude is not
uniform. At the downstream corner, the structures split, as reported by Rockwell &
Knisely (1980): one part follows the fluid downstream, while the other is entrained by
the cavity recirculation and returns to feed the flow at the upstream corner, sustaining
the vortex generation. The mechanism producing the oscillations is the same for both
limit cycles LC2 and LC3. The temporal frequency is near 7 for LC2 and near 10
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FIGURE 6. (Colour online) Instantaneous visualizations of LC2 at Re= 4500. Panel (a–c)
shows the spanwise vorticity Ω2, the horizontal velocity u2, and the vertical velocity v2.
Panel (d–f ) shows the fluctuations, obtained by subtracting the mean, e.g. Ω ′2=Ω2−Ω2,
where Ω2 is the average over one temporal period. The mean fields Ω2, u2, v2 are almost
identical to the instantaneous fields and are therefore not shown.

for LC3, as in Sipp & Lebedev (2007), Meliga (2017). These modes are selected by
the cavity length and the mean velocity of the mixing layer as described by Rossiter
(1964) and as will be discussed in § 4.4.

3.2. Linearization about the base flow
In figure 9 we present the results of linear stability analysis about the base flow. We
plot the growth rates σ in figure 9(a,c) and the frequencies ω in figure 9(b,d). As
previously stated, two successive Hopf bifurcations correspond to two different modes.
We plot in (a,b) the eigenvalue leading to LC2 and (c,d) that corresponding to LC3.
The zero crossing of the growth rate marks the Hopf bifurcation at which the base
flow becomes unstable to that eigenmode. As presented in the bifurcation diagram in
figure 4, the base flow acquires a first unstable direction at around Re2 ≈ 4126 and
a second unstable direction at Re3 ≈ 4348. Figure 9(b,d) also shows the nonlinear
frequencies for the two limit cycles. These agree with the eigenfrequencies at Re2
and Re3, as is necessarily the case for a supercritical bifurcation, but as the Reynolds
number increases, the frequencies diverge from one another. The frequency extracted
at an early stage of a nonlinear simulation initialized by a small perturbation from the
base flow will be equal to that given by linear analysis, but the nonlinear interactions
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FIGURE 7. (Colour online) Instantaneous vertical velocity fluctuations (v′= v− v) for LC2
over one period for Re = 4500. (a) t = 0 (b) T/4 (c) T/2 (d) 3T/4. The structures are
advected downstream, as they would be for a travelling wave. In the range of the cavity
x∈ [0, 1] we count two maxima of the vertical velocity fluctuations. The velocity contours
are deformed downstream for x> 1.2, due to the change to a free-slip boundary condition.
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FIGURE 8. (Colour online) Instantaneous vertical velocity fluctuations (v′= v− v) for LC3
over one period for Re= 4500. (a) t= 0 (b) T/4 (c) T/2 (d) 3T/4. We observe the same
dynamics as in LC2 shown in figure 7. Over the range x ∈ [0, 1] we count three maxima
of the vertical velocity fluctuations.

will cause it to evolve with time to the nonlinear frequency. The frequencies leading
to LC2 and LC3 cross at Re= 4540 (differing by only 0.6 % from the value Re= 4567
reported by Meliga (2017)). Below this value of Re, a simulation initialized with
a small perturbation from the base flow will converge to LC2, while above, it will
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FIGURE 9. (Colour online) Eigenvalues σ + iω from linear stability analysis about the
base solution with blue and red crosses, and nonlinear frequency from direct numerical
simulations (DNS) with black stars. (a,c) Growth rate σ of the most unstable eigenmode.
In this range of Reynolds number, are two successive Hopf bifurcations as shown in
the bifurcation diagram of figure 4. The growth rates for eigenvalues leading to LC2
and LC3 are shown with blue and red stars respectively. (b,d) Frequency ω of linear
stability analysis about the base state and nonlinear simulation. The nonlinear and linear
frequencies agree at onset, but when we increase the Reynolds number the nonlinear
frequency deviates from that resulting from linear stability about the base flow.
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FIGURE 10. (Colour online) Spectra of complex-conjugate eigenvalues of the base flow
for (a) Re = 4200, (b) Re = 4500, (c) Re = 5000. Blue circles designate the converged
eigenvalues and red stars the eigenvalues that did not converge. In these figures we observe
the evolution of modes leading to LC2 and LC3. The third converged mode, which is stable
in this range of Reynolds number, crosses the imaginary axis for Re≈ 6000 (not shown).

converge to LC3. In contrast, transition from LC2 to LC3 will take place when Re
is increased above Re′2 ≈ 4600 and from LC3 to LC2 when Re is decreased below
Re′3 ≈ 4410.
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FIGURE 11. (Colour online) Vertical velocity of the real parts of the leading unstable
eigenmodes about the base flow at Re= 4500. (a) LC2 and (b) LC3.

Figure 10 shows a portion of the eigenvalue spectra for Re= 4200, 4500 and 5000.
We show in blue circles the eigenvalues that satisfied the convergence tolerance of
10−6 and in red stars those that did not converge. The first eigenvalue has crossed
the σ = 0 axis by Re = 4200 and the second eigenvalue has crossed by Re = 4500.
At this Re there are two unstable eigenvalues with almost the same growth rate. At
Re = 5000 these two unstable eigenvalues have further increased and a third stable
mode approaches the imaginary axis, becoming unstable at Re≈ 6000 (not shown).

Figure 11(a,b) shows the real parts of the eigenvectors leading to LC2 and to LC3.
We observe two vertical velocity fluctuation maxima on LC2 and three on LC3, as was
mentioned in the discussion of figures 7 and 8.

3.3. Spatial analysis and Hilbert transform
We have shown in the previous sections that LC2 and LC3 have different numbers of
structures across the cavity. Figure 12(a,b) shows the vorticity fluctuations Ω ′ slightly
above the cavity like those shown in figure 6(d), at y= 0.05 and for x ∈ [0, 2.5] for
these limit cycles. Curves from light to dark show the vorticity fluctuations at various
phases of the temporal period. These two figures show qualitatively the behaviour of a
travelling wave, but quantitatively the wavelength and amplitude are not constant. For
this reason, at a fixed time, i.e. for each curve shown in figure 12(a,b), we compute
an average wavelength λ. Averaging the wavelength over only x∈ [0, 1] is not possible
because this range contains too few wavelengths. Figure 12(c) shows λ as the dashed
and solid curves for LC3 and LC2. The wavelengths vary little over time and have
temporal averages 〈λ2〉 = 0.56 and 〈λ3〉 = 0.39.

We use the Hilbert transform presented in § 2.7 to analyse in detail the final curve
Ω ′(x, y= 0.05) shown in figure 12(a,b). We recall that the Hilbert transform produces
from a real signal f (x) a complex signal fa(x) which is written in polar form as
A(x)eiΦ(x). We show in figure 13(a,b) the vorticity fluctuations Ω ′2(x) and Ω ′3(x) for
LC2 and LC3 with black curves. Because the Hilbert transform is very sensitive, we
have interpolated the signals by cubic splines. The figure also shows the amplitudes
A(x) of the Hilbert transform of the signals. Over the range x∈ [0.5,2.3], there are two
influential locations: the downstream corner at x= 1, and the changeover of boundary
condition at x = 1.75 from no slip to free slip. The amplitudes A(x) show maxima
at the downstream corner. Figure 13(c) shows the phase Φ(x) for LC2 and LC3. The
slope of Φ(t) is the wavenumber k. We show with dashed and dotted lines the linear
regression calculated over x ∈ [0.5, 1.5]. The wavenumber for LC2 obtained in this
way is k= 12.115 and that for LC3 is k= 16.045, leading to wavelengths λ2 = 0.519
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FIGURE 12. (Colour online) Vorticity fluctuations above the cavity Ω ′(x, y= 0.05) over
one period. We observe the behaviour of a travelling wave for (a) LC2 and (b) LC3.
Because the wavelength evolves in space, we calculate the average wavelength λ as shown
in figure (c), in solid and dashed line for LC2 and LC3 respectively. The mean wavelength
is near 0.5 for LC2 and near 0.4 for LC3.

and λ3= 0.392. These values are fairly close to the values 〈λ2〉= 0.56 and 〈λ3〉= 0.39
obtained by measuring wavelengths, as shown in figure 12. The value λ2≈0.5 justifies
our designation of LC2 as containing two vertical velocity fluctuation maxima, since
L/λ2 ≈ 2, but the value λ3 ≈ 0.4 leads to L/λ3 ≈ 2.5 rather than 3.

3.4. Quasi-periodic state and Floquet analysis
As presented in the previous sections, there is a range of Re over which two limit
cycles coexist, separated by a quasi-periodic state QP. We mention here that this
state is probably periodic rather than strictly quasi-periodic, because of the well-known
nonlinear phenomenon of frequency locking, but its effective period is very long and
we will continue to consider it to be quasi-periodic. Figures 2 and 3(b) show the
time series corresponding to this state. Figure 14 presents temporal Fourier spectra
for three values of Re. The QP state has two fundamental frequencies close to ω2
and ω3 as shown by the dotted and dashed lines in figure 14(a–c). QP can be viewed
as a nonlinear superposition of LC2 and LC3

UQP(x, y, t)=
∑

n

∑
m

cn,mei(nωQP2+mωQP3 )t, (3.2)
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FIGURE 13. (Colour online) Hilbert transform of vorticity fluctuations Ω ′(x, y = 0.05).
(a,b) vorticity fluctuation, its spline interpolation and the modulus of the Hilbert transform,
which is the envelope of the signal. (c) The ratio between the real and imaginary parts of
the Hilbert transform is the phase whose evolution is shown for LC3 (red) and for LC2
(blue). Linear fits to the phases Φi are shown by dashed and dotted curves.

where n,m∈N, and ωQP2 and ωQP3 are the fundamental frequencies of QP. The blue
dotted lines show the nonlinear frequency of LC2 and the red dashed lines that of LC3
at the corresponding values of Re.

We now interpret the spectra of figure 14 in the context of the bifurcation diagram
of figure 4. Because Re= 4420 is close to Re′3, the quasi-periodic state at Re= 4420 is
close to the limit cycle LC3. In agreement with this, the peak at ωQP3 matches almost
exactly the nonlinear frequency ω3= 10.38 of LC3 indicated by the red dashed line in
figure 14(a). In contrast QP is not close to LC2 at this Reynolds number and so the
peak at ωQP2 is to the left of the frequency ω2 = 7.58 of LC2 (blue dotted line). At
figure 14(c), corresponding to Re= 4580 near Re′2, the situation is naturally reversed.
The peak at ωQP2 matches almost exactly its analogue ω2= 7.634 on LC2 (blue dotted
line) since it is close to LC2, while ωQP3 is slightly to the right of ω3= 10.445 of LC3.
Away from LC2 and LC3 at Re= 4500, both frequencies ω2 = 7.609 and ω3 = 10.412
are slightly shifted from their analogues on the quasi-periodic state.

We have found from the nonlinear simulations that LC2 loses stability towards LC3
for Re > Re′2 ≈ 4600 and LC3 gains stability for Re > Re′3 ≈ 4420. To shed light on
the stability of these limit cycles, we carry out a Floquet analysis. In the Floquet
framework, we decompose the velocity field as

U(x, y, t)=ULC(x, y, t)+ εe(σF+iωF)tuF(x, y, t)+ c.c., (3.3)

with ULC the periodic solution corresponding to the limit cycle about which the
Floquet analysis is performed, uF the Floquet mode which is also periodic with
period Tb= 2π/ωb and σF+ iωF the Floquet exponent. We rewrite (3.3) by expressing
the Floquet mode as a Fourier series, leading to

U(x, y, t)=ULC(x, y, t)+ εe(σF+iωF)t
∑

n

uF,n(x, y)einωbt
+ c.c. (3.4)
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FIGURE 14. (Colour online) Temporal Fourier spectra of the quasi-periodic state (black
bold curves), computed with the edge state technique at (a) Re= 4420, near Re′3, (b) Re=
4500 and (c) Re = 4580, near Re′2. The vertical lines show the frequencies ω2 (blue
dotted lines) and ω3 (red dashed lines) of LC2 and LC3 at the corresponding values of
Re. (a) Near Re′3 where QP is near LC3, the peak ωQP3 of the QP spectrum matches
its analogue ω3 (red dashed line) on LC3, while ωQP2 is slightly to the left of ω2 (blue
dotted line) of LC2. (c) Near Re′2, where QP is near LC2, the peak of ωQP2 of the QP
spectrum matches its analogue ω2 (blue dotted line), while ωQP3 is to the right of ω3 (red
dashed line) from LC3. (b) Away from Re′2 and Re′3, both frequencies ωQP2 and ωQP3 are
shifted slightly from their analogues on LC2 and LC3. The vertical bold and dash-dotted
lines show the frequencies calculated by Floquet analysis about LC2 by ω = ω2 + ωF
(dash-dotted line) and about LC3 by ω = ω3 − ωF (bold line). Near the thresholds at
(a) Re= 4420 and (c) Re= 4580, the frequency obtained by Floquet analysis about LC3
and LC2 are very close to ωQP2 and ωQP3 . At Re = 4500 in figure (b) the frequencies
obtained by Floquet analysis about LC2 and LC3 are also close to their analogues in the
quasi-periodic state even though the linear analysis is only valid at the vicinity of the
thresholds.
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FIGURE 15. (Colour online) Floquet multipliers for LC2: (a) Re = 4500, (b) Re = 4600
and LC3: (c) Re= 4420, (d) Re= 4500. The small boxes are enlargements of the region
surrounding the dominant Floquet multiplier.

For t= Tb, we have einωbTb = einωb(2π/ωb) = ein2π
= 1 and so (3.4) becomes

U(x, y, Tb)=ULC(x, y, Tb)+ εeσF2π/ωbei2πωF/ωb
∑

n

uF,n(x, y)+ c.c., (3.5)

with µ ≡ eσF2π/ωb the modulus and θ ≡ 2πωF/ωb the argument of the Floquet
multipliers.

Figure 15 shows the Floquet multipliers for both limit cycles in the complex plane.
All Floquet multipliers (dots) are inside the unit circle, meaning that the corresponding
limit cycles are stable at these Reynolds numbers. Figure 15(a,b) shows the results for
LC2 at Re= 4500 and 4600 respectively. In figure 15(a) at Re= 4500, the dominant
Floquet multiplier modulus is |µ| = 0.981. On figure 15(b), by Re = 4600 . Re′2,
this multiplier has moved closer to the unit circle, with |µ| = 0.999. Figure 15(c,d)
shows that the moduli of the dominant Floquet multipliers for LC3 at Re = 4420 &
Re′3 and at Re = 4500 are |µ| = 0.995 and |µ| = 0.967. Thus the results shown by
the Floquet analysis confirm the nonlinear observations. The results of this Floquet
analysis resemble those found for the lid-driven cavity by Tiesinga et al. (2002).

We now turn to the argument of the Floquet multipliers. If the Floquet exponent
is real (ωF = 0) then the Floquet multiplier is one and the bifurcating state has the
same frequency as the base limit cycle. If ωF/ωb= 1/2 then the Floquet multiplier is
−1, which corresponds to a subharmonic mode. In our problem the dominant Floquet
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FIGURE 16. (Colour online) Distortion of the mean flow (Ω∗ = Ω − Ωb). For LC2 at
(a) Re = 4200 and (b) Re = 4500. For LC3 at (c) Re = 4500 and (d) Re = 5000. The
distortion measures the deviation of the mean flow from the base flow due to nonlinear
interaction and increases with Reynolds number.

multiplier is complex, and so the bifurcation is a secondary Hopf bifurcation and the
solution near the threshold of QP is described by (3.4). The spectrum of QP near the
threshold contains ωb and its multiples as well as the frequencies introduced by the
secondary Hopf bifurcation, namely ±ωF ± nωb, with a dominant contribution from
n=±1. Indeed, near Re′2, the spectrum of QP contains frequencies ω2 and ω2+ωF =

ω2(1 + θ/2π) = 10.45 while near Re′3, QP contains frequencies ω3 and ω3 − ωF =

ω3(1− θ/2π)= 7.37.
These calculations are confirmed by figure 14(a,c). For (a) Re = 4420 & Re′3, the

Floquet analysis about LC3 yields a frequency ω3 − ωF (solid vertical black line)
comparable to the peak at ωQP2 For (c) Re= 4580 . Re′2, the Floquet analysis about
LC2 yields the frequency ω2 + ωF (dashed vertical black line) which is very close
to ωQP3 .

4. Frequency prediction
4.1. Linearization about the mean flow

Linear stability analysis – i.e. linearizing about the base flow and solving the resulting
eigenproblem – is a classic tool in hydrodynamics. Bifurcations which create new
branches are determined unambiguously by linear stability analysis and, if the
bifurcation is supercritical, the spatial and temporal behaviours of the new states
near threshold are similar to those of the eigenvector and eigenvalue responsible for
the instability. Further from the threshold, these properties evolve and may well differ
substantially from those of the bifurcating eigenvector and eigenvalue. In some cases,
it has been shown that linearization about the mean flow of a limit cycle can yield
more accurate approximations of the nonlinear states. We have carried out a linear
analysis about the temporal mean for both limit cycles LC2 and LC3 and compared
the resulting frequencies with those obtained from linearization about the base flow
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FIGURE 17. (Colour online) Eigenvalues σ + iω from linear stability analysis about the
base and mean flows of LC2 and LC3. The eigenvalues about the base flow are plotted
with crosses. Linear stability about the mean flow is shown with circles. The nonlinear
frequency from DNS is plotted with black stars. (a,c) The growth rate σ for LC2 for
the mean flow is nearly zero but that of LC3 is smaller than that about the base flow,
but not enough to be considered to be neutrally stable. (b,d) The imaginary parts of
the eigenvalues are almost exactly equal to the nonlinear frequencies, especially for LC2.
For LC3, although the imaginary part of the eigenvalue and the nonlinear frequency are
necessarily equal at onset, the two diverge slightly as Re increases.

and with the nonlinear frequencies of these cycles. This procedure has been carried
out for LC3 by Meliga (2017); here we carry out the same procedure for LC2 and
compare the two regimes.

The mean flow greatly resembles the base flow shown in figure 5, and therefore
we plot instead their difference, the distortion Ω

∗

≡ Ω − Ωb, which is shown for
LC2 at Re = 4200 and 4500 in figure 16(a,b) and for LC3 at Re = 4500 and 5000
in figure 16(c,d). Nor do we show the eigenmodes obtained by linearizing about the
mean flow, since they resemble those obtained from linearizing about the base flow
(figure 11) as well as the nonlinear vertical velocity fluctuations (figures 7 and 8).

Figure 17 and table 1 compare the eigenvalues resulting from linearization about the
base flow and the mean flow and those of the nonlinear simulation. Figure 17 plots the
frequencies and growth rates over the Reynolds number range [4000, 5000] that we
have studied, while table 1 shows numerical data extracted from these figures for three
representative Reynolds numbers, 4200, 4500 and 5000. We note that unlike for the
cylinder wake (Barkley 2006), the frequencies obtained from the usual linear stability
analysis are already not very far from those of the nonlinear limit cycles. Table 1
shows a deviation of less than 0.6 % for the frequencies in LC2 and of less than
1.4 % for LC3 over this Reynolds number range. In contrast, for the cylinder wake
(Barkley 2006), the difference between the nonlinear frequencies and those obtained
by linear stability analysis reaches 15 % by Re=60, a Reynolds number comparable to
the distance above criticality studied here and reaches 100 % by Re= 180, a frequent
upper limit of such studies. This difference will be discussed further in §§ 4.4 and 5.

Figure 17(b) for LC2 (circles) shows that the frequency obtained by linearization
about the mean flow is nonetheless much closer to the nonlinear temporal frequency
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TABLE 1. Linear and nonlinear frequencies for cavity modes. The first row shows
frequencies from linearization about the base and from linearization about the mean and
nonlinear simulations, where available. Second row for ω2 and ω3 shows deviation from
frequencies from nonlinear simulations. When the RZIF property is satisfied, linearization
about the nonlinear mean yields frequencies close to nonlinear frequencies. The third
row for ω2 and ω3 shows linear growth rates for cavity modes. Linearization about the
base flow yields growth rates which cross zero transversely as the bifurcation threshold is
crossed. When the RZIF property is satisfied, linearization about the nonlinear mean yields
growth rates near zero, i.e. the mean flow is nearly marginally stable. Last columns show
the frequency increment between consecutive eigenvalues, which is constant to two digits,
regardless of the Reynolds number or which type of frequency is used.

(stars) than that given by linear stability about the base flow (crosses). Quantitatively,
table 1 shows the relative difference at Re=4500 between the nonlinear frequency and
the frequency obtained from the base flow to be 0.7 %; this difference is reduced to
0.04 % when the linearization is performed about the mean flow. Moreover, the growth
rate obtained about the mean flow (circles) in figure 17(a) is nearly zero, as found by
Barkley (2006) for the cylinder wake. Table 1 shows a growth rate at Re= 4500 of
0.073 for linearization about the base flow; this is reduced by a factor of 5 to 0.017
for the linearization about the mean.

For LC3, the frequency obtained by linearizing about the mean presented in
figure 17(d) (circles) agrees well with the nonlinear frequency (stars). The curves
begin to diverge slightly for Re > 4600, and although the agreement is not as good
as it is for LC2, the frequencies are still very close. Quantitatively, table 1 shows the
relative difference at Re = 5000 between the nonlinear frequency and the frequency
obtained from the base flow to be 1.4 %; this difference is reduced to 0.02 % when
the linearization is performed about the mean flow. Table 1 shows a growth rate at
Re= 5000 of 0.247 for linearization about the base flow; this is again reduced by a
factor of 5 to 0.053 for the linearization about the mean.

4.2. RZIF and SCM
We now present an argument for the validity of linearization about the mean
flow. The derivation is closely related to the idea called harmonic balance in the
aerodynamic literature (Hall, Thomas & Clark 2002; McMullen, Jameson & Alonso
2006; McMullen & Jameson 2006). Turton et al. (2015) argued that the RZIF
property holds exactly if the time dependence is monochromatic, meaning that
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higher harmonics are negligible compared to the fundamental frequency. Consider the
evolution equation

∂tU=LU+N (U,U), (4.1)

where L is linear and N (·, ·) is a quadratic nonlinearity. Let

U=U+
∑
n 6=0

uneinωt, (4.2)

(with u−n= u∗n) be the temporal Fourier decomposition of a periodic solution to (4.1)
with mean U and frequency ω. In (4.2) and throughout this subsection, subscripts
refer to temporal harmonics of a single limit cycle, rather than serving to distinguish
between LC2 and LC3.

The n= 0 (mean) component of (4.1) is

0=LU+N (u1, u−1)+N (u−1, u1)+N (u2, u−2)+N (u−2, u2)+ · · · (4.3)

while the n= 1 component is

iωu1 = Lu1 +N (U, u1)+N (u1,U)︸ ︷︷ ︸
LUu1

+ N (u2, u−1)+N (u−1, u2)+N (u3, u−2)+N (u−2, u3)+ · · ·︸ ︷︷ ︸
N1

. (4.4)

If, as is often the case, ‖un‖ ∼ ε
|n|, then N1 = O(ε3) may be neglected and RZIF

is satisfied: the linear operator LU in (4.4) has the pure imaginary eigenvalue iω,
corresponding to the frequency of the periodic solution. Hence the RZIF property is
satisfied for near-monochromatic oscillations in a system with quadratic nonlinearity.

We mention here that RZIF is not predictive, since it requires a full nonlinear direct
numerical simulation to be carried out in order to compute the temporal mean U. An
approach which is actually predictive, i.e. which does not require a DNS, has been
proposed by Mantič-Lugo et al. (2014, 2015), who called it the self-consistent model
(SCM). The SCM truncates the mean flow equation (4.3) as well as the n= 1 equation
(4.4), leading to the closed system

0=LU+N (u1, u−1)+N (u−1, u1),

iωu1 =Lu1 +N (U, u1)+N (u1,U).

}
(4.5)

This system is then solved for U and u1 by various iterative methods; see Mantič-
Lugo et al. (2014, 2015). The next higher truncation, i.e. retaining U, u1, and u2,
has been studied by Meliga (2017). It may happen, however, that RZIF is satisfied,
while SCM is not, i.e. that while higher-order modes may be neglected in (4.4), they
are essential to forming the correct mean flow and cannot be neglected in (4.3); see
Bengana (2019).

For thermosolutal convection, Turton et al. (2015) showed that for travelling waves,
the RZIF property is satisfied and the spectrum is highly peaked, while for standing
waves the spectrum is broad and the RZIF property is not satisfied. We now wish
to see if the temporal spectra of LC2 and LC3 also explain the fact that the RZIF
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FIGURE 18. (Colour online) Temporal spectra of streamwise velocity normalized by the
fundamental frequency for LC2 and LC3. (a) Spectra of LC2 at Re= 4200 and Re= 4500.
(b) At Re= 4500 for LC2 and LC3. (c) At Re= 4500 and Re= 5000 for LC3. (d) Spectra
of LC2 and LC3 at Re= 4200 and Re= 5000, respectively.

property is better satisfied for LC2 than for LC3. We show in figure 18 the temporal
spectra of streamwise velocity normalized by the fundamental frequency for LC2 and
LC3, for various values of Reynolds number. In figure 19 we plot the ratio of the
second harmonic to the fundamental frequency. The ratio ‖û2‖/‖û1‖ is consistently
less than 0.05 for both flows over the range of our investigation, while (‖û2‖+‖û3‖+

‖û4‖)/‖û1‖ remains below 0.07, consistent with the fact that RZIF is satisfied. We
observed that RZIF is closer to being valid for LC2 than for LC3, but the ratios in
figure 19 follow the opposite tendency. Thus, the explanation proposed by Turton et al.
(2015) in terms of the temporal Fourier amplitudes does not explain this difference.

4.3. Cross-eigenvalues
Like the base flow, the mean flow has a full spectrum of eigenvalues and eigenvectors.
Thus, the mean flow of LC2 has not only eigenvectors with two vertical velocity
fluctuation maxima with corresponding eigenvalues shown in figure 17(a,b), like those
which lead to LC2, but it also has also eigenvectors with three maxima like those
which lead to LC3 and their corresponding eigenvalues. Similarly, the mean flow of
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FIGURE 19. (Colour online) Amplitude of second harmonic (stars) and the sum of the
amplitudes of the three lowest harmonics (crosses) normalized by the amplitude of the
fundamental frequency as a function of relative Reynolds number for LC2 and LC3. As
in figure 18, the fundamental frequency dominates the second harmonic. These ratios are
always below 10−1 and are slightly higher for LC2 than that for LC3.

LC3 has eigenvectors containing two maxima. We refer to these as cross-eigenvalues.
Figure 20 shows the cross-eigenvalues corresponding to mode two, obtained by
linearization about the mean flow of LC3 (circles, figure 20(a,b)) and those of mode
three about the mean flow of LC2 (circles, figure 20(c,d)). The eigenvalues obtained
from the base and from the mean necessarily agree at Re2 for LC2 and at Re3 for
LC3, since when the limit cycles are created, the base and mean flows are equal.

Focusing on figure 20(a), we recall that LC3 is created at Re3≈4348 and is unstable
to eigenmodes of type 2 until Re′3 ≈ 4410, i.e. there is a Floquet mode with positive
Floquet exponent for Re∈ [4348, 4410]. This is qualitatively the behaviour that is seen
in figure 20(a), although here the cross-eigenvalue σ is positive over a higher range,
for Re ∈ [4348, 4681]. Focusing now on figure 20(c), we recall that LC2 is created
at Re2 ≈ 4126 and becomes unstable to eigenmodes of type 3 at Re′2 ≈ 4600. This is
again qualitatively close to the behaviour is seen in figure 20(c), except that here the
cross-eigenvalue σ becomes positive at the lower value of Re≈ 4418.

These results indicate that for a limit cycle, linearization about its mean flow
may be able to convey information about the growth rate, frequency, and spatial
characteristics of its stability to secondary bifurcations. Referring back to figure 4(b),
these phase portraits represent the limit cycles as fixed points, whose existence
and stability are governed by the dynamics of the two-dimensional normal form
(3.1a), (3.1b). Stability or instability of LC2 to LC3 or vice versa is represented by
the horizonal arrows emanating to or from LC2, located on the vertical axis, and
the vertical arrows emanating to or from LC3, located on the horizontal axis. The
temporal mean would then be interpreted as a fixed point approximation to a limit
cycle, and the cross-eigenvalues would then correspond to their relative stability.
Although this is plausible, we emphasize that there exists at present no mathematical
framework for this interpretation. Moreover, although the trends seen in figure 20
support this interpretation, the agreement is only qualitative.
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FIGURE 20. (Colour online) Eigenvalues σ + iω from linearization about the base and
mean flows. Here the spatial form of the eigenvector does not correspond to that of the
mean flow. The eigenvalues about the base flow are plotted with crosses, blue for LC2
and red for LC3. The eigenvalues of mode two about the mean flow of LC3 are shown
with red circles and that of mode three about the mean flow of LC2 with blue circles. The
nonlinear frequencies from DNS are plotted with black stars for LC2 and LC3. (a) The
growth rate of mode two about the mean of LC3 (red circles) decreases from the threshold
Re3≈ 4348 of LC3 and becomes negative at Re≈ 4681. This may correspond qualitatively
to the fact that LC3 is unstable to mode 2 perturbations when it is created at Re3 and
becomes stable at Re′3≈ 4410. (c) The growth rate of mode three about the mean of LC2
(blue circles) increases from the threshold Re2 ≈ 4126 of LC2 and becomes positive at
Re≈ 4418. This may correspond qualitatively to the fact that LC2 is stable when created
at Re2 and becomes unstable at Re′2 ≈ 4600.

4.4. Rossiter formula
We return to table 1, the last column of which shows that the frequencies of successive
modes increase by a constant interval. (For a given mode, the various versions of
its frequency differ by at most 1–2 %.) We emphasize this again by reproducing
the eigenspectra in figure 21, adding horizontal lines which emphasize visually the
constant difference between the frequencies. Spectra similar to those in figure 21 are
also seen for the lid-driven cavity in Tiesinga et al. (2002).

In flows over shear-driven cavities, Rossiter (1964) observed that the temporal
frequencies for self-sustained oscillations were quantized and proposed the following
empirical formula:

fn =
U∞
L

n− γ
M + 1/κ

H⇒
U∞
L
κ (n− γ ) for M = 0, (4.6)

where U∞ and L are the free-stream speed away from the cavity and the length of the
cavity, and M is the Mach number, here set to zero. The phenomenological constant
γ is a phase lag, while the increment κ will be discussed below. The essence of
(4.6) is not only that the temporal frequencies fn observed are quantized (which is
to be expected in a finite cavity) but that they are separated by a fixed increment 1f .
Heuristically, if the limit cycle consists of n structures advected horizontally at velocity
Uadv, then the average structure occupies a length L/n and strikes the cavity corner
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FIGURE 21. (Colour online) Spectra of the base flow for (a) Re = 4200, (b) Re =
4500, (c) Re = 5000. Blue circles designate the converged eigenvalues and red stars the
eigenvalues that did not converge. Horizontal lines emphasize the fact that the frequencies
are equally spaced.

with frequency Uadv/(L/n). Since the frequencies in table 1 are non-dimensionalized
by U∞/L, we have

1f =
U∞
L
κ =

Uadv

L
= 0.45 H⇒ κ =

Uadv

U∞
= 0.45. (4.7)

Thus, the frequency is seen to be determined primarily by the geometry and the free-
stream velocity.

At the same time as Rossiter, Kulikovskii (1966) proposed an approach, involving
amplification of the perturbations along the pathway around the cavity, for determining
the set of discrete frequencies that appear in a finite domain. Tuerke et al. (2015)
applied this approach to the open cavity in the incompressible regime and showed
very good agreement with the experimental results of Basley et al. (2011).

5. Conclusion
We have carried out a detailed study of the dynamics of shear-driven square cavity

flow over the Reynolds number range 4000–5000. An original result of the study
is the detailed description of two solution branches, which are limit cycles with
different numbers of structures, i.e. vertical velocity fluctuation extrema, across the
cavity. These appear via successive primary supercritical Hopf bifurcations. Stability
is transferred from the first to the second limit cycle via an unstable quasi-periodic
state which is created and destroyed via subcritical secondary Hopf bifurcations from
the limit cycles. The primary and secondary Reynolds numbers are such that there
exists a region of bistability. Transition from one limit cycle to the other is hysteretic
and is characterized by a sudden change in frequency from ω ∼ 7 to ω ∼ 10 and a
change in the number of structures along the shear layer of the cavity. By using edge
state tracking, we have been able to produce an approximation to the quasi-periodic
state and to measure its temporal Fourier spectrum, which corresponds well to the
frequencies computed by a Floquet analysis of the two limit cycles. The Hilbert
transform is used to extract spatial envelopes and wavenumbers for representatives of
these limit cycles.
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A possible extension of our study is to the range Re> 5000. Although the next two
eigenvalue pairs seen in figure 21 cross the imaginary axis, time-dependent simulations
do not exhibit these frequencies, as has also been observed by Tiesinga et al. (2002)
for the lid-driven cavity. Preliminary simulations also show that limit cycle LC3 may
undergo a secondary Hopf bifurcation between Re = 6000 and Re = 7500. At these
Reynolds numbers, the temporal Fourier spectrum shows low-frequency components
whose associated spatial characteristics are localized inside the cavity.

Our second focus has been to apply the technique of linearization about the
temporal mean of the limit cycles, an approach which has been shown to sometimes
describe nonlinear properties. More specifically, in many cases the real part of the
leading eigenvalue is near zero (a property which would be described as marginal
stability in the context of linearization about the base) and the imaginary part is near
the nonlinear frequency of the limit cycles. The combination of these properties is
called RZIF.

Based on this study and preceding ones, we can classify hydrodynamic configura-
tions into three categories with respect to the RZIF property. The first is those
for which the nonlinear frequencies deviate substantially from those resulting from
linearization about the base flow, but are close to those resulting from linearization
about the mean flow, and for which the mean flow growth rate is also very small.
This category includes the cylinder wake (Barkley 2006; Mittal 2008; Mantič-Lugo
et al. 2014), for which RZIF has been studied most extensively, as well as the
travelling waves of thermosolutal convection (Turton et al. 2015), and the ribbons
and spirals of counter-rotating Taylor–Couette flow (Bengana & Tuckerman 2019).
In the second category, the nonlinear, base flow and mean flow frequencies are all
different and the mean flow growth rate is not small, such as the standing waves of
thermosolutal convection (Turton et al. 2015). In the third category, the difference
between the nonlinear and the base flow frequencies and the base flow growth rate
is already fairly low. This is what we find for the shear-driven cavity flow at the
parameter values we have studied. The frequencies are primarily set by the geometry
and the convection velocity. The nonlinear self-sustained mechanism distorts the base
flow only slightly, leaving the convection velocity and hence the frequency almost
unchanged. Linearization about the mean flow further and substantially reduces these
already small differences. It would useful to know a priori into which category a
hydrodynamic configuration falls. Explanations in terms of travelling or standing
waves (Turton et al. 2015; Bengana & Tuckerman 2019) have not yet proved
satisfactory or complete.

Because the shear-driven cavity flow in our Reynolds number range has two limit
cycles, we can take the further step of analysing other eigenmodes of the mean,
which do not correspond to the limit cycle. We find that these eigenmodes mimic
qualitatively the behaviour of the limit cycles with respect to one other: as the
Reynolds number is increased, the real part of one eigenvalue decreases from positive
to negative for a limit cycle which undergoes stabilization via a secondary bifurcation,
and increases from negative to positive for a cycle which undergoes destabilization.
Further investigation, in the form of simulations of other hydrodynamic configurations,
and more theoretical understanding, would be necessary to verify whether and when
this is a systematic tendency. Another possible direction would be to generalize this
type of analysis to quasi-periodic regimes, linearizing about the full temporal mean
or else about some other quantity.

In summary, the existence of two competing limit cycles for shear-driven cavity
flow has yielded both an interesting bifurcation diagram, containing features such
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as subcritical bifurcations, hysteresis and a quasi-periodic state. At the same time,
the existence of two cycles has also extended the application and interpretation of
linearization about the mean flow.
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