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We study the steady three-dimensional flow field and bed topography in a channel with
sinusoidally varying width, under the assumptions of small-amplitude width variations
and sufficiently wide channel to neglect nonlinear effects and sidewall effects. The aim
of the work is to investigate the role of width variations in producing channel
bifurcation in braided rivers. We infer incipient bifurcation in cases where the growth
of a central bar leads to planimetric instability of the channel, i.e. when the given
infinitesimal width perturbation is enhanced. Results of the three-dimensional model
suggest that the equilibrium bottom profile mainly consists of a purely longitudinal
component, uniformly distributed over the cross-section, which induces deposition at
the wide section and scour at the constriction, and of a transverse component in
the form of a central bar (wide sections) and scour (constrictions), with longitudinal
wavelength equal to that of width variations. A comparison between the results of
the three-dimensional model and those obtained by means of a two-dimensional
depth-averaged approach shows that the transverse component is mainly related to
three-dimensional effects. Theoretical findings display a satisfactory agreement with
results of flume experiments. Transverse variations are responsible for the planimetric
instability of the channel; we find that in the range of values of Shields stress typical
of braided rivers, the incipient bifurcation is enhanced as the width ratio of the
channel increases.

1. Introduction
The morphological behaviour of movable bed rivers is essentially governed by the

interaction between free bedforms, spontaneously developing in the channel as the
result of an inherent instability of the flow-erodible bed system, and forced bedforms
produced by physical constraints, such as curvature, width variations, backwater
effects, etc. (Seminara & Tubino 1989; Seminara 1995). In many cases it has been
observed that, provided the forcing effect is large enough, freely migrating forms
are suppressed in favour of a steady bottom pattern which in turn may affect the
planimetrical channel behaviour.

The case of planimetric forcing produced by channel curvature has received much
attention (Kinoshita & Miwa 1974; Shimizu & Itakura 1989; Tubino & Seminara
1990; Whiting & Dietrich 1993), because of its natural association with the devel-
opment of river meanders. In the same way that curvature-forced bars can be seen
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Figure 1. Thjorsa river, Iceland.

as the ‘molecules’ of meandering rivers, a couplet consisting of a channel narrowing
with deep central scour leading downstream to a widened section with a central
bar has been proposed as the ‘molecule’ of braided rivers (Mosley 1976). A braided
river comprises a network of interlaced channels (figure 1) which display a signifi-
cant variation in width, both of the individual channel segments and of the whole
channel ensemble. These width variations seem to be associated with bank erosion,
bar development and channel curvature. Furthermore, width variations appear to be
crucial in understanding the bifurcation mechanism that leads to production of new
channels in braided rivers. Although the conditions under which a channel bifurcates
have yet to be understood in detail, it seems indisputable that streamline divergence
is one of the mechanisms leading to the division of a stream, as suggested by field
observations and flume experiments. Leopold & Wolman (1957) pointed out that
channel bifurcation is typically the consequence of streamline divergence due to the
presence of a steady bar. Ashmore (1982, 1991) has experimentally investigated in de-
tail the possible mechanisms of braiding generation starting from a straight, laterally
unconstrained, cohesionless channel. Typically, the generation of alternate bars was
observed at the initial stage of each run (figure 2), which induced a weak curvature
of the stream. Furthermore, the development of bar pools provided preferential sites
for bank erosion, leading to a sequence of bumps along both banks. As a response
to this planform, width variations formed, displaying a wavelength equal to half the
wavelength of curvature distribution. Under such conditions migrating alternate bars
were transformed into a steady bar pattern. The resulting bed topography and flow
field were often likely to enhance the amplitude of width variations, leading to the
bifurcation of the channel which mainly arose from chute cutting across the initial
bars.

Despite this evidence of the effect of width variations in shaping bed topography,
it has been neglected in most theoretical treatments of river morphodynamics (but
see Bittner 1994). The present work is aimed at investigating the role of width
variation in producing planform instability. We focus particularly on the formation
of central bars and their role in producing channel divisions. We consider the simple
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Figure 2. Channel evolution and generation of a bifurcation (Ashmore 1982).
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Figure 3. (a) Sketch of channel geometry. Stress distribution under (b) stable and
(c) unstable conditions (τ̄ is the cross-sectionally averaged bottom stress).

geometry sketched in figure 3(a) consisting of a straight, infinitely long channel
with vertical banks, subject to periodic width variations of small amplitude. This
idealized configuration can be considered as representing the main component of a
spectral analysis of width distribution of a real river. We study the flow field and bed
topography induced by the forcing effect of non-uniform geometry, assuming mobile
bed and fixed sidewalls. We then investigate the conditions under which the channel
is planimetrically stable or unstable, i.e. it tends to damp or enhance the given initial
small perturbation of width. Bank stability is analysed through a simplified approach,
relating the rate of bank retreat to the excess depth-averaged velocity at the bank
induced by flow perturbations which arise as a consequence of width variations; in
other words, we assume that the channel would be stable without the forcing effect of
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variable width. Notice that in the present work, bank erosion is assumed to be slow
with respect to bottom evolution, thus justifying the assumption that, on the time
scale of flow and bed development, the planimetric configuration is assumed to be
steady. The latter hypothesis may turn out to be inadequate when applied to single
branches of rivers with non-cohesive banks, for which bed and bank development
may have similar time scales. Therefore, the present work is aimed at predicting the
tendency of planform evolution, without the claim to describe its time development.

Following the above line of reasoning, a one-dimensional approach to the problem
would necessarily lead to a stable configuration (figure 3b), with an excess of velocity
at the narrow sections and a deficit of velocity at the wide sections. Under these
conditions, the flow tends to widen the narrowest part of the channel until a constant
width configuration is eventually reestablished.

In the present paper, both a two-dimensional and a three-dimensional model are
proposed. If we consider the cross-sectionally averaged velocities, these models must
obviously reproduce the results of the simpler one-dimensional approach. However,
they allow the possibility of transverse variations in each cross-section so that, even
though the cross-sectionally averaged velocity attains its maximum close to the
narrowest section, it is possible that the actual velocity at the bank peaks where the
channel is still wider than the average (figure 3c). In this situation, the planform is
unstable as bank erosion tends to enhance the initially small width perturbation. The
above speculations suggest that the eventual planimetric instability of the channel,
and the consequent generation of a bifurcation, are inherently associated with strong
transverse variations of flow and bed characteristics.

The rest of the paper is organized as follows. In § 2, we develop a two-dimensional
model for the flow field and bed topography in a channel with sinusoidally varying
width. The three-dimensional version of the model is introduced in § 3. Section 4
is devoted to the description of experiments performed in a mobile bed flume in
the Hydraulic Laboratory of Trento University. A comparison between experimental
results and theoretical predictions of bed topography is reported in § 5. In § 6, we
show how the predictions based on the two-dimensional approach can be improved
by taking into account the effect of streamline curvature. Planimetric instability of
channels with variable width is discussed in § 7. Finally, we make some concluding
remarks in § 8.

2. Two-dimensional depth-averaged model
2.1. Formulation of the problem

We consider the flow in a straight cohesionless channel, with average width 2b∗0 over
which small-amplitude sinusoidal variations are superimposed. Hence, the sidewalls
of the channel are described by the following equation:

y∗ = ±b∗ = ±b∗0[1 + δ(exp(iλ∗bx
∗) + c.c.)], λ∗b =

2π

L∗b
, δ � 1, (2.1a–c)

where L∗b is the wavelength of width variations. Furthermore, c.c. denotes the complex
conjugate and x∗ and y∗ are longitudinal and transverse coordinates (the superscript
asterisks indicate dimensional variables that will be made dimensionless below).

As a first step, we tackle the problem within the context of a two-dimensional
depth-averaged flow model.

We stretch our physical domain into a rectangle normalizing the transverse coor-
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dinate y∗ with the local width in the form

y =
y∗

b∗(x∗)
, (2.2)

so that y falls in the range (−1, 1). Furthermore, let us define dimensionless variables
as follows

(x∗, b∗) = b∗0(x, b), U ∗ = U∗0U , (H∗, D∗) = D∗0(H,D), (2.3a–c)

λ∗b =
λb

b∗0
τ ∗ = ρU∗20 τ , q∗ = d∗s

√
ρs − ρ
ρ

gd∗sq, (2.3d–f)

where U ∗ = (U∗, V ∗) is the velocity vector, H∗ is the water level, D∗ is the water
depth, τ ∗ = (τ∗x, τ∗y) is the bottom stress vector, q∗ = (q∗x, q∗y) is the sediment transport
vector per unit width, ρ is the water density and g is the acceleration due to gravity.
Furthermore, ρs and d∗s are sediment density and diameter, respectively, and U∗0 and
D∗0 are average speed and depth of a reference uniform flow in the channel with
constant width 2b∗0, for given water discharge, slope and grain size. The assumption
of constant grain size may appear to be rather crude when applied to gravel bed
rivers. Theoretical and experimental works have investigated the role of sorting in the
development of gravel bed rivers suggesting that its effect is not overwhelming unless
close to critical conditions for sediment motion. In this respect the present work has
to be considered as a first attempt to model the evolution of a channel in braided
networks to which the complicating effect of sediment sorting may be added later.

Notice that we look for the steady configuration induced by width variations, hence
time derivatives are neglected in flow equations and sediment continuity equation.
Using the above scales and the coordinate transformation (2.2), flow equations and
sediment continuity equation then take the following dimensionless form:

bUU,x + VU,y + b
H,x

F2
0

+ b
βτx

D
− yb,xUU,y − yb,xH,y

F2
0

= 0, (2.4a)

bUV,x + VV,y +
H,y

F2
0

+ b
βτy

D
− yb,xUV,y = 0, (2.4b)

b(UD),x + (VD),y − yb,x(UD),y = 0, (2.4c)

bqx,x + qy,y − yb,xqx,y = 0, (2.4d)

where

β =
b∗0
D∗0

(2.5)

is the average aspect ratio of the channel and F0 is the Froude number of the reference
uniform flow.

The boundary conditions impose the physical requirement that channel walls be
impermeable both to flow and to sediment transport; in dimensionless form they read

U · n̂b = −Ub,x ± V = 0 (y = ±1), (2.6a)

q · n̂b = −qxb,x ± qy = 0 (y = ±1). (2.6b)

where n̂b is the unit vector normal to the banks. Notice that the effect of width
variations is felt through the dependence on the shape of the banks embodied in the
definition of the unit vector appearing in the boundary conditions (2.6a, b).
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In order to close the mathematical problem we write the shear stress components
in terms of a friction coefficient Cf in the form

(τx, τy) = (U,V )(U2 + V 2)1/2Cf, (2.7)

where

C
−1/2
f = 6 + 2.5 ln

(
D

2.5ds

)
, ds =

d∗s
D∗0
. (2.8a, b)

Furthermore, we assume the sediment to be mainly transported as bedload. Hence,
the present theory should work best in the field for gravel bed rivers. Bedload intensity
Φ is evaluated through the Parker (1990) formula in terms of the local value of the
Shields parameter

ϑ =
|τ ∗|

(ρs − ρ)gd∗s
. (2.9)

The local bed slope modifies the direction of the bedload. The effect can be quantified
on the basis of experimental observations (Ikeda 1982; Talmon, Struiksma & Van
Mierlo 1995) which suggest the following estimate for the angle φ describing the
deviation of particle trajectories with respect to the local bed stress vector

tan(φ) = − r

β
√
ϑ
G, (2.10)

where r is an empirical coefficient ranging between 0.3 and 1 and G is the local
bottom gradient normal to the bed stress vector. Hence, the bedload components are

q =
Φ

|τ | [τx cos(φ)− τy sin(φ), τx sin(φ) + τy cos(φ)]. (2.11)

The above formula strictly applies to the case of a gently sloping bed. Braided rivers
often display strong transverse and longitudinal bed gradients, hence a nonlinear
modelling of the bed slope effect, like that proposed by Kovacs & Parker (1994)
and recently revised by Parker, Seminara & Solari (2000), would be appropriate for
modelling a fully developed topography. However, equations (2.10) and (2.11) are
appropriate in the present linearized case.

2.2. Linear solution

The hypothesis of small-amplitude width variations, mathematically expressed by
(2.1c), allows us to linearize the problem introducing the following expansion:

(U,V ,H,D) = (1, 0, H̄ , 1) + δ[exp(iλbx)(U1, V1, H1, D1) + c.c.] + O(δ2). (2.12)

At order O(δ), the linearized form of equations (2.4a–d ) is

a1U1 + a2H1 + a3D1 = 0, (2.13a)

a4V1 + a5

dH1

dy
= 0, (2.13b)

a6U1 +
dV1

dy
+ a6D1 = 0, (2.13c)

a7U1 + a8

dV1

dy
+ a9

d2(D1 −H1)

dy2
+ a10D1 = 0, (2.13d)
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where the coefficients are defined as follows:

a1 = iλb + 2βCf0, a2 = iλbF
−2
0 , a3 = βCf0(CD − 1),

a4 = iλb + βCf0, a5 = F−2
0 , a6 = iλb,

a7 = 2iλbΦT , a8 = 1, a9 =
r

β
√
ϑ0

,

a10 = iλbCDΦT ,

 (2.14)

and

CD =

(
1

Cf

dCf
dD

)
D=1

ΦT =

(
ϑ

Φ

dΦ

dϑ

)
ϑ=ϑ0

. (2.15a, b)

Finally, ϑ0 and Cf0 represent the Shields stress and the friction coefficient of the
reference uniform flow.

The linearized form of the boundary conditions is obtained from (2.6a, b) and
reads:

V1 = ±iλb (y = ±1), (2.16a)

d(H1 − D1)

dy
= 0 (y = ±1). (2.16b)

System (2.13a–d ), with the boundary conditions (2.16a, b), leads to the following
fourth-order ordinary problem for the variable V1

d4V1

dy4
+ Γ1

d2V1

dy2
+ Γ2V1 = 0, (2.17a)

V1 = ±iλb (y = ±1), (2.17b)

d2V1

dy2
= ±iλbΓ3 (y = ±1), (2.17c)

where

Γ1 =
1

a1a9

[
a6(a3 − a1)

(
a8 +

a4a9

a5

)
− a3a7 + a1a10 + a2a4a6a9

]
, (2.18a)

Γ2 =
a2a4a6

a1a5a9

(a10 − a7), (2.18b)

Γ3 = −a4a6

a1a5

(a3 − a1 + a2). (2.18c)

The analytical solution of the above problem can be readily obtained in the form

V1 = γ1 sinh(λ1y) + γ2 sinh(λ2y), (2.19)

where

λ1 =

√
1
2

(
− Γ1 +

√
Γ 2

1 − 4Γ2

)
, (2.20a)

λ2 =

√
1
2

(
− Γ1 −

√
Γ 2

1 − 4Γ2

)
, (2.20b)

and

γ1 =
iλb(λ

2
2 − Γ3)

(λ2
2 − λ2

1) sinh(λ1)
, γ2 =

iλb(λ
2
1 − Γ3)

(λ2
1 − λ2

2) sinh(λ2)
. (2.21a, b)
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Figure 4. Two-dimensional model. Typical equilibrium bed configuration: λb = 0.2, β = 15,
ϑ0 = 0.07, ds = 0.05.

Integrating (2.13b) and using (2.13a) and (2.13c) we obtain

U1 = φ1 cosh(λ1y) + φ2 cosh(λ2y), (2.22a)

H1 = θ1 cosh(λ1y) + θ2 cosh(λ2y), (2.22b)

D1 = δ1 cosh(λ1y) + δ2 cosh(λ2y), (2.22c)

with

φ1 =
1

a3 − a1

[
a2θ1 − a3

a6

λ1γ1

]
, φ2 =

1

a3 − a1

[
a2θ2 − a3

a6

λ2γ2

]
, (2.23a, b)

θ1 = − γ1a4

λ1a5

, θ2 = − γ2a4

λ2a5

, (2.23c, d)

δ1 =
1

a3 − a1

[
a1

a6

λ1γ1 − a2θ1

]
, δ2 =

1

a3 − a1

[
a1

a6

λ2γ2 − a2θ2

]
. (2.23e, f)

Notice that, upon substituting into (2.13d ), we find that the constant arising from the
integration of (2.13b) must vanish.

2.3. Results

Figure 4 shows a typical equilibrium bed configuration predicted by the two-
dimensional theory. It appears that a strong longitudinal deformation characterizes
the bottom profile, with deposition occurring at the wide section and scour at the
channel narrowing. The bed profile η1 (= H1 − D1) is nearly in phase with the
banks, as shown in figure 5, in agreement with the experimental observations pre-
sented in § 4. A similar behaviour has been also observed by Bittner (1994). In this
respect the present findings do not differ significantly from results which could be
obtained through a simpler one-dimensional model. A longitudinal perturbation of
cross-sectionally-averaged velocity is associated with bed topography, which attains
its maximum positive value almost exactly at the narrowest section (figure 5).

It is worth noting that the two-dimensional solution exhibits a right qualitative
overall pattern. However, the model does not predict any significant transverse bed
deformation as shown in figure 4. Hence, predicted transverse variations of the flow
field are very weak with respect to longitudinal variations. In light of the speculations
put forward in § 1, we can readily argue that the two-dimensional model always

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

75
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001007595


Planimetric instability of channels with variable width 87
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1

–2

0

–1

2

y

g1

x

V1

U1

p/kb 3p/(2kb) 2p/kb

y

x

Figure 5. Two-dimensional model. Longitudinal profiles of depth-averaged velocity components
(U1, V1) and bed elevation η1 at the bank: λb = 0.2, β = 15, ϑ0 = 0.07, ds = 0.05.

predicts stability of the planform since the stress distribution matches the one shown
in figure 3(b). Hence, within the context of a depth-averaged model, width variations
which are induced by the recursive formation of alternating bars in single channels
of braided networks, as observed by Ashmore (1982, 1991), do not seem to provide a
suitable mechanism able to promote channel bifurcation. To overcome this difficulty
we introduce a three-dimensional approach in the next section; furthermore, in § 6
we will show how the predictions of the two-dimensional model can be improved
when the effect of streamline curvature on the transverse bed shear stress is taken
into account.

Also notice that, like the analogous problem of a periodic variation of channel
curvature, the present solution displays a resonant behaviour under suitable condi-
tions. Resonance occurs when the forcing effect of the variable planform is such as
to excite a steady free response of the channel with the same planimetrical structure
as the forced pattern. In the case of meandering channels Blondeaux & Seminara
(1985) showed how alternate bars could be resonantly excited by channel curvature.
In our case the situation is similar; however, the forcing effect is symmetrical with
respect to channel axis and it can only excite symmetrical free forms such as central
bars (or even higher-order transverse modes). An example of resonant behaviour is
given in figure 6 where the difference between bed elevation at the centreline and
at the banks is plotted versus the wavenumber of width variations. It appears that,
close to resonant conditions, the transverse deformation of the bed profile is strongly
enhanced and its amplitude tends to infinity when the resonant condition is exactly
met. Of course, under this condition the linear theory becomes invalid; a weakly
nonlinear approach can be introduced, like that proposed by Seminara & Tubino
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2

1

0

–1

–2
0.1 0.2 0.3 0.4

15.851

b =10
15

17
20

kb

Dg

Figure 6. Two-dimensional model. The difference ∆η = η1(0) − η1(1) between bed elevation at
the centreline and at the bank (at the widest section) is plotted versus the wavenumber of width
variations λb, for different values of the aspect ratio β: ϑ0 = 0.07, ds = 0.05; β = 15.851 corresponds
to the resonant value.

w*

v*

u*

y*

z*

2b*

Lb
*

2b0
*

x*

Figure 7. Sketch of channel geometry and notation.

(1992) to investigate resonant meanders. It is interesting to note that, unlike in the
case of meandering channels, here the range of parameters in which resonance affects
the results seems to be quite narrow.

3. Three-dimensional model
3.1. Formulation of the problem

In this section, we develop a three-dimensional model to determine the flow and
bed structure of a cohesionless straight channel subject to periodic width variations.
Referring to figure 7, let x∗, y∗ and z∗ be the longitudinal, transverse and normal
to the average bed coordinates, respectively. Furthermore, let u∗, v∗ and w∗ be the
corresponding velocity components. The equation describing channel banks is given
by (2.1a).

As shown in § 2 we work in a stretched domain in which the transverse coordinate
is normalized with the local width, according to equation (2.2). Further dimensionless

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

75
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001007595


Planimetric instability of channels with variable width 89

variables are defined as follows

u∗ = (u∗, v∗, w∗) = U∗0

(
u, v,

w

β

)
, z∗ = D∗0z, ν∗t =

√
Cf0U

∗
0D
∗
0νt, (3.1a–c)

where νt is the kinematic eddy viscosity. According to the shallow-water approxi-
mation, the dimensionless Reynolds equations under steady conditions have the
form:

uu,x + (uN1 + vN0)u,y + wu,z − β
√
Cf0(νtu,z),z + F−2

0 H,x + F−2
0 N1H,y = 0, (3.2a)

uv,x + (uN1 + vN0)v,y + wv,z − β
√
Cf0(νtv,z),z + F−2

0 N0H,y = 0, (3.2b)

u,x +N1u,y +N0v,y + w,z = 0, (3.2c)

where N0(x) and N1(x, y) arise from the transformation (2.2) and are

N0(x) = [1 + δ(exp(iλbx) + c.c.)]−1, (3.3a)

N1(x, y) = −yλbδ(i exp(iλbx) + c.c.)N0. (3.3b)

The boundary conditions for equations (3.2a–c) read

u = v = w = 0 (z = η + z0D), (3.4a)

βw − (N0v +N1u)H,y − uH,x = 0 (z = H), (3.4b)

u,z = v,z = 0 (z = H), (3.4c)∫
D

u · n̂bdz = 0 (y = ±1), (3.4d)

where η = (H − D) is the local bed elevation and n̂b is the unit vector normal to
the banks. They express the no-slip condition at the bed (with z0 the reference level
at which the condition is imposed under uniform conditions), the kinematic and
dynamic conditions at the free surface (in the simplified form which follows from the
shallow-water approximation) and the kinematic condition at the banks.

Flow equations are then coupled with the sediment continuity (2.4d ) with the
associated boundary conditions (2.6b).

A slowly varying approach is adopted to introduce the closure relationships required
to complete the formulation of the problem. Hence, we define

νt =

√
Cf

Cf0

|U |DN(ζ), (3.5)

where the vertical structure of the turbulent kinematic viscosity is given in terms
of the stretched vertical variable ζ according to the relationship proposed by Dean
(1974)

N(ζ) =
kζ

1 + ζ + 4.68ζ2
, ζ =

z − η
D

, (3.6a, b)

where k is the von Kármán constant. Furthermore, the friction factor is evaluated
through equation (2.8a).

Bed load transport is treated as described in § 2.
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3.2. Linearization

We take advantage of the assumption of small amplitude of width variations (δ � 1)
and expand the solution in the form

(u, v, w,H,D) = (u0, 0, 0, H̄ , 1) + δ[(u′, v′, w′, h, d) exp(iλbx) + c.c.] + O(δ2), (3.7)

where u0(ζ) is the velocity profile of the basic uniform flow in the straight channel
with constant width 2b∗0. Substituting the expansion (3.7) into equations (3.2a–c) and
(3.4a–d ) and keeping only linear terms, the following differential problem for the
variables u′, v′, w′, h and d is obtained:

(Nv′,ζ),ζ − iλbu0v
′

β
√
Cf0

− h,y

βF2
0

√
Cf0

= 0, (3.8a)

(Nu′,ζ),ζ − iλbu0u
′

β
√
Cf0

−√Cf0

(
1
2
CDd+

∫ 1

z0

u′dζ
)
− w′

β
√
Cf0

du0

dζ

+
iλbu0

β
√
Cf0

du0

dζ
[h− d(1− ζ)]− iλbh

βF2
0

√
Cf0

+
√
Cf0d = 0, (3.8b)

w′,ζ + iλbu
′ − iλb

du0

dζ
[h− d(1− ζ)] + v′,y = 0, (3.8c)

with the boundary conditions

w′ − iλbhu0 = 0, v′,ζ = u′,ζ = 0 (ζ = 1), (3.9a–c)

u′ = v′ = w′ = 0 (ζ = z0), (3.10a–c)∫ 1

z0

v′dζ = ±iλb (y = ±1). (3.11a, b)

The linearized form of the sediment continuity equation (2.4d ) is

iλbΦT

[
1
2
CDd+

∫ 1

z0

u′dζ +
(Nu′,ζ)z0√

Cf0

]
+

(
v′,ζy

du0/dζ

)
z0

− r

β
√
ϑ0

(h− d),yy = 0, (3.12)

with the boundary conditions(
v′,ζ

du0/dζ

)
z0

− r

β
√
ϑ0

(h− d),y = ±iλb (y = ±1). (3.13a, b)

3.3. Solution

We first integrate the continuity equation (3.8c) to find an explicit expression for the
vertical velocity component w′ as follows:

w′ = −G,y − iλbF+ iλbd

[
u0(ζ − 1)−

∫ ζ

z0

u0dζ

]
+ iλbu0h, (3.14)

where

F =

∫ ζ

z0

u′dζ, G =

∫ ζ

z0

v′dζ. (3.15a, b)

From equations (3.8a, b), substituting (3.14) into (3.8b), we find the following differ-
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ential problem

G,ζζζ = − 1

N
dN
dζ
G,ζζ +

iλbu0

β
√
Cf0NG,ζ +

h,y

βF2
0

√
Cf0N , (3.16a)

F,ζζζ = − 1

N
dN
dζ
F,ζζ +

iλbu0

β
√
Cf0NF,ζ − iλb

β
√
Cf0N

du0

dζ
F− 1

β
√
Cf0N

du0

dζ
G,y +

− iλbd

β
√
Cf0N

du0

dζ

∫ ζ

z0

u0dζ +
iλbh

βF2
0

√
Cf0N +

√
Cf0

N
[(

1
2
CD − 1

)
d+F(1)

]
,

(3.16b)

with the boundary conditions

G,ζζ =F,ζζ = 0 (ζ = 1), (3.17a, b)

G,ζ = G =F,ζ =F = 0 (ζ = z0), (3.18a–d)

G = ±iλb (ζ = 1, y = ±1), (3.19a, b)( G,ζζ
du0/dζ

)
z0

− r

β
√
ϑ0

(h− d),y = ±iλ (y = ±1). (3.20a, b)

Boundary conditions (3.19a, b) and (3.20a, b) suggest the following structure for the
solution:

G = G0(ζ)y +

∞∑
m=1

Gm(ζ) sin(mπy), (3.21a)

(F, h, d) = [F̂(ζ), ĥ, d̂]y2 +

∞∑
m=0

[Fm(ζ), hm, dm] cos(mπy). (3.21b)

Substituting from (3.21a, b) into (3.16a, b) leads to a sequence of ordinary differential
boundary-value problems in the variable ζ, which are solved numerically using a
‘shooting’ procedure along with a fourth-order Runge–Kutta scheme.

The solution procedure is reported in detail in Appendix A.

3.4. Results

Figures 8(a)–8(d ) show the results for bottom configuration (η′ = h − d) induced
by width variations, for increasing values of the wavenumber λb; the corresponding
amplitudes of the leading components of the Fourier representation of the bed profile
are reported in figures 9(a)–9(d ). The first contribution (denoted by 0) represents a
purely longitudinal bottom deformation, which corresponds to deposition at the wide
section and scour at the narrow section. This is where the cross-sectionally averaged
velocity attains its maximum value. The 0-component is nearly in phase with respect to
the bank profile, in agreement with theoretical findings based on the two-dimensional
model (§ 2) and experimental observations described in the next section. The novel
feature associated with the three-dimensional model is the appearance of a second
leading contribution (denoted by 1) which implies a transverse deformation of the
bed, with transverse wavelength equal to channel width. Its amplitude changes with
λb and reaches a maximum for λb ranging about 0.3 (figure 9a–d ), which corresponds
to a longitudinal wavelength of about 10 channel widths. Under these conditions,
the amplitude of the latter harmonic is comparable with that of harmonic 0, both
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Figure 8. Three-dimensional model. Equilibrium bed configurations for different values of the
wavenumber of width variations: ϑ0 = 0.1, ds = 0.05, β = 15. (a) λb = 0.1, (b) 0.2, (c) 0.3, (d ) 0.5.
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Figure 9. Amplitude of the leading transverse modes (with longitudinal wavenumber equal to λb)
of the Fourier representation of bed elevation obtained with (a–d ) the three-dimensional model,
and (e–h) the two-dimensional model, for different values of λb: ϑ0 = 0.1, ds = 0.05, β = 15.

for the bed elevation and for the longitudinal velocity. The relative position of the
transverse component with respect to bank profile changes significantly with the
wavelength of width variations as shown in figure 8(a–d ); as λb increases, its peak
moves downstream: while at λb = 0.1 the 1-component lags behind the 0-component,
when λb = 0.5 the phase shift becomes so large that the two main components of
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Figure 10. Difference between the longitudinal depth-averaged velocity U1 and the longitudinal
cross-sectionally averaged velocity U1a at the widest section (2D, two-dimensional model; 3D, three-
dimensional model): β = 20, λb = 0.2, ϑ0 = 0.1, ds = 0.05.

the bed profile are nearly out of phase, leading to the bottom configuration plotted
in figure 8(d ). It is worth noting that the 1-component displays the spatial structure
of central bars, with longitudinal wavelength equal to that of width variations. As
illustrated in figure 9(a–d ), higher-order transverse modes (denoted by 2, . . . ) are
found to be small for all values of λb.

From the comparison between three- and two-dimensional findings reported in
figure 9(a–h), it appears that the transverse deformation of the bed is mainly related
to three-dimensional effects since the 1-component is nearly absent in the resulting
topography of the two-dimensional model. Notice that the transverse deformation of
the bed associated with the 1-component also implies a transverse distortion of the
primary (longitudinal) flow, as illustrated in figure 10 where the results of the two-
dimensional model are also included. It appears that the above effect may counteract,
at the banks, the overall reduction of longitudinal velocity which occurs in the widest
section, leading to positive values of the perturbation of longitudinal velocity. The
corresponding distribution of bank stress matches the ‘unstable’ distribution depicted
in figure 3(c). As a result the generation of a central bar pattern pushes the thread
of high velocity toward the banks, leading to flow divergence in the widest part of
the channel. This mechanism is inherently associated with secondary flows which
are driven by centrifugal effects induced by streamline curvature and convective
acceleration which are accounted for in the three-dimensional model. The effect of
the secondary flow on the central bar is analogous to the effect of secondary flow
on curvature-forced bars (point bars) in meandering rivers. In that sense the central
bar can be thought of as a pair of coupled back-to-back point bars (Bridge &
Gabel 1992). The role of streamline curvature in producing secondary flow is further
discussed in § 6. Circulation in the (y, z)-plane is also triggered by the convective term
appearing in equation (3.8aa), which vanishes at the bed and reaches its maximum at
the free surface. This implies a phase shift in the response of transverse velocity to the
variable width, as shown in figure 11(a). Just downstream of the narrowest section
the transverse velocity near the bottom is directed outward while streamlines are
still converging at the free surface. The resulting circulation, sketched in figure 11(b),
induces a transverse deformation of the bed (figure 11c) which in turn affects the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

75
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001007595


94 R. Repetto, M. Tubino and C. Paola

Bed Free surface(a)

(b) (c)

Figure 11. (a) Mechanism of generation of secondary flow due to transverse flow adjustment
to spatial variations of bank profile. (b) Sketch of secondary flow and (c) of the resulting bed
deformation at the narrowest section.
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Figure 12. Secondary flow in the (y, ζ)-plane at the narrowest section: β = 15, λb = 0.2, ϑ0 = 0.1,
ds = 0.05. The local depth-averaged value has been filtered out from the transverse velocity
component.

transverse distribution of longitudinal velocity. A similar mechanism operates in the
widest section and promotes the formation of a central bar.

In figure 12 the velocity field in the (y, ζ)-plane at the narrowest section is plotted,
showing a secondary circulation.
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Figure 13. The experimental flume (Hydraulic Laboratory, Trento University, Italy).

4. Experimental study
We carried out experiments in a flume with a length of 15 m and a maximum

width of 60 cm (figure 13) in the Hydraulic Laboratory of Trento University. Periodic
width variations were constructed inside the channel by attaching strips of PVC to
wooden profiles, to form vertical flume walls; the bank configuration considered is
described by equation (2.1). Three different bank configurations have been tested and
their geometrical characteristics (λb and δ) are summarized in tables 1, 2 and 3.

The flume was filled with a well-sorted 1.36 mm sediment, recirculated through a
cyclone pump from the channel downstream end to a second hydrocyclone, installed
at the head of the flume, where the sediment and the water used to recirculate it were
separated. Water level inside the tank was set using a sluice gate. Bed elevation was
surveyed, in the absence of water flow, using a laser profiler mounted on a carriage
driven by a motor along longitudinal and transverse directions.

The experiments involved different water discharges and slopes, which correspond
to the following ranges of values of dimensionless parameters: 5.5 < β < 18, ϑc <
ϑ0 < 0.13, 0.05 < ds < 0.12. Experimental conditions are summarized in tables 1, 2
and 3 where S is the average slope, Q is flow discharge, D∗0 is the average flow depth
and 2b∗0 is the average width.

During each experiment water discharge and water level were periodically measured
along the flume and sediment discharge was collected using a trap placed at the
downstream end of the channel. The shape and position of bedforms in the channel
were periodically sketched and the migration speed of bars was estimated. Once
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Run S Q (s−1) D∗0 (m) β ϑ0 ds

1† 0.007 1.87 0.015 13.46 0.046 0.091
2† 0.007 4.96 0.026 7.70 0.081 0.052
3 0.007 4.96 0.026 7.70 0.081 0.052
4 0.007 5.32 0.027 7.43 0.084 0.050
5 0.007 5.43 0.028 7.18 0.087 0.049
6 0.007 5.88 0.029 6.94 0.090 0.047
7 0.007 3.66 0.022 9.19 0.068 0.062
8 0.007 3.66 0.022 9.19 0.068 0.062
9 0.007 3.99 0.023 8.75 0.071 0.059

10‡ 0.007 2.81 0.019 10.61 0.059 0.072
11† 0.007 2.93 0.019 10.27 0.061 0.070
12 0.007 4.96 0.026 7.70 0.081 0.052
13‡ 0.010 1.81 0.013 14.97 0.059 0.102
14† 0.010 1.36 0.011 17.68 0.050 0.120
15 0.010 3.28 0.019 10.77 0.083 0.073
16 0.010 3.63 0.020 10.21 0.087 0.069
17 0.010 2.32 0.015 13.14 0.068 0.089
18 0.010 3.28 0.019 10.77 0.083 0.073
19‡ 0.010 1.36 0.011 17.68 0.050 0.120
20† 0.015 1.64 0.011 17.77 0.075 0.121
21 0.015 1.64 0.011 17.77 0.075 0.121
22 0.015 2.38 0.014 14.35 0.093 0.098

† Experiments in which bed topography was not surveyed in detail;
‡ Experiments whose results are not reported in figures 14, 15, 16 and 17 since they were

characterized by values of the Shields parameter close to the threshold value for incipient motion.

Table 1. Geometrical characteristics of the experimental channel and flow and sediment transport
parameters: λb = 0.5; δ = 0.125; 2b∗0 = 0.40 m.

the bottom had reached a quasi-steady condition, the pumps were switched off, the
downstream sluice gate was closed and a backwater profile was generated to prevent
the dissection of bed topography; the flume was then slowly emptied. When the bed
surface was dry, bottom elevation was surveyed using the laser profiler, measuring 50
points in each cross-section with a longitudinal spacing of 10 cm. Furthermore, the
position and length of each bar in the flume were measured in detail. Finally, bottom
elevation data were analysed through a fast Fourier transform procedure.

Experimental observations show that the variable planform induces an altimetrical
bed response which significantly differs from that found in constant width channels.

For small-amplitude width variations (δ = 0.125) and sufficiently large width/depth
ratio, migrating alternate bars formed in the flume. This behaviour is in general
agreement with theoretical predictions of Colombini, Seminara & Tubino (1987).
However, the development of the migrating bars was strongly obstructed by the
variable bank configuration; the development of alternate bars was always irregular
and highly unsteady. The beginning of each experiment was usually characterized
by the formation of central bars at the wide sections of the flume. Such bars,
once they reached a sufficient amplitude, started to migrate downstream with a
speed ranging between 5 cm min−1 and 15 cm min−1, depending on the hydraulic
conditions of the experiment. The migration speed decreased significantly as the
front of the bar approached the narrowest section of the flume. Usually the central
bar could not migrate through the constraint; hence, a temporary configuration was
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Run S Q (s−1) D∗0 (m) β ϑ0 ds

23 0.015 2.43 0.014 14.29 0.094 0.097
24 0.015 3.19 0.016 12.20 0.110 0.083
25 0.015 2.88 0.015 12.93 0.103 0.088
26 0.015 1.64 0.011 17.77 0.075 0.121
27† 0.015 3.81 0.018 11.01 0.121 0.075
28† 0.015 1.94 0.012 16.16 0.083 0.110
29 0.015 3.81 0.018 11.01 0.121 0.075
30 0.015 3.33 0.017 11.88 0.112 0.081
31 0.015 2.43 0.014 14.29 0.094 0.097
32 0.015 3.33 0.017 11.88 0.112 0.081
33† 0.015 3.81 0.018 11.01 0.121 0.075
34 0.015 1.64 0.011 17.77 0.080 0.121
35‡ 0.010 1.67 0.013 15.75 0.057 0.107
36 0.010 2.90 0.017 11.45 0.078 0.078
37 0.010 2.45 0.016 12.65 0.070 0.086
38 0.010 3.28 0.019 10.77 0.083 0.073
39 0.010 3.91 0.021 9.74 0.091 0.066
40 0.010 1.99 0.014 14.29 0.062 0.097
41 0.010 4.89 0.023 8.57 0.104 0.058
42 0.010 2.32 0.015 13.14 0.068 0.089
43 0.010 3.63 0.020 10.21 0.087 0.069
44‡ 0.010 1.36 0.011 17.68 0.050 0.120
45‡ 0.007 2.50 0.018 11.37 0.055 0.077
46 0.007 3.25 0.021 9.68 0.064 0.066
47 0.007 4.96 0.026 7.70 0.081 0.052
48 0.007 5.88 0.029 6.94 0.090 0.047
49 0.007 2.93 0.019 10.27 0.061 0.070
50 0.007 4.66 0.025 8.02 0.078 0.054
51 0.007 5.31 0.027 7.42 0.084 0.050
52 0.007 5.12 0.027 7.55 0.083 0.051
53 0.007 4.86 0.026 7.96 0.079 0.053
54 0.007 4.75 0.026 7.78 0.080 0.053
55† 0.004 4.60 0.030 6.77 0.053 0.046
56† 0.004 4.98 0.031 6.50 0.055 0.044
57† 0.004 5.11 0.032 6.26 0.057 0.043
58† 0.004 5.82 0.034 5.86 0.061 0.040
59† 0.004 6.77 0.037 5.52 0.065 0.037

† Experiments in which bed topography was not surveyed in detail;
‡ Experiments whose results are not reported in figures 14, 15, 16 and 17 since they were

characterized by values of the Shields parameter close to the threshold value for incipient motion.

Table 2. Geometrical characteristics of the experimental channel and flow and sediment transport
parameters: λb = 0.3; δ = 0.125; 2b∗0 = 0.40 m.

established in which sediment transport occurred mainly at the channel sides within
the narrowest sections and at the centreline within the widest sections. Individual
bars were swallowed up in the downstream narrows and new bars formed in the
upstream expansion. As a response the central bar pattern decayed into a series
of short alternate bars, with a migration speed varying from a few cm min−1 to a
maximum of 20 cm min−1. Regular trains of bars migrating along the full length of
the channel never developed; rather, the characteristic process was pulsating, with
repeated formation and obliteration of bars with variable length and height.
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Run S Q (s−1) D∗0 (m) β ϑ0 ds

60‡ 0.004 4.13 0.028 7.22 0.049 0.049
61‡ 0.004 4.98 0.031 6.50 0.055 0.044
62† 0.004 3.25 0.024 8.17 0.044 0.056
63 0.007 3.25 0.021 9.68 0.064 0.066
64‡ 0.007 2.50 0.018 11.37 0.055 0.077
65‡ 0.007 2.50 0.018 11.37 0.055 0.077
66 0.007 3.99 0.023 8.75 0.071 0.059
67 0.007 5.88 0.029 6.94 0.090 0.047

† Experiments in which bed topography was not surveyed in detail;
‡ Experiments whose results are not reported in figures 14, 15, 16 and 17 since they were

characterized by values of the Shields parameter close to the threshold value for incipient motion.

Table 3. Geometrical characteristics of the experimental channel and flow and sediment transport
parameters: λb = 0.3; δ = 0.25; 2b∗0 = 0.40 m.

At δ = 0.25 alternate bars were suppressed in favour of a steady forced bed
configuration.

For all geometric configurations, the final topography displayed a strong steady
longitudinal deformation, almost in phase with the bank profile, whose amplitude
increased with the Shields parameter. A transverse deformation, in the shape of a
central bar deposited in the wide section, was also found, with amplitude of the same
order of magnitude as the longitudinal one.

These results suggest that periodic width variations may trigger the transition from
migrating alternate bars to a steady symmetrical bed configuration (steady central
bars) with dominant longitudinal wavenumber equal to that of the bank profile.

5. Comparison of experimental and theoretical findings
In this section theoretical results are compared with experimental findings. Figure 14

shows that an overall agreement is found between theoretical predictions of the
difference ∆A between the maximum and minimum bed elevation within a wavelength
and experimental values. A detailed comparison is given in figures 15(a, b), 16(a, b)
and 17(a, b) in terms of the amplitude of the leading components of the Fourier
representation of bed topography. We denote with ‘0’ the harmonic corresponding
to a purely longitudinal deformation, with longitudinal wavelength equal to that of
width variations, and with ‘1’ the harmonic corresponding to central bars.

The agreement is satisfactory for the transverse mode ‘0’ in all cases (figure 15a).
For δ = 0.25 the theory underestimates slightly the values of longitudinal bed
deformation. Notice, however, that in this case the amplitude of width variations is
relatively large; hence a linearized theory may not be completely adequate to describe
the solution. Both theoretical and experimental results for the harmonic ‘0’ do not
display a significant dependence on the average Shields stress ϑ0; some examples are
reported in figures 16(a) and 17(a) where each plot corresponds to a different initial
bed slope.

As for the amplitude of the central bar mode ‘1’, the comparison with experimental
findings must be considered with more care. Figure 17(b) shows that, for suitable
values of the controlling dimensionless parameters, the theory displays a resonant
response which implies that the amplitude of the harmonic ‘1’ tends to infinity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

75
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001007595


Planimetric instability of channels with variable width 99
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Figure 14. The difference between maximum and minimum bed elevation within a wavelength as
predicted by theory (∆Ath) is compared with the experimental data (∆Aexp) (values in mm). Solid
lines include the region where the relative error does not exceed 40%. +, λb = 0.5, δ = 0.125;
�, λb = 0.3, δ = 0.125; �, λb = 0.3, δ = 0.25.
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Figure 15. Comparison between theoretical predictions (Ath) and experimental values (Aexp) of
the amplitude of the leading components of the Fourier representation of bed topography:
(a) transverse mode ‘0’; (b) transverse mode ‘1’ (values in mm). Solid lines include the region
where the relative error does not exceed 40%. +, λb = 0.5, δ = 0.125; �, λb = 0.3, δ = 0.125;
�, λb = 0.3, δ = 0.25; •, resonant values.

(theoretical predictions falling within the resonant range are denoted with the symbol
‘•’ in figure 15b). In this case a linear approach is no longer valid and a nonlinear
analysis is required, like that proposed by Seminara & Tubino (1992) for meandering
channels. In figures 18(a) and 18(b), examples of predicted and observed values of
the amplitude of the first three transverse harmonics of the Fourier representation
of the bed profile are reported, in the case of non-resonant and resonant conditions,
respectively.
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Figure 16. The dimensionless amplitude of the leading transverse modes of the Fourier repre-
sentation of bed topography (scaled with D∗0) is plotted versus the Shields parameter. Theory in
continuous lines, experiments in crosses: initial slope S = 0.007, λb = 0.5, δ = 0.125. (a) transverse
mode ‘0’; (b) transverse mode ‘1’.
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Figure 17. The dimensionless amplitude of the leading transverse modes of the Fourier repre-
sentation of bed topography (scaled with D∗0) is plotted versus the Shields parameter. Theory
in continuous lines, experiments in crosses: initial bed slope S = 0.01, λb = 0.3, δ = 0.125.
(a) transverse mode ‘0’; (b) transverse mode ‘1’. The dashed line indicates the resonant range.
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Figure 18. Comparison between theoretical predictions (continuous line) and experimental results
(dashed lines) for the amplitude of the leading transverse modes of the Fourier representation of
bed topography: (a) run ‘b53’; (b) run ‘b37’ – resonant conditions (values in mm).

A detailed comparison between theoretical and experimental results for the whole
set of experimental data is given in Repetto (2000).

It must be noted that the agreement between theoretical predictions and experimen-
tal values is less satisfactory close to the critical conditions for sediment movement
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(as indicated in tables 1, 2 and 3, experimental data with ϑ0 < 0.06 are not included in
the comparison). However, in the latter case the flume was often partially transport-
ing sediment and emergence of bars occurred frequently; under these conditions the
theory is not likely to be applicable. Furthermore, the damping effect of the planform
on migrating alternate bars is weaker at low values of the Shields parameter. Hence,
under these conditions the transverse structure of bottom configuration is affected by
nonlinear interactions between free (alternate) and forced (central) bedforms whose
effect is not included in the present analysis.

6. Correction due to streamline curvature effect on transverse bed shear
stress

In this section we correct the two-dimensional model formulated in § 2 to take into
account the effect of streamline curvature on transverse bottom shear stress.

The local radius of curvature rc of streamlines of depth-averaged flow is defined
by the following equation:

1

rc
=

−(V/U),x
[1 + (V/U)2]3/2

. (6.1)

We pursue an approach originally introduced by Kalkwijk & de Vriend (1980) and
further employed by Struiksma et al. (1985). The idea is to introduce an additive
helical contribution to the transverse depth-averaged velocity, with vanishing net
flux, orthogonal to the local depth-averaged velocity vector. The intensity of this
contribution, which is associated with secondary flows, scales with the local ratio of
flow depth to radius of streamline curvature. The suitability of the above approach
has been demonstrated by Johannesson & Parker (1989) who showed that, for
typical natural channels, the equations governing the problem for the depth-averaged
transverse velocity and the additional helical contribution are not directly coupled to
each other, at least within a linear context, the helical component being essentially
driven by curvature. To characterize the vertical structure and the phase lag required
for the secondary flow to adapt to spatial variations of streamline curvature, we follow
the approach proposed by Tubino & Seminara (1990) for the case of meandering
channels. The decomposition of transverse velocity implies the appearance of an
additional term into the transverse bed shear stress component.

At the linear level, and in the presence of periodic variations of streamline curvature,
the transverse component of the Shields stress can be written in the form

τy = τ′y + τ′′y = Cf0V1

(
1− k iλb

β

)
, (6.2)

where τ′y is the contribution associated with the depth-averaged velocity and τ′′y
accounts for curvature effects. The complex coefficient k can be obtained from the
three-dimensional model and coincides with the coefficient k4 of Tubino & Seminara
(1990) (see figure 4d ).

In (2.13a–d ), all the coefficients remain unchanged except for a4 and a8 which take
the following expressions:

a4 = iλb + βCf0

(
1 +

iλbk

β

)
, a8 = 1 +

iλbk

β
. (6.3a, b)

Figures 19(a) and 19(b) show the amplitude and phase of the transverse mode ‘1’
of the Fourier representation of bed elevation and of longitudinal depth-averaged
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Figure 19. (a) The amplitude, and (b) the phase with respect to bank profile of transverse mode ‘1’
of bed elevation and of longitudinal velocity obtained through the modified two-dimensional model
(§ 6) are compared with the results of the three-dimensional model: β = 10, ϑ0 = 0.1, ds = 0.05.

velocity as predicted by the three-dimensional and the corrected two-dimensional
models. The results appear fairly close; with the inclusion of the effect of streamline
curvature the two-dimensional model can describe the observed transverse variation
of bed profile and flow characteristics. Furthermore, the dependence of the phase
shift and amplitude of flow and bed variables on wavenumber of width variations is
similar to that predicted by the three-dimensional model.

The remaining disagreement between the two formulations indicates that streamline
curvature is not the only three-dimensional effect responsible for transverse variations
of flow field and bed topography. In particular, the amplitude of transverse mode
‘1’ of the longitudinal velocity component depends on λb somewhat differently in the
two models (figure 19a). This suggests that the longitudinal velocity is also influenced
by secondary flow associated with convective terms, as discussed in § 3.

7. Stability of the planform
As pointed out in § 1, channel bifurcation can be viewed as the most important

unit process which controls the production of new channels in braided rivers.
We now investigate how the results obtained through the present three-dimensional

model can be used to set the basis of a simple model of bank stability able to predict
the initial tendency of planform evolution. To this end we follow the simplified
approach originally introduced for meandering channels by Ikeda, Parker & Sawai
(1981), and further employed by Blondeaux & Seminara (1985), whereby bank erosion
was related to the excess depth-averaged longitudinal velocity at the bank induced
by flow perturbations which arise as a consequence of spatial variations of channel
curvature. Here we investigate the conditions under which the perturbed flow induced
by periodic width variations tends to enhance the given initial (small) perturbation
of channel width.

The bank erosion model assumes that the channel is laterally stable in the absence of
the forcing effect due to the variable width. The experimental observations of Ashmore
(1982) provide some support to the above hypothesis in that single channels of braided
networks reproduced in the laboratory were often found to attain quasi-equilibrium
width conditions as defined by Parker (1978). Also notice that the transition to a
central bar configuration, which eventually leads to flow bifurcation, is likely to occur
in a channel which has undergone a relatively fast widening in the initial stage of
the process and whose planform has been reworked by the migration of alternate
bars.

Following Ikeda et al. (1981) we then assume the rate of bank retreat to be related
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Figure 20. The real part of the perturbation of depth-averaged longitudinal velocity at the bank
Ub is plotted versus the wavenumber of width variations for different values of the Shields stress:
β = 15, ds = 0.1.

to the excess of depth-averaged velocity at the banks Ub, with respect to the uniform
flow velocity, in the form

dys
dt

= EUb exp(iλbx) + c.c., (7.1)

where ys is the bank profile and E is a suitable erosion coefficient. In spite of the
approximate character of the model, which ignores several complicating features such
as the effect of cohesion and vegetation, equation (7.1) has been employed successfully
to predict the planimetric development of single thread meandering channels (see
Seminara et al. 2001). The use of more refined bank erosion models (e.g. Osman &
Thorne 1988; Hasegawa 1989; Mosselman 1989) is likely to affect our results only
quantitatively. Also notice that the model can provide an estimate only of the initial
tendency of planform development since the full coupling between bed and bank
evolution is not taken into account (a recent attempt to account for the effect of a
spatially uniform width changing in time is due to Darby & Thorne 1996).

According to (2.1a) the origin of the longitudinal axis coincides with the widest
section. Hence, from (7.1) we readily find that the amplification rate of the bank
profile is proportional to the real part of Ub, such that positive values of the latter
quantity imply that bank erosion tends to widen the channel where it is wider than
the average. Plots of the real part of Ub for different values of the Shields stress
are given in figure 20. It appears that the amplification rate is larger at relatively
low values of Shields stress, with maximum values which typically occur in the range
ϑ0 = 0.07 ÷ 0.09. As ϑ0 increases, the real part of Ub may become negative, which
implies that width variations are no longer destabilizing.

It is worth noting that the results reported in §§ 2 and 3 suggest that the conditions
under which the perturbed flow induced by width variations produces an excess
(positive) erosion rate at the widest section, implying incipient bifurcation of the
flow, are strictly connected with the role of the transverse deformations of flow and
bottom topography associated with three-dimensional effects. This is also shown in
figure 21 where the phase αu of the longitudinal depth-average velocity (αu being
the location of its maximum longitudinal value with respect to the bank profile) is
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Figure 21. The phase αu of the longitudinal depth-averaged velocity at the centreline and at the
banks is plotted versus the wavenumber of width variations. Comparison between the results of
two-dimensional and three-dimensional models: β = 20, ϑ0 = 0.1, ds = 0.05.
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Figure 22. Neutral stability curves in the (λb, β)-plane for different values of the
Shields parameter ϑ0 (ds = 0.1).

plotted versus the wavenumber of width variations, for given values of the relevant
dimensionless parameters. In the same figure results of the two-dimensional model
(2D) are also shown. According to the above discussion the channel is planimetrically
unstable when (αu) falls within the first or the fourth quadrant. It appears that while at
the centreline the longitudinal velocity attains its maximum value within the narrow
sections (0.5 < αu/π < 1.5), the opposite behaviour occurs at the banks where, for a
relatively wide range of values of λb, the maximum longitudinal velocity is located
at the wide sections (αu/π > 1.5). The figure also shows that according to the results
of the two-dimensional model, the channel would be invariably stable, since the
longitudinal velocity attains its maximum value close to the narrowest section both
at the centreline and at the banks (αu/π ∼ 1).

The region of instability widens for decreasing values of the Shields parameter
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Figure 23. The amplification rate is plotted versus the wavenumber of width variations in the case
of fixed bed (dashed line) and mobile bed (continuous line): β = 20, ϑ0 = 0.1, ds = 0.05.

ϑ0, as shown in figure 22 where marginal stability curves in the (λb, β)-plane are
reported for different values of the Shields parameter ϑ0 and a given value of the
roughness parameter ds. Also notice that for a given value of the Shields parameter
the channel becomes unstable as the width ratio increases. The above results agree
almost qualitatively with the experimental findings of Ashmore (1982, 1991). In
fact, they suggest that the planimetric forcing induced by width variations, which
may lead to the transition to a steady central bar pattern and to the incipient
bifurcation of the channel, is more likely to operate in relatively wide channels at
low Shields stress; the latter condition is gradually reached during the evolution
process of laterally unconstrained cohesionless channels which start from a straight
configuration. According to the results of our theory, the latter process can be traced
following a line in the (β, ϑ0)-plane which moves from the stable to the unstable region
in which width variations may become effective in shaping bed topography. Present
theory suggests that, with β typically ranging between 5 and 15, the destabilizing
effect peaks at low values of Shields stress, a range physically sensible for gravel-bed
braided rivers (e.g. Paola, Heller & Angevine 1992).

From figure 22 it also appears that the stability of the channel strongly depends
on the wavenumber of width variations, such that for given values of β and ϑ0 a
threshold value of λb exists above which the channel is stable. The latter dependence
is mainly related to topographically driven effects on the flow field. This is shown in
figure 23 where a comparison is shown between theoretical predictions of the real
part of Ub in the case of mobile and fixed beds. It appears that even in the case of
a fixed bed, three-dimensional effects may be able to counteract the overall decrease
of cross-sectionally averaged velocity which occurs in the widest section, leading
to positive values of the amplification rate. However, the planimetric instability is
strongly enhanced by flow divergence which is associated with the formation of a
central bar in the wider part of the channel. As λb increases, the central bar is
progressively shifted downstream with respect to the bank profile, which implies that
the topographic effects are no longer destabilizing.
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8. Conclusions
The role of channel curvature in producing forced bar forms is well known; here

we have demonstrated the analogous effect of width variations in forcing central
bars and associated channel scours. The development of these bar-scour couplets
is as central to river braiding as the development of curvature-induced bars is to
river meandering. The two processes display strong similarities. The forcing effect
of periodic width variations considered herein can be viewed as the symmetrical
counterpart of the case of the periodic variation of curvature in meandering channels.
In both cases three-dimensional effects and curvature-driven secondary flow appear
to play comparable critical roles. Furthermore, an analogous resonant behaviour
is exhibited by the theoretical solution in a given range of values of the relevant
dimensionless parameters, when the external forcing excites quasi-steady natural
responses of the unforced configuration (a straight channel with constant width).
However, while in the case of meandering channels the forced response displays a
spatial structure similar to that of alternate bars which would spontaneously develop
in the channel, central bars are not expected to form spontaneously in the absence
of some forcing mechanism, unless the channel is fairly wide. Coupled with a simple
model for bank erosion, the present theory suggests that channel instability which may
lead to incipient bifurcation of the flow is enhanced as the Shields stress decreases and
the width ratio of the channel increases, in agreement with experimental observations.

Various limitations of the present model require further attention. In particular,
to build a sound dynamical model of braided rivers the full coupling between bed
and bank development would be required and finite-amplitude gravitational effects
on transport rate should be accounted for.

This work has been jointly supported by the Italian Ministry for Scientific Research
(MURST) and the University of Trento, under the project ‘Fluvial and Coastal
Morphodynamics’ as well as by the US National Science Foundation.

Appendix A. Solution of the differential problem (3.8a)
First, we determine the variable G0(ζ) in the form

G0 = G0ĥ(ζ)ĥ, (A 1)

solving the ordinary differential problem

LG(G0) =
2ĥ

βF2
0

√
Cf0N , (A 2a)

G0,ζζ = 0 (ζ = 1), (A 2b)

G0,ζ = 0 (ζ = z0), (A 2c)

G0 = 0 (ζ = z0), (A 2d)

where

LG(G) =
d3G
dζ3

+
1

N
dN
dζ

d2G
dζ2
− iλbu0

β
√
Cf0N

dG
dζ
. (A 3)

We then determine F̂ from the following differential problem:

LF = ∆(ĥ, d̂), (A 4a)
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F̂,ζζ = 0 (ζ = 1), (A 4b)

F̂,ζ = 0 (ζ = z0), (A 4c)

F̂ = 0 (ζ = z0), (A 4d)

where

LF(F) =LG(F) +
iλb

β
√
Cf0N

du0

dζ
F−

√
Cf0

N F(1) (A 5)

and

∆(x1, x2) =
iλb

βF2
0

√
Cf0Nx1 +

[√
Cf0

N
(
CD

2
− 1

)
− iλb

β
√
Cf0N

du0

dζ

∫ ζ

z0

u0dζ

]
x2. (A 6)

Hence, we obtain

F̂ = F̂ĥ(ζ)ĥ+ F̂d̂(ζ)d̂. (A 7)

The differential problem for F0 is

LF(L0) = ∆(h0, d0)− ĥ

β
√
Cf0N

du0

dζ
G0ĥ, (A 8a)

F0,ζζ = 0 (ζ = 1), (A 8b)

F0,ζ = 0 (ζ = z0), (A 8c)

F0 = 0 (ζ = z0), (A 8d)

with ∆ given by (A 6). Hence, F0 can be written in the form

F0 =F0h(ζ)h0 +F0d(ζ)d0 + F̂0ĥ(ζ)ĥ. (A 9)

Furthermore, Gm and Fm (m = 1, 2, . . .) can be found in terms of hm and dm in the
form

Gm = Gmh(ζ)hm, (A 10a)

Fm =Fmh(ζ)hm +Fmd(ζ)dm, (A 10b)

through the solution of the following differential system:

LG(Gm) = − mπhm

βF2
0

√
Cf0N , (A 11a)

LF(Fm) = ∆(hm, dm)− mπ

β
√
Cf0N

du0

dζ
Gm, (A 11b)

Gm,ζζ = 0 (ζ = 1), (A 11c)

Gm,ζ = 0 (ζ = z0), (A 11d)

Gm = 0 (ζ = z0), (A 11e)

Fm,ζζ = 0 (ζ = 1), (A 11f)

Fm,ζ = 0 (ζ = z0), (A 11g)

Fm = 0 (ζ = z0). (A 11h)

Finally, the unknown constants ĥ, d̂, hm, dm (m = 0, 1, 2, . . .) are determined through
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the sidewall boundary conditions (3.19a, b) and (3.20a, b), the kinematic condition at
the free surface (3.9a) and the Exner equation (3.12).

We first evaluate ĥ from (3.19a, b), (3.21a) and (A 1) in the form

ĥ =
iλ

G0ĥ(1)
. (A12)

Notice that the contribution associated with Gm (m > 1) vanishes at the sidewall.
Substituting from (3.21a, b) into the boundary conditions (3.20a, b) leads to a

relationship between ĥ and d̂ in the form

d̂ = ĥ+
β
√
ϑ0

2r

[
iλb −

(
d2G0ĥ/dζ

2

du0/dζ

)
z0

]
. (A13)

The kinematic condition (3.9a), where w′ has been substituted through (3.14), gives

iλb[Am(F̂+ d̂) +Fm + dm] + BmGm = 0 (ζ = 1) (m = 0, 1, 2, . . .), (A14)

where

B0 = 1, (A15a)

Bm = mπ (m > 0), (A15b)

and Am are the coefficients of the Fourier representation of the function y2 which are

A0 =
1

3
, (A16a)

Am =
4(−1)m

m2π2
(m > 0). (A16b)

From (A14), we then obtain a first relationship between the unknown coefficients dm
and hm, where G0, F̂, F0, Gm, Fm, ĥ and d̂ are given by equations (A 1), (A 7), (A 9),
(A 10a, b), (A12) and (A13), respectively.

A further relationship between hm and dm (m = 0, 1, 2, . . .) arises from the Exner
equation (3.12). We obtain

iλbΦT

{
1

2
CD(Amd̂+ dm) + AmF̂(1) +Fm(1) +

1√
Cf0

[
N d2

dζ2
(AmF̂+Fm)

]
z0

}

+
Bm√
Cf0

(
Nd2Gm

dζ2

)
z0

− r

β
√
ϑ0

[2(ĥ− d̂)− m2π2(hm − dm)] = 0. (A17)
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