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Speer, Dutta, Chen, and Trussell (2019) emphasized three words characteristic of the turnover
field: “practical,” “modeling,” and “messier” (p. 277 [in the Abstract]), and advocated use of
survival analysis (more generically, event history analysis, or EHA) as “a powerful tool for the
purposes of turnover prediction [that] should be given consideration when planning turnover
analyses” (p. 291). We agree and propose that this modeling approach best addresses the messy
nature of practical turnover research.

Some researchers consider EHA impractical because the technique requires thinking about
turnover in a more dynamic way than does the logistic “stay or go” approach. EHA, however,
is more aligned with turnover theories (Hom, Mitchell, Lee, & Griffeth, 2012; Lee & Mitchell,
1994; Mobley, 1977), which imply a dynamic event, and it provides an analytic framework for
properly modeling dynamic events such as turnover. Our commentary focuses on three primary
topics: (a) some of the analytic challenges turnover data present, (b) a summary of EHA and how
it allows researchers to meet those analytic challenges, and (c) a description of how to extend EHA
to organizational decision making via transformation of EHA results to attrition probabilities for
employees in your analysis sample and via decision support tools.

Analytic challenges of turnover data

Event data pose several analytic challenges (Allison, 1984; Singer & Willett, 1991, 2003). Consider
a researcher interested in teacher turnover during the first 5 years of employment. Event data
typically span a certain observation period (here, 5 years), during which time the units of analysis
either do or do not experience the event in question (teachers either turnover or do not). During
the observation period, it may be useful to measure objects in question on some of the predictor
variables more than once. Hence, in addition to measures of the teacher’s race, education, and age
at hire, the researcher might wish to obtain biannual measures of each teacher’s marital status
during the 5-year observation period.

Three sticky analytic issues in this example are common to event data. First, there is the
presence of time-varying independent variables (e.g., marital status). Conventional regression
analyses do not handle time-varying measures well (Allison, 1984, pp. 10-11). Time-varying
independent variables do not appear in every event study, but it is sensible to consider them, given
that the observation of events naturally occurs over time, and a person’s status on many potential
predictors may be expected to change in a meaningful way during the elapsed time.

Second, some teachers will not leave the profession during the observation period. Yet other
teachers might be lost to observation in the middle of the period (e.g., they switched to a school not
included in the study), at which time they were still teaching. They did not turn over during the
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time they were observed, but they were not observed for the entire 5-year period. Observations
that do not experience the target event are said to be “censored.”

There are several types of censoring (cf. Lawless, 1982). The censoring in the example scenario
is typically termed “right censoring.” As time moves left to right on a timeline, a person’s obser-
vation period runs along the timeline until it hits a border on the right side: the point where the
observation period ends or where the person leaves the study. Any events or nonevents after
(i.e., to the right of) this demarcation are unknown to the researcher (i.e., they are censored).

There are two types of right-censored observations in the data for the above scenario. First, those
teachers who are teaching throughout the 5-year observation period are right censored at t = 5 years.
Second, those teachers who exited the study for whatever reasons (e.g., they moved from the area
and were lost to follow-up) are also right censored but at the point they exited the study.

The third analytic difficulty in the teacher turnover data regards the distribution of the events over
time: They in no way approximate a normal distribution. This is the rule rather than the exception for
event data. Hence, familiar analytic techniques based upon normal theory are inappropriate for
event data.

A fourth analytic difficulty that is not present in the divorce example but is nearly ubiquitous in
organizational research is late entry (also known as “left truncation”; Singer & Willett, 2003). Late
entry occurs when the researcher cannot track every observation in a dataset from a common
starting point (e.g., hiring date). Singer and Willett (2003) highlighted that this scenario occurs
frequently with such stock samples: collections of people of different ages who already exist in the
initial state of interest (here, employment) at the beginning of a research study (Lancaster, 1990).

Failure to account for late entry can lead to biased results. Consider a cohort of employees hired
by Organization X in 2002. For a turnover study beginning in 2008, many in this cohort were
already employed when the observation period began. They represent a restricted, unrepresenta-
tive sample of their employee cohort—a sample with a tendency to stay. Employees from this
cohort who had a propensity toward turning over likely did so prior to 2008. We have little
to no data on these individuals, and so they never enter our analysis. Failure to recognize we
are dealing not with new employees from the 2002 cohort when our study begins in 2008 but
rather with employees having 6 years of experience would lead us to underestimate turnover rates
for the early years of employment. This example applies to all employees hired pre-2008.

Other factors requiring special attention also appear in event data, including the possibility of
repeated events (e.g., absence-taking behavior, leaving then rejoining a company) or competing
events (e.g., turning over for one reason rather than another). Fortunately, EHA allows researchers
to adroitly handle all these difficulties.

An overview of EHA

Event history models involve functions, and the function values are evaluated across time. Time
can be measured discretely (years, months) or continuously (days, hours, minutes). The two pri-
mary functions used in EHA are the survivor function and the hazard function.

The survivor function, S(f), describes the probability an individual will survive at least until
time t without experiencing the event in question. S(¢) is a monotonic, nonincreasing (typically
decreasing) function. In this respect, it is essentially a reverse cumulative distribution function,
cumulating across time the proportion of observations that have yet to experience the event.

Figure 1 presents sample survival curves for notional turnover behavior of men and women.
The curves have been reflected to cumulate event occurrence over time (i.e., 1 — S(¢)). The curves
show men and women take nearly the same amount of time to experience 25% turnover (4 years
8 months for men, 4 years 9 months for women), but 50% of men have separated nearly 2 years
earlier (11 years 3 months) than 50% of women (13 years 2 months).
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Figure 1. Notional inverse survival functions (1 - S(t)) highlighting time to 25% and 50% turnover for men and women.

The hazard function, h(¢), describes the distribution of event occurrence across time. The defi-
nition of h(#) depends upon whether time is measured in discrete units (e.g., by month or year) or
continuously.

Discrete time

For discrete time, h(f) represents the probability an individual will experience an event during a
particular time interval, given the individual is at risk for experiencing the event. Hence, the
hazard is a conditional density function. Calculation of the discrete-time hazard depends on
two quantities: (a) the number of individuals who experience the event during the interval,
divided by (b) the number of individuals who are at risk for experiencing the event during the
interval—what Allison (1984) labeled the risk set. For single events, the risk set steadily decreases
as individuals either experience the event or are censored.

The risk set and its use in the calculation of the discrete time hazard demonstrate how EHA makes
optimal use of data from censored observations. Referring again to the teacher turnover example,
assume 500 teachers appear in the original sample at time t = 0 and observations of employment
status are made biannually. At the first observation period of 6 months, say 15 of the 500 teachers will
have stopped teaching. Hence, for the first 6-month period, the discrete time hazard is 15/500 = .03.
During the second time interval, 25 teachers leave the profession and 10 others exit the study while
still teaching (i.e., they are censored observations). The risk set is now 485 rather than 500, because the
15 teachers who separated during the first 6 months are no longer part of the sample. Hence, h(t) for
the second time interval is 25/485 = .05. Note that the censored observations contribute to the risk set
for Interval 2 but are not considered events, because they did not stop teaching. For the third time
interval, however, the risk set will be (485 — 35) = 450. Thus, the censored observations do not
contribute to the risk set for the third interval. The data for censored observations are used correctly
and optimally, contributing to the calculation of the hazard rate (via the risk set) for the amount of
time the observations are in the study.

To control for late entry, we modify how we define the risk set for turnover in any given year
(conditional partial likelihood; see Guo, 1993). For those hired in 2002 in our Organization X
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Figure 2. Notional hazard functions showing turnover rates for men and women.

example, their first opportunity to separate during our observation period occurs not in their first
year of employment but rather in their sixth. Therefore, they are held out of the risk set in years 1
through 5, because they have already successfully navigated those years. They are, however, at risk

for turnover from years 6 through 12 (2008-2014—the duration of our study) and thus appro-
priately enter the risk set at that time.

Continuous time

For continuous time, A(t) is defined as a mathematical limit that describes the instantaneous rate
at which events occur. Formally,

L PpE=T<t+AtT=>1)
h(t) = lim, At

where T is the time of the event (Kalbfleisch & Prentice, 1980, p. 6). The numerator is the discrete
time hazard rate when At = 1. For the continuous time hazard rate, that probability is divided by
At, the length of the interval; the limit is evaluated as this interval becomes smaller. The continu-
ous time hazard is not a probability, because it can take on values greater than one (Allison,
1984).! The natural logarithm of the hazard rate typically serves as the dependent
variable in event history models.

One way of conceptualizing the continuous-time hazard rate is to visualize a giant wheel attached
to a large box full of people. As the wheel turns, people are ejected from the box. The people coming
out of the box are those who experience the event in question. The faster the wheel turns, the faster
people are thrown out of the box (i.e., the higher the hazard rate for the event).

Unlike the survivor function, h(#) can take any shape. Figure 2 shows the hazard plots for the
corresponding survivor functions in Figure 1. The turnover rate for men is highest at the 2-year

!The survival and hazard functions are related. Formally, the hazard rate is defined as h(t) = fsi—g where f(f) is the probability
density function of the event times and S(#) is the survivor function. Note that f(t) = — ‘25(—5‘)) because S(f) is a reverse cumula-
tive distribution function (Kalbfleisch & Prentice, 1980).
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point and then generally declines. The turnover rate for women increases after hire until its
highest point around the 5-year mark.

There are many types of event history models, but a useful way to categorize them is by whether
h(t) defines events in discrete time or in continuous time. When time is modeled as discrete, h(t)
defines the conditional probability an individual will experience an event (turnover) during a
particular time interval, given the individual is at risk for experiencing the event (a conditional
density function). When time is modeled as continuous, A(f) is the instantaneous rate at which
events occur.

Discrete-time survival models can be estimated using conventional logistic regression packages
run on a person-period dataset (i.e., a dataset where each row defines a unique person-time status,
such as person’s turnover status during month 1 in row 1, status during month 2 in row 2, etc.; see
Singer & Willett, 1993, 2003). Continuous time survival models are most popularly represented by
the proportional hazards model (Cox, 1972; Singer & Willett, 2003).

Extending EHA to organizational decision making

EHA makes the challenges of analyzing turnover data explicit and thus seems more complicated at
first glance. However, by focusing on the survival function, EHA results are no more complicated
to interpret than logistic regression results. Specifically, weights for each predictor reflect a relative
strength of the driver of turnover, and combinations of predictor standings can be transformed
into intuitive probabilities.

To begin, the survival function for individual i at time j is

(BLX1i+Ba Xai+-BpXpi)
S(t;) = So(t)° R

(Singer & Willett, 2003, pp. 532, 540). This function has two components: (a) Sy(¢;) the baseline

survival function, where all predictors (X;;, Xy, ..., Xp, where i = individuals 1 to N) are set to
zero; and (b) the risk score, ef1XutFXait-BpXp) 4 transformation of the linear combination of the
predictors.

The survival function at a particular time point is conceptually similar to a predicted
probability in the logistic regression framework. At a particular time (¢;), the baseline survival
function becomes a constant, greatly simplifying the above function. Note that the outcome of
this model (survival or event non-occurrence) is the inverse of a typical logistic model (event
occurrence). To get the latter, we compute the inverse of survival, 1 — S(¢) (as in Figure 1), which
may be termed failure (F). Our final model to capture the logistic equivalent of the survival
analysis at a particular time point then becomes

S =8§ eP1X1i+B2Xoi+..BpXpi)
i — 20

Fi=1—S,~

If we select a time that corresponds to the timeframe of a logistic regression analysis, the two
probabilities reflect similar ideas: the probability an individual will leave before the chosen
timepoint. Whereas this could be an oversimplification of the results for those intimately familiar
with EHA, the logistic framing of survival results could be a beneficial way of explaining the anal-
ysis to a broader audience.

A particularly effective way to present results using predictive model weights is through deci-
sion support tools (Diaz et al., 2014), which allow leader input to be translated through analysis
results (via simulation) into numerical or graphical presentations of hypothetical scenarios. The
“what-if” process clarifies the population level results for choices such as investing in increasing a
particular organizational unit’s standing on a key driver of turnover. A decision support tool can
estimate the reduction in number of employees leaving the organization from that unit over a
given period assuming satisfaction is increased by 0.5, 1.0, or 1.5 units. Knowing the cost of
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turnover in the given organizational unit (say $60,000/employee), return on investment (ROI) can
be calculated for an increase of each hypothetical level. If the investment will not pay off even with
a large increase in satisfaction, the organization can apply those resources elsewhere.

Similarly, simulations can serve as a workforce planning tool. Instead of hypothetical scenarios,
new employees can be added to the simulation as they arrive, and failure for all employees can be
calculated at several timepoints in the future. The support tool provides an expected drop out at
each quarter, allowing the organization to plan compensatory recruitment activities. By adding
predictors to the analysis behind the support tool that reflect market-level trends, the workforce
planning approach can be tied to changes expected in the economy or industry for the next
quarter.

Workforce planning and ROI analysis can also be powered by linear, logistic, or multilevel
regression. Decisions based on analytic tools, however, are subject to the error in the underlying
models. Using inappropriate models will introduce error in parameter estimates that is
unknowable to the researcher. As stewards of the analyses underlying organizational decision
making, we are obligated to use the best techniques available to support decision makers. In
the case of turnover, we believe EHA is that technique and that the additional complications
of modeling with EHA are surmountable.
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