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VECTOR AUTOREGRESSIVE
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RELATIONS
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We extend the conventional cointegrated VAR model to allow for general nonlinear
deterministic trends. These nonlinear trends can be used to model gradual structural
changes in the intercept term of the cointegrating relations. A general asymptotic theory
of estimation and statistical inference is reviewed and a diagnostic test for the correct
specification of an employed nonlinear trend is developed. The methods are applied to
Finnish interest-rate data. A smooth level shift of the logistic form between the own-yield
of broad money and the short-term money market rate is found appropriate for these data.
The level shift is motivated by the deregulation of issuing certificates of deposit and its
inclusion in the model solves the puzzle of the “missing cointegration vector” found in a
previous study.
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tic Trend

1. INTRODUCTION

A fairly common finding in empirical analysis of cointegrated time series is that
the number of cointegrating relations supported by the data turns out to be smaller
than expected on the basis of economic theory. The low power of cointegration
tests is often blamed for this but the reason may also be that the data have been
affected by structural changes not taken into account in the employed (standard)
model. Changes in institutions, policy, and technology are typical examples. If
the changes occur as sudden structural breaks at known points of time, they can
be modeled by conventional dummy variables. However, as recently discussed
by Leybourne et al. (1998) in the context of unit root tests, it may sometimes
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be more reasonable to consider structural changes that are gradual and smooth
[see also Lin and Ter¨asvirta (1994) and the references therein]. An example is a
structural change due to adopting a new technology, which usually takes time to
be completely realized and for which no clear date of change can be pointed out.
On the other hand, the realized change may be gradual even if a particular date
could be related to it. For instance, regulations can change at a particular date but
economic agents may start adjusting their behavior in advance if they know of the
forthcoming mandatory change.

Choosing an incorrect number of cointegrating vectors is a rather extreme mis-
specification that can result from ignoring structural changes. Even if this misspec-
ification is avoided, serious distortions can occur in other inference procedures on
cointegrating vectors. In this paper, we therefore consider an extension of a standard
cointegrated vector autoregressive (VAR) model in which smooth or continuous
deterministic changes are allowed in the constant term of the cointegrating rela-
tions. In a typical example, also relevant for the empirical part of the paper, the
constant term changes smoothly from one level to another. In the same way as in
Lin and Teräsvirta (1994) and Leybourne et al. (1998), we use a logistic function of
time to model this. However, in our general model, almost any conceivable smooth
function of time can be used to allow for additive structural changes in the coin-
tegrating relations and, although not emphasized in this paper, sudden structural
breaks are also possible provided the date(s) of break(s) is (are) a priori known
and not estimated from current data.

Recently, Saikkonen (2001a,b) developed a general asymptotic theory of es-
timation and statistical inference applicable to the model considered in this pa-
per. Since that work is purely theoretical, our purpose here is to discuss related
empirical aspects and provide a motivation for the model considered. A further
contribution of this paper is that we develop diagnostic tests that can be used to
check whether a deterministically changing constant term is really needed in the
cointegrating relations of a standard VAR model and, more generally, whether
a diagnosed structural change can be adequately described by a chosen function
of time. These tests, which are based on the Lagrange multiplier (LM) principle,
are similar to the tests developed by Lin and Ter¨asvirta (1994) and Eitrheim and
Teräsvirta (1996) for stationary models. On the other hand, since they are also
similar to the variable addition test that Park (1990) proposed for testing the null
of cointegration, they have power when the chosen cointegrating rank is too large.
This and the lack of a statistical test for cointegration in the presence of a continu-
ous structural change means that our tests are mainly designed for cases in which
strong prior information about the cointegrating rank is available.

In the empirical part of the paper, we analyze a data set of four Finnish interest
rates. The same data were previously used by Luukkonen et al. (1999), who found
two cointegrating vectors instead of the expected three. Here, we show that this
unexpected finding can be attributed to a known structural change which appears
as a smooth level shift in one of the three cointegrating relations.
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The rest of the paper is organized as follows. The general model and some
particular cases are discussed in Section 2. The main points of Gaussian maximum
likelihood (ML) estimation and asymptotic inference are summarized in Section 3.
The diagnostic tests of the paper are developed in Section 4 and the empirical
example is presented in Section 5. Section 6 concludes.

2. MODEL

Let yt , t = 1, . . . , T , be ans-dimensional time series generated by a VAR process
of orderp. Using the error correction form of the process, the series is modeled as

1yt = dt +5yt−1+
p−1∑
j=1

0 j1yt− j + εt , t = 1, . . . , T, (1)

where1 is the usual difference operator,5(s× s) and0 j (s× s) are unknown
parameters, anddt (s× 1) is a deterministic sequence to be discussed below. Fur-
thermore, the initial valuesy−p+1, . . . , y0 are observable andεt is Gaussian white
noise, that is,εt ∼NID(0, Ä)withÄ positive definite. This last assumption is only
made to facilitate the discussion of likelihood-based methods and could be relaxed.
It is also assumed that the matrix5 is of rankr (0< r < s) so that we can write

5 = αβ ′, (2)

whereα andβ ares× r matrices of full column rank. Since we are interested in time
series whose stochastic components are integrated of order 1 and cointegrated, we
also assume that the parameters of the model satisfy the conditions of Johansen’s
(1995, p. 49) version of Granger’s representation theorem. Thus, it is assumed that
the roots of the characteristic equation

det

[(
In −

p−1∑
j=1

0 j z
j

)
(1− z)− αβ ′z

]
= 0

are equal to 1 or lie outside the unit circle and the matrix

α′⊥

(
In −

p−1∑
j=1

0 j

)
β⊥

has full ranks− r . Here,β⊥, for example, denotes ans× (s− r ) matrix of full
column rank and such thatβ ′β⊥ = 0. The above assumptions imply that, with a
suitable specification of initial values, both1yt andβ ′yt are stationary around
deterministic trends [see Johansen (1995, p. 49)].
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In particular cases of the above model, which can now be called standard, the
deterministic sequencedt may contain an intercept term, seasonal dummies, and
perhaps also a linear time trend. In this paper, we are mainly interested in nonlinear
deterministic trends. The idea is to allow for the possibility that a standard model
may fail because the mean of the error correction termβ ′yt changes in a nonlinear
fashion. For simplicity, we consider only the case in which the deterministic term
dt can be absorbed into the cointegrating relations. This means that the sequence
dt is of the form

dt = −αgt (µ), (3)

wheregt (µ) is a generally nonlinear deterministic function of the time indext and
a parameter vectorµ. Thus, inserting (2) and (3) into (1) yields

1yt = α(β ′yt−1− gt (µ))+
p−1∑
j=1

0 j1yt− j + ε j , t = 1, . . . , T. (4)

A convenient way to specify the sequencegt (µ) is to follow the approach used in
nonparametric regression and assume thatgt (µ)= g(t/T;µ) whereg(·;µ) is a
suitable function defined on the interval [0, 1]. Two examples that illustrate how
the functiong(·;µ) may be specified are given by

g(x;µ) = ν + {1+ exp[−γ (x − τ)]}−1δ (5)

and

g(x;µ) = ν + [1− exp{−γ (x − τ)2}]δ. (6)

Hereµ= [ν ′δ′γ τ ]′ with ν andδ unknownr × 1 parameter vectors whileγ andτ
are scalar parameters withγ >0 and 0<τ <1. These functions have been used to
model a smooth or continuous structural change in the coefficients of a dynamic
regression model. A recent paper in this area is by Lin and Ter¨asvirta (1994), which
also contains references to earlier work. In (5) the smooth change is modeled by
a logistic function, whereas in (6) the density function of the normal distribution
is essentially used. To see the idea of (5), suppose that the components ofδ are
positive. Then the parameter vectorν is the constant term of the cointegrating
relations that applies at the beginning of the sample whereasν + δ is a new constant
term that applies after a smooth increasing change. The parameterτ determines
the average location of the change andγ is a slope parameter that indicates how
rapid the change is. The smaller the value of the parameterγ is the longer it takes
for the constant term to reach its new level. When the value ofγ is “large,” we are
close to the case where a single structural break occurs. In fact, this case is obtained
in the limit by lettingγ→∞ because, then, (5) approachesν + I(x≥ τ)δ, where
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I (·) is an indicator function taking the value 1 if the indicated condition is true
and 0 elsewhere. When the value of the parameterτ is known, this amounts to
using a conventional step dummy. In the case of (6), the change in the constant
term is nonmonotonic and symmetric aboutτ . This specification can be used, for
instance, to describe the situation in which the mean of the cointegration relations
first decreases smoothly fromν toδ and then increases smoothly back toν. Again,
γ is a slope parameter that determines how rapid these changes are.

Obvious extensions of the above specifications are obtained by defining the
function g(x;µ) as a linear combination of functions of the type given on the
right-hand sides of (5) and (6). Another extension, proposed by Lin and Ter¨asvirta
(1994), is given by

g(x;µ) = ν + {1+ exp
[−γ (xk + τ1xk−1+ · · · + τk−1x + τk

)]}−1
δ, (7)

whereτ1, . . . , τk (k> 1) are scalar parameters and the rest of the notation is as in
(5). Whenk= 1, (7) reduces to (5). In addition to this choice, Lin and Ter¨asvirta
(1994) consider the valuek= 3. With these extensions, one can, for instance, allow
for more than a single smooth transition in the constant term.

As the above discussion shows, our approach includes a variety of interesting
possibilities to model structural changes in cointegrating relations. In some appli-
cations, continuous changes may be more natural than sudden breaks, which have
recently received considerable attention. Whether the change is continuous or not,
the above examples make clear that in these cases it is quite natural to proceed as
in nonparametric regression and use the scaled time indext/T in the trend model
instead oft . A similar scaling also has been used by other authors to model trends
or varying parameters. For instance, Phillips and Hansen (1990) use a similarly
scaled time index in cointegrated systems, although only in models that are linear
in parameters. In cointegrating regressions, the same idea is also used by Park
and Hahn (1999), who develop nonparametric methods to analyze deterministic
changes in cointegrating vectors. Andrews and McDermott (1995), who scale the
time index in a slightly different way, consider general nonlinear deterministic
trends in a parametric framework but do not allow integrated processes. Dahlhaus
(1996a,b) makes extensive use of this approach in his locally stationary models
and provides an insightful discussion of its motivation.

The above discussion also implies that we are mainly thinking of determin-
istic trends that are not “large” like those implied by the linear specification
dt =µ1+µ2t . Assuming a linear trend in our formulation means that
dt =µ1+µ2(t/T), which is “small” in the sense that it remains bounded as the
sample sizeT tends to infinity. Note however, that in the case of a linear trend,
the inference procedures to be discussed in the next section are valid even if the
time index is not scaled by the sample size. The scaling is only required in non-
linear functions of time. On the other hand, the test procedures to be developed in
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Section 3 are affected by the presence of a linear trend in the cointegrating relations
so that, for simplicity, this case will be excluded there.

Sincegt (µ)= g(t/T;µ) is assumed, the processyt also depends on the sample
size, so that, strictly speaking, a notation likeytT should be used. Fortunately,
however, this dependence is very simple and therefore does not cause any theoret-
ical complications. Indeed, a version of Granger’s representation theorem given
by Saikkonen (2001a) shows that the dependence ofyt on T is only due to the
deterministic sequenceg(t/T;µ). The stochastic part ofyt is independent ofT
and identical to its counterpart in Johansen’s (1995, p. 49) version of Granger’s
representation theorem. The assumptions imposed on the functiong(x;µ) also
imply that the processes1yt andβyt−1− gt (µ), which are stationary in standard
cases, can be considered here as nearly stationary or asymptotically stationary [see
Saikkonen (2001a)].

3. ML ESTIMATION AND STATISTICAL INFERENCE

The parameters in (4) with a chosen specification of the sequencegt (µ) or, equiva-
lently, the functiong(x;µ) can be estimated by ML. Since the relevant asymptotic
estimation theory has been developed by Saikkonen (2001a,b), we only briefly
summarize the main points here. First, note that Saikkonen (2001a,b) also proves
results when some nuisance parameters are not identified but, unless otherwise
stated, identifiability is assumed here. Thus, it is assumed that the cointegrating
vectors can be written asβ′ = [ Ir − A(φφ)], whereA(φφ) is a continuously differ-
entiable function of the underlying identifiable parameter vectorφφ. The function
g(x;µ) is assumed to be continuously differentiable with respect to the latter
argument. A number of technical regularity conditions are also imposed on the
functiong(x;µ). These conditions are satisfied by the examples given in (5) and
(6) if the values of the parametersγ andτ are restricted as 0< c1≤ γ ≥ c2<∞and
0< c3≤ τ ≤ c4< 1. Many other choices of the functiong(x;µ) are also allowed.
A general sufficient condition is thatg(x;µ) is continuously differentiable as a
function of(x,µ). Since the functiong(x;µ) may be discontinuous with respect
to its first argument, conventional dummy variables are also included. The most
important case that is excluded is that of structural breaks with unknown brake
dates or dummy variables with dates of jump depending on unknown parameters.
Finally, note that the results of Saikkonen (2001a,b) also allow for the possibil-
ity that the short-run parametersα and0 are smooth functions of an underlying
structural parameter vector, but we shall not discuss that extension here.

Denoteθ= [θ′1θ
′
2]′ whereθ1= [φφ′µ′]′ andθ2= vec[α0]. Here vec signifies the

usual columnwise vectorization operator. Thus, conditioning on the initial values
y−p+1, . . . , y0, we can write the log-likelihood function of the data as

LT (θ, Ä) = −T

2
log det(Ä)− 1

2
tr

[
Ä−1

T∑
t=1

εt (θ)εt (θ)
′
]
, (8)
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where

εt (θ) = 1yt − α[ y1,t−1− A(φ)y2,t−1− gt (µ)] − 0qt ,

with 0= [01 . . . 0p−1], qt = [1y′t−1 . . . 1y′t−p+1]′ andyt = [ y′1t y′2t ]
′ partitioned in

an obvious way. ML estimators ofθ andÄ, denoted byθ̂= [θ̂
′
1θ̂
′
2] and Ä̂, are

obtained by maximizing the functionLT (θ, Ä). This maximization problem is, of
course, highly nonlinear. Saikkonen (2001a) shows that, under suitable regularity
conditions, the ML estimatorŝθ andÄ̂ exist with probability approaching 1 and
are consistent. The limiting distribution of̂θ is derived by Saikkonen (2001b).
The estimatorŝθ1 andθ̂2 are asymptotically independent of each other and of the
estimatorÄ̂ . The limiting distribution ofθ̂1 is mixed normal and that of̂θ2 is
normal. To be able to describe these results more precisely, we define

G1t (θ) = −


[
∂vecA(φ)′

∂φφ

]
( y2,t−1⊗ α′)[

∂gt (µ)
′

∂µ

]
⊗ α′


and

G2t (θ1) = zt (θ1)⊗ Is,

where the symbol⊗ signifies Kronecker’s product andzt (θ1)= [q′tut−1(θ1)
′]′ with

ut−1(θ1)= y1,t−1− A(φφ)y2,t−1− gt (µ). Note that here, for example,∂gt (µ)
′/∂µ

= (∂gt (µ)/∂µ
′)′ as in Lütkepohl (1996, p. 173). From Saikkonen (2001b) we can

now conclude that, under regularity conditions,

M̂
1/2

1·2(θ̂1− θ1)
d−→N(0, I ), (9)

where

M̂1·2 =
T∑

t=1

Ĝ1tÄ̂
−1Ĝ

′
1t −

T∑
t=1

Ĝ1tÄ̂
−1Ĝ

′
2t

(
T∑

t=1

Ĝ2tÄ̂
−1Ĝ

′
2t

)−1 T∑
t=1

Ĝ2tÄ̂
−1Ĝ

′
1t

with Ĝ1t =G1t (θ̂) andĜ2t =G2t (θ̂1). For θ̂2 we have

M̂
1/2

2·1(θ̂2− θ2)
d−→N(0, I ), (10)

whereM̂2·1 is defined in the same way aŝM1·2 except that the roles of the subscripts
1 and 2 are interchanged. Note that (9) would also hold ifM̂1·2 were replaced by
the first matrix in its defining equation and similarly for (10).G1t (θ) contains
integrated processes andG2t (θ1) contains asymptotically stationary processes;
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this fact, together with (9) and (10), explains why the limiting distribution ofθ̂1 is
mixed normal and that of̂θ2 is normal.

Approximate standard errors can be obtained for the components ofθ̂1 andθ̂2

by taking square roots of the diagonal elements of the matricesM̂1·2 and M̂2·1,
respectively. More generally, it is shown by Saikkonen (2001b) that Wald tests with
asymptotic chi-squared distributions under the null hypothesis can be constructed
in the usual way to test (possibly nonlinear) hypotheses on the parametersθ1 and
θ2; similar results also are obtained for corresponding likelihood ratio (LR) and
LM tests. In these Wald tests the matricesM̂1·2 andM̂2·1 provide natural estimators
of the needed information matrices; their constrained counterparts can be used in
corresponding LM tests. Note, however, that these tests assume that the parameters
of the model are identified. This particularly means that, if (5) or (6) is specified,
testing the hypothesisδ= 0 is not possible because it implies that the parametersγ

andτ are not identified. Test procedures for this kind of hypothesis are considered
in the next section.

4. TEST PROCEDURES

An interesting question in the model introduced in Section 2 is whether any nonlin-
ear time trend is actually needed or whether a specified nonlinear time trend, such
as (5), (6), or (7), can really adequately describe a diagnosed structural change.
Tests based on the LM principle appear convenient because they only require esti-
mating parameters of the null model, which in the present context is a considerably
simpler task than estimating parameters of the unrestricted model.

For ease of exposition, we first discuss how to obtain a test for the null hypothesis
that states that the sequencegt (µ) in (4) reduces to a constant. It is obvious that
parametric tests cannot be obtained without suitable assumptions of the sequence
gt (µ) or the functiong(x;µ). Our assumptions are fairly general and apply in a
number of cases, including those discused in Section 2. Partition the parameter
vectorµ into three subvectors asµ= [ν ′λ′γ ′]′ and assume that for some known
value ofγ , denoted byγ0, we haveg(x;ν,λ, γ0)=ν for all ν andλ. Thus, under
the null hypothesisγ = γ0, we have a standard model with a constant term in
the cointegrating relations. This formulation applies to the examples in (5) and
(6), although in the former the notation has to be redefined. In both cases the
parameterγ is scalar withγ0= 0 whileλ= [δ′τ ]′.

In the preceding setup the previously mentioned identification problem appears
in the parameterλ, which is not identified under the null hypothesis. There has
recently been a great interest in this problem and significant progress has been
made by Andrews (1993), Andrews and Ploberger (1994), and Hansen (1996).
However, instead of following the approach of these authors, we proceed as Lin and
Teräsvirta (1994) did and obtain a simple LM-type test by replacing the function
g(x;µ) with a Taylor approximation. In other words, we assume that the function
g(x;µ) is continuously differentiable with respect toµ (or at leastγ ) and consider
the approximation
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g(x;ν,λ, γ ) ≈ ν + ∂g(x;ν,λ, γ0)

∂γ ′
(γ − γ0). (11)

Since the parameterλ appears on the right-hand side, we still have an identification
problem, which cannot be solved unless suitable assumptions are made for the
partial derivatives therein. We assume that the vector∂g(x;ν,λ, γ0)/∂γ can be
written as a polynomial ofx so that, for some integers 1≤ n1< · · · < nq,

∂g(x;ν,λ, γ0)

∂γ
=ψ0+ψ1xn1 + · · · +ψqxnq , (12)

where the parametersψ0, . . . ,ψq(r × 1)are functions ofν andλ. This assumption
is satisfied in (5) and (6). In (5),q= 1,n1= 1, and∂g(x;µ)/∂γ evaluated atγ = 0
is 0.25(x− τ)δ, which is of the form in equation (12). In (6), we haveq= 2,n1= 1,
andn2= 2. Now∂g(x;µ)/∂γ evaluated atγ = 0 isδ(x− τ)2, which is a special
case of (12). The same conclusion clearly applies to (7) and extensions of (5) and
(6), where the functiong(x;µ) is a linear combination of functions of types (5)
and (6).

Now, using (11) and (12) leads us to replace the original model (4) with the
approximation

1yt = α(β ′yt−1− ν −9wt )+ 0qt + et , t = 1, . . . , T, (13)

where9 = [ψ1 . . .ψq], wt = [(t/T)n1 . . . (t/T)nq ]′, andet is an error term that
equals the true error termεt when the linearity hypothesis holds or when9 = 0.
Note that, here,ψi stands forψi (γ − γ0) (i = 1, . . . ,q) and, for convenience,
ψ0= 0 has been assumed so thatν +ψ0(γ −γ0)=ν holds. It is a simple matter to
test the null hypothesis9 = 0 in (13). One possibility is to apply the reduced rank
regression method directly to (13) and test the null hypothesis9 = 0 by using the
LR test based on the assumption that the error termet is Gaussian white noise [see
Johansen (1995)]. An alternative possibility is to use the corresponding LM test,
which requires only the application of reduced rank regression to the null model or
to (13) with the constraint9 = 0. This is the test considered in this paper. However,
we do not describe it explicitly here because it can be obtained as a special case
of the more general test to be developed shortly.

Before generalizing the preceding test, we note that a test obtained for the
null hypothesis9 = 0 in (13) obviously can be seen as a version of the variable
addition test that Park (1990) proposed for testing the null of cointegration. This
means that a rejection of the null hypothesis9 = 0 may also be an indication
that the cointegrating rank has been erroneously specified too large. To look at this
from another angle, suppose economic theory has suggested the cointegrating rank
r = r0 and one starts with the standard model, that is, (13) with9 = 0. Suppose
further that the data clearly support the choicer = r0− 1 againstr = r0 (e.g., the
LR test of the null hypothesisr = r0− 2 is clearly rejected but the null hypothesis
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r = r0− 1 cannot be rejected at any reasonable significance level). This might also
happen whenr = r0 is the correct specification but the data are generated by (4)
with gt (µ) given by (5) or (6). In this situation, testing the null hypothesis9 = 0
in (13) with r = r0 is also likely to lead to a rejection. Thus, if there is no prior
information about the cointegrating rank, it is difficult to say whether one should
adopt (4) withr = r0− 1 andgt (µ)=ν or, alternatively,r = r0 andgt (µ)modeled
by a nonlinear function of time. To be able to discriminate between these two cases,
a statistical test for cointegration in the general model (4) would be needed but, to
the best of our knowledge, there is no such test available at present. This problem
can be avoided, however, when the specification of the cointegrating rank is based
on economic theory, which, we believe, is fairly typical in practice. Another point
worth emphasizing here is that if a standard model is found inadequate and a
nonlinear trend is added to the cointegrating relations, a meaningful interpretation
of the specified nonlinear trend and reasons leading to the failure of the standard
model would be reasonable to have. Otherwise, including a nonlinear time trend
in the cointegrating relations seems rather pointless.

Now consider the case where (4) with a chosen functional form ofgt (µ) has
been adopted and the question is whether an additional or alternative nonlinear
term should be used in the model. In this context, we proceed in the same way as
in Eitrheim and Ter¨asvirta (1996) and assume that the correct specification of the
nonlinear trend can be written as

g∗t (µ,υ) = gt (µ)+ ht (υ), (14)

whereht (υ) depends on a parameter vectorυ andht (υ)= 0 under the null hypoth-
esis. Moreover,ht (υ) is supposed to be such thatg∗t (µ,υ) satisfies the regularity
conditions required fromgt (µ) in order for the theoretical results of Section 2
to apply. In particular, we assume thatht (υ)= h(t/T;υ) for a suitable function
h(x;υ) similar tog(x;µ). The sequencegt (µ) is supposed to contain an additive
constant term, although this would not be necessary. Now, the obvious idea is to
linearize the functionh(x;υ) in the same way as was done for the functiong(x;µ)
in (11) and assume that the related vector of partial derivatives can be written as a
polynomial similar to (12). Thus, instead of (13), we consider its generalization,

1yt = α[β ′yt−1− gt (µ)−9wt ] + 0qt + et , t = 1, . . . , T, (15)

where the error termet equals the true error termεt when the null hypothe-
sis ht (υ)= 0 or, equivalently,9 = 0 holds. We derive an LM test for this latter
form of the null hypothesis by assuming thatet ∼ N(0, Ä) holds in (15). The test
requires a related constrained ML estimation, which can be carried out by special-
izing the discussion of Section 2 to the present context. Thus, we again assume
thatβ ′ = [ Ir−A(φφ)] and thatgt (µ) satisfies the regularity conditions discussed in
Section 2. In what follows, we use a hat symbol to indicate constrained ML esti-
mators obtained from (15) with the constraint9 = 0. We need the score of vec9
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based on (15) with the assumptionet ∼NID(0, Ä). It is straightforward to see
that this score evaluated at constrained ML estimators is

∑T
t=1 Ĝ3tÄ̂

−1ε̂t , where
Ĝ3t =wt ⊗ α̂′ andε̂t is the obvious constrained residual. Specializing the general
LM test of Saikkonen (2001b) to the present context leads to the test statistic

S=
(

T∑
t=1

Ĝ3tÄ̂
−1ε̂t

)′
M̂
−1
3·12

(
T∑

t=1

Ĝ3tÄ̂
−1ε̂t

)
, (16)

whereM̂3.12 is defined in the same way aŝM1.2 in (12) except that̂G1t is replaced
with Ĝ3t and Ĝ2t is replaced with [̂G

′
1t Ĝ
′
2t ]
′. The limiting null distribution of

test statisticS can be derived from the general results of Saikkonen (2001b) by
observing that under the null hypothesis we really haveet ∼NID(0, Ä). Thus, we
can conclude that, under the null hypothesis and appropriate regularity conditions,
test statisticShas a standard chi-squared limiting distribution; that is,

S
d−→ χ2

qr . (17)

Of course, large values of the test statistic are critical for the null hypothesis. We
do not give formal results about the properties of our test under the alternative
hypothesis but we do note that its power should be reasonable when the functions
g(x;ν,λ, γ ) and h(x;υ) are not orthogonal to the polynomial defined by the
components ofwt . This is clearly the case in the examples discussed in Section 2.
Note, however, that from a significant value of test statisticS, it is not possible
to deduce the exact form of the functiong(x;ν,λ, γ ) or h(x;υ) that one should
entertain. This is, of course, clear because choosingwt = t/T was found reasonable
in the case of (5) but this choice is also used when the need for a linear trend is tested.
The situation remains the same even if a linear trend can be ruled out a priori. For
instance, if (6) is suspected, it is reasonable to choosewt = [(t/T)(t/T)2]′ so that
the resulting test should also have power against (5). Graphical methods may be
useful when the specification of the functiong(x;ν,λ, γ )orh(x;υ) is considered.
This point is exemplified in the next section.

The preceding discussion also makes clear that our test withwt = t/T breaks
down if the null model is augmented by a linear trend. This is simply because then
the additional regressorwt = t/T used in the test already appears in the model.
Of course, this difficulty could be circumvented by using higher powers(t/T)2,
(t/T)3, . . . , but we will not pursue this matter explicitly in this paper [cf. Lin and
Teräsvirta (1994)].

The expression of test statisticS reveals that it can be computed as a LM test
statistic for the need of the regressorĜ

′
3t in the auxiliary regression of ˆεt on

Ĝ
′
1t , Ĝ

′
2t andĜ

′
3t with the error term treated as normal with covariance matrixÄ̂.

Although the derivation of test statisticS may appear somewhat ad hoc, it can in
some cases, such as those given by (5) and (6), be motivated by the LM principle.
To demonstrate this, consider (6) in the case in which the null hypothesis implies

https://doi.org/10.1017/S1365100501023069 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501023069


588 ANTTI RIPATTI AND PENTTI SAIKKONEN

thatgt (µ)=ν. This null hypothesis can be formulated by restrictingγ = 0 in (6).
The score ofγ evaluated atγ = 0 isδ′α′Ä−1∑T

t=1[(t/T)− τ ]2εt . If the values of
the parametersδ andτ were known, then a proper LM test could be based on this
score. Then we could use test statisticSwith Ĝ3t = [(t/T)− τ ]2δ′α̂′. Of course,
this test statistic is infeasible because it depends on the values of the nuisance
parametersδ andτ , which are unknown in practice. A standard approach in a case
such as this is to take the supremum of the test statistic over the possible values of
the unknown nuisance parameters [see Davies (1977, 1987), Andrews (1993), and
Andrews and Ploberger (1994)]. However, using the above auxiliary regression
interpretation of test statisticSand well-known properties of least-squares theory,
it can be seen that our feasible version of test statisticS is obtained precisely in
this way. Thus, in this special case, our test can be motivated as a “supLM test.”
The same result is also obtained in the case of (5) and therefore we may call our
test statistic an LM-type or a score-type test statistic.

An alternative motivation for test statisticS is obtained by observing that its
derivation is based on the idea of replacing the functiong(x;ν,λ, γ ) or h(x;υ)
with a polynomial approximation. This makes the time trend linear in parameters
and thereby solves the involved identification problem. This interpretation is to
some extent nonparametric. Indeed, such an approximation can be made arbitrar-
ily accurate by taking the degree of the approximating polynomial large enough.
However, when one has prior information about the possible form of the func-
tion g(x;ν,λ, γ ) or h(x;υ), it is worthwhile to make use of this information
and choose the polynomial approximation accordingly. For instance, in (5) and
(6), first- and second-order polynomials seem quite reasonable and parsimonious
choices, even if they could not be motivated by the LM principle.

We close this section by discussing test statisticS in the special case in which
the functiong(x;µ) is of the form

g(x;µ) = ν + ϕf (x,µ2). (18)

Here the parametersν and ϕ are unrestricted andϕ may be a matrix. Thus,
µ= [µ′1µ

′
2]′ with µ1= [ν ′ (vecϕ)′]′. We also assume that no overidentifying re-

strictions are imposed on cointegrating vectors, so thatβ ′ = [ Ir − A(φφ)]= [ Ir − A]
with φ= vecA. The cointegrating vectors are thus identified by normalizing re-
strictions. A convenient feature of test statisticS in this case is that it is invariant to
a particular normalization. To see this, suppose thatβ ′ = [ Ir − A] is transformed
asβ ′ → ξβ ′ and that the parametersν andϕ are transformed similarly asν→ ξν
andϕ→ ξϕ. Here,ξ is any nonsingularr × r matrix and, if the parameter ma-
trix α is transformed asα→αξ−1, we obtain a reparameterization of the original
model. The ML residuals ˆεt are clearly invariant to these transformations. From
the definitions, it can further be seen that these transformations do not change
the value ofĜ3t in test statisticS and the same is also true for̂G2t , where the
transformation amounts to multiplyingut−1(θ̂1) by ξ . Finally, consider the
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sequencêG1t , which, in the present context, becomes

Ĝ1t = −


y2,t−1⊗ α̂′

α̂′

ft (µ̂2)⊗ α̂′[
∂ vecft (µ̂2)

′

∂µ2

]
⊗ ϕ̂′α̂′

 .

From this and the definition of test statisticS, it can readily be seen that the desired
invariance also holds for the sequenceĜ1t and hence for test statisticSas a whole.

Although our original formulation of test statisticS applies even when overi-
dentifying restrictions are imposed on cointegrating vectors or the parametersν
andϕ in (18), it seems convenient to consider such restrictions only after broader
aspects of cointegrating relations have been specified. This means that, in practice,
these overidentifying restrictions are specified only after the cointegrating rank
and the form of the deterministic sequencegt (µ) or the functionf (x;µ2) in (18)
have been specified. If this approach is adopted, test statisticS is applied only in
cases in which the above-mentioned invariance property holds, so that one does
not need to worry about the possible effect of incorrect normalization on the test.
In the special case in which the null model can be estimated by the reduced rank
regression method, this particularly means that the resulting ML estimators can be
used directly to obtain test statisticS. This happens, for example, whengt (µ)=ν.

5. EMPIRICAL APPLICATION

As an empirical application of the ideas put forward in the preceding sections,
the relationship between own-yield of broad money and a set of interest rates as
an opportunity cost of money is studied.1 It is often suggested [see, e.g., Rasche
(1992)] that, in an economy with perfect capital markets, a system with a set of
opportunity costs of money and own-yield of money should contain one common
trend. This means that, if interest rates are believed to beI (1)processes, they should
be cointegrated with cointegrating rank one less than the number of considered
series.2

We use monthly Finnish data from the Bank of Finland database covering the
period 1980–1995. In addition to own-yield of money (IOWN), our data set con-
tains three interest rates, which are 1-month money market rate (I1M), 3-month
money market rate (I3M), and 5-year bond rate (IBOND). Graphs of these series3

are depicted in Figure 1. Recently Luukkonen et al. (1999) analyzed the same data
set by using a standard cointegrated VAR model with an intercept term restricted
to the cointegrating space. Their results were rather surprising. The own-yield
of money was not cointegrated with any of the three interest rates and only two
cointegrating relations were found instead of the expected three.
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There is a potential explanation for their result. The own-yield of money is
a weighted average of the yields of various components of broad money. The
Ministry of Finance restricted banks’ certificates of deposit (CD) issue until the
beginning of 1987 but gradually lifted the quota due to the plans of the Bank of
Finland to start open-market operations in March 1997. The CD’s were chosen as
the material for open-market operations. The open-market operations were started
because the Bank of Finland had a long-run objective to improve the functioning of
the money markets and to provide central bank financing in a deregulated economic
environment. After that period the CD stock grew rapidly and, consequently, the
gap between the own-yield of money and the opportunity cost of money diminished
substantially. Because of the long-run objectives of the Bank of Finland, the change
in the gap can be considered as exogenous with respect to the level of interest rates.
The standard model of Luukkonen et al. (1999) assumed that this gap is constant,
not changing gradually over time. Thus, the incapability of the employed model to
allow for the effects of changing regulations might be the reason for the previous
unexpected results.

The left panel of Figure 2 depicts the first three cointegrating relations of the
standard reduced-rank VAR(4) model of Luukkonen et al. (1999). The cointe-
grating relations are ordered according to the canonical correlations. The third
cointegrating relation exhibits nonstationary features, which is in line with the
cointegrating rank tests of Luukkonen et al. (1999). However, as our previous
discussion suggests, this nonstationarity might be modeled by a smooth function
of time, which could pick up the “gradualism” in the deregulation and banks’
adjustment to the new procedures of the Bank of Finland. To formally test for
this idea, we use the test procedure developed in the preceding section. Thus, we
continue the analysis by assuming that the cointegrating rank is 3 and the lag
length of the VAR model is 4. On the basis of the graph of the third cointegrat-
ing relation in the left panel of Figure 2, a function of the logistic form might be
appropriate. This would mean choosingwt = t/T in test statisticS. However, in
addition to this choice, we also apply the test withwt = [t/T(t/T)2]′. The out-
come of these two tests is reported in the two middle columns of Table 1. When
the test is applied withwt = t/T , the null hypothesis of no structural change is
rejected even at the 1% significance level but with the other choice ofwt a re-
jection at the 7% significance level is only possible. The difference between the
outcomes of these two tests also suggests that a function of the logistic form
is more appropriate than, for instance, a bell-shaped function such as the one
in (6).

The first column presents cointegrating relations based on unrestricted reduced
rank estimation of the VAR(4) model of Luukkonen et al. (1999). The cointe-
grating relations are ordered according to the canonical correlations so that the
first graph corresponds to the largest canonical correlation. The second column
presents cointegrating relations based on the estimates of model (19).

Thus, we augment the model of Luukkonen et al. (1999) by including a logistic
function of time in the cointegrating relations. This leads to the model
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TABLE 1. Testing continuous structural change

Standard model Model (19)Degree of Degrees of
polynomial freedom Test statistic p-value Test statistic p-value

1 3 10.55 0.01 4.41 0.22
2 6 11.49 0.07 5.43 0.49

∆yt = α{ y1,t−1− Ay2,t−1− ν −ϕf [γ (t/T − τ)]} + 0qt + εt , (19)

whereqt contains lagged differences (lag length is 4),y1,t = [IOWNt IBONDt

I3Mt ]′, andy2,t = I1Mt . Moreover,A, ν, andϕ are 3× 1 parameter vectors and
f [γ (t/T − τ)]={1+ exp[− γ (t/T − τ)]}−1. Note that we assume that the form
of nonlinearity, that is, the functionf (·), is the same in each cointegrating relation.

The right column of Figure 2 shows the cointegrating relations based on the
estimates of model (19). According to visual inspection, all three cointegrating
relations look stationary, which supports the prior belief of three cointegrating
relations. Unfortunately, there seems to be no formal test for cointegration available
in the case of smooth deterministic trends. However, since the estimated logistic
function turned out to be fairly steep,4 we approximated it with a step dummy
and applied the LR test for cointegration with critical values computed by the
Disco program of Nielsen (1993). Because of this approximation and also because
the date when the value of this step dummy is changed is determined by the ML
estimate of the parameterτ in (19), these critical values should be treated only as
approximations of their correct asymptotic counterparts. Using this procedure, the
p-value obtained for the null hypothesis that the cointegrating rank is, at most, 2
was approximately 0.07. Thus, even this approximate test was not strongly contrary
to the prior belief of three cointegrating relations.

Before discussing ML estimates obtained for the preceding model, we test the ad-
equacy of the specified nonlinearity. Thus, we use the general form of test statisticS
and, in the same way as earlier, apply it with bothwt = t/T andwt = [t/T(t/T)2]′.
The results, reported in the last two columns of Table 1, imply that the determin-
istic nonlinearity can be captured by a single logistic function so that the specified
model is satisfactory in this respect.

As to the ML estimates of the parameters of model (19), we first note that thet
values obtained for the last two components of the parameter vectorϕ were only
0.19 and 0.05. This suggests that the nonlinearity is only present in the first cointe-
grating relation, which describes the relationship between own-yield of money and
1-month money market rate. Thep-value of the LR test for the joint hypothesis
ϕ2=ϕ3= 0 was 0.98, supporting this view. Thus, it is reasonable to consider the
corresponding restricted version of model (19). The ML estimates obtained for the
long-run parameters of this model are as follows (standard errors in parenthesis):
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1


IOWN
IBOND

I3M
I1M


t

=



−0.137 0.045 0.077
(0.038) (0.049) (0.103)
0.056 −0.170 0.176
(0.125) (0.030) (0.040)
0.212 0.046 0.00145
(0.084) (0.100) (0.056)
0.330 0.036 0.390
(0.074) (0.156) (0.186)



×


 IOWN

IBOND
I3M


t−1

−


0.633
(0.038)
0.464
(0.049)
0.963
(0.024)

 I1Mt−1−


−0.0224
(0.005)
0.064
(0.0058)
0.0056
(0.0029)



−


0.0268
(0.0021)

0

0


1

1+ exp

[
−80.1(t/T − 0.448)

(51.1) (0.010)

]

+ 0̂qt + ε̂t .

The estimation results are interesting. The relationship between 1-month money
market rate (I1M) and bond rate (IBOND) differs significantly from a one-to-
one relationship.5 This one-to-one relationship is preserved between 1-month and
3-month money market rates. The constant term in both relationships significantly
differs from zero, suggesting, for example, that the 3-month money market rate is,
on the average, a half percentage point above the 1-month money market rate. This
is consistent with the common observation that the yield curve is, on the average,
upward sloping.

The relationship between own-yield of money and 1-month money market rate
exhibits structural change in the intercept term. On the average, the own-yield of
money has moved along with the 1-month money market rate, but the responses
have been smaller than unity (0.633). The nonlinear term suggests that the “ad-
justed gap” between these two variables has narrowed by 2.7 percentage points.
The estimate ofτ is 0.448, which suggests that the midpoint of this transition
period was in April 1987. That is close to the date when the Bank of Finland
started its market operations (March 1987). The shift to the new level has been
quite rapid(γ =−80)—graphical investigation suggests that the major part of
the shift occurred within 12 months surrounding the midpoint (April 1987). It is
quite natural that the transition started half a year before the midpoint, because the
banks’ CD quotas were extended already before the Bank of Finland started its
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open-market operations in order to enlarge the money markets. It is also natural
to believe that it took some time after the start of the open-market operations to
saturate banks’ needs to issue CDs. The uncertainty in the estimation of the pa-
rameterγ is likely to arise from this rapid shift, which means that we do not have
very many observations from the “transition period.” Note that this also means
that it is not reasonable to interpret this result as an indication of insignificance.6

The estimate of the parameterα is reasonable. The residuals of the model exhibit
no autocorrelation, but they suffer from nonnormality and, in some cases, het-
eroskedasticity. Trying to improve the model in this respect is outside the scope of
this paper, however.

6. CONCLUSION

This paper has argued that the puzzle of “missing cointegrating vector,” which is
not uncommon in empirical analysis of cointegrated systems, can in some cases
be explained by structural changes and solved by including nonlinear determin-
istic trends in cointegrating relations. This idea was implemented in the paper by
extending the conventional cointegrated VAR model to a fairly general form. The
case of continuous deterministic trends was emphasized because gradual struc-
tural changes are often conceivable and may not be well modeled by conventional
dummy variables, which have so far been used mainly in these contexts.

The usefulness of the proposed approach was demonstrated in the paper by an
empirical example on interest-rate data. In this example, a previous model was
augmented by including a logistic trend term in the cointegrating relations and the
puzzle of the “missing cointegrating vector” could thereby be solved. According to
our general idea, we could also pinpoint reasons for this augmentation and interpret
the parameter estimates in the logistic trend in a reasonable way. However, even
in our model, no one-to-one relationship between interest rates was found.

Finally, in the same way as in Lin and Ter¨asvirta (1994), in the case of a nonlinear
time trend the ML estimation required in our approach is demanding and can cause
problems. The estimation algorithm that we used may converge slowly and find
a local optimum. Good starting values are therefore an important prerequisite to
successful parameter estimation.

NOTES

1. The computations were done with Gauss 3.2 with CML library. We also thank Bent Nielsen for
letting us use his DisCo program.

2. Here it is implicitly assumed that the expectation hypothesis of the term structure holds and that
a possible risk premium is stationary.

3. Because of the devaluation speculations in August–September 1986, the short-term interest rates
rose temporarily two percentage points. We adjust the data for this spike, which was particularly acute
in the 1-month and 3-month money market rates.

4. See the discussion later in this section.
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5. The one-to-one relationship was suggested by, among others, Campbell and Shiller (1987) and
Stock and Watson (1988) and recently studied, e.g., by Lanne (1997) and is based on the cointegration
implications of the expectation hypothesis of the term structure of interest rates. The one-to-one
relationship between the own-yield and the opportunity cost of money is suggested by, e.g., Ripatti
(1998).

6. See Lin and Ter¨asvirta (1994) for a similar result and further discussions.
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Lin, C.-F. & T. Teräsvirta (1994) Testing the constancy of regression parameters against continuous
structural change.Journal of Econometrics62, 211–228.

Lütkepohl, H. (1996)Handbook of Matrices. Chichester, England: John Wiley.
Luukkonen, R., A. Ripatti & P. Saikkonen (1999) Testing for a valid normalization of cointegrating

vectors in vector autoregressive processes.Journal of Business & Economic Statistics17, 195–
205.

Nielsen, B. (1993)DisCo, Version 1.1, A Program for Simulating Asymptotic Tables of the Cointegration
Rank Test. Institute of Mathematical Statistics, University of Copenhagen.

Park, J.Y. (1990) Testing for unit roots and cointegration by variable addition. In G.F. Rhides & T.B.
Fomby (eds.),Advances in Econometrics. Greenwich: JAI Press.

Park, J. & S. Hahn (1999) Cointegrating regressions with time varying coefficients.Econometric Theory
15, 664–703.

Phillips, P.C.B. & B.E. Hansen (1990) Statistical inference in instrumental variables regression with
I (1) processes.Review of Economic Studies57, 99–125.

Rasche, R.H. (1992) Money Demand and the Term Structure; Some New Ideas on an Old Problem.
Econometrics and economic theory paper 9211, Michigan State University.

https://doi.org/10.1017/S1365100501023069 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501023069


NONLINEAR TIME TRENDS IN COINTEGRATING RELATIONS 597

Ripatti, A. (1998) Stability of the demand for M1 and harmonized M3 in Finland.Empirical Economics
23, 317–337.

Saikkonen, P. (2001a) Consistent estimation in cointegrated vector autoregressive models with
nonlinear time trends in cointegrating relations.Econometric Theory17, 296–326.

Saikkonen, P. (2001b) Statistical inference in cointegrated vector autoregressive models with nonlinear
time trends in cointegrating relations.Econometric Theory17, 327–356.

Stock, J.H. & M.W. Watson (1988) Testing for common trends.Journal of the American Statistical
Association83, 1097–1107.

https://doi.org/10.1017/S1365100501023069 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501023069

