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ABSTRACT

In this paper, we investigate the computation of  the moments of  the com-
pound Poisson sums with discounted claims when introducing dependence 
between the interclaim time and the subsequent claim size. The dependence 
structure between the two random variables is defi ned by a Farlie-Gumbel-
Morgenstern copula. Assuming that the claim distribution has fi nite moments, 
we give expressions for the fi rst and the second moments and then we obtain 
a general formula for any mth order moment. The results are illustrated with 
applications to premium calculation and approximations based on moment 
matching methods.

KEYWORDS

Compound Poisson process, Discounted aggregate claims, Moments, Constant 
interest rate. 

1. INTRODUCTION

We consider a continuous-time compound renewal risk model for an insurance 
portfolio and we defi ne the compound process of the discounted claims e – dTi Xi , 
i  =  1, 2,  … occurring at time Ti , i  =  1, 2,  … by Z   =  {Z(t),  t  $  0} with
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where N   =  {N(t), t  $  0} is an homogeneous Poisson counting process and d is 
the instantaneous rate of  net interest. In actuarial risk theory, it has been 
assumed that the claim amounts Xi , i  =  1, 2,  …  are independent and identically 
distributed (i.i.d.) random variables (r.v.’s) and the interclaim times W1  =  T1 
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and Wj   =  Tj   –  Tj  –  1, j  =  2, 3,  …  are also i.i.d. r.v.’s. The r.v.’s Xi and Wi , i  =
1, 2,  …  are classically supposed independent. This last assumption also implies 
that Xi , i  =  1, 2,  …  are independent from N . This risk process has been used 
in ruin theory by many authors such as Taylor (1979), Waters (1983), Delbaen 
and Haezendonck (1987), Willmot (1989), Sundt and Teugels (1995) and more 
recently Kalashnikov and Konstantinides (2000), Yang and Zhang (2001) and 
Tang (2005). They mainly focused on the ruin probability and related ruin 
measures.

Only a few recent works deal with the distribution of the aggregate dis-
counted claims Z(t). Léveillé and Garrido (2001a) provide the fi rst two 
moments of  the classical compound Poisson risk process. These fi rst two 
moments were also obtained in Jang (2004) using martingale theory. This 
result has since been generalized by relaxing some of the assumptions of the 
classical compound Poisson process. Léveillé and Garrido (2001b) and Léveillé 
et al. (2009) derived recursive formulas for all the moments of the aggregate 
discounted claims considering a compound renewal process where N  is not 
necessarily a Poisson process. In Jang (2007), the Laplace transform of the 
distribution of a jump diffusion process and its integrated process is derived 
and used to obtain the moments of the compound Poisson process Z(t). Kim 
and Kim (2007) and Ren (2008) studied the discounted aggregate claims in a 
Markovian environment which modulates the distributions of the interclaim 
times and claim sizes for the former and the distribution of  the interclaim 
times for the latter. They both provided the Laplace transform of the distribu-
tion of the discounted aggregate claims and then gave expressions for its fi rst 
two moments.

The aggregation of discounted random variables is also used in many other 
fi elds of application. For example, it can be used in warranty cost modeling, 
see Duchesne and Marri (2009), or in reliability in civil engineering, see van 
Noortwijk and Frangopol (2004) or Porter et al. (2004).

In this paper, we want to introduce some dependence between the inter-
claim times and the subsequent claim amounts as it can be observed in real-life 
situations. For example, in modeling natural catastrophic events we can expect 
that, on the occurrence of a catastrophe, the total claim amount (or the intensity 
of the catastrophe) and the time elapsed since the previous catastrophe are 
dependent (see e.g. Boudreault (2003) and Nikoloulopoulos and Karlis (2008)). 
There exists different ways to take this dependence assumption into account. 
In risk theory, this dependence between interclaim times and claim amounts 
has already been explored in Albrecher and Boxma (2004) where it is supposed 
that if  a claim amount exceeds a certain threshold, then the parameters of the 
distribution of the next interclaim time is modifi ed. In Albrecher and Teugels 
(2006), the dependence is introduced with the use of  an arbitrary copula. 
Conversely to Albrecher and Boxma (2004), Boudreault et al. (2006) assumed 
that if an interclaim time is greater than a certain threshold then the parameters 
of the distribution of the next claim amount is modifi ed. Copulas were also 
used to describe dependence between the interclaim time and the subsequent 
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claim amount in Nikoloulopoulos and Karlis (2008) in an earthquake context 
and in Asimit and Badescu (2009) in which a constant force of interest and 
heavy-tailed claim amounts are taken into account. Dependence concepts used 
in Boudreault et al. (2006) were then extended in Biard et al. (2011) where they 
suppose that the distribution of a claim amount has its parameters modifi ed 
when several preceding interclaim times are all greater or all lower than a 
certain threshold. All these papers were interested in fi nding exact expressions 
or approximations for some ruin measures such as the ruin probability or the 
Gerber-Shiu function.

In our study, the assumption of independence between the claim amount Xj 
and the interclaim time Wj is relaxed to allow {(Xj ,Wj  ),  j  !  �+} to form a 
sequence of i.i.d. random vectors distributed as the canonical random vector 
(X,W) in which the components may be dependent. We follow the idea of Albre-
cher and Teugels (2006) supposing that dependence between an interclaim time 
and its subsequent claim amount is modelized by a copula. More specifi cally, we 
use the Farlie-Gumbel-Morgenstern (FGM) copula which is defi ned by

 q – –( , ) (1 )(1 ),qC u v uv uv u v= +FGM  (1)

for (u, v)  !  [0,1]  ≈  [0, 1] and where the dependence parameter q takes value in 
[ –1,1]. While there are a large number of copula families, we choose the FGM 
copula because it offers the advantage of being mathematically tractable as 
illustrated in Cossette et al. (2009). Even if  the FGM copula introduces only 
light dependence, it admits positive as well as negative dependence between a 
set of  random variables and includes the independence copula when q  =  0.
It is also known that the FGM copula is a Taylor approximation of order one 
of the Frank copula (see Nelsen (2006), page 133), Ali-Milkhail-Haq copula 
and Plackett copula (see Nelsen (2006), page 100).

The paper is structured as follows. In the second section, we present the 
compound Poisson risk model including the proposed dependence structure. 
The fi rst moment, the second moment and then a generalization to the mth 
moment of the aggregate discounted claims with dependence are derived in 
Section 3. The results are illustrated in section 4 with applications to premium 
calculation and approximation methods based on moment matching.

2. THE MODEL 

We introduce a specifi c structure of dependence based on the Farlie-Gumbel-
Morgenstern copula between the ith claim amount and the ith interclaim time. 
Using (1), the joint cumulative distribution function (c.d.f.) for the canonical 
random vector (X,W ) is
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for (t, x)  !  �*
+  ≈  �+ and where FX and FW are the marginals of respectively X 

and W. This dependence relation implies that X1, X2, X3,  …  are no more inde-
pendent of N . Recalling the density of the FGM copula

 2q ( u 2, 1 ( )( )qc u v v= +FGM ) ,– –1 1

for (u,v)  !  [0,1]  ≈  [0,1] , the joint probability density function (p.d.f.) of (X,W) 
is
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where fX and fW are the p.d.f.’s of respectively X and W.
The mth moment of Z(t) is denoted by mZ

(m)(t)  =  E [Z (m)(t)] and its Laplace 
transform by mZ

(m)(t). We see in the next section how to derive explicit formulas 
for these moments.

3. MOMENTS OF THE AGGREGATE DISCOUNTED CLAIMS

3.1. First moment

To derive the expression for the fi rst moment mZ(t) of  Z(t), we assume that 
E[X ]  <  3. Conditioning on the arrival of the fi rst claim gives
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Letting

 2( (x dx ( ))F xX <
3 3

–[ ] ( )) 1 [ ]E X F dx EX0 0
= X� ,–1= # #

where X� is the random variable having (1  –  FX (x))2 as survival function,
(2) becomes

 (s[ ] ( [ ] [ ]) ( 2 )) .qE X E X E X W+ � – –1 F  (3)

From (3), we can derive the following remarks. If q  >  0 (q  <  0) and s  <  FW
– 1  (0.5) 

(s  >  FW
– 1  (0.5), respectively), then E [X |W  =  s ]  <  E  [X ] . Conversely, if  q  >  0 

(q  <  0) and s  >  FW
– 1 (0.5) ( s  <  FW

– 1 (0.5), respectively), then E [X |W  =  s ]  >  E [X ]. 
Consequently, when the dependence parameter q is positive, the average amount 
of the discounted claims occurring before (after) s0  =  Fw

– 1  (0.5) will be lower 
(greater) than the average amount of all discounted claims.

Then, we also assume that W has an exponential distribution with mean 
b
1  and that d  >  – b. The expressions for the p.d.f., the c.d.f  and the Laplace 

transform of W are given by

 (t( ; ) ) ,b bh t f b
W

t= -= e  (4)

 (t b–) 1 ,F eW
t= -  (5)

 h ( ; ) [ ] ,b b
b

t E t
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where the notation h(t; b) is introduced for simplifi cation purposes in order to 
derive the moments of Z(t).

We obtain the following expression for mZ(t)
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We take the Laplace transform on both sides of (6) and after some rearrange-
ments, we obtain
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Rearranging (8), we deduce
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Inverting (9), we obtain

 2(t
(– – –) [ ] [ ] [ ] .b d qb b dE X e E X E X e1 1d b d

Z

t t2
= + +

- - +

�m
)

^ h  (10)

It would be interesting to fi nd mZ(t) using other interclaim time distributions.
Notice that when the r.v.’s X and W are independent which corresponds to 

q  =  0, the expected value of the compound process of the discounted claims, 
denoted Zind (t), becomes
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We suppose now that E [Xi  ]  <  3, for i  =  1, 2, that d  >  –  b/2 and that d  !  2b. 
The following method can be used to fi nd the second moment of Z(t) when 
d  =  2b but we focus here on the more general case where d  !  2b. As for the fi rst 
moment of the discounted total claim amount, we condition on the arrival of 
the fi rst claim to obtain the second moment of Z(t)
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We take the Laplace transform on both sides of (11) and after some rearrange-
ments, we obtain
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We fi nd the following expression for mZ
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which becomes

 

( +
2

2

2

b

b

–

–

– –

–

– –

–

m m

m

) ( )
[

( )
( [( ] [ [ ]

( )

( [ ] [ ])
( )

( )
[

( )
( [( ] [ ]) [ ]

( )
[ ]

( )
( [ ] [ ]

( [ ] [ ]
( )

[ ]
( )

( [ ] [ ])

( )
[

( )
( [( ] [

( ) ( )
[ ]

( ) ( )
[ ] ( [ ] [ ])

( ) ( )
[ ] ( [ ] [ ]

( ) ( )
( [ ] [ ])

.

d q b d
b

d
b

q b d
b

d q b d
b

d
b

d
b

q b d
b

q b d
b

d
b

q b d
b

d
b

q b d
b

d d
b

q b d d
b

q d b d
b

q b d b d
b

r r r
E X

r r
E X E X

r
E X

r

r
E X E X

r

r r
E X

r r
E X E X

r
E X

r r
E X

r r
E X E X

r
E X E X

r r
E X

r r
E X E X

r r
E X

r r
E X E X

r r r
E X

r r r
E X E X E X

r r r
E X E X E X

r r r
E X E X

2 2 2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

Z Z

Z

2

2

2 2

2 2

2
2 2

= + + + + +

+ + +

= + + + + + + + + + +

+ + + + + + +

= + + + + + + +

+ + + + + + + +

+ + + + +

( ])

)

)

])

)2
2

2

2 2

�

�

� �

� �

�

� �

�

]

–

–

]

] )
d

d

n

n

 (12)

This last Laplace transform is a combination of terms of the form
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with f a function defi ned for all non-negative real numbers. As described in 
the proof  of  Theorem 1.1 in Baeumer (2003), each of  these terms can be 
expressed as a combination of partial fractions such as

 
a a a

f ( r r r rg 1 1 1 1
n

n
0 1

1
2

2
g= + + + + ++) g gr + g , (13)

where a a0
1

n1
= gg  and, for i  =  1,  …,  n,

 –
a a a

.1 1
;

i
i j ij j i

n

1
=

!= –g %  (14)

Since the inverse Laplace transform of 
ia r
1
+  is ie a t- , it is easy to inverse f and 

obtain

 2( ) .g g gf t e ga a at t
n

t
0 1

1 2 2g= + + + +- - -e e  (15)

Using (15) in (12), it follows that
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3.3. mth moment

We now generalize the previous results to the mth moment of the discounted 
total claim amount. We suppose that E [Xi ]  <  3 for i  =  1,  …,  m, that d  >  –  b/m 
and that d  !  2b/n for n  =  1,  …,  m  – 1. As for the second moment, we deal with 
the more general situation but the following method can be applied when 
considering some equalities in the last assumptions. Conditioning on the 
arrival of the fi rst claim leads to

 W s=
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=

+

+

-

-
- -

-

e X

e

e

s

s

s

=
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With E [(X �) j ]  =  j (x xX
3

( ))F1 –j 1 2-

0
# dx where for applications we need to have

 <(xX( ))lim jx F and
x

j

0

1 2 3
"

- –1  (17)

 <(j xX( )) ,lim x
x

j 1 2 3
"3

F- –1  (18)

the Laplace transform of mZ
(m) (t) is given by

E m

(
–

–

m
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which can also be expressed as follows
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Noting for i  =  1,  …,  m,  j  =  1,  …,  m and  k  =  0, 1

 
j

( ; )
( [ ( [ [

,h q b
b

i j k i
j k i r

E X E X E X
2

k
k1

#
= + +

-j j

d;
k]�]) ])–

d n  (20)

we can rewrite mZ (r) and mZ
(2)(r) as

(Zm ) (1,1,0) (1,1,1) ,hr r h1= +7 A

 
(Zm ) ( , , ) ( , , ) [ ( , , ) ( , , )] [ ( , , ) ( , , )]
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= + + + +
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7
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A

A

The term mZ
(m)(t) can also be expressed using (20)

 
),

n(
n n,

rZ 1 11
n

m ) ( , , ) ( , , ),h hr i j k i j k1(

(( , , ( , , ))
n

i j k i j kn

m

1
1 Am1 1 1

# #g=
f !

)m

= n

//  (21)

where Amn  =  {(i1,  j1, k1),  …,  (in,  jn, kn); i1  =  m, i1  >  ···  >  in, jn  =  in, j1  +  ···  +  jn  =  m, 
0  <  j.  #  n, k.  !  {0,1}}.

To invert (21), let I (h(i1;  j1;  k1);  …; h(in;  jn;  kn )) be the inverse Laplace trans-
form of r

1  h(i1;  j1;  k1)  ≈  ···  ≈   h(in;  jn;  kn ), for n  =  1,  …,  m. Using (13) and (15), 
we have
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I (h(i1;  j1;  k1);  …; h(in;  jn;  kn))   =   L(i1;  j1;  k1)  ≈  ···  ≈  L(in;  jn;  kn)  ≈

                        (g0  +  g1 e–a(i1;  k1)t  +  ···  +  gn e–a(in;  kn)t )

where L(i; j; k)  =  i
jd nqk b(E [X j ])1  –  k  (E [(X�) j ]  –  E [X j ])k and a(i;  k)  =  k  ≈  2b  +  id 

with, referring to (14), g0  =  
n na a( ; ) ( ; )i k i k

1
1 1 g  and gu  =  

;1u uv
–

va a a( ; ) ( ; ) ( )i k i k i k
v v u

u
1 1

–u u
!=

,;%

u  =  1,  …,  n.

It fi nally follows that

 I ( ; ; );i j k
),

n( n
n n

t
,

h nZ
n

) ; ( .hm i j(

(( , , ( , , ))i j k i j kn

m

1 1 1
1 Am1 1 1

f=
f !

k;)m

= n

; )_ i//  (22)

4. APPLICATIONS

As we have already discussed in the introduction, several scientifi c domains 
have recourse to discounted aggregations. We present here some applications 
of our results in actuarial sciences where the claim distributions are assumed 
to be positive and continuous.

4.1. Premium calculation

Now that we are able to compute the moments of Z(t), it is possible to com-
pute the premium related to the aggregate discounted claims over a fi xed time 
interval (0, t]. We consider some premium calculation principles. The loaded 
premium P(t) consists of  the sum of the pure premium P(t), which is the 
expected value of the costs related to the portfolio, and a loading for the risk 
L(t) such as

 ( ( ( ( (t t t t t) ) ) [ )] ) .P L E Z L= + = +P

The loading for the risk differs according to the premium calculation principles.
Denote by k  $  0 the safety loading. The expected value principle defi nes 

the loaded premium as

 ( (t t( ) [ )] [ )]kt E Z E Z= + ,P

where L(t)  =  kE [Z(t)].
The variance principle gives

 ( ( (t t t) [ )] ( ))E Z ar Zk= + ,VP

where L(t)  =  kVar(Z(t)).
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And fi nally, one can use the standard deviation principle which is determined 
by

 ar(t( (t t) [ )] ( )) ,E Z V Zk= +P

where L(t)  =  ar (t( ))k V Z .

As we only need the fi rst two moments for these examples, we can use the 
equations (10) and (16) to determine the loading for the risk and then the 
loaded premium (see e.g. Rolski et al. (1999) for details on premium principles).

To illustrate the premium calculation, we set X  +  Exp(l  =  1/100) with dif-
ferent values for the interclaim time distribution parameters b  =  1,5 and 10. 
The interest rate takes values d  =  4%, 2%, 0.5% and – 5%. We use three different 
values for the copula parameter q  =  – 1, 0, 1 for a time horizon t  =  5. Table 1 
gives the fi rst and second moments of Z(5) with b  =  1. As expected, we observe 
with numerical computations assuming different values of b, that the fi rst and 
the second moments of  Z(5) increase with b. The premium values for the 
expected value and the standard deviation principles with a safety loading 
fi xed at k  =  0.2 are given in Table 2. All these tables show that moments and 
premium values increase as the net interest decreases. This is not surprising as 
the tail of the distribution of Z(t) becomes heavier as d decreases. We also see 
that for a fi xed value of q, if  b increases, the moments of Z(t) increase as well. 
Indeed, the higher the b, the smaller the expected interclaim times and then 
the more frequent the claim arrivals. Finally, we also observe that for fi xed 
values of the interclaim time parameter and interest rate, the moments of Z(t) 
decrease as the copula parameter q increases from – 1 to 0 and from 0 to 1. 
When the dependence is negative (positive), if  on average, for a fi xed period 
of time, the time elapsed between each claim decreases (increases), then the 
size of  the claim amount increases (decreases). This phenomenon becomes 
more important as the magnitude of  the negative (positive) dependence 
increases.

In tables 1 and 2, we observe that the dependence parameter q has a moder-
ate impact on the fi rst and second moments and the premium due to the 
moderate dependence relation introduced via the FGM copula. However, we 
shall see in section 4.2 that the impact of q on different quantities of interest 
will be more signifi cant.

4.2. First three moments based approximation for the distribution of Z(t)

As another application, we consider a moment matching method to approxi-
mate the distribution of Z(t) in order to evaluate its Value at Risk (VaR) and 
Tail Value at Risk (TVaR). Several moment matching methods exist and can 
be used according to the tail of the distribution that one wants to approximate. 
For light tailed distributions, approximations based on mixtures of Erlang dis-
tributions or on a translated gamma distribution can be used. For heavy tailed 
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distributions, McNeil et al. (2005) suggest to employ approximations based on 
distributions such as the translated F, inverse gamma or generalized Pareto. 
For this illustration, we use the mixture of Erlang distributions approximation 
for a light tailed distribution for Z(t) and the generalized Pareto approxima-
tion for a heavier tailed distribution. We fi rst recall these two methods.

4.2.1. Mixture of Erlang distributions approximation

As said in Tijms (1994), the class of mixture of Erlang distributions is dense 
in the space of positive continuous distributions. Hence, one can approximate 
any positive continuous distribution by a mixture of  Erlang distributions. 
Here, we consider a moment matching method due to Johnson and Taaffe 
(1989) which is well adapted for light tailed distributions. The main idea of 
the method is to approximate the distribution of Z(t) by a mixture of two 
Erlang distributions with common shape parameter. To apply this method, the 
fi rst three moments of Z(t) are required. The distribution function of a mix-
ture of two Erlang distributions with respective rate parameters l1 and l2 and 
common shape parameter n is given by

 ( ( (Y ) ) ),y F y F y1 1 2 2+F p= p

TABLE 1

FIRST AND SECOND MOMENTS OF Z(5) WITH b  =  1.

E[Z(5)] E[Z(5)2]

q  =  – 1 q  =  0 q  =  1 q  =  – 1 q  =  0 q  =  1

d   =   4% 477.682 453.173 428.664 334557.417 287785.863 243370.123

d   =   1.5% 500.564 475.813 451.061 367113.899 317032.549 269376.853

d   =   0.5% 518.738 493.802 468.865 394177.537 341381.329 291065.281

d   =   –  5% 593.690 568.051 542.411 517244.208 452426.003 390304.954

TABLE 2

PREMIUM VALUES FOR THE EXPECTED VALUE (EV) AND STANDARD DEVIATION (SD) PRINCIPLES WITH B  =  1.

PEV(5) PSD(5)

q  =  – 1 q  =  0 q  =  1 q  =  – 1 q  =  0 q  =  1

d   =   4% 573.218 543.808 514.397 542.913 510.591 477.497

d   =   1.5% 600.677 570.975 541.274 568.843 536.024 502.411

d   =   0.5% 622.486 592.562 562.638 589.474 556.265 522.243

d   =   –  5% 712.428 681.661 650.894 674.876 640.091 604.410
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where F1 and F2 are two Erlang c.d.f.’s and p1 and p2 their respective weight in 
the mixture. The p.d.f. of Y is

 ( ((Y ) ) ),y f y p f y1 1 2 2= +f p

where f1 and f2 are two Erlang p.d.f.’s. The m-th moment of the mixture of 
two Erlang distributions is

 Y[E= 1] ,m mp p( )m m
1 2 2= +( ) ( )m mm

where m1
(m) and m2

(m) are the respective m-th moment of two Erlang distributions. 
Under the conditions x  $  0 and y  $  0 which are fulfi lled in the following 
numerical example where x and y are defi ned just below, Theorem 3 of John-
son and Taaffe (1989) gives the parameters of  the mixture of  two Erlang 
distributions with the same shape parameter n in terms of  its fi rst three 
moments as follows

 i –B AC4– –( 1) / (2 ), 1,2,B A il 1 2= + =-
i ` j

and

 1- –1 / ,
m

l l lp p n

( )

1 2

1
= = -1 1-

1 22–– d `n j

where A  =  n(n  +  2) m(1)y, (+ y( )1– ( 2)( ) )mB nx y n( )
n

n n
1
2 2= + +

+

+ 2 , C  =  m(1)x, y  =

m(2)  –  n
n 1+

` j (m(1))2 and  x  =  m(1)m(3)  –  n
n

1
2

+
+

` j (m(2))2.

For the numerical illustration, suppose that X  +  Exp(l  =  1/100), the inter-
claim time distribution parameter b  =  1,5 and 10, the interest rate d  =  4%.
We use three different values for the copula parameter q  =  – 1, 0, 1 and fi x the 
time t  =  5. The m-th moment of X is

 ml
[ ] !E X m1= .m  (23)

As E [(X �)m ]   =   mx
3 m 1-

0
# (1  –  FX (x))2dx, we have that

 m[( ) ]
(2 )

!
l

E X m1
m=� . (24)

The fi rst three moments of Z(t) and the matched parameters for the mixture 
of Erlang distributions are presented in Tables 3, 4 and 5.

In Figure 1, we illustrate three different paths of aggregate discounted claims 
process for 0  #  t  #  5, b  =  5, d  =  5% and three different values of q (continuous 

94352_Astin41-1_09_Barges.indd   22894352_Astin41-1_09_Barges.indd   228 12/05/11   14:3112/05/11   14:31

https://doi.org/10.2143/AST.41.1.2084392 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.1.2084392


 MOMENTS OF AGGREGATE DISCOUNTED CLAIMS WITH DEPENDENCE 229

line: q  =  – 1; dash line: q  =  0; dotted line: q  =  1). We can observe the impact 
of  the dependence parameter on the evolution of the aggregate discounted 
claim process.

In Tables 6 and 7, we compare the Value at Risk (VaR) and the Tail Value 
at Risk (TVaR) obtained from Monte Carlo simulations of Z(5) against the VaR 
and TVaR for the approximation based on a mixture of Erlang distributions 
for a confi dence level a  =  99.5%. The approximated values of the VaR and TVaR 
are very satisfying.

In Figure 2, the values of TVaR of (Z(5)) calculated from Monte Carlo 
simulations are compared against the ones obtained with moment matching. 
The net interest rate is fi xed at d  =  4%, the parameter for the interclaim time 
is b  =  5 and the copula parameter q is – 1. The quality of the fi t is similar for 
other values of q, b or d. 

Finally, the impact of the dependence on the TVaR is shown in Figure 3 
in the appendix where the TVaR of Z(5) (for q  =  – 1, 0, 1) are drawn in function 

TABLE 3

MOMENTS OF Z(5) AND PARAMETERS OF THE MIXTURE OF ERLANG DISTRIBUTIONS FOR b  =  1.

mZ(5) mZ
(2)(5) mZ

(3)(5) n l1 l2 p1 p2

q   =   – 1 477.682 3.346  ≈  105 2.968  ≈  108 3 0.0433 0.00562 0.120 0.880

q   =   0 453.173 2.878  ≈  105 2.277  ≈  108 4 0.0263 0.00747 0.215 0.785

q   =   1 428.664 2.434  ≈  105 1.678  ≈  108 4 0.0448 0.00868 0.087 0.913

TABLE 4

MOMENTS OF Z(5) AND PARAMETERS OF THE MIXTURE OF ERLANG DISTRIBUTIONS FOR b  =  5.

mZ(5) mZ
(2)(5) mZ

(3)(5) n l1 l2 p1 p2

q   =   – 1 2290.766 5.766  ≈  106 1.576  ≈  1010 11 0.0146 0.00475 0.0159 0.984

q   =   0 2265.866 5.546  ≈  106 1.455  ≈  1010 13 0.135 0.00572 0.00337 0.997

q   =   1 2240.965 5.329  ≈  106 1.338  ≈  1010 17 0.0464 0.00757 0.00305 0.997

TABLE 5

MOMENTS OF Z(5) AND PARAMETERS OF THE MIXTURE OF ERLANG DISTRIBUTIONS FOR b  =  10.

mZ(5) mZ
(2)(5) mZ

(3)(5) n l1 l2 p1 p2

q   =   – 1 4556.681 2.180  ≈  107 1.091  ≈  1011 21 0.0116 0.00459 0.00563 0.994

q   =   0 4531.731 2.136  ≈  107 1.045  ≈  1011 26 0.0118 0.00572 0.00605 0.994

q   =   1 4506.781 2.093  ≈  107 9.999  ≈  1010 34 0.0160 0.00753 0.00315 0.997

94352_Astin41-1_09_Barges.indd   22994352_Astin41-1_09_Barges.indd   229 12/05/11   14:3112/05/11   14:31

https://doi.org/10.2143/AST.41.1.2084392 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.1.2084392


230 M. BARGÈS, H. COSSETTE, S. LOISEL AND É. MARCEAU

of the confi dence level a. We see on the graph that the dependence can not be 
neglected for the TVaR.

Considering the results presented in Tables 5 and 7, the impact of the depend-
ence parameter is more signifi cant in the upper tail of the distribution of Z(5).

4.2.2. Generalized Pareto approximation

As suggested in Lindskog and McNeil (2003) for heavy tailed claim amounts, 
we use a generalized Pareto distribution to approximate the distribution of Z(t). 
The generalized Pareto distribution as defi ned in Klugman et al. (2008), but 
also referred to as the generalized F-distribution in Venter (1983) and Lindskog 
and McNeil (2003) has for cumulative distribution function

 ,t(Y a) ,b ly y
y

= +F ;f p

for y  >  0, a  >  0 and l  >  0 and where b(a, b; x) is the regularized incomplete 
beta function defi ned as

 t( (
(

(
x

–( , ; ) ) )
)

1 ,b a b x a b
a b

t dtb

0

1=
+ -a 1-

G G

G
)#

TABLE 6

VaR0.995 (Z(5)) CALCULATED FROM THE MONTE CARLO SIMULATIONS AND THE MOMENT MATCHING 
APPROXIMATION FOR EXPONENTIAL CLAIM SIZES.

Monte Carlo simulations Moment matching approx.

b  =  1 b  =  5 b  =  10 b  =  1 b  =  5 b  =  10

q   =   – 1 1606 4450 7486 1621 4498 7545

q   =   0 1434 4168 7122 1427 4221 7166

q   =   1 1245 3857 6719 1251 3895 6755

TABLE 7

TVaR0.995 (Z(5)) CALCULATED FROM THE MONTE CARLO SIMULATIONS AND THE MOMENT MATCHING

APPROXIMATION FOR EXPONENTIAL CLAIM SIZES.

Monte Carlo simulations Moment matching approx.

b  =  1 b  =  5 b  =  10 b  =  1 b  =  5 b  =  10

q   =   – 1 1802 4776 7907 1837 4855 7999

q   =   0 1606 4451 7491 1601 4532 7558

q   =   1 1387 4092 7030 1400 4152 7084
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for a  >  0, b  >  0 and 0  <  x  <  1. The m-th moment of  the generalized Pareto 
distributed random variable Y is given by

 Y m
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m
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( )

( )
E

i

i
m

t
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i

m
i

m

1

0
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Noting Mk  =  E [Yk ] / E [Y ]k as in Venter (1983), we can express the three 
parameters of Y using its fi rst three moments as
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We now use a moment matching approximation based on this generalized 
Pareto distribution to fi t the distribution of Z(t) when the claims are Pareto 
distributed. We choose to work with two different Pareto distributions for the 
claim amounts with the same expected values as for the previous exponential 
case. The distribution function of a Pareto distributed r.v. X  +  Pareto(k, g) is

 ( –) 1 g
g

x xX = +

k

F f p

for x  >  0. Its m-th moment is given by
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 (25)

for g  >  0 and k  >  m and E [(X�)m ] according to (18) is then
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=
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%
 (26)

for k  $  m/2.
For this example, we also use b  =  1, 5 and 10 as parameters for the inter-

claim time distribution, an interest rate d  =  4%, q  =  – 1, 0 and 1 for the copula 
parameter and a 5-years time horizon.
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We consider that the claim amounts are Pareto distributed such as X  + 
Pareto(4,300) and fi t the distribution of Z(5) to a generalized Pareto distribu-
tion with parameters given in Tables 8, 9 and 10.

In Tables 11 and 12, we compare the Value at Risk (VaR) and the Tail Value 
at Risk (TVaR) obtained from Monte Carlo simulations of Z(5) against the 
VaR and TVaR for the generalized Pareto distribution approximation for a 
confi dence level a  =  99.5%. The approximations are here also very satisfying.

In Figure 4, we depict the values of TVaR of (Z(5)) obtained with Monte 
Carlo simulations and the ones obtained with moment matching using d  =  4%, 
b  =  5 and q  =  – 1. The fi t is similar for other values of q, b and d.

As for the exponential claim’s case, the impact of the dependence on the 
TVaR of Z(5) for q  =  – 1, 0 and 1 is drawn in Figure 5. Again, we observe that 
the impact of q is more signifi cant in the upper tail of the distribution of Z(5) 
even if  the FGM copula introduces a moderate dependence relation.

TABLE 8

MOMENTS OF Z(5) AND PARAMETERS OF THE GENERALIZED PARETO DISTRIBUTIONS FOR b  =  1.

q mZ(5) mZ
(2)(5) mZ

(3)(5) t a l

– 1 481.183 3.868  ≈  105 4.680  ≈  108 2.006 10.717 2330.750

0 453.173 3.290  ≈  105 3.627  ≈  108 2.620  8.270 1257.320

1 425.163 2.743  ≈  105 2.707  ≈  108 4.047  6.612  589.490

TABLE 9

MOMENTS OF Z(5) AND PARAMETERS OF THE GENERALIZED PARETO DISTRIBUTIONS FOR b  =  5.

q mZ(5) mZ
(2)(5) mZ

(3)(5) t a l

– 1 2294.323 6.008  ≈  106 1.783  ≈  1010  9.873 29.461 6613.484

0 2265.866 5.752  ≈  106 1.634  ≈  1010 15.255 21.428 3034.354

1 2237.408 5.500  ≈  106 1.492  ≈  1010 39.071 16.045  861.591

TABLE 10

MOMENTS OF Z(5) AND PARAMETERS OF THE GENERALIZED PARETO DISTRIBUTIONS FOR b  =  10.

q mZ(5) mZ
(2)(5) mZ

(3)(5) t a l

– 1 4560.246 2.228  ≈  107 1.163  ≈  1011 19.816 52.716 11901.333

0 4531.731 2.177  ≈  107 1.109  ≈  1011 31.797 37.876  5255.645

1 4503.217 2.127  ≈  107 1.056  ≈  1011 99.653 27.909  1215.996
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5. CONCLUSION

In this paper, we obtain explicit expressions for the fi rst two moments and then 
for the mth moment of  the discounted aggregated claim amounts within a 
compound Poisson risk model with dependence. For the dependence structure, 
we suppose that the claim amount and the time spent since the last claim are 
linked by a classical FGM copula. We illustrate the application of our results 
with two examples using approximations based on the fi rst three moments.
It would be interesting to consider in future research different distributions for 
the interclaim time as, for example, an Erlang distribution or a mixture of 
Erlang distributions.
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TABLE 11

VaR0.995 (Z(5)) CALCULATED FROM THE MONTE CARLO SIMULATIONS AND THE MOMENT MATCHING 
APPROXIMATION FOR PARETO CLAIM SIZES.

Monte Carlo simulations Moment matching approx.

b  =  1 b  =  5 b  =  10 b  =  1 b  =  5 b  =  10

q   =   – 1 2084 5221 8435 2204 5324 8511

q   =   0 1897 4958 8104 2014 5078 8197

q   =   1 1698 4687 7767 1807 4827 7875

TABLE 12

TVaR0.995 (Z(5)) CALCULATED FROM THE MONTE CARLO SIMULATIONS AND THE MOMENT MATCHING

APPROXIMATION FOR PARETO CLAIM SIZES.

Monte Carlo simulations Moment matching approx.

b  =  1 b  =  5 b  =  10 b  =  1 b  =  5 b  =  10

q   =   – 1 2608 5954 9283 2710 5940 9217

q   =   0 2402 5683 8948 2511 5681 8877

q   =   1 2187 5406 8610 2291 5423 8536

94352_Astin41-1_09_Barges.indd   23394352_Astin41-1_09_Barges.indd   233 12/05/11   14:3112/05/11   14:31

https://doi.org/10.2143/AST.41.1.2084392 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.1.2084392


234 M. BARGÈS, H. COSSETTE, S. LOISEL AND É. MARCEAU

Stéphane Loisel acknowledges partial funding from the research chair 
Actuariat Durable sponsored by Milliman, the research chair Management de 
la Modélisation sponsored by BNP Paribas Assurance and the research chair 
Actuariat responsable sponsored by Generali.

The authors would also like to thank Mélina Mailhot, Khouzeima Mouta-
nabbir and Florent Toureille for their technical support.

IN MEMORIAM

In memory of Florent Toureille (1981-2010) a colleague and a friend.

 REFERENCES

ALBRECHER, H. and BOXMA, O.J. (2004) A ruin model with dependence between claim sizes and 
claim intervals. Insurance Math. Econom., 35(2): 245-254.

ALBRECHER, H. and TEUGELS, J.L. (2006) Exponential behavior in the presence of dependence 
in risk theory. J. Appl. Probab., 43(1): 257-273.

ASIMIT, A. and BADESCU, A. (2009) Extremes on the discounted aggregate claims in a time dependent 
risk model. Scand. Actuar. J. from http://www.informaworld.com/10.1080/ 03461230802700897.

BAEUMER, B. (2003) On the inversion of the convolution and Laplace transform. Trans. Amer. Math. 
Soc., 355(3): 1201-1212 (electronic).

BIARD, R., LEFÈVRE, C., LOISEL, S. and NAGARAJA, H. (2011) Asymptotic fi nite-time ruin proba-
bilities for a class of path-dependent claim amounts using Poisson spacings. Applied Stochas-
tic Models in Business and Industry. In press.

BOUDREAULT, M. (2003) Modelling and pricing earthquake risk. SCOR Canada Actuarial Prize 2003.
BOUDREAULT, M., COSSETTE, H., LANDRIAULT, D. and MARCEAU, E. (2006) On a risk model with 

dependence between interclaim arrivals and claim sizes. Scand. Actuar. J., (5): 265-285.
COSSETTE, H., MARCEAU, É., and MARRI, F. (2009) Analysis of ruin measures for the classical 

compound Poisson risk model with dependence. To appear in Scandinavian Actuarial Journal. 
In press.

DELBAEN, F. and HAEZENDONCK, J. (1987) Classical risk theory in an economic environment. 
Insurance Math. Econom., 6(2): 85-116.

DUCHESNE, T. and MARRI, F. (2009) General distributional properties of discounted warranty costs 
with risk adjustment under minimal repair. IEEE Transactions on Reliability, 58(1): 143-151.

JANG, J. (2004) Martingale approach for moments of discounted aggregate claims. Journal of 
Risk and Insurance, 71(2): 201-211.

JANG, J. (2007) Jump diffusion processes and their applications in insurance and fi nance. Insurance 
Math. Econom., 41(1): 62-70.

JOHNSON, M.A. and TAAFFE, M.R. (1989) Matching moments to phase distributions: Mixtures 
of erlang distributions of common order. Stoch. Models, 5(4): 711-743.

KALASHNIKOV, V. and KONSTANTINIDES, D. (2000) Ruin under interest force and subexponential 
claims: a simple treatment. Insurance Math. Econom., 27(1): 145-149.

KIM, B. and KIM, H.-S. (2007) Moments of claims in a Markovian environment. Insurance Math. 
Econom., 40(3): 485-497.

KLUGMAN, S.A., PANJER, H.H. and WILLMOT, G.E. (2008) Loss models: From data to decisions. 
Wiley Series in Probability and Statistics. John Wiley & Sons Inc., Hoboken, NJ, third edition.

LÉVEILLÉ, G. and GARRIDO, J. (2001a) Moments of compound renewal sums with discounted 
claims. Insurance Math. Econom., 28(2): 217-231.

LÉVEILLÉ, G. and GARRIDO, J. (2001b). Recursive moments of compound renewal sums with 
discounted claims. Scand. Actuar. J., (2): 98-110.

LÉVEILLÉ, G., GARRIDO, J. and WANG, Y. (2009) Moment generating functions of compound 
renewal sums with discounted claims. To appear in Scandinavian Actuarial Journal.

94352_Astin41-1_09_Barges.indd   23494352_Astin41-1_09_Barges.indd   234 12/05/11   14:3112/05/11   14:31

https://doi.org/10.2143/AST.41.1.2084392 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.1.2084392


 MOMENTS OF AGGREGATE DISCOUNTED CLAIMS WITH DEPENDENCE 235

LINDSKOG, F. and MCNEIL, A.J. (2003) Common Poisson shock models: applications to insurance 
and credit risk modelling. Astin Bull., 33(2): 209-238.

MCNEIL, A.J., FREY, R. and EMBRECHTS, P. (2005) Quantitative risk management. Princeton 
Series in Finance. Princeton University Press, Princeton, NJ. Concepts, techniques and tools.

NELSEN, R.B. (2006) An introduction to copulas. Springer Series in Statistics. Springer, New York, 
second edition.

NIKOLOULOPOULOS, A.K. and KARLIS, D. (2008) Fitting copulas to bivariate earthquake data: 
the seismic gap hypothesis revisited. Environmetrics, 19(3): 251-269.

PORTER, K., BECK, J., SHAIKHUTDINOV, R., AU, S., MIZUKOSHI, K., MIYAMURA, M., ISHIDA, H., 
MOROI, T., TSUKADA, Y. and MASUDA, M. (2004) Effect of seismic risk on lifetime property 
value. Earthquake Spectra, 20(4): 1211-1237.

REN, J. (2008) On the Laplace transform of  the aggregate discounted claims with Markovian 
arrivals. N. Am. Actuar. J., 12(2): 198.

ROLSKI, T., SCHMIDLI, H., SCHMIDT, V. and TEUGELS, J. (1999) Stochastic processes for insurance 
and fi nance. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester.

SUNDT, B. and TEUGELS, J.L. (1995) Ruin estimates under interest force. Insurance Math. Econom., 
16(1): 7-22.

TANG, Q. (2005) The fi nite-time ruin probability of the compound Poisson model with constant 
interest force. J. Appl. Probab., 42(3): 608-619.

TAYLOR, G.C. (1979) Probability of ruin under infl ationary conditions or under experience rating. 
Astin Bull., 10(2): 149-162.

TIJMS, H. (1994) Stochastic models: an algorithmic approach. John Wiley, Chiester.
VAN NOORTWIJK, J. and FRANGOPOL, D. (2004) Two probabilistic life-cycle maintenance models 

for deteriorating civil infrastructures. Probabilistic Engineering Mechanics, 19(4): 345-359.
VENTER, G. (1983) Transformed beta and gamma distributions and aggregate losses. Proc. Cas. 

Act. Soc., pages 156-193.
WATERS, H. (1983) Probability of ruin for a risk process with claims cost infl ation. Scand. Actuar. J., 

pages 148-164.
WILLMOT, G.E. (1989) The total claims distribution under infl ationary conditions. Scand. Actuar. J., 

(1): 1-12.
YANG, H. and ZHANG, L. (2001) On the distribution of surplus immediately after ruin under 

interest force. Insurance Math. Econom., 29(2): 247-255.

MATHIEU BARGÈS

Université de Lyon, Université Claude Bernard Lyon 1,
Institut de Science Financière et d’Assurances,
50 Avenue Tony Garnier,
F-69007 Lyon, France et
École d’Actuariat,
Université Laval,
Québec, Canada

STÉPHANE LOISEL

Université de Lyon, Université Claude Bernard Lyon 1,
Institut de Science Financière et d’Assurances,
50 Avenue Tony Garnier,
F-69007 Lyon, France

HÉLÈNE COSSETTE and ÉTIENNE MARCEAU

École d’Actuariat,
Université Laval,
Québec, Canada

94352_Astin41-1_09_Barges.indd   23594352_Astin41-1_09_Barges.indd   235 12/05/11   14:3112/05/11   14:31

https://doi.org/10.2143/AST.41.1.2084392 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.1.2084392


236 M. BARGÈS, H. COSSETTE, S. LOISEL AND É. MARCEAU

FIGURE 1: Simulation of path of the claim process for three copula parameter values.

APPENDIX

Figures for Section 4.2
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FIGURE 3: Impact of dependence on TVaRa (Z(5)) for exponential claim sizes.

FIGURE 2: Comparison between TVaR of Z(5) from Monte Carlo (MC) simulations and moment 
matching (MM) for exponential claim sizes and q  =  – 1.
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FIGURE 5: Impact of dependence on TVaRa (Z(5)) for Pareto claim sizes.

FIGURE 4: Comparison between TVaR of Z(5) from Monte Carlo (MC) simulations and moment 
matching (MM) for Pareto claim sizes and q  =  – 1.
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