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SUMMARY
Space robotic systems are expected to play an increasingly
important role in the future. Unlike on the earth, space
operations require the ability to work in the unstructured
environment. Some autonomous behaviors are necessary
to perform complex and difficult tasks in space. This
level of autonomy relies not only on vision, force, torque,
and tactile sensors, but also the advanced planning and
decision capabilities. In this paper, the authors study the
autonomous target capturing from the issues of theory and
experiments. Firstly, we deduce the kinematic and dynamic
equations of space robotic system. Secondly, the visual
measurement model of hand–eye camera is created, and the
image processing algorithms to extract the target features are
introduced. Thirdly, we propose an autonomous trajectory
planning method, directly using the 2D image features. The
method predicts the target motion, plans the end-effector’s
velocities and solves the inverse kinematic equations using
practical approach to avoid the dynamic singularities. At
last, numeric simulation and experiment results are given.
The ground experiment system is set up based on the
concept of dynamic simulation and kinematic equivalence.
With the system, the experiments of autonomous capturing a
target by a free-floating space robot, composed of a 6-DOF
manipulator and a satellite as its base, are conducted, and the
results validate the proposed algorithm.

KEYWORDS: Space robot; Target capturing; Path planning;
Visual information; On-orbital service.

1. Introduction
Robotic systems are expected to play an increasingly
important role in future space activities. One broad area of
application is in the servicing, construction, and maintenance
of satellites and large space structures in orbit. Therefore,
space robotic technologies have been emphasized by
many countries.1–3 Recently, the Orbital Express system,
sponsored and led by the Defense Advanced Research Pro-
jects Agency (DARPA), validated on-orbit satellite servicing
technologies.4 The most remarkable mission was that a
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satellite autonomously used its robotic arm to rendezvous
with and capture another satellite in space, paving the way
for future space servicing operations.5 Such technologies
could lower costs and prolong legacy satellites flying for 5,
10, or even 15 extra years. The planning and control of space
robot pose additional problems beyond those on earth, due
to the dynamic coupling between space manipulators and
their spacecraft, especially for free-floating system (Both the
attitude and position of the base are not controlled), which
exhibits nonholonomic behavior.6,7 Carter and Cherchas
studied the motion control of nonfixed base robotic
manipulators.8 and de Rivals-Mazères et al. considered the
control and stabilization problem of flexible space robots.9

Caccavale and Siciliano presented solution algorithms to the
inverse kinematics of a space manipulator mounted on a free-
floating spacecraft, and developed case studies for a system
of a spacecraft with a six-joint manipulator attached.10,11

Capturing technology is one of the key technologies of
space robot for on-orbital servicing. Unlike on the earth,
space operations require the ability to work in the unstruc-
tured environment. Some autonomous behaviors are neces-
sary to perform complex and difficult tasks in space. This
level of autonomy relies not only on vision, force, torque, and
tactile sensors, but also the advanced planning and control
capabilities. Yoshida and Umetani developed on-line control
scheme with vision feedback, which used generalized Jac-
obian matrix (GJM) concept for motion control and guaran-
teed workspace (GWS) for path planning.12,13 Agrawal et al.
proposed a systematic approach to analytically model the
process of capture using the combination of simple motion
primitives.14 Papadopoulous et al. studied the dynamics and
control of multi-arm space robot involved in chase and cap-
ture operations of satellites.15 Nagamatsu et al. presented a
capture strategy for retrieval of a tumbling satellite by a space
manipulator.16 Nagamatsu et al. also designed a control sys-
tem for autonomous capture of a target satellite in space using
predictive trajectory based on the target satellite dynamics.17

Huang et al. developed a trajectory planning method of
space manipulator that can track, approach, and catch
the uncontrolled spinning satellite (USS) in free-floating
situation.18 McCourt and de Silva investigated the use of
model-based predictive control for the capture of a multi-
(DOF) object that moves in a somewhat arbitrary manner.19

In this paper, the authors consider the important problems
about target capturing from the issues of theory and
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experiments. Firstly, the target may move with unknown
trajectory, and the hand–eye camera needs to track the
target, which means that the target motion must be estimated
according to the measurement in real time. However,
the output frequency of the visual measurement system
is very low (the typical frequency is 2–4 Hz for on-
orbital application), because the capability of the on-orbit
processor is very limited. Secondly, the algorithm based
on the differential kinematic equations will be affected by
the singularities of the system Jacobian. The joint rates
will become infinite and discontinuous when close to the
singularities. Therefore, some algorithms are required to
avoid the singularities, in order to guarantee that the target
is captured successfully. Thirdly, in order to assure the space
robot to implement the task successfully, ground experiments
will be required to thoroughly explore the capabilities and
limitations of the planning and control algorithms.

This paper focuses on the autonomous target capturing,
from the theoretical modeling, numerical simulation,
and experiment study. We deduce the kinematic and
dynamic equations of space robotic system, and create the
visual measurement model of hand–eye camera. Then, an
autonomous trajectory planning method, directly using the
2D image features, is proposed. The planning approach
has at least the following functions: (1) Predict the target
motion in real time; and (2) avoid the kinematic and
dynamic singularities. Furthermore, in order to verify the
method, the authors combine the dynamic emulation with
the kinematic equivalence, and set up an experiment system
using commercial devices. The system can emulate the
capturing process observed from the space base. By small
modification, it can be extended to evaluate different
technology of target capturing. The supplied 3D simulation
system visualizes the capturing process intuitively.

The paper is organized as follows: Section 2 derives
the kinematic and dynamic equations of space robot. Sec-
tion 3 introduces the camera model and image processing
algorithms to extract the target features. Then, the
autonomous target capturing approach of space robot is
proposed in Section 4. In Section 5, the numeric simulation
and experiment study results are given. The last section deals
with the discussion and conclusion of the work.

2. Modeling of Space Robotic System

2.1. Symbols and variables
Major research achievements on space robot were collected
by Xu and Kanade,20 and were also reviewed by Moosavian
and Papadopoulos recently.21 Here, we model the space
robotic system using Lagrangian method. Figure 1 shows
a general model of a space robot system, which is regarded
as an n + 1 serial link system connected with n active joints.
B0 denotes the satellite main body, Bi (i = 1, . . . , n) denotes
the ith link of the manipulator, and Ji is the joint which
connects Bi−1 and Bi .

In order to conveniently discuss, some symbols and
variables are defined as follows (the following vectors are
described in the inertia frame, if not pointed out specially):

Fig. 1. General model of a single arm space robot.

∑
I ,

∑
E,

∑
T : the inertia frame, the end-effector

frame, and the frame of the
target’s CM (center of mass),
respectively;∑

C,
∑

W,
∑

L: the camera frame, the world
frame and the light frame for
the modeling of the camera;∑

i (i = 0, . . . , n): the body fixed frame of Bi ;
Ci (i = 0, . . . , n): the position of the CM of Bi ;

ai , bi ∈ R3 (i = 0, . . . , n): the position vectors from Ji to Ci

and Ci to Ji+1, respectively;
r i ∈ R3 (i = 1, . . . , n): the position vector of Ci ;

rg ∈ R3: the position vector of the
system’s CM;

pi ∈ R3 (i = 1, . . . , n): the position vector of Ji ;
pe ∈ R3 (i = 1, . . . , n): the position vector of the

end-effector;
ki (i = 1, . . . , n): the unit vector representing the

rotation direction of Ji ;
ψb, ψe ∈ R3: the attitude angle of the base and

the end-effector, expressed in
terms of z–y–x Euler angles,
i.e. ψb = [αb, βb, γb]T and
ψe = [αe, βe, γe]T .

i Aj ∈ R3×3: the coordinate transformation
matrix of

∑
j with respect to∑

i . When
∑

i is the inertia
frame, the superscript i can be
missed. The matrix iAj is
described by [inj ,

i oj , i aj ];
i T j ∈ R4×4: the homologous matrix of

∑
j

with respect to
∑

i . When
∑

i

is the inertia frame, the
superscript i can be missed.
The matrix i T j can be
described by i T j = [inj , ioj ,
i aj , i dj ];

Xe ∈ R6: the pose (position and attitude)
of the end-effector,
i.e. Xe = [ pT

e ,ΨT
e ]T ;

X t ∈ R6: the pose of the target’s CM,
i.e. X t = [ pT

t ,ΨT
t ]T ;
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krij ∈ R3: the position vector from the
origin of

∑
i to that of

∑
j ,

expressed in
∑

k; if
∑

k is the
inertial frame, the superscript k

can be missed. In addition if
∑

i

is the inertial frame, the symbol
i can also be missed.

ẋb ∈ R6: the linear velocity and
angular velocity of B0, i.e. ẋb =
[vT

0 , ωT
0 ]T ;

ẋe ∈ R6: the linear velocity and angular
velocity of the end-effector,
i.e. ẋe = [vT

e , ωT
e ]T

� ∈ Rn: the actual joint angle vector,
i.e. � = [θ1, . . . , θn];

�d ∈ Rn: the desired joint angle vector,
i.e. �d = [θd1, . . . , θdn];

mi (i = 0, . . . , n): the mass of Bi ;
w: total mass of the system,

i.e. w = ∑n
i=0 mi

I i (i = 0, . . . , n): the inertia matrix of Bi ;
E: 3 × 3 identity matrix;

2.2. Kinematic and dynamic equations of free-floating
robotic system
From Fig. 1, the position of the end-effector is

pe = r0 + b0 +
n∑

k=1

(ak + bk). (1)

And the orientation of the end-effector is

Ae = A0 · 0 A1 · · · · · n−1 An = A0 · f m(Θ) = f s(Ψb,Θ),
(2)

where f m(�) is the ratio matrix from
∑

1 to
∑

n. It is function
of the joint angles. And f s(Ψb,Θ), determined by the base
attitude and the joint angles, is the ratio matrix from

∑
0 to∑

n.
Differentiating (1) with respect to time, a relationship

between end-effector linear velocity and joint velocity is
obtained, i.e.,

ve = ṗe = v0 + ω0 × ( pe − r0) +
n∑

k=1

[kk × ( pe − pk)]θ̇k.

(3)

On the other hand, a relationship between end-effector
angular velocity and joint velocity is expressed with

ωe = ω0 +
n∑

k=1

kkθ̇k. (4)

Then, the differential kinematic equation can be deter-
mined according to (3) and (4), i.e.,[

ve

ωe

]
= Jb

[
v0

ω0

]
+ JmΘ̇, (5)

where Jb and Jm are the Jacobian matrixes dependent on
the base and the manipulator, respectively,

Jb =
(

E − p̃0e

O E

)
∈ R6×6, p0e = pe − r0, (6)

Jm =
[

k1 × ( pe − p1) . . . kn × ( pe − pn)
k1 . . . kn

]
∈ R6×n.

(7)
Operator r̃ is the cross-product operator, i.e.,

if r =
⎡
⎣rx

ry

rz

⎤
⎦ , then r̃ =

⎡
⎢⎣

0 −rz ry

rz 0 −rx

−ry rx 0

⎤
⎥⎦ . (8)

Since no external forces and torques act on the free-floating
system, the linear and angular momentums are conserved.
With the assumption that their initial values are zeros, the
equations are

H b

[
v0

ω0

]
+ HbmΘ̇ = 0. (9)

The matrixes Hb and Hbm are the inertia matrix of the base
and coupling inertia matrix, respectively. They are defined as

Hb =
(

wE w r̃T
0g

w r̃bg Hw

)
∈ R6×6, (10)

Hbm =
[

JT w

Hwφ

]
∈ R6×n, (11)

Hw =
n∑

i=1

(
I i + mi · r̃T

0i · r̃0i

) + I0 ∈ R3×3, (12)

JT w =
n∑

i=1

(mi JT i) ∈ R3×n, (13)

Hwφ =
n∑

i=1

(I i JRi + mi r̃0i JT i) ∈ R3×n, (14)

JT i = [k1 × (r i − p1), k2 × (r i − p2), . . . , ki

× (r i − pi), 0, . . . , 0] ∈ R3×n, (15)

JRi = [k1, k2, . . . , ki , 0, . . . , 0] ∈ R3×n, (16)

r0g = rg − r0, and (17)

r0i = r i − r0. (18)

From (9), v0 and ω0 are solved as

[
v0

ω0

]
= ẋb = −H−1

b HbmΘ̇ = JbmΘ̇ =
[

Jbm v

Jbm ω

]
Θ̇.

(19)

The matrix Jbm is base-manipulator Jacobian, and Jbm v

and Jbm ω are its submatrixes. Substituting (19) into (5), the
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following relationship is given:

[
ve

ωe

]
= [ Jm + Jb Jbm]Θ̇ = Jg(Ψb,Θ, mi, I i)Θ̇. (20)

Jg(Ψb,Θ, mi, I i) is the GJM.22 It is the function of the
spacecraft attitude, joint angles, and mass properties of each
body. If the GJM is of full rank, the joint rate can be
calculated by Θ̇= J−1

g ẋe. Unfortunately, the singularities of
Jg exist in most of the workspace. Since Jg is the function
of the dynamic parameters of each body, its singularities are
called dynamic singularities.23 Different from the kinematic
singularities (the singularities of traditional Jacobian are
called kinematic singularities for the difference) of fixed-
based manipulators, the dynamic singularities in Cartesian
space are dependent on the path, and cannot be determined
beforehand. These characteristics complicate the Cartesian
path planning of space robot.

Moreover, the dynamic equation of space robot is derived
from the Lagrange function, and is generally expressed in
the following form3:

[
Hb Hbm

HT
bm Hm

] [
ẍb

Θ̈s

]
+

[
cb

cm

]
=

[
Fb

τm

]
(21)

where

Hm ∈ Rn×n: inertia matrix of the manipulator arm;
cb ∈ R6: velocity-dependent nonlinear term for

the base;
cm ∈ R6: velocity dependent nonlinear term for the arm;
Fb ∈ R6: force and torque on the centroid of the base;
τm ∈ Rn: torque on the manipulator joints.

3. Camera Projection Model and Image Processing
In this paper, it is assumed to capture a cooperative target,
i.e. some white lighting markers with a known geometrical
arrangement are mounted on the target.

3.1. Image frames
The image plane corresponds to CCD discrete array of
photosensing elements. Associated with it is the 2D image
frame {x, y}. A point P in the image plane is denoted by
(x, y). The image of the scene on the CCD is digitalized,
transferred to the computer memory via the image capture.
We define the 2D image frame {u, v}, and (u0, v0) stands
for the image center. The coordinates of point P on the
image plane are denoted by (u, v) in pixels. The relationship
between (x, y) and (u, v) is

{
u = xαx + u0

v = yαy + v0
, (22)

where αx is the horizontal pixel pitch of the sensor (pixels/m)
and αy is the vertical pixel pitch of the sensor (pixels/m).

Fig. 2. Pinhole model of the camera.

3.2. Pinhole model
A special case of the projective camera is the perspective (or
central) projection, reducing to the familiar pinhole camera
model, which is shown in Fig. 2.

The origin of the camera frame (i.e. point Oc) is on the
optical axis and in the center of the lens. The axes X and Y

are aligned with x and y, respectively. They define a plane
perpendicular to the optical axis; thus the axis Z is aligned
with the optical axis.

Assume that a point P , whose coordinates with respect
to

∑
C are denoted by cP = [Xc, Yc, Zc], will project on the

image plane with coordinates (x, y), given by (OcO1 equals
the focus length f )

⎧⎪⎪⎨
⎪⎪⎩

x = f XC

ZC

y = f YC

ZC

. (23)

Substituting (22) into (23), the result is

⎧⎪⎪⎨
⎪⎪⎩

u = f αx

Xc

Zc

+ u0 = fu

Xc

Zc

+ u0

v = f αy

Yc

Zc

+ v0 = fv

Yc

Zc

+ v0

, (24)

where {
fu = f αx

fv = f αy

. (25)

When the homologous coordinates are used, Eq. (24) can be
written in the following form:

⎡
⎢⎣

u

v

1

⎤
⎥⎦ = 1

ZC

⎡
⎢⎣

fu 0 u0 0

0 fv v0 0

0 0 1 0

⎤
⎥⎦

⎡
⎢⎢⎢⎣

XC

YC

ZC

1

⎤
⎥⎥⎥⎦ . (26)

If the coordinate of point P in the world frame is [Xw,
Yw, Zw]T , and the homologous transformation matrix from
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Fig. 3. Frames used for measurement.

the camera frame to the world frame is C TW , the following
relationship is given:

⎡
⎢⎣

u

v

1

⎤
⎥⎦ = 1

ZC

⎡
⎣fu 0 u0 0

0 fv v0 0
0 0 1 0

⎤
⎦ C TW

⎡
⎢⎢⎢⎣

XW

YW

ZW

1

⎤
⎥⎥⎥⎦ , (27)

where, fu, fv , u0, and v0 are the intrinsic parameters and
C TW is the extrinsic parameters matrix.

3.3. Vision frames
The vision frames are defined as shown in Fig. 3.

∑
E is the

end-effector frame and
∑

H is the handle frame. When the
position and orientation of

∑
H with respect to

∑
E are close

to zero, the end-effector can grasp the handle. That is to say,
the aim to activate the manipulator is to make the relative
pose (position and orientation) smaller and smaller. Frames∑

L and
∑

C are the light frame (four lighting markers are
fixed on the target for the visual measure; their reference
frame is named light frame) and the target and camera frame,
respectively. And the coordinates of the feature points with
respect to

∑
L are known, as a priori information.

3.4. Image processing to extract the target features
3.4.1. Image smoothing—Median filter. The acquired images
must pass through a stage of image preprocessing in order to
remove distracting and useless information from the images.
For example, the existence of impulsive noise in the images
is one of the most habitual problems. The image smoothing
algorithms are applied in order to reduce noise and/or to
prepare images for further processing such as segmentation.
They can be classified into linear and nonlinear algorithms
where the former are amenable to analysis in the Fourier
domain and the latter are not.

Median filter is a nonlinear filter more used to remove the
impulsive noise from an image. It is a more robust method

than the traditional linear filtering, because it preserves the
sharp edges. The detailed algorithm was given in ref. [24].

3.4.2. Image segmentation—Region growing approach.
Image segmentation is one of the most important steps
leading to the analysis of processed image data. Its main
goal is to divide an image into parts that have a strong
correlation with objects or areas of the real world contained
in the image. Segmentation methods can be divided into
three groups according to the dominant features they employ:
First is global knowledge about an image or its part; the
knowledge is usually represented by a histogram of image
features. Edge-based segmentations form the second group
and region-based segmentations the third. Region growing
techniques are generally better in noisy images, where
borders are extremely difficult to detect. Homogeneity is
an important property of regions and is used as the main
segmentation criterion in region growing, whose basic idea
is to divide an image into zones of maximum homogeneity.25

We use the region growing method to segment the images
smoothed by the median filter. A processed result is shown in
Fig. 4.

3.4.3. Feature extraction. After segmentation, each region is
labeled. One method of region labeling involves examining

Fig. 4. The image after segmentation.
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Fig. 5. The region labeling results.

each pixel in a mapping and comparing its value to that of
its neighbors. If its value is “close enough” (as determined
by some distance function) then it is determined as being
in the same region as that neighbor. An equivalence table
is maintained for a second pass that merges any regions
determined to be the same. As in the convolution operation,
this method of region labeling is directly extendible to high-
dimensional data by simply checking all N-dimensional
neighbors. The region labeling results are shown in
Fig. 5.

When the lighting patterns (the circular area) are
recognized and labeled, we can further extract their centroids
as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uci =
∑Ni

k=1 unkIk∑Ni

k=1 Ik

vci =
∑Ni

k=1 vnkIk∑Ni

k=1 Ik

, i = 0, . . . , 3, (28)

where uci and vci are the image coordinate of the ith circular
area, unk is the image coordinate of kth point contained in
the circular area (each point is denoted by a single index k),
Ik is the corresponding grey value, and Ni is the number of
the pixels contained in the ith circular area.

Since the feature patterns are fixed on the target, the
target tracking task can be realized by tracking the centroids
of the circular area. We named these centroids as feature
points. For simplification, uci and vci are replaced by ui and
vi in the following parts, and the target feature is defined
as

f = [u1, v1, . . . , u4, v4]T . (29)

4. Trajectory Planning for Autonomous Target
Capturing

4.1. Main procedure
The autonomous planning method, partly reported in the
conference IROS’06,26 is proposed to generate the trajectory
of space robot to capture the target in space.

The main steps are as follows:

(1) Initialization, i.e. setting initial time (t = 0), determining
the desired features f d = [ud1, vd1, . . . , udN, vdN]T

(N is the number of the feature points, N = 4)
and defining the stopping criteria (allowed feature
error ε = [ε1, ε2, . . . , ε2N ]T and the maximal time
tmax);

(2) Extract the image features of the patterns on the target,
f = [u1, v1, . . . , uN, vN ]T ;

(3) Calculate the feature errors �ξ = [ud1 − u1, vd1 −
v1, . . . , udN − uN , vdN − vN ]T and judge whether the
target lies within the capturing box (i.e. the grasp
area, ‖�ξi‖ ≤ εi , i = 1, . . . , 2N). If so, the manipulator
closes its gripper and grasps the target; else, go to
step 4;

(4) Predict the target motion according to the measured
values;

(5) Read the current states (i.e. Ψb, ω0,Θ, Θ̇) of the space
robotic system from the corresponding sensors;

(6) Plan the end-effector velocities, which drive the end-
effector to track and approach the target along the
closest path (i.e. straight lines), using the measured and
estimated results;

(7) The singularity avoiding algorithm is called to determine
the desired joint rates, i.e. Θ̇d ;

(8) The desired joint angles Θd are defined by integrating
Θ̇d ;

(9) The joint controllers generate driving torques of the
joints to follow Θd and Θ̇d ;

(10) t = t + �t . If t < tmax, go to step 2; else, the algorithm
stops, meaning that the space robot cannot capture the
target in the prescribed time.

The main procedure is shown in Fig. 6.

4.2. The relationship between the image feature
and the end-effector pose
The relationship between the image features and the end-
effector pose can be described by image Jacobian matrix,
which is a linear transformation from the image feature space
to the task space.

According to (24), the following relationship exists:

[
u̇

v̇

]
=

⎡
⎢⎢⎢⎢⎢⎣

− fu

Zc

0
u − u0

Zc

(u − u0)(v − v0)

fv

−f 2
u + (u − u0)2

fu

fu(v − v0)

fv

0 − fv

Zc

v − v0

Zc

f 2
v + (v − v0)2

fv

− (u − u0)(v − v0)

fu

−fv(u − v0)

fu

⎤
⎥⎥⎥⎥⎥⎦

[
cvc

cωc

]
. (30)
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Fig. 6. Flowchart of the path planning for autonomous capturing.

where, cvc and cωc are the linear and angular velocities of
the camera. Then the image Jacobian matrix is defined as

J image(u, v, Zc) =

⎡
⎢⎢⎢⎣

− fu

Zc

0
u − u0

Zc

(u − u0)(v − v0)

fv

−f 2
u + (u − u0)2

fu

fu(v − v0)

fv

0 − fv

Zc

v − v0

Zc

f 2
v + (v − v0)2

fv

− (u − u0)(v − v0)

fu

−fv(u − v0)

fu

⎤
⎥⎥⎥⎦. (31)

When n features are used, the image feature vector
and corresponding depth vector are denoted by ξ = [u1,

v1, . . . , un, vn] and Zc = [Zc1, Zc2, . . . Zcn], respectively.
Then the extended image Jacobian matrix is defined by

J image (ξ, Zc) =

⎡
⎢⎢⎣

J image (u1, v1, Zc1)

...

J image (un, vn, Zcn)

⎤
⎥⎥⎦ ∈ R2n×6. (32)

Correspondingly,

ξ̇ = [u̇1, v̇1, . . . , u̇n, v̇n]T = J image (ξ , Zc)

[
cvc

cωc

]
. (33)

Equation (33) establishes the mapping from the camera
velocities to the variation rates of the image features. For the

control of 6-DOF manipulator, the rank of J image(ξ , Zc) is
required not to be less than 6, since there are six joint rates
to be determined. That is to say, the planning method needs
at least three features. If more than three features are used,
the pseudoinverse of the image Jacobian matrix can improve
the accuracy. Here, N feature points (N ≥ 3) are utilized. If
J image(ξ , Zc) is nonsingular, the velocities of the camera can
be determined by Eq. (33).

4.3. Prediction of the target motion
4.3.1. The nonlinear relationship between image feature and
relative pose. The target motion is predicted by the 2D image
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features. From Fig. 3, the relationship between the frames is

ETC · CTL = ETH · H TL. (34)

And the matrix ETH is the homologous matrix and is of the
following form:

ETH =
[

E AH
E reh

O3×3 1

]
. (35)

where, E reh and Ψeh are relative position and orientation,
which are described by

E reh = [X, Y, Z]T , Ψeh = [α, β, γ ]T . (36)

From Eq. (34), the following result can be obtained:

C TL = (
ETC

)−1 · ETH · H TL =
[

CAL
CrcL

O3×3 1

]
, (37)

where the matrixes ETC and HTL are constants and can
be calibrated beforehand. And CrcL is the vector from the
origin of

∑
C to that of

∑
O , and expressed in

∑
C . The

relative attitudeΨcL = [αcL βcL, γcL] is represented by z–y–
x Euler angles. The coordinate transformation matrix CAL is
determined by ΨcL.

The position vector of ith feature point is described in
∑

C

as

CP i =Crco +CAL · LP i , (38)

where L P i = [Xli, Yli, Zli] is the position of ith feature point
in

∑
L, and CP i = [Xci, Yci, Zci] is in

∑
C . From the pinhole

model, the image features of ith feature point are

⎧⎪⎪⎨
⎪⎪⎩
ui = fu

Xci

Zci
+ u0

vi = fv

Yci

Zci
+ v0

. (39)

Then the relationship between ETH and [ui , vi] can be
determined according to (37)–(39), which is written in the
following form:

{
ui = gui

(
E reh,Ψeh

) = gui
(X, Y, Z, α, β, γ )

vi = gvi

(
E reh,Ψeh

) = gvi
(X, Y, Z, α, β, γ )

. (40)

4.3.2. Prediction of target motion based on extended Kalman
filter. Target in space may move in various modes, such as
free-floating, tumbling, and so on. That means the target
moves with unknown trajectory. And the observer (hand–eye
camera) moves too. Therefore, the target motion must be
estimated in real time. Kalman filter plays the important role
in solving this problem.

The system state vector is defined as

W = [X, Ẋ, Y, Ẏ , Z, Ż, α, α̇, β, β̇, γ, γ̇ ]T . (41)

The system model and output model are

W k = AW k−1 + δk, (42)

Zk = G(W k) + υk, (43)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 T . . . . . . . . .

0 1 . . . . . . . . .
...

...
. . . . . . . . .

...
... . . . 1 T

...
... . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

12×12

, (44)

Zk = [u1, v1, . . . , uN, vN ]Tk , (45)

G(W k) = [gu1, gv1, . . . , guN
, gvN ]Tk , (46)

δk and υk are the disturbance noise and measurement
noise, respectively, which are assumed to be a zero mean
Gaussian noise with covariance of R. And, T is the sample
period (T = 0.25 s). Since the output model is nonlinear, the
extended Kalman filter is used to provide the optimal estimate
of the system state.

4.4. Planning of the end-effector
The velocities of the camera are planned according to (33),
i.e.

[
Cvc

Cωc

]
= K [ J image(ξ , Z)]#�ξ, (47)

where K is the gain matrix, [ J image(ξ , Z)]# is the pseu-
doinverse of J image(ξ , Z) defined by J# = ( JT J)−1 JT , and
�ξ is the difference of the image features.

�ξ = f d − f

= [ud1 − u1, vd1 − v1, . . . , udN − uN, vdN − vN ]T ,

(48)

f d and f are the desired and actual image feature vectors,
respectively,

f d = [ud1, vd1, . . . , udN, vdN]T , and (49)

f = [u1, v1, . . . , uN, vN ]T . (50)

Then, the end-effector velocities are determined according
to the fixed relationship between the frame

∑
E and the frame∑

C . And the estimated target motion should be included in
the end-effector velocities too, i.e.

[
Eve

Eωe

]
=

[
EAC −EAC · C r̃ce

O E AC

] [
Cvc

Cωc

]
+

[
Evh

Eωh

]
.

(51)
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According to the law of relative motion,

Evh = Eve
h +Eve +Eωe ×E reh, (52)

Eωh = Eωe
h +Eωe, (53)

where, Eve
h is the linear velocity of the handle (mounted on

the target satellite) with respect to the end-effector, which is
expressed in

∑
E , i.e.

Eve
h = [Ẋ, Ẏ , Ż]T , (54)

Eωe
h =

⎡
⎣0 −sα cαcβ

0 cα sαcβ

1 0 −sβ

⎤
⎦

⎡
⎢⎣

α̇

β̇

γ̇

⎤
⎥⎦ . (55)

From (52) and (53), the target motion can be calculated as

[
Evh
Eωh

]
=

[
Eve

h

Eωe
h

]
+

[
I3×3 −E reh

O3×3 I3×3

][
Eve

Eωe

]
. (56)

When the vectors are expressed in
∑

E , the differential
kinematic equations are[

Eve

Eωe

]
= (

E Jg

)
Θ̇. (57)

Substituting (57) into (56), the following relationship is
given:[

Evh

Eωh

]
=

[
Eve

h

Eωe
h

]
+

[
I3×3 −E reh

O3×3 I3×3

] (E
Jg

)
Θ̇. (58)

At last, the end-effector velocities are determined by the
following equation:[

Eved

Eωed

]
=

[
EAC −EAC · C r̃ce

O EAC

]
K [ J image(ξ , Z)]#�ξ

+
[

Eve
h

Eωe
h

]
+

[
I3×3 −Ereh

O3×3 I3×3

] (
EJg

)
Θ̇. (59)

In practice, the end-effector velocity is not allowed to be
large, because the base, which is free floating according to
the reaction of the manipulator, will lean much with large
disturbance on it. Therefore, it is required to be careful when
choosing the gain matrix K , and to set the upper bound of the
end-effector velocity (the bounds of the linear and angular
velocity are 40 mm/s and 5 deg/s, respectively).

4.5. The practical approach to avoid the dynamic
singularities
If the GJM EJg is of full rank, the desired joint rate can be
determined after the end-effector velocities are planned, i.e.

Θ̇d = (
E Jg

)−1

[
Eved

Eωed

]
. (60)

However, the singularities of EJg exist in most workspace.
Dynamic singularities are functions of the system mass
properties and cannot be predicted from its kinematic
structure. These characteristics complicate the planning
and control of free-floating space robot system. For the
singularity avoiding of fixed-base manipulator, the DLS
(damped least-squares) method27,28 provides continuous and
feasible solutions even at or in the neighborhood of singular
points. Nevertheless, the exactness of the solutions in every
direction of the end-effector task space has been sacrificed.
To improve the exactness in the achievable directions and still
keeping the merits of the DLS method, Cheng developed the
“singularity isolation plus compact quadratic programming”
(SICQP) method.29 However, there are little literatures
on dynamic singularity avoiding problem. In this paper,
a practical approach is proposed to avoid the dynamic
singularities, which transforms it into real-time kinematic
singularities avoiding the problem.

4.5.1. Simplification of the kinematic equations. As pointed
out above, the linear and angular momentums of free-
floating system are conserved. By eliminating the holonomic
constraints of linear momentum conservation, the total
system is formulated as a nonholonomic system of n + 3
variables including three dependent variables.

Since there are no external forces on the system, with
the assumption that the linear and angular momentum are
initially zero, the center of mass of the system remains
stationary, i.e.

n∑
i=0

mi r i = M rg. (61)

Therefore, the base CM is determined by

r0 = rg − (m1 + · · · + mn)(b0 + a1)

M

− · · · − mn(bn−1 + an)

M
. (62)

Substituting (62) into (1), the position of the end-effector is

pe = rg + b̂0 +
n∑

i=1

(âi + b̂i), (63)

where

b̂i =
∑i

q=0 mq

M
bi , âi =

∑i−1
q=0 mq

M
ai , i = 1, . . . , n.

(64)

Vectors âi and b̂i are aligned with ai and bi , respectively,
and their lengths are constantly proportional to those of
ai and bi . Therefore, âi and b̂i are called “virtual link
vectors”. Equation (63) is the direct kinematic equation of
space robot when the holonomic constraints are eliminated.
Differentiating both sides of (63), the following results are
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obtained:

ve = vg + ˙̂b0 +
n∑

i=1

( ˙̂ai + ˙̂bi)

= ω0 × b̂0 +
n∑

i=1

ωi × (âi + b̂i), (65)

ωi is the angular velocity of ith body, which is calculated by

ωi = ω0 +
∑i

k=1
kkθ̇k. (66)

Hence, (65) can be simplified as

ve = − p̃geω0 +
n∑

k=1

[kk × ( pe − p̂k)]θ̇k, (67)

pge = pe − rg = b̂0 +
n∑

i=1

Ai(
i âi +i b̂i). (68)

Then, the differential kinematic equation of space robot can
be given by combining (67) and (4)[

ve

ωe

]
= Ĵbω0 + ĴmΘ̇, (69)

where

Ĵb =
[− p̃ge

I3

]
∈ R6×3, (70)

Ĵm =
[

k1 × ( pe − p̂1) . . . kn × ( pe − p̂n)

k1 . . . kn

]
∈ R6×n.

(71)

4.5.2. The method to avoid the dynamic singularities. For
the target pose relative to the end-effector is measured by the
hand–eye camera, Eq. (69) is denoted by[

Eved

Eωed

]
= (

E Ĵb

)(
Eω0

) + (
E Ĵm

) · Θ̇d, (72)

where [
Eved

Eωed

]
=

[
AT

e 0

0 AT
e

][
ved

ωed

]
, (73)

Eω0 = AT
e ω0. (74)

The base attitudeΨb and angular velocity ω0 are generally
measured by corresponding sensors in real time. Then, the
following relationship is given according to Eq. (72):[

Eved

Eωed

]
− (

E Ĵb

)(
Eω0

) =E ĴmΘ̇d . (75)

The left-hand side of (75) is the end-effector velocity with
relative to the base (expressed in the end-effector frame),
which is denoted by

E ẋ0
ed =

[
Ev0

ed

Eω0
ed

]
=

[
Eved

Eωed

]
− (

E Ĵb

)(
Eω0

)
. (76)

So, (75) can be written as

E ẋ0
ed =E ĴmΘ̇d, (77)

where, E x0
ed is the desired velocity (linear velocity and

angular velocity) with respect to the base. From (71), E Ĵm is
independent on the mass parameters, i.e. the singularities of
E Ĵm are kinematic. It should be pointed out that the dynamic
singularity points in the task space cannot be identified
beforehand. However, when the angular velocity and the
attitude of the base are measured in real time (at each
sampling period), a simplified kinematic equation, i.e. (77),
is derived. Equations (20), (72)–(74), and (77) show that,
the desired inertial motion of the end-effector (ved, ωed) at
time t + �t can be realized by the planned joint motion (Θ̇d )
according to Eq. (77), using the states of the space robotic
system at time t . It is undeniable that there are errors in the
results given by the ideal relationship (i.e. (20)), since the
states at t + �t are different from the states at t . However,
if �t is short, or the desired motion is slow, the errors will
not be large. And the actual relative pose between the end-
effector and the target can be measured in real time, which
means that the errors will not cumulate (the main procedure
is shown in Fig. 6).

To solve Eq. (77), there only exist kinematic singularities.
According to the definition of Jacobian, the following
relationship exits:

(
0 Ĵm

) =
[

I −(L̂6 + L̂7)Z̃6

O I

] (
0 ĴW

)
. (78)

0ĴW is the wrist-reference Jacobian matrix establishing the
relationship between the joint rates and the wrist velocities.
It is of the following form:

0 ĴW =
[

0 Ĵ11 O3×3

0 Ĵ21
0 Ĵ22

]
. (79)

Then the method “Singularity Separation Plus Damped
Reciprocal,” proposed by Xu et al.,30 can be used. The
flowchart of the algorithm is shown in Fig. 7.

5. Simulation and Experiment Study of Autonomous
Target Capturing

5.1. The space robotic system
The space robotic system is shown in Fig. 8. It is composed
of a carrier spacecraft (called space base or base), a PUMA-
type manipulator (called space manipulator) and a target
satellite (called target) to be captured. The frames fixed on
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Fig. 7. Practical algorithm for avoiding the singularities of free
floating robot.

the multibody system are defined as shown in Fig. 9 (when
the joint angles are all zero), where Zi is the direction of
Ji . Table I lists the dimensions and mass properties of the
bodies (Sat and Bi stand for the satellite and the ith body,
respectively). The vectors i ai , i bi , and i I i are expressed in∑

i . In the following sections, the origin of the inertia frame
is the system’ CM, i.e. rg = O.

The coordinates of the four features in the light frame are

{
PL

1 = [0.01, 0.01, 0.0]T , PL
2 = [−0.01, 0.01, 0.0]T

PL
3 = [−0.01, −0.01, 0.0]T , PL

4 = [0.01, −0.01, 0.0]T
.

(80)

The homologous transformation matrix from the light frame
to the handle frame is

LTH =

⎡
⎢⎢⎢⎣

0.0269 0.9996 0.0134 0.1076

−0.9994 0.0272 −0.0221 0.1492

−0.0224 −0.0128 0.9997 −0.1963

0 0 0 1.0000

⎤
⎥⎥⎥⎦ .

(81)

The pose of the handle frame
∑

H with respect to
∑

T is
assumed to be

T TH =

⎡
⎢⎢⎢⎣

1 0 0 0.0050

0 −1 0 0.0000

0 0 −1 0.2200

0 0 0 1

⎤
⎥⎥⎥⎦ . (82)

5.2. Simulation study of autonomous target capturing
5.2.1. The simulation model. Computer simulations have
been performed under Simulink R©, developed by the
MathWorks, with customized S-function blocks written in
C in addition to building blocks. The model is composed
of four modules (see Fig. 10): planner, joint controllers
(PDs), hand–eye camera, target model, and space robot
dynamic.

The planner autonomously plans the end-effector’s
velocities and generates the desired joint angles (Θd ) and
rates (Θ̇d ), according to the current system state (the base
attitudeΨb, angular velocity ωb, and joint angles Θ) and the
hand–eye measurement (UV and Zc, i.e. the image features
and the estimated depth values). It also judges whether the
target within the capturing box (i.e. each component of UV

is less than 10 pixels), if so, the “CapFlag” is set to one and
the simulation stops, showing that the target is captured. The

Fig. 8. The space robotic system.
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Fig. 9. The body-fixed frames of the space robotic system.

joint controllers, including six joint controllers, generates
the control torques (Tm) and drives the six joints to track
the desired trajectories (i.e. �d and Θ̇d ). The space robot
dynamic, modeling the space robotic system based on the
essential equations of (21), calculates the system dynamic
state according to the drive forces and torques (for the free-
floating mode, the forces and torques exerting on the base
are zero, i.e. f b = T b = [0, 0, 0]T ). The hand–eye camera,
simulating the hand–eye camera, extracts the image features
of the light points UV and estimates the corresponding depth
values Zc, using the current state of the space robotic system
(the base position rb, attitude Ψb, and joint angles Θ) and
the target (the inertia position P t and attitudeΨt ). The target
model models the space target and outputs the position P t

and orientationΨt of the target’s CM, according to its linear
velocity V t and angular velocity W t .

5.2.2. The intrinsic and extrinsic parameters of the hand–
eye camera. The parameters are from the calibration results
of the left camera used in the experiment system (see Section

5.3). The intrinsic parameters of the hand–eye camera are{
u0 = 256.03758, v0 = 256.45714

f = 12.8 × 10−3, αx = 1.5331 × 105, αy = 1.5289 × 105
.

(83)

The extrinsic parameters of the camera are

ETC =

⎡
⎢⎢⎢⎢⎣

−0.0255 −0.9994 0.0225 0.1529

0.9996 −0.0257 −0.0086 −0.1128

0.0093 0.0222 0.9997 −0.2282

0 0 0 1.0000

⎤
⎥⎥⎥⎥⎦ .

(84)

5.2.3. Simulation of capturing a moving target when no
dynamic singularities. Initially, the joint angles and the base
attitude are

Θ0 = [0◦, 47.7200◦, −93.9100◦, 0◦, −4308200◦, 0◦], (85)

Table I. The mass properties of the space robotic system.

B6

Sat B1 B2 B3 B4 B5 Before capturing After capturing

Mass (kg) 400 6 5 5 4 3 2 30
i ai 0 0.2702 0 0 0 0 −4.7E-003

0 0 0 0 −0.0338 0 0
0.15 −0.2513 0.15 −0.35 0 0.0750 0.4292

0.3570 0 0.5598 0 0 0 0 0
i bi −0.0095 0 0 0 0 −0.0662 0 0

0.419 0.15 −0.0487 0.15 −0.35 0 0.1595 0
Ixx 30 0.15 0.0926 0.105 0.2498 0.0330 5.152E-002 0.7992
Iyy 28 0.15 0.9053 0.105 0.2498 0.0172 5.152E-002 0.8925

i I i (kg m2) Izz 32 0.075 0.8451 0.0294 0.0196 0.0260 2.192E-002 0.4682
Ixy 0.26 0 0 0 0 0 0 −2.3E-002
Ixz 0.37 0 0.1315 0 0 0 0 4.458E-003
Iyz −0.29 0 0 0 0 0 0 1.7E-002
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Fig. 10. The simulation model created in Simulink for capturing a moving target.

Ψb0 = [ 0 0 0 ]T . (86)

And the poses of the end-effector and the target are

I Xe0 = [1.6892 m −0.0137 m 0.7943 m 0.00◦

−69.99◦ 180.00◦], (87)

I X t0 = [ ] 1.2955 m 0.0363 m

−0.0799 m 5.00◦ 5.00◦ 5.00◦, (88)

The target is assumed to move with the constant velocities{
vt = [5 mm/s, 5 mm/s, 5 mm/s]

ωt = [0 deg /s, 0 deg /s, 0 deg /s]
. (89)

The desired image features are

fd = [317.6644 394.7437, 225.5703 399.5873,

220.8050 307.7116, 312.7073 302.9008]T . (90)

According to the simulation results, the image features
approach the desired features (see Fig. 11). The final image

feature errors are all less than 10 pixels, which indicate
that the space robot captures the target successfully. The
trajectories of the joint angles are shown in Fig. 12. Within the
whole capturing process, the CM position of the base changes
from [−0.0495 m, −0.0042 m, −0.0534 m] to [−0.0495 m,
−0.0051 m, −0.0455 m], and the base attitude changes from
[0, 0, 0] to [−1.4504◦, −9.0923◦, 1.2312◦].

5.2.4. Simulation of capturing a moving target when existing
dynamic singularities. The parameters used to avoid the
singularities are set as

λ2
0 = 0.08, εi = εb = 0.05, εw = 0.15. (91)

The constant εi , εb, and εw are the thresholds to determine
the corresponding singularity areas, and λ0 is the nominal
damped coefficient.29

Initially, the joint angles and the base attitude are

Θ0 = [0.7162◦ 50.9990◦ −88.9116◦ 1.2490◦

16.6960◦ −1.7934◦], (92)

Ψb0 = [
0 0 0

]T
. (93)
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Fig. 11. The variation of the camera image features.

And the poses of the end-effector and the target are

I Xe0 = [1.6927 m 0.0053 m 0.7566 m 8.9337◦

−68.5982◦ 172.7015◦] (94)
I X t0 = [1.4222 m −0.1511 m 0.1653 m 19.5426◦

−11.2133◦ 162.3645◦] (95)

The target is assumed to move with the constant velocities{
vt = [10 mm/s, 10 mm/s, 10 mm/s]

ωt = [1 deg/s, 1 deg/s, 1 deg/s]
(96)

The space manipulator is required to capture the moving
target. The end-effector’s velocities are planned based on the

measurement of the hand–eye camera. Using the traditional
method (i.e. the joint rate is calculated by Θ̇ = J−1

g ẋe), the
joint rates become infinite and discontinuous at the dynamic
singularity, which is shown in Fig. 13. The planned motions
of the joints are not feasible for the control.

Fortunately, the proposed practical algorithm can handle
the dynamic singularities well. The simulation results are
shown in Fig. 14. Different from the traditional method,
the joint rates (shown in Fig. 14) are finite and continuous,
which is adaptive to control the space manipulator. Fig. 15
illustrates the joint angle trajectories. The position and
attitude of the base are shown in Fig. 16. Correspondingly,
the end-effector tracks the inertial motion of the handle
and captures it successfully. The inertial trajectories of the
end-effector ([Pex, Pey, Pez]T ) and the handle ([Phx, Phy,
Phz]T ) are shown in Fig. 17. During the tracking, the relative

Fig. 12. The on-line planned joint trajectory.
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Fig. 13. The real joint rates using the traditional inverse of generalized Jacobian.

position and attitude vary as shown in Fig. 18. These results
verify that the proposed method can be used to solve the
dynamic singularity problem, and good performance will be
attained.

5.3. Experiment study of autonomous target capturing
5.3.1. The experiment system of target capturing. A semi-
physical simulation system was developed by Li et al.,26

but it is not a real experiment system. The hardware-in-
the-loop (HIL) simulators are powerful to verify the key
algorithms of space robotic system.31,32 Yoshida et al.33

and Settelmeyer et al.34 used two industrial manipulators to
experiment the capture of a noncooperative satellite. We also
set up a similar experiment system.35 The experiment concept

is illustrated in Fig. 19. Two industrial robots, i.e. capturing
robot (Robot C) and target robot (Robot T), are controlled
to implement the motion of the space robotic system. The
end-effector (include the hand–eye camera) of space robot
(Robot S) is mounted on Robot C, and the target mockup
is installed on Robot T. The bases of Robots C and T are
assumed to be fixed in the inertial frame (i.e.

∑
C and

∑
T

is fixed relative to
∑

I , but
∑

B is free floating relative to∑
I ). In the laboratory environment, Robot C is used to

implement the absolute motion of Robot S’s end-effector
(i.e. ṙe), and Robot T is used to implement that of the target
(i.e. ṙh).

The ground experiment system established in our institute
is shown in Fig. 20. It is composed of two industrial

Fig. 14. The real joint rates during the maneuver using the practical algorithm to avoid the dynamic singularities.
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Fig. 15. The real joint angles during the maneuver using the practical algorithm to avoid the dynamic singularities.

robots (Motoman K10, including their controllers), two
hand–eye cameras, two global cameras (used to observe
the capturing process), and five industrial computers. The
five computers are Simu3D, Computer C, Image Processor,
Global Displayer, and Computer T. In these computers,
Computer C is used to implement the dynamic emulation
and kinematics equivalence algorithm. Computer T plans
the motion of Robot T according to the target motion.
Image Processor processes the images of hand–eye cameras
and outputs the measurement results of the target pose
relative to the end-effector. Simu3D creates the geometry
model of space robot using OpenGL, and it is utilized to
simulate the motion of the whole space robotic system in

real time. Global displayer displays the images of the global
cameras.

5.3.2. The calibration results of the two hand–eye cameras.
The calibrated parameters of the left camera used in the
experiment system are given as Eqs. (83) and (84). The
intrinsic parameters of the right camera are

⎧⎪⎨
⎪⎩
u0 R = 254.53941, v0 R = 256.85139

f R = 12.8 × 10−3, αx R = 1.5229 × 105,

αy R = 1.5186 × 105

(97)

Fig. 16. The variation of the base position and attitude.
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Fig. 17. The variation of the inertial position of the end-effector and handle.

And the extrinsic parameters of the right camera are
ETC R

=

⎡
⎢⎣

−0.0102 −0.9998 0.0154 0.1475
0.9999 −0.0102 0.0017 0.1073

−0.0015 0.0154 0.9999 −0.2256
0 0 0 1

⎤
⎥⎦ .

(98)

5.3.3. Experiment of capturing moving target in inertial
space. The algorithm of capturing the moving target is also
experimented. Initially, the attitude and CM position of the
base is

r0 = [−0.0495 m −0.0042 m −0.0534 m]T ,

Ψ0 = [0◦ 0◦ 0◦] (99)

Fig. 18. The relative position and attitude between the end-effector and the handle.
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Fig. 19. The concept of the kinematic equivalence.

Fig. 20. The setup of the ground experiment system in our lab.

And the joint angles of space robot is

�0 = [0◦ 47.7212◦ −93.9074◦ 0◦ −43.8137◦

15.0000◦]. (100)

The position and attitude of the handle frame with respect to
the inertial frame are

rh0 = [1.3520 m −0.0290 m 0.1335 m]T ,

Ψh0 = [0◦ 0◦ 180◦]T . (101)

For the experiment of target capturing, the gain matrix of
Eq. (47) is set as identity matrix, and the upper limits of the
end-effector linear velocity and angular velocity are 40 mm/s
and 5 deg/s, respectively.

Assume the target is moving with the constant velocities

vh = [−5 mm/s, 5 mm/s, −5 mm/s],

ωh = [0.5 deg/s, 0.5 deg/s, 0.5 deg/s]. (102)

The experiment results are shown in Fig. 21–25. Fig. 21
and 22 are the cures of the joint rates and joint angles.
Fig. 23 shows the real pose of the handle relative to the
end-effector. The initial and final states of the ground
experiment system are illustrated in Fig. 24, respectively.
After capturing the target, the CM position of the base
changes from [−0.0475 m, −0.0042 m, −0.0583 m] to
[−0.0503 m, −0.0025 m, −0.0433 m], and the base attitude
changes from [0, 0, 0] to [1.7804◦, −10.7371◦, −0.6903◦].

6. Discussion and Conclusion
The autonomous ability, including autonomous prediction
of target motion and autonomous avoidance of singularities,
is very important for target capturing. Since the 2D image
features are used for the path planning, the approach is not
sensitive to the calibration error and it avoids the complex
3D reconstruction process. But it needs to compute the image
Jacobian matrix on real time. The singularity of the image
Jacobian matrix will disable the algorithm. As it is proved
that, the image singularity does not exist when using the
redundant (N ≥ 4) nondegenerated image feature points.36

Fig. 21. The variation of the left camera image feature for capturing moving target.
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Fig. 22. The variation of the left camera image feature for capturing moving target.

Fig. 23. The curves of relative pose for capturing moving target.

Fig. 24. The initial state of the experiment for capturing moving target (displayed by the two global cameras).
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Fig. 25. The final state after capturing moving target (displayed by the two global cameras).

Dynamic singularities, which affect the control of the end-
effector, are the intrinsic characteristics of space robot. So
a practical algorithm is presented to avoid their effect. The
base angular velocity is first estimated on real time according
to angular momentum conservation equation. Then, the
approximate linear relationship between the end-effector
velocity and joint rates is established, by substituting the
estimated values to the differential kinematic equations.
At last, the dynamic singularities avoiding problem are
transformed to the kinematic singularities avoiding problem,
based on the estimation and measurement on real time.

To examine the proposed approach, numeric simulation
and experiment study are introduced. The simulation model
is created using Simulink. The experiment system is set
up using cheap devices. The key of the realization of the
experiment system is the dynamic simulation and kinematic
equivalence. The system can emulate the capturing process
observed from the inertia frame. And the geometry and mass
properties of space robot are not limited. The system can be
extended by small modification to verify different technology
of target capturing. And, the real-time 3D simulation
system visualizes the capturing process intuitively. The path
planning methods proposed above are tested and verified
using the experiment system.

In this paper, the target is assumed to be cooperative, i.e.
some feature points (light points) are carefully designed for
the visual measurement. In order to extend the application
of the proposed method, we will study the measurement for
the noncooperative target without special visual markers. On
the other hand, the proposed method requires the knowledge
of the inertia parameters (mass, position of CM, moment
of inertia, and the product of inertia) of each body. These
parameters were estimated from the design specification, but
their real values in orbit may be very different. In the future,
we will study practical approaches to identify the inertia
parameters of each body.
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