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Three-dimensional shock tube flows
for dense gases
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(Received 1 August 2006 and in revised form 6 March 2007)

The formation process of a non-classical rarefaction shock wave in dense gas
shock tubes is investigated by means of numerical simulations. To this purpose,
a novel numerical scheme for the solution of the Euler equations under non-ideal
thermodynamics is presented, and applied for the first time to the simulation of
non-classical fully three-dimensional flows. Numerical simulations are carried out
to study the complex flow field resulting from the partial burst of the shock tube
diaphragm, a situation that has been observed in preliminary trials of a dense gas
shock tube experiment. Beyond the many similarities with the corresponding classical
flow, the non-classical wave field is characterized by the occurrence of anomalous
compression isentropic waves and rarefaction shocks propagating past the leading
rarefaction shock front. Negative mass flow through the rarefaction shock wave
results in a limited interaction with the contact surface close to the diaphragm, a
peculiarity of the non-classical regime. The geometrical asymmetry does not prevent
the formation of a single rarefaction shock front, though the pressure difference across
the rarefaction wave is predicted to be weaker than the one which would be obtained
by the complete burst of the diaphragm.

1. Introduction
The gasdynamics of a fluid operating in a thermodynamic region near to or

overlapping liquid–vapour equilibrium may significantly differ from that of dilute
gases from both a qualitative and quantitative point of view. The presence of well-
known thermodynamic processes such as liquid–vapour transition or critical-point
phenomena may lead to the appearance of ‘exotic’ wave fields including rarefaction
shocks, mixed, composite and split waves, as reviewed by Menikoff & Plohr (1989).
For example, mixed and split waves may form when the flow undergoes a phase
transition, see, for instance, Bethe (1942). These waves are indicated as non-classical
waves, to be contrasted with compression shock waves and rarefaction isentropic
waves usually encountered in (classical) gasdynamics, see Cramer & Kluwick (1984).
In particular, non-classical rarefaction shocks are referred to as negative shock waves
and are thermodynamically admissible provided that the fundamental derivative of
gasdynamics Γ of Thompson (1971) becomes negative. Γ is defined as follows

Γ (s, v) = −v

2

(
∂2P

∂v2

)
s

/ (
∂P

∂v

)
s

=
v3

2c2

(
∂2P

∂v2

)
s

, (1.1)

where s is the specific (per unit mass) entropy, v is the specific volume, P is the pressure
and c is the speed of sound. Note that for a polytropic, i.e. constant specific heats,
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Figure 1. Saturation curve and critical isotherm for fluid PP10. The non-classical BZT region
is bounded by the Γ = 0 line and the vapour side of the saturation curve. Thompson &
Lambrakis (1973) noticed that the BZT region is sufficiently far from the liquid–vapour
critical point for critical phenomena to be negligible.

ideal gas, Γ =(γ + 1)/2 = const, with γ = cP /cv being the ratio of the specific heats
at constant pressure and volume. Since γ > 1, namely, cP > cv , for thermodynamic
stability, negative values of Γ are not possible for the so-called perfect gases.

Non-classical behaviour in flows displaying liquid–vapour phase transition has
been observed experimentally by Thompson, Carofano & Kim (1986). Ivanov &
Novikov (1961) reported non-classical wave fields in allotropic phase changes in a steel
specimen. Bethe (1942) and Weyl (1949) speculated on the possibility for real fluids
to exhibit non-classical gasdynamic phenomena in the single-phase vapour region. By
using the simple polytropic van der Waals model, they discovered that molecularly
complex vapours may allow for non-classical gasdynamic phenomena to occur in a
thermodynamic region located in the vicinity of the liquid–vapour saturation curve
(figure 1), see also Zel’dovich (1946) and Hayes (1960). Thompson (1971), Cramer
(1989), Colonna & Silva (2003) and Guardone & Argrow (2005) investigated the
existence of a Γ < 0 region for different fluids, using more accurate thermodynamic
models. A number of molecularly complex hydrocarbons, perfluorocarbons and
siloxanes have been identified which should exhibit a Γ < 0 region in the vapour
phase. These fluids are usually called BZT vapours after Bethe, Zel’dovich and
Thompson. No experimental evidence of the existence of non-classical phenomena
in the vapour phase is available. Borisov et al. (1983) claimed to have observed a
negative shock wave in Freon-13. The interpretation of these results was challenged
among others by Fergason et al. (2001) and the observed wave field is now believed
to be related to both critical-point and two-phase effects.

A novel shock tube experiment has been designed and tested at the University
of Colorado at Boulder with the aim of providing an experimental proof of the
occurrence of non-classical gasdynamic behaviour in fluid PP10 (C13F22). Preliminary
results using nitrogen gas (Fergason, Guardone & Argrow 2003) pointed to the
shock tube diaphragm manufacturing and operation as critical issues related to the
experimental set-up and motivate the present study. In particular, the imperfect burst
of the shock tube diaphragm was found to introduce significant three-dimensional
disturbances in the flow field, which possibly prevent an indisputable detection
of non-classical phenomena. A similar experimental facility is currently under
construction at the Delft University of Technology, the Netherlands, in collaboration
with the Politecnico di Milano and the University of Brescia, Italy (see Zamfirescu,
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Three-dimensional shock tube flows for dense gases 425

Guardone & Colonna 2006). The adopted solution includes a fast opening valve, to
guarantee repeatability and complete clearance. As the valve is opened, the fluid in
the high-pressure tube flows into the low-pressure reservoir through a nozzle. The
proposed Ludwieg tube-like design uses siloxanes – silicone oils currently used also
in organic Rankine cycle engines – as working fluids.

In both experiments, a rarefaction shock wave is expected to form as the shock tube
diaphragm/fast opening valve opens and its propagation velocity is to be measured
by means of wall-mounted pressure transducers: if the wave speed is greater than
the local speed of sound in the unperturbed medium, then the rarefaction wave
is indeed a non-classical rarefaction shock wave moving at supersonic speed. The
understanding of the formation process of the rarefaction shock front is therefore key
to the correct design of the experimental apparatus and to a conclusive interpretation
of the measurements.

The formation of a single shock front resulting from the partial and/or not
instantaneous opening of the diaphragm in classical flows has been the subject of
a number of studies, since significant multidimensional effects occur close to the
diaphragm location (see e.g. Glass & Sislian 1994; Petrie-Repar & Jacobs 1998), and
past the shock itself (see Persico, Gaetani & Guardone 2005). However, shock tube
flows of dense gases are usually qualitatively very different from their classical, namely,
perfect gas, counterparts (see Argrow 1996; Guardone & Vigevano 2002; Guardone,
Vigevano & Argrow 2004 and Brown & Argrow 1997 for one- and two-dimensional
non-classical shock tube flows, respectively). As a consequence, the formation process
of a rarefaction shock front is expected to present significant differences with respect
to the classical case.

The investigation of the non-classical phenomena associated with the formation
of a rarefaction shock wave is the focus of the present work. As an example, the
flow field past a partially opened diaphragm is considered, since it represents a
challenging situation and it is also motivated by the first experimental observations
in the Boulder experiment. To investigate the spatially complex non-classical wave
field occurring in the real shock tube experiment, a numerical scheme for the solution
of the three-dimensional Euler equations is outlined and used here to simulate the
three-dimensional flow occurring in the Boulder shock tube apparatus.

The paper is structured as follows. In § 2, the Euler equations governing inviscid
flows of real gases are briefly recalled and the thermodynamic model of the fluid
is presented. The discrete form of the Euler equations for non-ideal gases is then
obtained by means of an edge-based finite-volume scheme. To comply with the need
to include complex non-ideal thermodynamic models, the Roe linearization technique
proposed by Guardone & Vigevano (2002) for the polytropic van der Waals model is
generalized here to a fully arbitrary thermodynamic model, as detailed in § 3. In § 4, the
proposed method is applied to the simulation of the shock tube flow resulting from the
partial burst of the diaphragm. Results include dilute gas classical computations and
the simulation of the non-classical dense gas shock tube experiment. To the author’s
knowledge, the results presented here are the first three-dimensional simulations of
non-classical wave fields.

2. Governing equations
The conservative form of the three-dimensional Euler equations of gasdynamics of

interest here, is

∂u

∂t
+ ∇· f(u) = 0, (2.1)
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426 A. Guardone

where u, u = (ρ, m, Et )T ∈ �+ × �4, is the vector unknown of the mass density ρ,
momentum density vector m and total energy per unit volume Et , f(u), f ∈ �5 ×�3, is
the flux function and where it is understood that ∇· f = ∂fx/∂x +∂fy/∂y +∂fz/∂z, with
fx, fy, fz ∈ �5 being the ‘Cartesian components’ of the flux function f. The solution
of (2.1) is sought for in the spatial domain Ω ∈ �3, with boundary ∂Ω for all times
t ∈ �+. System (2.1) is made complete by specifying suitable initial and boundary
conditions (see e.g. Godlewski & Raviart 1994). The flux function f(u) is defined as

f(u) =

(
m,

m ⊗ m
ρ

+ Π(u) I, [Et + Π(u)]
m
ρ

)T

, (2.2)

where I is the 3 × 3 identity matrix. From the pressure equation of state P = P (e, ρ),
e being the internal energy per unit mass, the following pressure function Π(u) in
terms of the conservative variables,

Π(u) = P

(
Et

ρ
− 1

2

|m|2
ρ2

, ρ

)
, (2.3)

has been introduced. The thermodynamic information required to write the pressure
equations of state P (e, ρ) can be obtained by specifying for example the two
(compatible) equations of state for the pressure P = P (T , v) and for the internal
energy e = e(T , v) as a function of the temperature T and the specific volume v;
together, these equations of state define a complete thermodynamic model (Callen
1985). For example, for a polytropic ideal gas, we have P (T , v) = RT/v and e(T , v) =
eref + R(T − Tref)/(γ − 1), with R = R/M , R being the universal gas constant and M

the molecular weight, and where eref and Tref are the values of the energy and the
temperature in an arbitrary reference state. Hence, P (e, ρ) = ρ [(γ −1)(e−eref)+RTref].

In the computations, the Martin–Hou pressure equation of state (Martin & Hou
1955; Martin, Kapoor & De Nevers 1958) has been selected for its suitability in
modelling fluorinated substances near the liquid-vapour saturation curve (Cramer
1989; Emanuel 1994; Guardone et al. 2004). The complete Martin–Hou model is
given by the following two equations of state

P (T , v) =
RT

v − b
+

5∑
i=2

Qi(T )

(v − b)i
, (2.4)

e(T , v) = eref +

∫ T

Tref

cv∞(τ ) dτ −
5∑

i=2

T Q′
i(T ) − Qi(T )

(i − 1)(v − b)i−1
, (2.5)

where Qi(T ) = Ai + BiT + Ci exp (−kT /Tc), k = 5.475 and Q′
i(T ) = dQi(T )/dT .

The gas-dependent coefficients b, Ai , Bi and Ci have been obtained by applying
the approximate procedure of Cramer (1989), which requires the specification of the
critical-point coordinates and the boiling temperature Tb at 1 atm. These data are
reported in § 4 for air and fluid PP10. In the expression of the energy equation of
state, the function cv∞(T ) is the specific heat at constant volume in the dilute gas limit
or, more precisely,

cv∞(T ) = lim
v→∞

cv(T , v),

where cv(T , v) = ∂e(T , v)/∂T is the specific heat at constant volume. Following
Thompson & Lambrakis (1973), the function cv∞(T ) is approximated in the
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neighbourhood of the critical point by the power law

cv∞(T ) = cv∞(Tc)

(
T

Tc

)n

, (2.6)

with Tc critical temperature. The values of cv∞(Tc) and n are given by Lambrakis &
Thompson (1972) and Cramer (1989) for several molecularly complex fluids.

Differently from the polytropic ideal gas, the analytical expression for the pressure
equation of state P = P (e, ρ) is not easily obtained in the case of the Martin–Hou gas
model. The evaluation of the pressure function Π is therefore performed numerically
in two steps. First, the value of the temperature is computed from the vector variable
u by solving for T the nonlinear equation

φ(T , u) = e(T , 1/ρ) − e(u) = 0,

with e(u) = Et/ρ−(|m|/ρ)2/2; the equation above being actually the implicit definition
of the function T = T (u). Newton iteration requires us to know the function e(T , v)
and its partial derivative with respect to T . In the computations, the ideal polytropic
approximation is used to provide the initial guess for the Newton scheme, namely,
Tguess = Tref +(e − eref)/cv∞(Tc). Afterward, the pressure is computed from the equation
of state (2.4) as Π(u) = P (T (u), 1/ρ).

As a final remark, it should be recalled that no thermodynamic data are available
to assess the accuracy of the Martin–Hou thermodynamic model of fluid PP10, as
discussed by Guardone et al. (2004). In particular, uncertainties in the predictions of
the critical point and on the dilute gas specific heat may result in large uncertainties
in the determination of the value of Γ . Moreover, it is well known that the accuracy
of the Martin–Hou model is very poor close to the saturation curve at low pressure
(P < 0.6 Pc). This is, however, not the case for the dilute (v � vc) and dense (P � Pc)
gas computations carried out in the present work.

3. Numerical method
Standard numerical techniques for solving the Euler equations for classical

gasdynamics may be unsuitable for the simulation of non-classical waves in the
BZT regime, as pointed out, for instance, by Menikoff & Plohr (1989) and
Rider & Bates (2001). To overcome these difficulties, an extension to the Roe
linearization technique of Guardone & Vigevano (2002) for the polytropic van
der Waals gas is derived to compute non-classical flows of Martin–Hou vapours.
The approximate Riemann solver is included into an edge-based node-centred finite-
volume scheme for unstructured grids. The main features of the numerical scheme are
now briefly recalled and the Roe linearization procedure for a general thermodynamic
model is detailed.

Following Selmin (1993), the discrete form of the governing equations (2.1) is
obtained here by applying the node-centred finite-volume method for unstructured
grids. A high-resolution expression for the integrated numerical flux is then obtained
by resorting to the total variation diminishing (TVD) approach, in which the centred
second-order approximation of the numerical fluxes is replaced by the first-order
scheme of Roe (1981) near flow discontinuities. The switch is controlled by the flux
limiter function of van Leer (1974). The fully discrete form of (2.1) is finally obtained
by time discretization via the total variation bounded (TVB) multistage scheme of
Shu (1988). Slip boundary conditions are applied at the shock tube solid boundaries.
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428 A. Guardone

The Roe matrix Ã, Ã ∈ �5×�5, which is required to compute the first-order upwind
integrated numerical fluxes, is constructed according to the following prescription
given by Roe (1981)

(i) Conservation: Ã[uk − ui] = [f(uk) − f(ui)] · ηik, (3.1a)

(ii) Consistency: Ã → A(u) · ηik as ui , uk → u, (3.1b)

(iii) Hyperbolicity: Ã has real eigenvalues and a corresponding set of
eigenvectors that form a basis in �5,

where indexes i and k indicate grid nodes belonging to a grid edge crossing the
interface between the ith and the kth finite-volume cells, and where ηik is the integrated
normal over interface ik. The Roe matrix is chosen here to be in Jacobian form,
namely,

Ã = A(ũ) · ηik, (3.2)

where A, A(u) = ∂f(u)/∂u, is the Jacobian matrix of the flux f(u) to be evaluated in
some suitable intermediate state ũ. The Roe intermediate state ũ is therefore obtained
by solving the following 5 × 5 system

[A(ũ) · ηik] (uk − ui) = [f(uk) − f(ui)] · ηik,

for the five unknown components of ũ, namely, condition (i). Correspondingly,
condition (ii) simplifies to ũ(ui , uk) → u as ui , uk → u and (iii) is identically satisfied
for any choice of the intermediate state ũ ∈ �+ × �4. From rotational invariance
of the Euler equations (see e.g. Godlewski & Raviart 1994, p. 321), it follows that
the intermediate state ũ does not depend on the direction vector ηik and therefore
ũ = ũ(ui , uk). Guardone & Vigevano (2002) showed that the celebrated average of
Roe (1981) for ideal polytropic gases, namely,

w̃ =

√
ρi wi +

√
ρk wk√

ρi +
√

ρk

, h̃t =

√
ρi h

t
i +

√
ρk ht

k√
ρi +

√
ρk

,

where w, w = m/ρ is the velocity vector and ht , ht = h + |w|2/2 is the total specific
enthalpy, remains valid also in the case of non-ideal thermodynamic models provided
that the intermediate density ρ̃ is found as the solution of the following system

h(Ẽ, ρ̃) = h̃t − 1
2
|w̃|2,

κ(Ẽ, ρ̃) 
E + χ(Ẽ, ρ̃) 
ρ = 
P,

}
(3.3)

of two equations in the two unknowns: intermediate density ρ̃ and intermediate

internal energy density Ẽ. The operator 
 indicates state differences, namely, 
(·) =
(·)k − (·)i . In the system above, the specific enthalpy h is computed from its definition,
h(E, ρ) = [E + P (E, ρ)]/ρ and the functions κ and χ are the partial derivatives of
the pressure equation of state P = P (E, ρ), namely

κ =

(
∂P

∂E

)
ρ

, χ =

(
∂P

∂ρ

)
E

. (3.4)

For a polytropic van der Waals gas, (3.3) reduces to a single third-order
algebraic equation for the intermediate density ρ̃ and can be solved analytically
using standard solution formula (Guardone & Vigevano 2002). For more complex
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thermodynamic models, the solution of (3.3) requires numerical techniques (Guardone
2001).

In the present study, an iterative Newton method is used to solve (3.3). The
computation of the pressure P = P (E, ρ) at each iteration of the Newtonian scheme
would be computationally expensive since an explicit analytical expression is usually
not available for complex thermodynamic models and hence its evaluation would
require inner iterations. To avoid that, the solution of (3.3) is sought for the new

variables, intermediate temperature T̃ and specific volume ṽ, since the specific enthalpy
is computed immediately from the equations of state as h(T , v) = e(T , v) + v P (T , v).
From the theorem of chain derivatives, we have

κ(T , v) = v

(
∂P

∂T

)
v

/ (
∂e

∂T

)
v

,

χ(T , v) = −v2

(
∂P

∂v

)
T

+ v

(
∂P

∂T

)
v

[
v

(
∂e

∂v

)
T

− e

] / (
∂e

∂T

)
v

,

which allows for (3.3) to be recast in terms of T̃ and ṽ only as

h(T̃ , ṽ) = h̃t − 1
2
|w̃|2,

κ(T̃ , ṽ) 
E + χ(T̃ , ṽ) 
ρ = 
P.

}
(3.5)

Solution of (3.5) is obtained by means of a Newton algorithm; fewer than five
iterations are usually required for convergence using as the initial guess for the
Newton solver the algebraic mean of the value of the unknowns at nodes i and k.
The intermediate state of the conservative variables appearing in the definition of the
Roe matrix (3.2) is finally obtained as

ũ = ũ(T̃ , ṽ, w̃) =
1

ṽ
(1, w̃, e(T̃ , ṽ) + 1

2
|w̃|2)T .

In the computations, the entropy fix of Harten & Hyman (1983), whose suitability
for non-classical flows is discussed by Guardone & Vigevano (2002), has been used
to fulfil the entropy condition.

4. Build-up of a nonclassical rarefaction shock wave
The proposed numerical scheme is applied to the computation of three-dimensional

shock tube flows of dense gases. In § 4.1, the incomplete opening of a shock tube
diaphragm for air in dilute gas conditions is first studied, to gain further confidence in
the numerical solution procedure. Numerical results are verified against experimental
data. In § 4.2, the Boulder non-classical shock tube experiment is briefly described and
the fully three-dimensional non-classical flow field resulting from the partial burst
of the diaphragm is investigated numerically to study the formation process of a
rarefaction shock front.

4.1. Recovery of perfect gas results

The shock tube flow resulting from the incomplete opening of the shock tube
diaphragm is now studied for air in dilute gas conditions and at room temperature.
The purpose of the present section is two-fold. On the one hand, numerical results are
compared to experimental data to assess the correctness of the proposed methodology
and to verify the consistency of the thermodynamic model, which is expected to
reproduce the dilute gas state with high accuracy. On the other hand, this preliminary
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Figure 2. (a) Incomplete diaphragm burst in dilute air. D is the diameter of the diaphragm,
namely, the inner diameter of the shock tube; d is the diameter of the opened portion of the
diaphragm. Note the pre-cut aluminium plates on the high-pressure side of the diaphragm,
labelled A. From high-speed camera recording, the plates are seen not to introduce a significant
blockage during operations (see Persico et al. 2005). (b) Axisymmetric computational domain
near the diaphragm location. Initial data are discontinuous across the diaphragm section.

study is necessary to evaluate the suitability of two relevant assumptions which also
hold in the simulations of dense gas shock tube flow fields. The first hypothesis is that
the wave propagation process and the intensity of the shock wave are affected only
negligibly by viscous stresses and thermal conductivity, that is, that the Euler equations
for an inviscid compressible fluid with zero thermal conductivity are adequate for
predicting the shock dynamics. Moreover, in the following it is assumed that the
effects of the diaphragm dynamics are significant only close to the diaphragm section,
that is, that sufficiently far from the diaphragm, the wave pattern does not depend
on the spatial and temporal details of the diaphragm dynamics. Accordingly, the
diaphragm is assumed to be partially but instantaneously opened at the beginning
of the simulations, to avoid resorting to complex mathematical models including the
fluid interaction with a rapidly deforming diaphragm.

In the shock tube experiment Persico et al. (2005), a nearly axisymmetric petalling
of the diaphragm (figure 2a), is observed and the incomplete burst of the diaphragm
is studied to investigate its influence on the shock tube performance as a calibrating
device for fast-response pressure probes. The pressure difference across the diaphragm
is less than 1 atm, which is similar to the dense gas case to be studied in the next
section.

The shock tube has a total length of 6.5 m and an internal diameter of 80 mm. The
high-pressure section (1.5 m long) and the low-pressure section (5 m long, open to
the ambient pressure) are separated by a 0.1 mm thick diaphragm made of DCfixTM

plastic. To avoid uneven tearing of the diaphragm and to increase the stiffness of the
plastic membrane, four aluminium plates with a thickness of 0.08 mm are glued onto
the side of the diaphragm facing the high-pressure section (figure 2a). The diaphragm
bursting process is studied by means of a high-speed camera to estimate the total
opening time of the diaphragm, which is about 350 µs. In nominal conditions, the
diaphragm opens to clear a circular section with diameter of about 55–60 mm, that
is 70–75% of the internal tube diameter. Further details on the experimental set-up
and on the instrumentation are given by Persico et al. (2005).

To reduce the computational effort, the shock tube is described by the axisymmetric
geometry shown in figure 2. The axisymmetric version of the code is run on an
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v P T

Section v/vc P/Pc T /Tc (m3 kg−1) (atm) (K) Γ

High pressure 139.8 0.05033 2.232 0.4475 1.872 295.8 1.202
Low pressure 262.5 0.02681 2.232 0.8400 0.9973 295.8 1.202

Table 1. Initial conditions for the reference shock tube problem under the polytropic
Martin–Hou model for air. The molecular weight M is 28.966 kg m−3. The critical point
for air reported by Perry & Green (1984) is Pc = 37.2 atm, Tc = 132.45K, vc = 0.0032 kg m−3

and the boiling temperature at 1atm is Tb = 80K. The (constant) specific heat ratio γ = cP /cv

is 1.402.
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Figure 3. Numerical simulation for the partial axisymmetric burst of the diaphragm (. . .) and
experimental results for air in dilute conditions (——). Initial gas state conditions are given in
table 1. Results refer to the gauge total pressure P ∗ measured by probes 1 (a) and 2 (b), located
450 mm (5.625 D, where D is the shock tube diameter) and 1650mm (20.625 D) downwind of
the diaphragm position, respectively. P ∗

ave is the average post-shock gauge total pressure.

unstructured grid made of 122 605 triangles (63 944 nodes). Initial conditions for
the numerical tests are given in table 1, where the relevant data for applying the
Martin–Hou model to air are also given.

Numerical results and experimental values for the total pressure are compared at
two measurement stations on the axis of symmetry located 450 mm (5.625 D, where
D is the shock tube diameter) and 1650 mm (20.625 D) downwind of the diaphragm
position, respectively. The agreement between numerical and experimental results is
fairly good (figure 3) in terms of average post-shock pressure and of the frequency of
post-shock pressure oscillations, except for the probe closest to the diaphragm section.
In this case, the initial portions of the numerical and experimental signals differ
significantly for a time span comparable to the diaphragm opening time of 0.35 ms.
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v P T

Section v/vc P/Pc T /Tc (m3 kg−1) (atm) (K) Γ

High pressure 1.5572 0.96988 0.99819 2.493×10−3 15.497 631.00 −0.11715
Low pressure 2.49761 0.84124 0.99819 3.998×10−3 13.443 631.00 0.29220

Table 2. Initial conditions for the three-dimensional shock tube problem under the
non-polytropic Martin–Hou model for PP10, from Fergason (2001). From manufacturer data,
the critical-point parameters for fluid PP10 are as follows: molecular weight M = 574 kg m−3,
critical temperature Tc = 630.15 K, critical pressure Pc = 16.2 atm and critical compressibility
factor Zc = Pcvc/(RTc) = 0.2859, with vc critical volume. The boiling temperature at 1 atm is
Tb = 467K. The dimensionless ideal specific heat and the non-polytropic exponent in (2.6) are
cv∞ (Tc)/R = 78.37 and n = 0.5255, respectively, (see Cramer 1989).

This discrepancy is believed to be related to the diaphragm dynamics, which is not
modelled in the simulations, and it is not relevant at measurement stations located
further downstream, where a single shock front is present and the information related
to the shock building process has been destroyed. The numerical results shown in
figure 3 are indistinguishable from those of Persico et al. (2005), based on an ideal
polytropic description of air.

The numerical model is therefore deemed to compute correctly shock tube flows
resulting from the incomplete burst of the diaphragm, in terms of both thermodynamic
consistency in the dilute gas limit and correctness of the aforementioned simplifying
assumptions regarding the influence of the details of the diaphragm dynamics in the
far field.

4.2. Non-classical shock tube simulations

In the present section, the formation process of a single rarefaction shock front in
shock tube flows is studied by means of numerical simulations. As an example of
this kind of flow, the dense shock tube experiment of Fergason (2001) and Fergason
et al. (2003) is considered. The shock tube is made from Type 304, 4 in, Schedule 80
stainless steel tubing, with internal diameter D = 9.718 cm. The 4.88 m long tube is
completely contained within heating elements to maintain a uniform temperature in
both the high- and low-pressure sections. The diaphragm is a 0.1 mm thick copper
sheet scored with a cross pattern for a rapid even burst and it is located 3.04 m from
the end of the high-pressure section. The dense gas shock tube is designed to use the
same fluid in the driver and driven sections to avoid complex fluid separation systems.

For suitable initial conditions, see Fergason (2001) and Fergason et al. (2001). A
triple-discontinuity wave field in fluid PP10 is expected to form, with a classical
compression shock wave (CSW) and a contact surface (CS) moving towards the low-
pressure side of the shock tube together and a non-classical rarefaction shock wave
(RSW), completely embedded in the non-classical region, moving towards the high-
pressure region. In figure 4, the triple-discontinuity flow field is computed starting
from the initial conditions summarized in table 2, where relevant thermodynamic
properties of fluid PP10 are also given, and assuming an instantaneous and complete
burst of the shock tube diaphragm. Note that the present initial conditions have
been computed by using the Martin–Hou model of fluid PP10, whose accuracy
in determining the thermodynamic properties of dense gases remains questionable
(Guardone et al. 2004).
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Figure 4. One-dimensional numerical solution of the triple-discontinuity shock tube problem
under the non-polytropic Martin–Hou model for fluid PP10. States 4 and 1 are the initial state
in the high- and low-pressure sections, respectively, see table 2. (a) Solution in the (v, P )-plane
together with the saturation curve and the Γ = 0 locus. (b) —, reduced pressure P/Pc and . . .,
specific volume v/vc along the shock tube at time t = 29.46ms. The diaphragm is located at
xdiaph = 3 m.

In the high-pressure side of the shock tube, close to its endwall, namely, at xA/D =
25.1 (2.44 m) and xB/D = 28.5 (2.77 m) from the diaphragm, two static pressure
transducers A and B are positioned on the tube surface to measure the incident RSW.
The pressure transducers are separated by an axial distance 
x = xB − xA so that two
different pressure step signals are measured at time tA, at which the RSW is at location
xA, and at time tB = tA + 
t , namely, when the RSW reaches the second transducer.
Signal correlation techniques such as that proposed by Lu & Kim (2000) are then
used to compute the wave velocity W which is compared to the local value of the
speed of sound c4 in the initial state 4. If W > c4, then the wave moves at supersonic
speed with respect to unperturbed conditions and it is indeed a non-classical RSW.
Details of the experimental facility and preliminary results for nitrogen gas are given
by Fergason et al. (2003).

Preliminary trials using diatomic nitrogen in thermodynamic conditions close to
design ones, see Fergason et al. (2003), show the non-ideal behaviour of the diaphragm,
which opened only partially during all trials. In figure 5(a), a typical diaphragm burst
is shown, with two opened petals out of four, thus leaving half of the diaphragm as
an obstacle to the flow. The resulting flow field is highly three-dimensional and it is
studied here by means of numerical simulations. Thompson & Loutrel (1973) discussed
the suitability of metal diaphragms in dense gas shock tube experiments. They argued
that because of the high acoustic impedance ρc of the fluid, the pressure difference
across the diaphragm is rapidly equalized following a small increase δu in the fluid
velocity, according to the relation δP = ρc δu, thus resulting in an incomplete petalling
of the diaphragm along one or two pre-cut fracture lines. Thompson & Loutrel (1973)
suggested using fragile materials such as tempered glass for diaphragms. However,
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Figure 5. (a) Partial rupture of the shock tube diaphragm after the experimental trials with
nitrogen gas (Fergason et al. 2003). D is the tube diameter and the labels O and C indicate
opened and unopened diaphragm petals, respectively. (b) Geometry of the computational
domain (the z-coordinate is not to scale).

diaphragms made of fragile material require the use of a special device to start the
diaphragm opening from its centre. Otherwise, a rigid circular membrane that is
constrained at its boundary and is subjected to a uniform load starts breaking along
its boundary, namely, the diaphragm does not break, but rather detaches from the
shock tube wall and moves as a whole towards the low-pressure section endwall.
Usually, the trigger device is a simple striker mechanism, which has been deemed
here to introduce a significant disturbance in the flow field and possibly to alter the
uniformity of the temperature field. Note also that the acoustic impedance of N2 in
the experimental conditions, namely, ρc ∼ 1.4 × 103 kg m−2s−1 at P = 4.8 atm and
T = 623 K (see Fergason et al. 2003) is one order of magnitude smaller than the
expected value for fluid PP10, for which ρc ∼ 1.4 × 104 kg m−2s−1. Therefore, in
the dense gas experiment, the flow closure due to the partial diaphragm opening is
expected to be more severe.

Initial conditions for the experiment has been computed by Fergason (2001) and are
reported in table 2. The unopened portion of the diaphragm (figure 5b), is assumed
not to be deformable, and initial conditions are discontinuous across the diaphragm
section, therefore, the diaphragm dynamics is not modelled. The fluid thermodynamic
properties are computed using the non-polytropic Martin–Hou model and the effects
of fluid viscosity and thermal conductivity in the smooth part of the flow field are
assumed to be negligible. The symmetry with respect to the (y, z)-plane, z being the
axial coordinate, has been enforced and the three-dimensional computational domain
represents only half of the shock tube (figure 5b).

A grid convergence study is performed to quantify the grid dependency of the
computed flow field in general, and of the leading rarefaction shock front in
particular. The fact that the grid resolution used in the dilute gas case is sufficient
to capture the main flow-field features does not provide any indication for the dense
gas computations, since the differences in the local sound speed and hence in the
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Figure 6. Computed pressure profiles at two different stations along the shock tube wall for
different grid resolutions. (a) Probe 1, located at z1 − zdiaph = 0.07 m (1.4D). (b) Probe 2,
located at z2 − zdiaph = 1.07m (21.4D).

wave speed in the two cases is almost one order of magnitude. Four different grids
made of prisms with a triangular base are considered, each totalling 70 925, 107 244,
214 693 and 489 300 elements, respectively. In each grid, the element size in the z-
direction is uniform and the node location along each cross-section is kept constant,
that is, the grid is obtained by ‘extruding’ an unstructured grid of triangles from
the low-pressure-section endwall to the high-pressure-section endwall. In figure 6, the
pressure signals at two different locations (probes 1 and 2) are shown for different
grid resolutions. The probe positions are chosen to show a representative signal near
the diaphragm location – probe 1 is located 0.07 m or 1.4D from the diaphragm,
where multidimensional effects dominate – and near the endwall, where the pressure
signal is to be measured during the experiment. For both probes, the main features of
the pressure signal are captured already on the coarsest grid, in terms of post-shock
average pressure level and of the local frequency of post-shock oscillations. The
intensity of post-shock pressure disturbances increases with grid resolution; hence,
with respect to this quantity, the results are grid dependent, as is the case for the
dilute gas computations in § 4.1.

The peculiarities of the pressure profiles at stations 1 and 2 can be explained by
resorting to figures 7–10, where the isopycnics of the flow field along the planes
x = 0 m and y = 0 m are shown at times t = 0.7857, 1.473, 1.964 and 2.946 ms,
respectively. In all plots, the shaded region represents the Γ > 0, namely, the classical
region, whereas Γ < 0 elsewhere.

After 0.7857 ms from the diaphragm (instantaneous) opening (figure 7), the flow
field presents almost two-dimensional features in the (x, y)-plane, cf. the plot in the
y = 0 m plane, where isopycnics are almost parallel. The compression shock wave,
the contact surface and the rarefaction shock wave are completely formed already.
On the upper portion of the flow field, approximately for y > 0.025 m = D/4, these
surfaces of discontinuity are normal to the axis of the shock tube, as is the case
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Figure 7. Isopycnics at time t = 0.7857 ms on the planes (a) x = 0 m and (b) y = 0 m for
the non-classical shock tube problem. The shaded region indicates the classical Γ > 0 states.
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Figure 8. As figure 7 but for t = 1.473 ms.

for a complete diaphragm burst (one-dimensional flows). Near the diaphragm, both
the CSW and the RSW diffract and consequently their intensity is reduced, resulting
in rarefaction and compression waves being sent back towards the diaphragm edge
from the CSW and the RSW, respectively. Note that the rarefaction and compression
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Figure 9. As figure 7 but for t = 1.964 ms.
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Figure 10. As figure 7 but for t = 2.946 ms.

waves occur in the classical and non-classical regimes, respectively. In contrast to
what was observed by Persico et al. (2005) in the case of the diffraction of a classical
(isentropic) rarefaction wave, the compression wave past the leading RSW does not
coalesce into a compression shock. Instead, since Γ < 0, it spreads in time as an
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isentropic compression wave, a peculiar behaviour of non-classical flows. At time
t = 1.473 ms (figure 8), the diffracted CSW has been reflected at the tube wall and the
reflected wave starts interacting with the vortex shedding from the diaphragm edge.
Three-dimensional effects are now evident at the vortex location. The vortex, with
axis initially straight and parallel to the x-direction, is generated as a result of flow
separation at the diaphragm edge, where the CS rolls up into slip surface (see e.g.
Skews 1967; Sun & Takayama 2003). Note that in the present inviscid simulation,
flow separation occurs because of the geometry discontinuity at the diaphragm edge.
At t = 1.964 ms (figure 9), the RSW has already been reflected at the tube wall and
the reflected wave propagates towards the high-pressure section. The compression
wave resulting from the diffraction of the RSW at the diaphragm edge, cf. time
t = 0.7857 ms (figure 7), interacts with the upper portion of the tube and is then
reflected towards the normal portion of the RSW. The reflected RSW appears more
clearly at time t = 2.946 ms (figure 10) when the flow field is fully three-dimensional.
Compression waves originating at the diaphragm location, cf. time t = 0.7857 ms
(figure 7), start interacting with the leading RSW on the y = 0.05 m wall, thus
reducing its intensity. At y = 0 m, the shock reflection starts transitioning into a
Mach reflection (see Jiang et al. 1997) although grid resolution is too poor to show
this feature clearly. In all situations, the transition between the classical and non-
classical gasdynamic regime always occurs through the CS, as in the (one-dimensional)
case of a completely opened diaphragm.

The considerations above led to the following interpretation of the pressure signal
in figure 6. The first two expansions at probe 1 are due to the passage of the leading
and reflected RSWs, respectively. In particular, the leading shock is followed by a
compression wave reaching the probe at ∼3 ms, when the pressure starts increasing
(figure 10). Post-shock oscillations are due to the system of compression/rarefaction
waves reflecting at the tube surface. The second rarefaction wave causes a strong
under-pressure with respect to the design post-shock value, which may, in principle,
result in crossing the two-phase boundary. Although the simulations predict a single-
phase vapour flow in the whole flow field, two-phase flow may possibly occur for
different initial conditions or as a results of the unmodelled diaphragm dynamics. It
should be noted, however, that such a situation is not critical in that the RSW moves
with a higher speed with respect to the local flow velocity at which liquid drops are
advected, at most.

Sufficiently far from the diaphragm, i.e. probe 2 in figure 6, the first, strongest,
reflected waves coalesce into a single rarefaction shock front normal to the tube axis,
as in the one-dimensional case, similarly to what was observed by Chang & Kim
(1995) and Jiang et al. (1997) in the case of a classical CSW emerging from a shock
tube and expanding into a tube with a larger cross-sectional area. From figure 11,
the velocity components u and v normal to the tube axis are, in fact, negligible at
station 2, i.e. less than 1% of the velocity component w parallel to the axis itself,
whereas u and v are about 5% of w close to the diaphragm (probe 1). The resulting
planar shock wave is weaker than that theoretically attainable by a complete burst
of the shock tube diaphragm. Relevant quantities in the two cases are summarized
in table 3. Although the wave speed and hence the Mach number are almost the
same, the pressure difference across the RSW resulting from an incomplete burst of
the diaphragm is only 81% of its design value, thus making the requirements on
the measurement chain more strict (see Fergason et al. 2003). Post-shock pressure
oscillations are due to the compression/rarefaction wave system past the leading RSW
and eventually result in disturbances which are expected to reduce the correlations
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W 
P

(m s−1) Mach (atm)

Complete burst 31.70 1.017 1.00

Partial burst 31.61 1.014 0.81

Table 3. Wave speed W , Mach number and pressure difference across the rarefaction shock
wave resulting from a partial and a full burst of the diaphragm for the non-classical shock
tube problem.
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Figure 11. Computed velocity profiles at two different stations along the shock tube wall for
different grid resolutions. (a) Probe 1, located at zdiaph − z5 = 0.07 m (1.4D). (b) Probe 2,
located at zdiaph − z3 = 1.07 m (21.4D). The velocity components along the x, y and z axes are
indicated by u, v and w, respectively.

between pressure signals and therefore reduce the accuracy of the measurement of
the wave speed W .

The triple-discontinuity flow field considered here provides a unique point of view
in that it allows us to observe the build-up of a non-classical RSW discussed above
together with the classical case of the formation of a classical CSW, the CS being
the boundary between the non-classical and classical regimes. Many similarities exist
between the present results and those reported by Chang & Kim (1995) and Jiang
et al. (1997) for a classical CSW expanding into a tube of larger cross-sectional
area. In particular, on the low-pressure section of the shock tube, which evolves in
the classical regime, the shock propagation and interaction with the vortex shedding
from the diaphragm edge (see also Chatterjee 1999) is qualitatively coincident with the
phenomena described by these authors. More details have also been observed by Jiang
et al. (1997), concerning the splitting of the diffracted–reflected shock wave as a result
of the interaction with the vortex and the instability of the shear layer, which has been
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shown to be a purely inviscid instability, in accordance with the results presented by
Blumen, Drazin & Billings (1975) and Drazin & Davey (1977). These flow features
are not captured in the present simulations possibly because of the lack of grid
resolution. Note, however, that – within the limit of the approximation of considering
an instantaneous diaphragm opening – the shock evolution up to the formation of
normal shock fronts, in both the low- and high-pressure section is strongly influenced
by the mutual interaction of the compression waves generated by the RSW with the
CSW and vice versa. In particular, dilute gas simulations show that the resulting
shock strength is larger than that predicted by considering the expansion of the CSW
and of the rarefaction wave separately. Remarkably enough and differently from the
CSW which is the usual object of the experimental investigation, the propagation
of the non-classical RSW is not perturbed by the interaction with the CS and is
therefore, in some sense, a simpler problem to study.

5. Conclusions
A novel numerical scheme has been presented to simulate three-dimensional

non-classical gasdynamic flow fields in the vapour phase using a multiparameter
thermodynamic model. The method allows for the use of unstructured hybrid grids
made of elements of different types and it is centred around an extension of the Roe
linearization technique to a non-ideal thermodynamic model.

The proposed technique has been applied to the simulation of the formation process
of a single rarefaction shock front in three-dimensional shock tube flows resulting
from the partial burst of the diaphragm. Numerical results indicate that a planar
rarefaction shock wave is eventually formed sufficiently far from the diaphragm
section, as the initial disturbances coalesce into a single rarefaction shock front.
However, pressure disturbances past the shock wave caused by the reflections of a
system of compression/rarefaction waves at the tube surface may introduce non-
negligible error in the determination of the wave speed, a critical aspect of the
experimental strategy. Moreover, the pressure jump across the rarefaction shock wave
is predicted to be 19% smaller than that resulting from a complete burst of the
diaphragm.

Because of the high acoustic impedance of fluid PP10 at experimental conditions,
difficulties due to incomplete diaphragm opening are expected to be even more severe,
to such an extent that it can possibly prevent the formation of a rarefaction shock
wave; repeatability of the experiment is also expected to decrease. The use of more
reliable opening mechanisms, such as, for example, fast opening valves, is therefore
suggested for future experimental investigations of non-classical shock tube flows of
dense gases.

The author is deeply indebted to Dr Stephen Fergason and to Professor Brian
Argrow for invaluable comment and suggestions.
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