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We present a numerical study of non-colloidal spherical and rigid particles suspended
in Newtonian, shear thinning and shear thickening fluids employing an immersed
boundary method. We consider a linear Couette configuration to explore a wide
range of solid volume fractions (0.1 6 Φ 6 0.4) and particle Reynolds numbers
(0.1 6 Rep 6 10). We report the distribution of solid and fluid phase velocity and
solid volume fraction and show that close to the boundaries inertial effects result in
a significant slip velocity between the solid and fluid phase. The local solid volume
fraction profiles indicate particle layering close to the walls, which increases with
the nominal Φ. This feature is associated with the confinement effects. We calculate
the probability density function of local strain rates and compare the latter’s mean
value with the values estimated from the homogenisation theory of Chateau et al.
(J. Rheol., vol. 52, 2008, pp. 489–506), indicating a reasonable agreement in the
Stokesian regime. Both the mean value and standard deviation of the local strain
rates increase primarily with the solid volume fraction and secondarily with the Rep.
The wide spectrum of the local shear rate and its dependency on Φ and Rep point to
the deficiencies of the mean value of the local shear rates in estimating the rheology
of these non-colloidal complex suspensions. Finally, we show that in the presence
of inertia, the effective viscosity of these non-colloidal suspensions deviates from
that of Stokesian suspensions. We discuss how inertia affects the microstructure and
provide a scaling argument to give a closure for the suspension shear stress for both
Newtonian and power-law suspending fluids. The stress closure is valid for moderate
particle Reynolds numbers, O(Rep)∼ 10.

Key words: particle/fluid flow, rheology, suspensions

1. Introduction
The dynamics of suspensions of solid particles in a fluid medium is inherently

complex, yet such complex fluids are ubiquitous in nature, e.g. lavas, slurries and

† Email address for correspondence: hormozi@ohio.edu
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debris, and are important for a wide variety of industrial processes, such as paints,
pastes, concrete casting, drilling muds, waste disposal, food processing, crude oil
flows with rocks and medicine. This wealth clarifies why the behaviour of these
suspensions has been extensively studied both experimentally, theoretically and, more
recently, via numerical simulations. These studies have uncovered numerous complex
features of suspension flows, which are, however, not yet fully understood (see
Stickel & Powell 2005). The complexities and challenges are attributed to the large
variety of interactions among particles (hydrodynamic, contact, interparticle forces),
the physical properties of the particles (shape, size, deformability, volume fraction)
and the properties of the suspending fluid (Newtonian or non-Newtonian). In this
work we numerically study suspensions of neutrally buoyant rigid spheres in both
Newtonian and inelastic non-Newtonian fluids.

The rheology of neutrally buoyant non-Brownian particles suspended in a
Newtonian fluid has been largely investigated, see Batchelor (1970), Brady &
Bossis (1988), Larson (1999), Stickel & Powell (2005). This is determined by
two dimensionless numbers: the solid volume fraction Φ and the particle Reynolds
number Rep = ρf γ̇ a2/µ (where a is the particle radius, ρf the fluid density, µ the
fluid viscosity and γ̇ the flow shear rate). Many studies focused on the limiting case
of Stokesian suspensions when inertia is negligible (i.e. Rep → 0) and the effective
viscosity of the suspension depends only on Φ. Theoretical works mainly address the
limiting cases of Φ→ 0 and Φ→Φmax, where Φmax is the maximum packing fraction.
When a suspension is dilute, its effective viscosity follows the linear behaviour derived
by Einstein (1906, 1911) µeff =µ(1+ 2.5Φ) (particle interactions are neglected) or the
quadratic formulation of Batchelor (1977) µeff =µ(1+ 2.5Φ + 6.95Φ2) (with mutual
particle interactions included). The recent theoretical works of Wyart and co-workers
(see e.g. DeGiuli et al. 2015) make use of perturbations around the jamming state to
show that the effective viscosity diverges as Φ→Φmax.

At moderate to large values of Φ, however, the rheology becomes more complex
due to multi-body and short-range interactions. The suspension shear viscosity
increases with Φ before diverging at Φmax. In addition, normal stresses appear
when the suspension is subject to shear. A number of studies have been performed
to measure the suspension effective shear viscosity and the normal stresses, see the
experiments of Krieger & Dougherty (1959), Zarraga, Hill & Leighton (2000), Singh
& Nott (2003), Ovarlez, Bertrand & Rodts (2006), Deboeuf et al. (2009), Bonnoit
et al. (2010), Boyer, Guazzelli & Pouliquen (2011), Couturier et al. (2011), Dbouk,
Lobry & Lemaire (2013b) and numerical simulations of Sierou & Brady (2002),
Yurkovetsky & Morris (2008), Yeo & Maxey (2010), Dbouk et al. (2013a).

In the presence of weak inertia (Rep 6= 0) the rheological measurements start to
differ from those in the Stokesian regime. For suspensions with 0.02 6 Rep 6 10 and
0.1 6 Φ 6 0.3, the recent numerical studies of Kulkarni & Morris (2008), Picano
et al. (2013), Yeo & Maxey (2013) show an increase in the suspension stresses as
Rep increases, although discrepancies exist in the reported values of the stresses. Due
to the improvement of computational methods (see e.g. Kulkarni & Morris 2008; Yeo
& Maxey 2011, 2013; Lashgari et al. 2014; Picano, Breugem & Brandt 2015; Fornari
et al. 2016), interface-resolved simulations of solid particles in Newtonian fluids can
now reveal details of the suspension microstructure, and shed light on the role of
inertia in the overall dynamics (Prosperetti 2015). More precisely, the study of Picano
et al. (2013) shows that the inertia affects the suspension microstructure, resulting in
an enhancement of effective shear viscosity. As Rep increases, the pair distribution
function becomes more anisotropic, almost zero at the rear of the particles, so-called
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excluded volumes. This increases the effective solid volume fraction, and consequently,
the effective shear viscosity. Taking into account this excluded volume effect (which
depends on both Φ and Rep), Picano et al. (2013) scaled the effective shear viscosity
in the presence of inertia that is small compared to that of Stokesian suspensions.
While there are hardly any studies addressing the rheology of suspensions for Rep >10
and 0.1 6 Φ 6 0.45 (Bagnold 1954; Lashgari et al. 2014, 2016; Linares-Guerrero,
Hunt & Zenit 2017), there is a considerable body of research addressing the rheology
of dry granular materials (Φ > 0.45), where viscous effects are negligible and friction,
collision and particle phase momentum govern the flow dynamics (Trulsson, Andreotti
& Claudin 2012; Andreotti, Forterre & Pouliquen 2013; DeGiuli et al. 2015; Amarsid
et al. 2017).

The behaviour of suspensions is even more complex when the carrier fluid is
non-Newtonian, such as generalised Newtonian or viscoelastic fluids. Only a few
studies have been devoted to non-colloidal particles suspended in non-Newtonian
fluids, attempting to address the bulk rheology from a continuum-level closure
perspective. These studies mainly focus on non-inertial suspensions with few
exceptions e.g. Hormozi & Frigaard (2017).

On the theoretical front, the homogenisation approach is adopted by Chateau,
Ovarlez & Trung (2008) to derive constitutive laws for suspensions of non-colloidal
particles in yield stress fluids. The authors consider a Herschel–Bulkley suspending
fluid and show that the bulk rheology of suspensions also follows the Herschel–
Bulkley model, with an identical power-law index, but with a yield stress and
consistency that increase with the solid volume fraction. Generally, adding large
particles to a fluid enhances both the effective viscosity of the bulk and the local
shear rate of the fluid phase. While the latter has no influence on the viscosity
of a Newtonian suspending fluid, it strongly influences the local apparent viscosity
in the case of a non-Newtonian suspending fluid. In the homogenisation theory of
Chateau et al. (2008) the mean value of the local shear rate is estimated via an
energy argument and used to derive the suspension constitutive laws. A number
of experimental works have been carried out (see Ovarlez et al. 2006; Chateau
et al. 2008; Mahaut et al. 2008; Coussot et al. 2009; Vu, Ovarlez & Chateau 2010;
Ovarlez et al. 2012; Dagois-Bohy et al. 2015) showing a general agreement with the
homogenisation theory.

It has also been shown that adding large particles to a shear thinning fluid not
only enhances the effective shear viscosity, but also promotes the onset of the
non-Newtonian behaviour to a smaller shear rate (Poslinski et al. 1988; Liard et al.
2014). These features are also observed for shear thickening suspending fluids in
both continuous shear thickening (CST) and discontinuous shear thickening (DST)
scenarios (Cwalina & Wagner 2014; Liard et al. 2014; Madraki et al. 2017). The
advancement in the onset of shear thinning, CST or DST, is explained by the
increase of the local shear rate in the suspending fluid due to the presence of larger
particles (Chateau et al. 2008; DeGiuli et al. 2015). Recent studies show that the
homogenisation theory underestimates the occurrence of DST (Madraki et al. 2017)
and overestimates the values of the yield stress, which depends on the shear history
and, consequently, on the suspension microstructure, see Ovarlez et al. (2015). While
the former can be attributed to the fact that the mean value of the local shear rate
is not sufficient to predict DST, instead controlled by the extreme values of the
local shear rate distribution, the latter implies that constitutive laws derived from
homogenisation theory need to be refined by taking into account the microstructure
and shear history.
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Here, we present a numerical study of rigid-particle suspensions in pseudoplastic
(via the Carreau model) and dilatant fluids (via the power-law model) employing an
immersed boundary method. The method was originally proposed by Breugem (2012)
to enable us to resolve the dynamics of finite-size neutrally buoyant particles in flows.
The simulations are performed in a planar Couette configuration where the rheological
parameters of the suspending fluids and the particle properties are kept constant while
the volume fraction of the solid phase varies in the range of 10 %6Φ6 40 % and the
bulk shear rate varies to provide particle Reynolds numbers in the range of 0.16Rep 6
10. The well-resolved simulations benefit the study via providing access to the local
values of particle and fluid phase velocities, shear rate and particle volume fraction.
We explore the confinement effects, microstructure and rheology of these complex
suspensions when the particle Reynolds number is non-zero. We compare our results
with the recently proposed constitutive laws based on the homogenisation theory (see
Chateau et al. 2008) and refine these laws for the case when inertia is present.

The paper is organised as follows. The governing equations and numerical method
are discussed in § 2. We present our results in § 3, first considering the local
distribution of flow profiles and the Stokesian rheology of non-colloidal suspensions
with generalised Newtonian suspending fluids. We then discuss the role of inertia
and propose new rheological laws including inertial effects. A summary of the main
conclusions and some final remarks are presented in § 4.

2. Governing equations and numerical method
2.1. Governing equations

We study the motion of finite-size rigid particles suspended in an inelastic non-
Newtonian carrier fluid. The generalised incompressible Navier–Stokes equation with
shear-dependent viscosity and the continuity equation govern the motion of the fluid
phase,

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇P+∇ · [µ̂(γ̇ (u))(∇u+∇uT)] + ρf ,

∇ · u= 0,

 (2.1)

where u = (u, v, w) is the velocity vector containing the spanwise, streamwise
and wall-normal components corresponding to the (x, y, z) coordinate directions
respectively (see figure 1). The pressure is denoted by P while the density of both
the fluid and particles is indicated by ρ as we consider neutrally buoyant particles.
The fluid viscosity µ̂ varies as a function of the local shear rate γ̇ (u) following the
rheological Carreau-law or power-law models defined below. Finally the body force f
is added to the right-hand side of the equation to indicate how the no-slip condition
at the particle surface is effectively implemented and it indicates the forcing from the
dispersed phase on the carrier fluid.

The motion of the rigid spherical particles is described by the Newton–Euler
equations,

mp
dUp

c

dt
=Fp,

Ip
dΩΩΩp

c

dt
= Tp,

 (2.2)
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X
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Z

FIGURE 1. (Colour online) Instantaneous snapshot of the particle arrangement for a
laminar shear thinning flow, γ̇ = 1, Rep = 0.2004 and Φ = 0.21. The wall-normal,
streamwise and spanwise coordinates and particle diameters are shown in their actual size.
The particle diameter is equal to 2h/5 with h the half-channel width.

where Up
c and ΩΩΩp

c are the translational and angular velocity of the particle p, while mp

and Ip are the mass and moment of inertia, 2mpa2/5, of a sphere with radius a. Fp and
Tp are the net force and momentum resulting from hydrodynamic and particle–particle
interactions,

Fp =

∮
∂Vp

[−PI + µ̂(u)(∇u+∇uT)] · n dS+Fc,

Tp =

∮
∂Vp

r× {[−PI + µ̂(u)(∇u+∇uT)] · n} dS+ Tc.

 (2.3)

In these equations ∂Vp represents the surface of the particles with outwards normal
vector n and I the identity tensor. The radial distance from the centre to the surface
of each particle is indicated by r. The force and torque, Fc and Tc, act on the particle
as a result of particle–particle or particle–wall contacts. The no-slip and no-penetration
boundary conditions on the surface of the particles are imposed by forcing the fluid
velocity at each point on the surface of the particle, X, to be equal to particle velocity
at that point, u(X)=Up(X)=Up

c +ΩΩΩ
p
c × r. This condition is not imposed directly in

the immersed boundary method used in the current study, but instead included via the
body force f on the right-hand side of (2.1).

2.1.1. Viscosity models
Several models have been developed to capture the inelastic behaviour of some

non-Newtonian fluids such as polymeric solutions. In the current work, we employ the
Carreau law to describe the behaviour of shear thinning (pseudoplastic) fluids. This
model describes the fluid viscosity well enough for most engineering calculations
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(Bird, Armstrong & Hassanger 1987). The model assumes an isotropic viscosity
proportional to some power of the shear rate γ̇ (Morrison 2001),

µ̂=
µ∞

µ0
+

[
1−

µ∞

µ0

]
[1+ (λγ̇ )2](n−1)/2. (2.4)

In the expression above µ̂ is the non-dimensional viscosity µ̂=µ/µ0, where µ0 is the
zero shear rate viscosity. In this work the non-dimensional viscosity takes the value
µ̂= 1 at zero shear rate and µ̂=µ∞/µ0= 0.001 in the limit of infinite shear rate, as
shown in figure 2(a). The second invariant of the strain-rate tensor γ̇ is determined by
the dyadic product of the strain tensor γ̇ =

√
2sij : sij, where s= (∇u+∇uT)/2 (see

Bird et al. 1987). The power index n indicates the non-Newtonian fluid behaviour. For
n<1 the fluid is shear thinning where the fluid viscosity decreases monotonically with
the shear rate. The constant λ is a dimensionless time, scaled by the flow time scale,
and represents the degree of shear thinning. In the present study the power index and
the time constant are fixed to n = 0.3 and λ = 10. We report in figure 2(a), using
markers, the range of shear rate and the corresponding viscosity of the carrier fluid
used for the different simulations of particle-laden flows discussed later.

For shear thickening (dilatant) fluid we employ the power-law model,

µ̂= m̂γ̇ n−1, (2.5)

which reproduces a monotonic increase of the viscosity with the local shear rate when
n > 1. The constant m̂ is called the consistency index and indicates the slope of
the viscosity profile. For a shear thickening fluid we use n = 1.5 and m̂ = 1. This
corresponds to µ̂= 1 at the lowest shear rate employed in the study, see figure 2(b).
For a more detailed description of the parameters appearing in the Carreau- and power-
law models we refer the readers to the book by Morrison (2001).

2.2. Numerical method
The particle motion in the flow is simulated by means of an efficient immersed
boundary method (IBM) coupled with a flow solver for the generalised Navier–Stokes
equations. We follow the formulation by Breugem (2012) developed to increase the
numerical accuracy and stability for simulations of neutrally buoyant particles.

The governing equations for the fluid phase are discretised using a second-order
central difference scheme; the Crank–Nicholson scheme is used for the time
integration of the viscous term while the nonlinear term is treated explicitly using
the three-step Runge–Kutta scheme. A fixed and staggered Eulerian grid is used for
the fluid phase whereas a Lagrangian grid is attached to the surface of each particle.
These two grid points communicate via the IBM forcing to satisfy the no-slip and
no-penetration boundary conditions on the surface of the particles.

The interactions between the particles and/or wall are taken into account using
the lubrication correction and soft collision model described in detail in Costa et al.
(2015). When the gap distance between the particle–particle or particle–wall becomes
smaller than a certain threshold, a mesh dependent lubrication correction based on
the asymptotic solution by Brenner (1961) is employed to reproduce correctly the
interaction between the particles. At smaller gaps the lubrication correction is kept
constant to account for the surface roughness. Finally, a soft-sphere collision model
is activated based on the relative velocity and the overlap between the two particles
(particle–wall), where both the normal and tangential components of the contact force
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FIGURE 2. (Colour online) The non-dimensional fluid viscosity µ̂ versus shear rate γ̇
for (a) Newtonian, (b) Carreau-law model (shear thinning) with n= 0.3, λ= 10 and (c)
power-law model (shear thickening) for n= 1.5. The markers shows the shear rates and
viscosities of the carrier fluid for the different cases considered here.

are taken into account. The accuracy of the IBM code is examined extensively in the
work by Breugem (2012), Lambert et al. (2013), Costa et al. (2015), Picano et al.
(2015), among others. One issue with the IBM scheme is the fluid trapped inside
of the particles. Although, the effect of the fluid acceleration inside the particles is
accounted for and subtracted from the forces acting on the particle, it can still result
in non-realistic values of the local shear rate for the grid points close to the interface.
To fix this issue, a volume of fluid scheme is used to create a velocity field that
replaces the velocity of the fluid inside the particles with their rigid body motion.
At the interface (the surface of the particles), a weighted average of solid and fluid
velocities is considered based on the local solid volume fraction of the Eulerian grid
in this region.

Another issue concerns the use of the lubrication correction as suggested in the
original IBM method of Breugem (2012) for Newtonian fluids. To extend this model
to non-Newtonian fluids and approximate the lubrication correction force when
particles are less than one grid cell away from each other, we use in the asymptotic
solution by Brenner (1961) the local viscosity at the Eulerian point closest to the
mid-point of the line connecting the centres of two particles in interaction. It is
noteworthy to mention that the viscosity is calculated explicitly from the local
shear rate, using the velocities from the previous substep of the Runge–Kutta time

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.532


336 D. Alghalibi, I. Lashgari, L. Brandt and S. Hormozi
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0 0.2 0.4 0.6 0.8 1.0

FIGURE 3. (Colour online) The velocity profiles of generalised Newtonian fluids flowing
in a channel. The boundary conditions and configuration are similar to those of figure 1.
The pressure drop is implemented as a source term to give a bulk Reynolds number of
100. Solid lines: the theoretical prediction. Symbols: the simulation results.

integration scheme. As regards the implementation of the viscosity model in our
solver, we have tested the code for the unladen channel flow of shear-dependent
viscosity fluids against the analytical solution, see Nouar, Bottaro & Brancher (2007).
Figure 3 shows a typical example of this validation.

2.3. Flow configuration and numerical set-up
In this study, we perform interface-resolved simulations of suspensions of neutrally
buoyant spheres in shear thinning and shear thickening fluids. The flow is driven by
the motion of the upper and lower walls in a plane Couette configuration. Periodic
boundary conditions are imposed in the streamwise and spanwise directions. Similar
to Picano et al. (2013), we use a box size of 2h× 3.2h× 3.2h with h the half-channel
width; the number of uniform Eulerian grid points is 80 × 128 × 128 in the wall-
normal, streamwise and spanwise directions. The particles have all the same radius,
a = h/5, which corresponds to 8 Eulerian grid points per particle radius, whereas
746 Lagrangian grid points are used on the surface of each particle to resolve the
fluid–particle interactions. The fluid is sheared in the y–z plane by imposing a constant
streamwise velocity of opposite sign Vw = γ̇ h at the two horizontal walls.

In this work we fix the rheological parameters and vary the wall velocity (the shear
rate γ̇ ) and the particle volume fraction Φ. We explore a wide range of shear rates,
0.16 γ̇ 610, corresponding to the particle Reynolds numbers 0.16Rep=ργ̇ a2/µ610
for the Newtonian fluid, 0.56 γ̇ 6 10 corresponding to 0.06246Rep 6 9.8113 for the
shear thinning fluid and 16 γ̇ 6 10 000 corresponding to 0.16Rep 6 10 for the shear
thickening fluid, see figure 2. Note that µ in the definition of the particle Reynolds
number is, for each case, the non-Newtonian fluid viscosity in the absence of particles.
For each suspending fluid, (Newtonian, shear thinning or shear thickening fluid), the
range of shear rate as well as the values of zero shear rate viscosities are chosen
such that we cover the same range of particle Reynolds number, i.e. 0.1 6 Rep 6 10.
Four different particle volume fractions, Φ = 0.11, 0.21, 0.315 and 0.4, are examined;
this corresponds to Np = 67, 128, 193 and 245 particles in the simulation domain.
The particles are initialised randomly in the channel with velocities equal to the local
velocity of the laminar Couette profile. The parameters of the different simulations are
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FIGURE 4. (Colour online) Wall-normal profiles of the local particle volume fraction for
(a) Rep=0.1; (b) Rep=6. The following colours are adopted for suspensions with different
types of suspending fluids: the Newtonian suspending fluids: red colour; the shear thinning
suspending fluid: black colour and the shear thickening suspending fluid: blue colour. The
following symbols are adopted for different solid volume fractions: Φ= 0.11:@; Φ= 0.21:
E; Φ = 0.315:A and Φ = 0.40: ?.

summarised in table 1. Results are collected after the flow reaches a statistically steady
state. We ensure the convergence by repeating the analysis using half the number of
samples and comparing the statistics with those from the entire number of samples.

3. Results
In the present study, we investigate the flow of rigid particles in a simple shear

where the carrier fluid is Newtonian, shear thinning or shear thickening. We focus
on the bulk properties of the suspension as well as its local behaviour. We present
the distribution of particle and fluid phase velocity, particle volume fraction and
local shear rate. Then we study the rheology of these suspensions and compare our
results with predictions from the homogenisation theory presented by Chateau et al.
(2008), valid for Stokesian suspensions. We therefore focus on how inertia affects the
suspension behaviour.

3.1. Flow profiles
The wall-normal profiles of the local particle volume fraction Φ(y) are computed
for all the simulations listed in table 1 by averaging the local solid volume fraction
over time and in the spanwise direction. A typical example of the results is shown
in figure 4. Here the wall-normal distribution of Φ(y) is displayed across half of
the gap for four particle volume fractions, Φ = [0.11, 0.21, 0.315, 0.4], and two
particle Reynolds numbers Rep = [0.1, 6] for Newtonian, shear thinning and shear
thickening suspending fluids. Three features are evident here. First, particles tend to
form layers due to the wall confinement; the number of particles at the wall is larger
than in the bulk. Second, the particle layering increases as the bulk solid volume
fraction increases. Third, the distribution of Φ(y) changes slightly with the type of
suspending fluid over the range of the particle Reynolds number studied here (i.e.
0< Rep 6 10), suggesting that the local particle volume fraction is mainly controlled
by geometry and confinement. A detailed study of confinement is beyond the scope
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FIGURE 5. (Colour online) Wall-normal profiles of the normalised mean fluid streamwise
velocity, Vf /Vw: (a) Rep = 0.1; (b) Rep = 6. The normalised mean particle streamwise
velocity, Vp/Vw: (c) Rep = 0.1; (d) Rep = 6. The following colours are adopted for
suspensions with different type of suspending fluids: the Newtonian suspending fluids:
red colour; the shear thinning suspending fluid: black colour and the shear thickening
suspending fluid: blue colour. The following symbols are adopted for different solid
volume fractions: Φ = 0.11:@; Φ = 0.21:E; Φ = 0.315:A and Φ = 0.40: ?.

of this manuscript. However, more recent results to be published elsewhere show that
decreasing confinement by 50 % when dealing with oblate particles has a less than
1 % effect on the bulk rheology.

We report the normalised mean fluid Vf /Vw and particle velocity Vp/Vw in
figure 5 for the same values of the particle Reynolds number and bulk solid volume
fraction in figure 4, using the same symbol and colour scheme throughout the
manuscript. The statistics of the fluid phase velocity have been computed neglecting
the points occupied by the solid phase in each field (phase-ensemble average).
Generally, independent of the type of suspending fluid, the normalised mean fluid
velocity decreases in the intermediate region between the wall and the centreline,
0.02 . y/h . 0.4 as the particle volume fraction Φ and shear rate or Rep increase.
The larger differences between the different cases are found close to the wall. The
deviation of the normalised mean fluid velocity profile from linearity is more
pronounced for the shear thinning suspending fluid and less evident for the shear
thickening fluid. This is due to the fact that the local viscosity seen by the particles
in the case of generalised Newtonian fluids depends on the local shear rate. Taking
this into account results in larger and smaller local particle Reynolds numbers for the
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shear thinning and shear thickening fluids, respectively (see § 3.2 for more details).
The values of the local particle Reynolds number (see (3.7)) are reported in table 1.

The statistics pertaining to the solid phase, depicted in figure 5(c,d), are calculated
using quantities related to each individual particle, and taking the phase-ensemble
average over time and space. As for the carrier fluid, the normalised mean particle
velocity decreases when increasing the volume fraction Φ and inertial effects, Rep.
Again this is more significant for the case of shear thinning suspending fluid due to
the smaller apparent viscosity at the particle scale (or equivalently the larger local
particle Reynolds number). Moreover, comparing figures 5(a) and 5(c) (and similarly
figures 5b and 5d), we note that the slip velocity between the solid phase and fluid
phase increases close to the wall. In particular, particles move faster close to the walls,
y/h. 0.2, something explained by the different boundary conditions (particles can roll
and slide on the wall). This slip is more evident for the case of a shear thinning
suspending fluid, suggesting that as we increase the local particle Reynolds number,
any modelling would need to take into account a boundary layer close to the wall
governed by a two-phase equation of motion instead of mixture equations (Dontsov &
Peirce 2014; Costa et al. 2016). Indeed, continuum models are more prone to failure
when the slip velocity between fluid and particles is not negligible, i.e. the particle
Stokes number is large.

3.2. Stokesian rheology: homogenisation approach
In this section, we briefly explain the theoretical prediction for the rheology of an
inertialess suspension of rigid spherical particles in generalised Newtonian fluids. This
theoretical approach is based on homogenisation theory and was first developed by
Chateau et al. (2008) assuming isotropic suspensions. Later, Ovarlez et al. (2015),
Dagois-Bohy et al. (2015) and Hormozi & Frigaard (2017) extended this theory to
estimate the rheology of anisotropic dilute and dense suspensions.

In order to predict the rheology of the suspensions we need to know the value of
the local shear rate γ̇local(x, y, z) for a bulk shear rate γ̇ . In homogenisation theory, it
is assumed that the bulk rheology is determined by the mean value of the local shear
rate, i.e. ¯̇γlocal. Following Chateau et al. (2008), we assume that viscous dissipation is
responsible for the entire energy loss in the suspension (Chateau et al. 2008; DeGiuli
et al. 2015). This gives the following estimate for the mean local shear rate

¯̇γlocal(Φ)=

√
〈γ̇ 2

local(x, y, z)〉 = γ̇

√
G(Φ)
1−Φ

, (3.1)

G(Φ)=
[

1+ B
Φ

1−Φ/Φmax

]2

, (3.2)

where 〈·〉 denotes the average of a quantity over the whole domain and G(Φ) is
the dimensionless relative shear viscosity. The latter, a sole function of the particle
volume fraction, increases monotonically with Φ and diverges when jamming occurs
at the maximum packing fraction, Φmax. For non-dilute non-colloidal suspensions
various empirical fits to the experimental data have been proposed (Maron & Pierce
1956; Krieger & Dougherty 1959; Quemada 1977; Mendoza & Santamaria-Holek
2009). In this work we use Eilers fit (Stickel & Powell 2005), where B = 1.25–1.5
and the maximum packing fraction Φmax = 0.58–0.64 (Zarraga et al. 2000; Singh &
Nott 2003; Kulkarni & Morris 2008; Shewan & Stokes 2015). The precise choice of
the values for those parameters depend on particle shape, size, concentration and the
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shear rate (Konijn, Sanderink & Kruyt 2014). The values used here are B= 1.5 and
Φmax = 0.61.

The apparent viscosity of the suspending fluid can be estimated via a linearisation
of the fluid behaviour at each imposed shear rate, similar to (2.4) and (2.5) for power-
law and Carreau suspending fluids. We assume that the same relative viscosity as in
Newtonian suspensions can be adopted when the suspending fluid is non-Newtonian.
Therefore, the shear stress of the suspension can be written as

τij =G(Φ)µ0µ̂γ̇ij, (3.3)

where µ̂ is the dimensionless apparent viscosity seen by the particles; this depends on
the local shear rate that we estimate by its mean value ¯̇γlocal(Φ). µ̂ is of the following
form for the Carreau and power-law suspending fluids considered in this work

µ̂( ¯̇γlocal(Φ))=
µ∞

µ0
+

[
1−

µ∞

µ0

]
[1+ (λ2 ¯̇γ 2

local(Φ))]
(n−1)/2, (3.4)

µ̂( ¯̇γlocal(Φ))= m̂ ¯̇γ n−1
local(Φ). (3.5)

We can define the following apparent viscosity seen by the particles

µf ( ¯̇γlocal)=µ0µ̂( ¯̇γlocal(Φ)), (3.6)

and consequently a local particle Reynolds number as follows

Rep,local =
ρf a2γ̇

µf ( ¯̇γlocal)
. (3.7)

Finally, we may write the overall expression for the bulk effective viscosity of the
suspension as follows

µeff (Φ, γ̇ )=G(Φ)µ0µ̂( ¯̇γlocal(Φ)). (3.8)

We substitute for the local shear rate from (3.1) into (3.4) and (3.5), considering
the definition of the suspension effective viscosity (3.8) to obtain the following
dimensionless rheological formulation of the effective viscosity for shear thinning
Carreau-law model) and shear thickening (power-law) fluids

µ̂eff (Φ, γ̇ )=G(Φ)

(
µ∞

µ0
+

[
1−

µ∞

µ0

] [
1+ (λγ̇ )2

(
G(Φ)
1−Φ

)](n−1)/2
)
, (3.9)

µ̂eff (Φ, γ̇ )=G(Φ)m̂(γ̇ )n−1

(
G(Φ)
1−Φ

)(n−1)/2

. (3.10)

It is noteworthy to mention that the above framework is developed for Stokesian
suspensions. Also, G(Φ) includes all the information about the microstructure of
the suspensions which might not be independent of the shear rate for the case of
generalised Newtonian suspending fluids. We therefore investigate these assumptions
by means of numerical simulations. One of our goals is to shed light on the recent
experimental results in the Stokesian regime by Madraki et al. (2017) that show
discrepancies with the homogenisation predictions. Moreover, we will show how
inertia affects the rheology, G(Φ), and provide a stress closure for non-colloidal
suspensions in the presence of inertia.
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FIGURE 6. (Colour online) Profiles of the probability distribution function (PDF) of the
normalised local shear rate, γ̇ 2

local(x, y, z)/γ̇ 2, for: (a) Rep = 0.1; (b) Rep = 6. Colours and
symbols as in previous figures.
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FIGURE 7. (Colour online) Simulation results of (a) ¯̇γ 2
local/γ̇

2; (b) normalised standard
deviation SD/γ̇ 2, versus Rep. Colours and symbols as in previous figures.

3.3. Local shear rate distribution
We consider the local shear rate distribution, γ̇local(x, y, z), for the flow cases under
investigation, see table 1, and compute the different statistical moments. Figure 6
depicts the probability density function (PDF) of 〈γ̇ 2

local(x, y, z)〉/γ̇ 2 for four particle
volume fractions Φ = [0.11, 0.21, 0.315, 0.4] and two particle Reynolds numbers
Rep = [0.1, 6] in the cases of Newtonian, shear thinning and shear thickening
suspending fluids. The local shear rate is computed using the central finite difference
scheme only at the grid points outside the particles when the neighbouring points
are also located in the fluid region. As shown in the figure, the Newtonian and shear
thickening suspending fluids qualitatively have similar distributions of local shear rate,
as expected from the profiles of the fluid phase velocity shown in figure 5(a,b).

The normalised mean square local shear rate ¯̇γ 2
local/γ̇

2 and its associated normalised
standard deviation (SD) SD/γ̇ 2 are reported in figure 7 for all of the simulations,
where ¯̇γ 2

local=〈γ̇
2
local(x, y, z)〉. For all types of suspending fluid the mean local shear rate
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FIGURE 8. (Colour online) Profiles of the average local shear rate (symbols for
simulations, dashed lines for homogenisation theory), versus the particle volume fraction
Φ for 0.1 6 Rep 6 10. The panels represent (a) the Newtonian suspending fluids, (b) the
shear thinning suspending fluid, (c) the shear thickening suspending fluid and (d) all of
the suspending fluids. Colours and symbols as in previous figures.

increases significantly with the solid volume fraction, and only marginally with Rep.
Moreover, the increment of the normalised standard deviation with both Φ and Rep is
more than that of the mean local shear rate, in other words the spectrum of the local
shear rate distribution changes more than the variations of the mean values alone may
suggest. Such a distribution of the mean local shear rate, quantified by its standard
deviation SD, suggests that jamming and DST of a shear thickening suspending fluid
laden with non-colloidal particles cannot be understood only via the mean value of the
local shear rate, but extreme, possibly rare, large values of the local shear rate should
also be considered. This is in agreement with the recent observations by Madraki et al.
(2017). It is also noteworthy to mention that the variation of the normalised standard
deviation for the case of a Newtonian suspending fluid is smaller than that of a shear
thinning and larger than that of a shear thickening suspending fluid. This difference
is mainly due to the inertial effects (i.e. local particle Reynolds number, see table 1)
and it is not related to the particle layering observed in figure 4, as this is similar for
all suspending fluids.

We show the normalised mean local shear rate for all the simulations in
figure 8(a–d). The dashed lines show the prediction of the homogenisation theory
given by (3.1). It can be seen that the homogenisation theory gives a good estimate
for the mean local shear rate when Φ 6 0.3. However, the theory does not provide
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accurate predictions of the mean local shear rate as we approach the dense regime, as
also observed experimentally in the work of Dagois-Bohy et al. (2015). In particular,
it overestimates the values of the mean local shear rate when the solid volume
fraction is larger than 0.3. The discrepancy between the mean local shear rate from
our simulations and the homogenisation theory is not due to the confinement effects,
and consequently, particle layering. Indeed figure 5(a,b) shows a very slight variation
of the fluid phase velocity across the gap even when strong particle layering exists,
e.g. when Φ = 0.4 for a shear thickening suspending fluid. We can also see that,
unlike the bulk solid volume fraction, inertia has a secondary effect on the values
of mean local shear rate. Figure 8(d) finally reports all the data in one graph to
emphasise that the normalised mean local shear rate is almost independent of the
type of suspending fluid.

It is noteworthy to emphasise that a number of experimental works have been
carried out showing a general agreement with the homogenisation theory (see e.g.
Ovarlez et al. 2006; Chateau et al. 2008; Mahaut et al. 2008; Coussot et al. 2009;
Vu et al. 2010; Ovarlez et al. 2012; Dagois-Bohy et al. 2015; Ovarlez et al. 2015;
Madraki et al. 2017). Hence, the comparison of our results with the homogenisation
theory (see figure 8) is an indirect comparison with the available experimental results.
Unlike the previous experimental results, in our simulations we have access to the
local velocity and solid volume fraction of the suspension. Therefore, we can provide
a better comparison with the theory. Here, we show that F(Φ)numerical is proportional
to F(Φ)homogenisation, such that F(Φ)numerical = αF(Φ)homogenisation. Our simulations
match the theory with α varying from 0.8 (for Φ > 20 %) to 1 (for Φ 6 20 %) almost
independently of the suspending fluid. In summary, we show that the general form
of the lever function F(Φ) is the same when obtained from homogenisation theory,
experiments or simulations.

3.4. Effective viscosity
The effective viscosity of the suspension is defined by the space- and time-averaged
wall shear stress divided by the bulk shear rate. Figure 9 shows the non-dimensional
effective viscosity for the suspensions considered here (see table 1) versus the particle
volume fraction Φ for 0.16Rep 610. Note that the non-dimensional effective viscosity
is calculated after the transient stage of the simulation and convergence tests have
been performed by comparing the statistical results with those obtained using half
the number of samples. We also display the non-dimensional effective viscosity
predicted by (3.8) in the graphs of figure 9. The results show that, independent of
the type of suspending fluid, the non-dimensional effective viscosity increases with
the solid volume fraction. In the limit of small Reynolds number, Rep ∼ 0.1 (when
the inertia is negligible), the results of our simulations follow the predictions by the
homogenisation theory. However, as we increase the particle Reynolds number, we
deviate from the homogenisation theory, which has been developed for Stokesian
suspensions. The increase of the non-dimensional effective viscosity with Rep can be
explained as an inertial shear thickening (see e.g. Picano et al. 2013) and will be
discussed more in § 3.5.

3.5. Role of inertia
Here, we provide a more detailed understanding of the role of inertia in the rheology
of non-colloidal suspensions. To this end, we first calculate the total suspension stress
(τ ) as well as the contributions of viscous stress (τv), Reynolds stress (τR) and particle
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FIGURE 9. (Colour online) The normalised effective viscosity (simulation (symbols),
homogenisation theory (dashed line)), versus the particle volume fraction Φ for 0.1 6
Rep 6 10. The panels represent (a) the Newtonian suspending fluids, (b) the shear thinning
suspending fluid and (c) the shear thickening suspending fluid. Colours and symbols as in
previous figures.

stress (τp) to the total stress. As detailed in Picano et al. (2015) and Lashgari et al.
(2016), we write

τ = τv + τR + τp, (3.11)

where, τR includes both particle and fluid Reynolds stresses and it is given as follows:

τR = (1−Φ)〈v′f w
′

f 〉 + (Φ)〈v
′

pw′p〉. (3.12)

Our calculation shows that, for all the simulations performed in this study, the
Reynolds stress τR is almost zero as the bulk Reynolds number (Re ∼ 100Rep) is
in the range of laminar flow. The particle stress includes contributions from the
hydrodynamic stresslet, particle acceleration, short-range lubrication correction and
collision forces (Lashgari et al. 2014, 2016). It is noteworthy to mention that the
total stress τ is essentially equal to the suspension stress at the wall τw as we are
not in the dense regime and particle–wall collisions are negligible.

Figures 10–12 show the stress budget for all of our simulations. The following trend
appears immediately clear: independent of the type of suspending fluid, the particle
stress mainly contributes to the total stress for Φ > 0.21. This contribution magnifies
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FIGURE 10. (Colour online) Profiles of the wall stress budget τw versus particle Reynolds
number Rep for various volume fractions Φ, for Newtonian cases.

as we increase the Rep. The results are summarised in figure 13(a–d) where we report
τp/τw versus Rep for Φ=[0.11, 0.21, 0.315, 0.4] for all three types of suspending fluid.
It is evident that the particle stress contributes more to the total stress for the cases
with shear thickening suspending fluids than for the cases with Newtonian suspending
fluids. This feature is reversed when we deal with shear thinning fluids. This may be
due to the fact that the stresslet and particle-pair dynamics change in a non-Newtonian
fluid, as suggested by the experiments of Firouznia et al. (2018). This would however
deserve further investigation.

To shed light on the role of inertia, we provide scalings for the different components
of the stress. First, we show that the viscous stress τv indeed scales viscously. To
this end, we compute the ratio of the values of the viscous stresses in two successive
simulations at constant solid volume fraction, cases (i) and (i+ 1), where we change
the bulk shear rate from γ̇ (i) to γ̇ (i+ 1). In the case of viscous scaling, we expect
τv(i + 1)/τv(i) = [γ̇ (i + 1)/γ̇ (i)]n, where n = 1 for the Newtonian suspending fluid,
n= 0.3 for the shear thinning suspending fluid and n= 1.5 for the shear thickening
suspending fluid studied in this work. Figure 14(a–c) shows that our results follow the
viscous scaling for all the cases. This also confirms the validity of our computational
results.

Second, we investigate the scalings for the particle stress. Unlike the viscous
stresses, the scale of particle stresses is not known a priori due to non-zero Rep
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FIGURE 11. (Colour online) Profiles of the wall stress budget τw versus particle Reynolds
number Rep for various volume fractions Φ, for the shear thinning cases.

in our simulations. We expect a scaling of the order of ρa2γ̇ 2 when inertia is
the main mechanism to transport momentum in a suspension. We therefore divide
the values of the particle stresses in two successive simulations at constant solid
volume fraction (i) and (i + 1), differing in the bulk shear rate γ̇ (i) and γ̇ (i + 1).
Figure 15(a–c) shows that for all types of suspending fluid τp(i+ 1)/τp(i) is slightly
larger than [γ̇ (i + 1)/γ̇ (i)]n indicating that the viscous scaling is still a reasonably
good approximation and the inertial contribution to the transport of momentum is a
secondary effect. To further confirm this, we report in figure 15(d) τp(i + 1)/τp(i)
versus [γ̇ (i + 1)/γ̇ (i)]2; the data points all fall below an inertial scaling, although
Rep is finite. From the analysis in the figure, the results in Picano et al. (2013) and
the stress budget reported above, we therefore conclude that inertial effects alter the
suspension microstructure, in particular the particle relative motion, clearly breaking
the fore–aft symmetry of Stokes flow, which induces shear thickening without altering
the dominant viscous behaviour. Different to the case presented in Lashgari et al.
(2014) where particles significantly alter the turbulent flow of a suspension, triggering
a transition from a Reynolds stress inertial regime to a particle-dominated regime.

We therefore adopt a frictional view similar to that proposed in Cassar, Nicolas
& Pouliquen (2005), Andreotti et al. (2013) to show that the main dimensionless
number controlling the rheology of the suspensions studied here is associated with
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FIGURE 12. (Colour online) Profiles of the wall stress budget τw versus particle Reynolds
number Rep for various volume fractions Φ, for the shear thickening cases.

viscous stresses. Assuming an assembly of particles suspended in a viscous fluid that
is subject to steady shear under a confining particle pressure P, there exists only one
dimensionless control parameter, i.e. the ratio of the microscopic time scale for the
particle rearrangement to the macroscopic time scale of the flow γ̇ −1. The microscopic
time scale can be determined by balancing the forces applied to a particle, i.e. the
imposed pressure P and the drag force Fd (Cassar et al. 2005; Andreotti et al. 2013).
This implies the existence of the three following microscopic time scales

t1 ∼
dp√
P/ρp

, t2 ∼
dp√

P/(ρf CdSt)
, t3 ∼

dp√
P/(ρf CdTurb)

, where Fd =Cdd2
pρf V2.

(3.13a−c)
Here, ρp and dp are the particle density and particle diameter, whereas the particle
terminal velocity and its drag coefficient are denoted by V and Cd. When the drag
force is negligible and the rearrangement of particles is solely governed by the
imposed pressure, the relevant microscopic time scale is t1, and consequently, the
controlling dimensionless parameter I = t1γ̇ . When the imposed pressure balances
the viscous drag force the microscopic time scale t2 = dp/

√
P/(ρf CdSt), leading to

the controlling dimensionless parameter J = t2γ̇ . Finally, the third scenario, when the
imposed pressure balances the turbulent drag force on the particle, is associated with
the microscopic time scale t3 and the controlling dimensionless parameter is JI = t3γ̇ .
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FIGURE 13. (Colour online) Profiles of the normalised particle stress τp/τw versus particle
Reynolds number Rep for different carrier fluids and different values of volume fraction
Φ. Colours and symbols as in previous figures.

To calculate the values of the microscopic time scales t2 and t3 we need a closure
for Cd. Following Hormozi & Frigaard (2017), we adopt the drag closure as follows

Cd(Rep,local)=


24

4× Rep,local
, 4× Rep,l < 1.4

24/1.40.375

(4× Rep,local)0.625
, 1.4 6 4× Rep,l 6 500.

(3.14)

Note that the multiplier 4 appears in front of Rep,local since our local particle Reynolds
number is based on the particle radius, not the particle diameter. The above closure
for the drag coefficient allows us to calculate the ratio of the microscopic time scales:
t1/t2 =

√
(ρp/ρf )× 4× Rep,local/24 and t1/t3 = (ρp/ρf )

1/2(4 × Rep,local)
5/16. Figure 16

shows the phase diagram for the three regimes of non-colloidal suspensions in the
plane (t1/t2, t1/t3). This map is styled after figure 7.13 in Andreotti et al. (2013) (see
Hormozi & Frigaard 2017, for a detailed explanation).

Three regimes can be identified in the frictional map shown in figure 16. The
first regime is associated with suspensions in which t1 & t2 and t1 & t3, where the
dominant microscopic time scale is t1 and the primary controlling dimensionless
number is I ∼ dpγ̇

√
P/ρp. In this regime the main mechanism responsible for the
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FIGURE 14. (Colour online) Scaling of viscous stresses for simulations with (a)
Newtonian, (b) shear thinning and (c) shear thickening suspending fluids. Colours and
symbols as in the previous figures.

momentum transport is that associated with particle contacts and collisions, i.e. in
this regime particle inertia dominates. The second regime, when t2 & t1 and t2 & t3,
has t2 as the dominant microscopic time scale and J ∼ µf ( ¯̇γlocal)γ̇ /P as the primary
controlling dimensionless number. In this regime, the viscous stresses are the main
mechanism for momentum transport, the viscous drag regime. The third regime, when
t3 is the dominant microscopic time scale, with relevant the dimensionless number
JI ∼ ρf d2

pγ̇
2/P, is dominated by the Reynolds stresses of the fluid phase, i.e. the

turbulent drag at the particle scale (inertial drag regime).
Note that this frictional framework is relevant for dense suspensions in which the

particle phase pressure is significant. Moreover, the boundaries between the three
regimes discussed above and shown in figure 16 are unknown a priori and finding
the exact locations would require an extensive experimental or computational study.
Here, we wish to determine the regime that our simulations for suspensions with
Φ = 0.4 belong to. It is reasonable to assume that a 40 % solid volume fraction is
dense enough that the particle phase pressure P is significant, and consequently, the
frictional view just introduced can be used to characterise the suspension regimes.
Figure 16 shows that all of the dense simulations considered here (i.e. Φ = 0.4) fall
into the regime where the viscous stresses play the main roles in the momentum
transport, and hence, the viscous number J is the controlling dimensionless parameter.
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FIGURE 15. (Colour online) Scaling of particle stresses for simulations with (a)
Newtonian, (b) shear thinning and (c) shear thickening suspending fluids. (d) All data.
Colours and symbols as in the previous figures.

Therefore, viscous forces are mainly responsible for the dissipation of the power or
energy given to the bulk of these suspensions, although Rep is non-zero.

The above discussion raises the question of the role of inertia for the suspensions
under investigation here and its influence on the effective viscosity. As shown in § 3.4,
increasing Rep results in an enhancement of the suspension effective viscosity. This is
attributed to excluded volume effects in the work by Picano et al. (2013): the effective
volume fraction of the suspension is higher than the nominal one because of the
‘shadow’ region (a region with statistically vanishing relative particle flux) around the
particles due to inertia in the relative particle motion. Therefore, finite inertia affects
the suspension microstructure by increasing the effective Φ, which, in turn, enhances
the viscous dissipation. This is why the enhancement of the effective viscosity with
inertia is secondary with respect to increases of the nominal solid volume fraction and
the suspension viscosity can be scaled back to the Eilers fit, obtained for Stokesian
suspensions (see Picano et al. 2013).

Our study shows that the boundary between the inertial I-dominated and the viscous
J-dominated regimes, as estimated by scaling arguments with no prefactor, is a good
approximation to the real one at least for the suspensions examined here, see figure 16.
Despite non-zero values of Rep in our simulations, we are not in the regime where the
particle inertia dominates, and therefore, closures for the suspension stresses should
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FIGURE 16. (Colour online) The phase diagram of three existing regimes for non-colloidal
suspensions, styled after figure 7.13 in Andreotti et al. (2013).

differ from those given in the recent studies by Trulsson et al. (2012). In fact the
inertia affects the microstructure and can be included in the suspension stress closure
as follows

τ =G(Φ + δΦ(Φ, Rep,local))µ0µ̂( ¯̇γlocal(Φ))γ̇ , (3.15)

δΦ = 0.9× Rep,localΦ
2(1−Φ/Φmax)

3. (3.16)

Here, δΦ is the increase in the nominal volume fraction due to the excluded volume
effects mentioned above. Equation (3.16) provides an estimation of this increase of
effective volume fraction by fitting the simulation results of Picano et al. (2013) in
which δΦ is obtained by computing the volume of the so-called ‘shadow’ regions.
Note that the form of (3.16) is chosen to satisfy the following conditions. First,
at small Φ, we expect δΦ to be proportional to Φ2, since at least two-particle
interactions are needed to give rise to the excluded volume effect. Second, the
excluded volume must vanish as Φ→Φmax. In summary, the closure (3.15) provides
the suspension shear stress for Newtonian and generalised Newtonian suspending
fluids where the microstructure modifications induced by inertia are coded into the G
function. We note again here that this closure is valid for suspension in which viscous
effects are the still main mechanism for momentum transport, while inertial effects
are mainly responsible for changing the microstructure. Note that the local Reynolds
number seen by the particles, Rep,local, is the appropriate dimensionless number to
model the effects of the microstructure.

4. Conclusion and remarks
We study suspensions of neutrally buoyant spheres in both Newtonian and

inelastic non-Newtonian fluids, using interface-resolved direct numerical simulations.
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The Carreau and power-law models are employed to describe the rheological
behaviour of shear thinning and shear thickening carrier fluids, where the fluid
viscosity varies instantaneously with the local flow shear rate, γ̇local(x, y, z). The
simulations are performed in a plane Couette configuration. The rheological
parameters of the suspending fluids and the particle phase properties are kept constant
while we change the volume fraction of the solid phase, 06Φ640 %, and the applied
shear rate. This allows us to study inertial suspensions with 0< Rep 6 10. We focus
on the bulk properties of the suspension as well as the local behaviour of the particles
and the carrier fluid. The main findings of our work are summarised as follows.

The local profile of solid volume fractions show particle layering for nominal
volume fractions Φ > 30 %, with the peak of the layers located close to the wall.
The distribution of particles across the Couette cell is mainly controlled by geometry
and confinement effects, with a weaker dependency on the type of suspending fluid
and inertial effects. However, the latter has a strong influence on the velocity profiles
of the particle and fluid phases. In the cases with non-Newtonian suspending fluids,
viscosity at the particle scale depends on the local shear rate. This results in a larger
and smaller local particle Reynolds number as the shear thinning and thickening
degree increase, respectively. Inertia also induces a slip velocity between solid and
fluid phases with a maximum value close to the wall and zero at the gap centre. This
suggests that a suspension flow should be formulated with a two-phase continuum
framework close to the walls, where inertial effects are first apparent, although a
mixture continuum framework can still provide reasonable predictions of the flow
away from the walls, i.e. around the central region. Note that this is also observed
for turbulent suspensions and has been successfully used in Costa et al. (2016) to
predict turbulent drag in channel flows.

We present the probability density function of the local shear rate, revealing the
existence of a wide spectrum of local shear rates; this depends primarily on Φ and
secondarily on Rep, which implies the deficiency of theoretical approaches based on
mean field values in explaining the mechanics of suspensions. Mean field theories
(e.g. Chateau et al. 2008) should be refined to include higher moments, including
possibly minima and maxima, of the local shear rate distribution. This requires further
investigation and improvement of the available model frameworks.

We demonstrate that the non-dimensional relative viscosity of the suspensions with
non-Newtonian carrier fluids can be well predicted by the homogenisation theory
of Chateau et al. (2008) in the limit of Rep → 0, and more accurately for lower
Φ. However, adding inertia to the system alters the microstructure and results in a
deviation of the relative viscosity of the suspensions from the Stokesian prediction,
while the main dissipation mechanism is still viscous. In fact, we show that for the
parameter range explored here both particle stresses and fluid stresses are clustered
about viscous scalings. We therefore adopt the frictional view of Cassar et al. (2005),
Andreotti et al. (2013) to show that the main dimensionless number controlling
the mechanics of suspensions is the so-called viscous number, J ∼ µf ( ¯̇γlocal)γ̇ /P,
confirming that viscous stresses are responsible for the momentum transport even
when the particle Reynolds number is finite. However, due to inertial effects, the
microstructure becomes anisotropic and so-called shadow regions form around
particles (these are regions with zero probability of finding another particle, see Picano
et al. 2013). This enhances the effective particle volume fraction, and consequently,
the viscous dissipation and relative viscosity. We have estimated the volume of these
shadow regions from our simulations and included this microstructural effect into a
functional form for the relative viscosity. In this way, we provide a prediction for
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the added excluded volume due to inertia and a closure for the suspension stress in
the case of both Newtonian and generalised Newtonian suspending fluids valid for
O(Rep)∼ 10. Note also that once the effective volume fraction is considered, Eilers fit
is able to predict the suspension viscosity, confirming that we are still in the viscous
regime.

Concerning the frictional framework of Cassar et al. (2005) and Andreotti et al.
(2013), we note that this view provides scaling for the suspension stresses but no
information about the microstructural effects. Therefore, refinements of existing
rheological laws would need to include microstructural effects; these local details of
the suspension flow can be obtained by well-resolved experimental or computational
data, as done here. Our study shows that the so-called inertial shear thickening mode
introduced by Picano et al. (2013) belongs to the viscous class of suspensions, yet
the inertial microstructure needs to be taken into account to accurately predict the
suspension rheology.

This study raises a series of research questions requiring further investigation. First,
we show that as we change the type of suspending fluid the contribution of particle
stress to the total suspension stress changes. In our system, this is most likely mainly
due to the change in the stresslet. A systematic study may therefore be devoted to the
investigation of the dependency of the stresslet on the non-Newtonian behaviour of
the suspending fluid and its influence on the bulk rheology. Second, the simulations
presented here fall into the viscous-dominated suspension regime, although we show
how microstructural effects due to inertia are not at all negligible. One may therefore
further explore the frictional map by performing simulations/experiments for a wider
range of Φ and Rep, one goal being to determine the boundaries between the viscous-
and inertia-dominated transport mechanisms. Such an analysis would also suggest
how to include microstructural effects in order to refine rheological laws. Third, we
consider here the simplest shear flow, with homogeneous bulk shear rate. It is not
obvious how inhomogeneous bulk shear rates change the results and how non-local
rheology comes into play (see e.g. Pouliquen & Forterre 2009; Bouzid et al. 2013;
Henann & Kamrin 2014; Kamrin & Henann 2015). Finally, theoretical approaches
based on mean field theory should be improved to include the consequences of the
wide spectrum of the local shear rate. To this end, it is essential to study complex
features of suspensions with non-Newtonian suspending fluids.

Acknowledgements
Parts of this research were supported by NSF (grant no. CBET-1554044-CAREER)

and NSF-ERC (grant no. CBET-1641152 Supplementary CAREER) via the research
awards (S.H.). L.B. acknowledges financial support by the European Research Council
Grant no. ERC-2013-CoG- 616186, TRITOS. The authors acknowledge computer time
provided by SNIC (Swedish National Infrastructure for Computing).

REFERENCES

AMARSID, L., DELENNE, J.-Y., MUTABARUKA, P., MONERIE, Y., PERALES, F. & RADJAI, F. 2017
Viscoinertial regime of immersed granular flows. Phys. Rev. E 96 (1), 012901.

ANDREOTTI, B., FORTERRE, Y. & POULIQUEN, O. 2013 Granular Media: Between Fluid and Solid.
Cambridge University Press.

BAGNOLD, R. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian
fluid under shear. Proc. R. Soc. Lond. A 225, 49–63.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.532


Particle suspensions in shear thinning and shear thickening carrier fluids 355

BATCHELOR, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech.
41, 545–570.

BATCHELOR, G. K. 1977 The effect of Brownian motion on the bulk stress in a suspension of
spherical particles. J. Fluid Mech. 83, 97–117.

BIRD, R. B., ARMSTRONG, R. C. & HASSANGER, O. 1987 Dynamics of Polymeric Liquids, 2nd edn,
vol. 1. Wiley.

BONNOIT, C., LANUZA, J., LINDNER, A. & CLEMENT, E. 2010 Mesoscopic length scale controls
the rheology of dense suspensions. Phys. Rev. Lett. 105 (10), 108302.

BOUZID, M., TRULSSON, M., CLAUDIN, P., CLÉMENT, E. & ANDREOTTI, B. 2013 Nonlocal rheology
of granular flows across yield conditions. Phys. Rev. Lett. 111 (23), 238301.

BOYER, F., GUAZZELLI, É. & POULIQUEN, O. 2011 Unifying suspension and granular rheology.
Phys. Rev. Lett. 107 (18), 188301.

BRADY, J. F. & BOSSIS, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20 (1), 111–157.
BRENNER, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface.

Chem. Engng Sci. 16 (3), 242–251.
BREUGEM, W.-P. 2012 A second-order accurate immersed boundary method for fully resolved

simulations of particle-laden flows. J. Comput. Phys. 231, 4469–4498.
CASSAR, C., NICOLAS, M. & POULIQUEN, O. 2005 Submarine granular flows down inclined planes.

Phys. Fluids 17 (10), 103301.
CHATEAU, X., OVARLEZ, G. & TRUNG, K. L. 2008 Homogenization approach to the behavior of

suspensions of noncolloidal particles in yield stress fluids. J. Rheol. 52, 489–506.
COSTA, P., BOERSMA, B. J., WESTERWEEL, J. & BREUGEM, W.-P. 2015 Collision model for fully

resolved simulations of flows laden with finite-size particles. Phys. Rev. E 92, 053012.
COSTA, P., PICANO, F., BRANDT, L. & BREUGEM, W.-P. 2016 Universal scaling laws for dense

particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett. 117 (13), 134501.
COUSSOT, P., TOCQUER, L., LANOS, C. & OVARLEZ, G. 2009 Macroscopic versus local rheology

of yield stress fluids. J. Non-Newtonian Fluid Mech. 158 (1), 85–90.
COUTURIER, É., BOYER, F., POULIQUEN, O. & GUAZZELLI, É. 2011 Suspensions in a tilted trough:

second normal stress difference. J. Fluid Mech. 686, 26–39.
CWALINA, C. D. & WAGNER, N. J. 2014 Material properties of the shear-thickened state in

concentrated near hard-sphere colloidal dispersions. J. Rheol. 58 (4), 949–967.
DAGOIS-BOHY, S., HORMOZI, S., GUAZZELLI, E. & POULIQUEN, O. 2015 Rheology of dense

suspensions of non-colloidal spheres in yield-stress fluids. J. Fluid Mech. 776, R2–1–R2–11.
DBOUK, T., LEMAIRE, E., LOBRY, L. & MOUKALLED, F. 2013a Shear-induced particle migration:

Predictions from experimental evaluation of the particle stress tensor. J. Non-Newtonian Fluid
Mech. 198, 78–95.

DBOUK, T., LOBRY, L. & LEMAIRE, E. 2013b Normal stresses in concentrated non-Brownian
suspensions. J. Fluid Mech. 715, 239–272.

DEBOEUF, A., GAUTHIER, G., MARTIN, J., YURKOVETSKY, Y. & MORRIS, J. F. 2009 Particle
pressure in a sheared suspension: A bridge from osmosis to granular dilatancy. Phys. Rev.
Lett. 102 (10), 108301.

DEGIULI, E., DÜRING, G., LERNER, E. & WYART, M. 2015 Unified theory of inertial granular
flows and non-Brownian suspensions. Phys. Rev. E 91 (6), 062206.

DONTSOV, E. & PEIRCE, A. 2014 Slurry flow, gravitational settling, and a proppant transport model
for hydraulic fractures. J. Fluid Mech. 760, 567–590.

EINSTEIN, A. 1906 A new determination of the molecular dimensions. Ann. Phys. 324 (2), 289–306.
EINSTEIN, A. 1911 Berichtigung zu meiner Arbeit: eine neue Bestimmung der Moleküldimensionen.

Ann. Phys. 339 (3), 591–592.
FIROUZNIA, M., METZGER, B., OVARLEZ, G. & HORMOZI, S. 2018 The interaction of two spheres

in simple shear flows of yield stress fluids. J. Non-Newtonian Fluid Mech. 255, 19–38.
FORNARI, W., BRANDT, L., CHAUDHURI, P., LOPEZ, C. U., MITRA, D. & PICANO, F. 2016 Rheology

of confined non-Brownian suspensions. Phys. Rev. Lett. 116 (1), 018301.
HENANN, D. L. & KAMRIN, K. 2014 Continuum modeling of secondary rheology in dense granular

materials. Phys. Rev. Lett. 113 (17), 178001.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.532


356 D. Alghalibi, I. Lashgari, L. Brandt and S. Hormozi

HORMOZI, S. & FRIGAARD, I. 2017 Dispersion of solids in fracturing flows of yield stress fluids.
J. Fluid Mech. 830, 93–137.

KAMRIN, K. & HENANN, D. L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt.
11 (1), 179–185.

KONIJN, B., SANDERINK, O. & KRUYT, N. 2014 Experimental study of the viscosity of suspensions:
Effect of solid fraction, particle size and suspending liquid. Powder Technol. 266, 61–69.

KRIEGER, I. M. & DOUGHERTY, T. J. 1959 A mechanism for non-Newtonian flow in suspensions
of rigid spheres. Trans. Soc. Rheol. 3 (1), 137–152.

KULKARNI, P. M. & MORRIS, J. F. 2008 Suspension properties at finite Reynolds number from
simulated shear flow. Phys. Fluids 20, 040602.

LAMBERT, R., PICANO, F., BREUGEM, W. P. & BRANDT, L. 2013 Active suspensions in thin films:
nutrient uptake and swimmer motion. J. Fluid Mech. 733, 528–557.

LARSON, R. G. 1999 The Structure and Rheology of Complex Fluids, vol. 150. Oxford University
Press.

LASHGARI, I., PICANO, F., BREUGEM, W.-P. & BRANDT, L. 2014 Laminar, turbulent and inertial
shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. Phys. Rev.
Lett. 113, 254502.

LASHGARI, I., PICANO, F., BREUGEM, W. P. & BRANDT, L. 2016 Channel flow of rigid sphere
suspensions: particle dynamics in the inertial regime. Intl J. Multiphase Flow 78, 12–24.

LIARD, M., MARTYS, N. S., GEORGE, W. L., LOOTENS, D. & HEBRAUD, P. 2014 Scaling laws
for the flow of generalized Newtonian suspensions. J. Rheol. 58, 1993–2015.

LINARES-GUERRERO, E., HUNT, M. L. & ZENIT, R. 2017 Effects of inertia and turbulence on
rheological measurements of neutrally buoyant suspensions. J. Fluid Mech. 811, 525–543.

MADRAKI, Y., HORMOZI, S., OVARLEZ, G., GUAZZELLI, E. & POULIQUEN, O. 2017 Enhancing
shear thickening. Phys. Rev. Fluids 2 (3), 033301.

MAHAUT, F., CHATEAU, X., COUSSOT, P. & OVARLEZ, G. 2008 Yield stress and elastic modulus of
suspensions of noncolloidal particles in yield stress fluids. J. Rheol. 52 (1), 287–313.

MARON, S. H. & PIERCE, P. E. 1956 Application of ree-eyring generalized flow theory to suspensions
of spherical particles. J. Colloid Sci. 11, 80–95.

MENDOZA, C. I. & SANTAMARIA-HOLEK, I. 2009 The rheology of hard sphere suspensions at
arbitrary volume fractions: an improved differential viscosity model. J. Chem. Phys. 130,
044904.

MORRISON, F. 2001 Understanding Rheology, 1st edn. Oxford University Press.
NOUAR, C., BOTTARO, A. & BRANCHER, J. P. 2007 Delaying transition to turbulence in channel

flow: revisiting the stability of shear-thinning fluids. J. Fluid Mech. 592, 177–194.
OVARLEZ, G., BERTRAND, F., COUSSOT, P. & CHATEAU, X. 2012 Shear-induced sedimentation in

yield stress fluids. J. Non-Newtonian Fluid Mech. 177, 19–28.
OVARLEZ, G., BERTRAND, F. & RODTS, S. 2006 Local determination of the constitutive law of a

dense suspension of noncolloidal particles through magnetic resonance imaging. J. Rheol. 50
(3), 259–292.

OVARLEZ, G., MAHAUT, F., DEBOEUFG, S., LENOIR, N., HORMOZI, S. & CHATEAU, X. 2015 Flows
of suspensions of particles in yield stress fluids. J. Rheol. 59, 1449–1486.

PICANO, F., BREUGEM, W.-P. & BRANDT, L. 2015 Turbulent channel flow of dense suspensions of
neutrally buoyant spheres. J. Fluid Mech. 764, 463–487.

PICANO, F., BREUGEM, W.-P., MITRA, D. & BRANDT, L. 2013 Shear thickening in non-Brownian
suspensions: an excluded volume effect. Phys. Rev. Lett. 111 (9), 098302.

POSLINSKI, A. J., RYAN, M. E., GUPTA, R. K., SESHADRI, S. G. & FRECHETTE, F. J. 1988
Rheological behavior of filled polymeric systems i. Yield stress and shear-thinning effects.
J. Rheol. 32 (7), 703–735.

POULIQUEN, O. & FORTERRE, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans.
R. Soc. Lond. A 367 (1909), 5091–5107.

PROSPERETTI, A. 2015 Life and death by boundary conditions. J. Fluid Mech. 768, 1–4.
QUEMADA, D. 1977 Rheology of concentrated disperse systems and minimum energy dissipation

principle. i. viscosity-concentration relationship. Rheol. Acta 16, 82–94.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.532


Particle suspensions in shear thinning and shear thickening carrier fluids 357

SHEWAN, H. & STOKES, J. 2015 Analytically predicting the viscosity of hard sphere suspensions
from the particle size distribution. J. Non-Newtonian Fluid Mech. 222, 72–81.

SIEROU, A. & BRADY, J. F. 2002 Rheology and microstructure in concentrated noncolloidal
suspensions. J. Rheol. 46 (5), 1031–1056.

SINGH, A. & NOTT, P. 2003 Experimental measurements of the normal stresses in sheared Stokesian
suspensions. J. Fluid Mech. 490, 293–320.

STICKEL, J. & POWELL, R. 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev.
Fluid Mech. 37, 129–149.

TRULSSON, M., ANDREOTTI, B. & CLAUDIN, P. 2012 Transition from the viscous to inertial regime
in dense suspensions. Phys. Rev. Lett. 109 (11), 118305.

VU, T., OVARLEZ, G. & CHATEAU, X. 2010 Macroscopic behavior of bidisperse suspensions of
noncolloidal particles in yield stress fluids. J. Rheol. 54 (4), 815–833.

YEO, K. & MAXEY, M. R. 2010 Dynamics of concentrated suspensions of non-colloidal particles in
Couette flow. J . Fluid Mech. 649, 205–231.

YEO, K. & MAXEY, M. R. 2011 Numerical simulations of concentrated suspensions of monodisperse
particles in a Poiseuille flow. J. Fluid Mech. 682, 491–518.

YEO, K. & MAXEY, M. R. 2013 Dynamics and rheology of concentrated, finite-Reynolds-number
suspensions in a homogeneous shear flow. Phys. Fluids 25 (5), 053303.

YURKOVETSKY, Y. & MORRIS, J. F. 2008 Particle pressure in sheared Brownian suspensions. J. Rheol.
52 (1), 141–164.

ZARRAGA, I., HILL, D. & LEIGHTON, D. 2000 The characterization of the total stress of concentrated
suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44, 185–220.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.532

	Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids
	Introduction
	Governing equations and numerical method
	Governing equations
	Viscosity models

	Numerical method
	Flow configuration and numerical set-up

	Results
	Flow profiles
	Stokesian rheology: homogenisation approach
	Local shear rate distribution
	Effective viscosity
	Role of inertia

	Conclusion and remarks
	Acknowledgements
	References


