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Cops and robbers is a turn-based pursuit game played on a graph G. One robber is

pursued by a set of cops. In each round, these agents move between vertices along the

edges of the graph. The cop number c(G) denotes the minimum number of cops required to

catch the robber in finite time. We study the cop number of geometric graphs. For points

x1, . . . , xn ∈ R
2, and r ∈ R

+, the vertex set of the geometric graph G(x1, . . . , xn; r) is the

graph on these n points, with xi, xj adjacent when ‖xi − xj‖ � r. We prove that c(G) � 9

for any connected geometric graph G in R
2 and we give an example of a connected

geometric graph with c(G) = 3. We improve on our upper bound for random geometric

graphs that are sufficiently dense. Let G(n, r) denote the probability space of geometric

graphs with n vertices chosen uniformly and independently from [0, 1]2. For G ∈ G(n, r),

we show that with high probability (w.h.p.), if r � K1(log n/n)1/4 then c(G) � 2, and if

r � K2(log n/n)1/5 then c(G) = 1, where K1, K2 > 0 are absolute constants. Finally, we

provide a lower bound near the connectivity regime of G(n, r): if r � K3 log n/
√
n then

c(G) > 1 w.h.p., where K3 > 0 is an absolute constant.

AMS 2010 Mathematics subject classification: Primary 05C57

Secondary 60D05, 05C80

1. Introduction

The game of cops and robbers is a full information game played on a graph G. The game

was introduced independently by Nowakowski and Winkler [26] and Quilliot [31]. During
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play, one robber R is pursued by a set of cops C1, . . . , C�. Initially, the cops choose their

locations on the vertex set. Next, the robber chooses his location. The cops and the robber

are aware of the location of all agents during play, and the cops can coordinate their

motion. On the cops’ turn, each cop moves to an adjacent vertex or remains stationary.

This is followed by the robber’s turn, and he moves similarly. The game continues with

the players alternating turns. The cops win if they can catch the robber in finite time,

meaning that some cop is co-located with the robber. The robber wins if he can evade

capture indefinitely.

The original formulation [26, 31] concerned a single cop chasing the robber. These

papers characterized the structure of cop-win graphs for which a single cop has a winning

strategy. For v ∈ V (G), the neighbourhood of v is N(v) = {u ∈ V (G) | (u, v) ∈ E(G)} and

the closed neighbourhood of v is N(v) = {v} ∪ N(v). When N(u) ⊆ N(v), we say that u is

a pitfall. A graph is dismantlable if we can reduce G to a single vertex by successively

removing pitfalls.

Theorem 1.1 ([26, 31]). G is dismantlable if and only if c(G) = 1.

Aigner and Fromme [1] introduced the multiple cop variant described above. For a

fixed graph G, they defined the cop number c(G) as the minimum number of cops for which

there is a winning cop strategy on G. Among their results, they proved the following.

Theorem 1.2 ([1]). If G is a connected planar graph, then c(G) � 3.

Various authors have studied the cop number of families of graphs [13, 12, 24, 25].

Recently, significant attention has been directed towards Meyniel’s conjecture (found

in [12]) that c(G) = O(
√
n) for any n vertex graph. The best current bound is c(G) �

n2−(1+o(1))
√

log n, obtained independently in [22, 32, 14]. The history of Meyniel’s conjecture

is surveyed in [5]. For further results on vertex pursuit games on graphs, see the surveys

[3, 17] and the monograph [9].

Herein, we study the game of cops and robbers on geometric graphs in R2. Given points

x1, . . . , xn ∈ R2 and r ∈ R+, the geometric graph G = G(x1, . . . , xn; r) has vertices V (G) =

{1, . . . , n} and ij ∈ E(G) if and only if ‖xi − xj‖ � r. Geometric graphs are widely used to

model ad hoc wireless networks [16, 34]. For convenience, we consider V (G) = {x1, . . . xn},

referring to ‘point xi’ or ‘vertex xi’ when this distinction is required. Our first result gives

a constant upper bound on the cop number of two-dimensional geometric graphs.

Theorem 1.3. If G is a connected geometric graph in R2, then c(G) � 9.

The proof of this theorem is an adaptation of the proof of Theorem 1.2. This adaptation

requires three cops on a geometric graph to play the role of a single cop on a planar

graph. We also give an example of a geometric graph requiring three cops.

Recent years have witnessed significant interest in the study of random graph models,

motivated by the need to understand complex real-world networks. In this setting, the

game of cops and robbers is a simplified model for network security. There are many
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recent results on cops and robbers on random graph models, including the Erdős–

Rényi model and random power law graphs [7, 23, 29, 10, 8, 30]. We add to this list

of stochastic models by considering cops and robbers on random geometric graphs. A

random geometric graph G on [0, 1]2 contains n points drawn uniformly at random. Two

points x, y ∈ V (G) are adjacent when the distance between them is within the connectivity

radius, i.e., ‖x − y‖ � r. We denote the probability space of random geometric graphs by

G(n, r). Typically, we view the radius as a function r(n), and then study the asymptotic

properties of G(n, r) as n increases. We say that event A occurs with high probability, or

w.h.p., when P[A] = 1 − o(1) as n tends to infinity, or equivalently, limn→∞ P[A] = 1. For

example, G ∈ G(n, r) is connected w.h.p. if r =
√

log n+ω(n)
π n

. (Here and in the remainder

of this paper, ω(n) denotes an arbitrarily slowly growing function.) For this and further

results on G(n, r), see the monograph [28].

We improve on the bound of Theorem 1.3 when our random geometric graph is

sufficiently dense. Essentially, we determine thresholds for which we can successfully

adapt known pursuit evasion strategies to the geometric graph setting. Typical analysis

of G(n, r) focuses on the homogeneous aspects of the resulting graph, resulting from tight

concentration around the expected structural properties. Our cop strategies rely on these

homogeneous aspects.

When studying G ∈ G(n, r), it is often productive to tile [0, 1]2 into small squares, chosen

so that w.h.p. there is a vertex in each square, and vertices in neighbouring squares are

adjacent in G. We then use the induced grid on these vertices to analyse properties of G

(cf. [4, 11]). It is easy to show that the two-dimensional grid has cop number 2. When

our random geometric graph is dense enough, we can adapt a winning two-cop strategy

on the grid to obtain a winning strategy on G(n, r).

Theorem 1.4. There is a constant K1 > 0 such that the following holds. If G ∈ G(n, r) on

[0, 1]2 with r � K1(log n/n)
1
4 , then c(G) � 2 w.h.p.

A further increase in the connectivity radius leads to an even denser geometric graph,

so that eventually the cops and robbers game on G(n, r) becomes quite similar to a turn-

based pursuit evasion game on [0, 1]2. Such pursuit evasion games on Rd and in polygonal

environments have been well studied, using winning criteria such as capture [33, 20, 6]

and line-of-sight visibility [21, 15, 18]. It is known [33, 20] that pursuers can win the

capture game in Rd if and only if the evader starts in the interior of the convex hull of

the initial pursuer locations. Furthermore, a single pursuer can always catch the quarry

in a bounded region, such as [0, 1]2. We use the dismantlable criterion of Theorem 1.1 to

prove that a sufficiently dense G(n, r) also requires a single pursuer.

Theorem 1.5. There is a constant K2 > 0 such that the following holds. If G ∈ G(n, r) on

[0, 1]2 with r � K2(log n/n)
1
5 , then c(G) = 1 w.h.p.

We note that Theorem 1.5 was proved independently by Alon and Pra�lat [2] using a

graph pursuit algorithm in the spirit of [33, 20].
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Finally we also give a lower bound of the cop number of G(n, r), proving that some

random geometric graphs beyond the connectivity threshold require at least two cops.

This answers a question of Alon [2].

Theorem 1.6. There is a constant K3 > 0 such that the following holds. If G ∈ G(n, r) on

[0, 1]2 with r � K3 log n/
√
n, then c(G) > 1 w.h.p.

We do not know whether any of our multiple cop bounds are tight. We are particularly

hopeful that the bound for arbitrary geometric graphs can be improved.

2. Notational conventions

We begin by setting some notation. For x ∈ R2 and r ∈ R, define the ball B(x, r) = {y ∈
R2 : ‖x − y‖ � r}.

In the standard formulation of cops and robbers, the cops are first to act in each round.

In continuous pursuit evasion games, the evader is usually first to act. The distinction is

merely notational, and we choose to view the robber as the first to act in each round.

This leads to a more intuitive notation for the game state in our proofs below. Indeed,

our cops are always reacting to the robber’s previous move (which was made according

to some unknown strategy), so it is useful to group these two moves together in a single

round.

We formally describe the game of cops and robbers using this notational convention.

Before the game begins, the � cops place themselves on the graph at vertices C0
1 , . . . , C

0
� .

Then the game begins. In the first round, the robber chooses his location R1. Next the

cops begin the chase, moving to vertices C1
1 , . . . , C

1
� , where C1

j ∈ N(C0
j ). For i � 2, the ith

round starts in configuration (Ri−1, Ci−1
1 , . . . , Ci−1

� ). The robber is first to act, leading to

configuration (Ri, Ci−1
1 , . . . , Ci−1

� ), where Ri ∈ N(Ri−1) at the start of the ith cop turn. Next,

the cops move simultaneously to yield configuration (Ri, Ci
1, . . . , C

i
�) at the end of the ith

round. The cops win if Ci
k = Ri for some finite i, k. Otherwise the robber wins.

Finally, we note that the winning cop criteria have an equivalent formulation. Namely,

the cops win if there are finite i, k such that Ri ∈ N(Ci−1
k ). Indeed, Ck would subsequently

capture the evader on his ith move, achieving Ci
k = Ri. Of course, if Ri /∈ N(Ci−1

k ) for all

k, then the robber cannot be caught in the current round, and his evasion continues.

3. Geometric graphs

In this section, we prove Theorem 1.3. Let G = G(x1, . . . xn; r) be a fixed geometric graph.

We say that a cop C controls a path P if, whenever the robber steps onto P , then he steps

onto C or is caught by C on his responding move. Let diam(G) denote the diameter of

the graph. Aigner and Fromme [1] prove the following.

Lemma 3.1 ([1]). Let G be any graph, u, v ∈ V (G), u 	= v and P = {u = v0, v1, . . . vs = v}
a shortest path between u and v. A single cop C can control P after at most diam(G) + s

moves.
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It takes C at most diam(G) moves to reach P , and then at most s moves to take control

of P . We have the following simple corollary which will be useful for geometric graphs.

Corollary 3.2. Suppose that there are three cops C−, C, C+ chasing robber R on G. Consider

a shortest (u, v)-path P = {u = v0, v1, . . . , vs = v}. After k � diam(G) + 2s moves, the cop C

controls P , and (Ck
−, C

k, Ck
+) = (vi−1, vi, vi+1), where we set v−1 = u and vs+1 = v.

Proof. Start with the three cops co-located on any vertex of P . The cops attain this

controlling configuration in two phases. In phase one, cops move as one until they control

the path, as in Lemma 3.1. In phase two, C remains in control of the path while C−, C+

obtain their proper positions within s moves. Assume that until round j � 1 of phase

two, C+ is co-located with C . If C stays put on vi in round j, then C+ moves to vi+1. If

C moves from vi to vi−1 then C+ stays put on vi. Otherwise, both C and C+ move to vi+1.

After at most s rounds, C must either stay put or move left, and C+ attains his proper

position. Similarly, C− attains his position within s rounds.

Geometric graphs are frequently non-planar. Because of crossing edges, simply keeping

R from stepping onto P does not necessarily prevent him from moving from one side of P

to the other. We say that R crosses P at time t if the closed segment Rt−1Rt has non-empty

intersection with the closed segments corresponding to the edges of P . The additional

guards flanking C ensure that once the three cops are positioned as in Corollary 3.2, R

cannot cross P . On a geometric graph, we say that a set of cops patrols a path P if they

control P , and whenever R crosses P , he is caught in the subsequent cop move.

Lemma 3.3. Let P = {v0, . . . , vt} be a shortest path on a geometric graph G(x1, . . . , xn; r).

Suppose that the cops C−, C, C+ are located on vi−1, vi, vi+1 respectively, and that cop C

controls P . Then these three cops patrol P .

Proof. If the robber steps onto P then C will capture him. Suppose that the robber can

cross P without losing the game, and does so from position Rt to Rt+1. We characterize

some constraints on the location of Rt. Consider the configurations (Rt, Ct−1
− , Ct−1, Ct−1

+ )

and (Rt, Ct
−, C

t, Ct
+) prior to the robber’s crossing. These configurations occur in the

middle and at the end of round t. At this point, the cops are positioned on three

successive vertices of P . We claim that Rt /∈ B(Ct, r). Indeed, if Ct−1 = Ct (so that the

cops are stationary in round t), then C can actually catch R at time t, a contradiction.

Otherwise Ct ∈ {Ct−1
− , Ct−1

+ }, so one of these flanking cops can catch R at time t, also a

contradiction.

Next, we observe that the robber cannot be far from the cops. Let

(Rt, Ct
−, C

t, Ct
+) = (Rt, vi−1, vi, vi+1).

First of all, Rt /∈ B(vi−2, r) ∪ B(vi+2, r). Indeed, if Rt is close to either of vi−2, vi+2, then

R could step onto that vertex in round t + 1 without being caught by C , contradicting

the fact that C controls P . Secondly, Rt cannot be within r of any path vertex vj where
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Figure 3.1. (a) The robber must cross between vi−2 and vi+2, but Rt cannot lie in the grey region B(vi−2, r) ∪
B(vi, r) ∪ B(vi+2, r). (b) The geometry of the quadrilateral viR

tvi+1R
t+1 shows that the robber cannot cross P at

edge vivi+1 without ending in B(Ct, r) ∪ B(Ct
+, r).

|i − j| > 2 by a similar argument. We conclude that the robber must cross P between vi−2

and vi+2. The region forbidden to Rt along this subpath is shown in Figure 3.1(a).

Without loss of generality, assume that R crosses P so that RtRt+1 intersects vivi+1 or

vi+1vi+2. Now Rt+1 /∈ B(vi, r) ∪ B(vi+1, r); otherwise either C or C+ can immediately catch

him. Suppose that RtRt+1 crosses vivi+1 where Rt /∈ B(vi, r) ∪ B(vi+2, r) and Rt+1 /∈ B(vi, r) ∪
B(vi+1, r), as shown in Figure 3.1(b). We have ‖vi − vi+1‖ � r and ‖Rt − vi‖ > r. This means

that the angle �viR
tvi+1 < π/2; otherwise in the triangle vivi+1R

t, this obtuse angle forces

r � ‖vi − vi+1‖ > ‖vi − Rt‖ > r, a contradiction. Likewise, since ‖Rt+1 − vi+1‖ > r, we must

have �viR
t+1vi+1 < π/2. Therefore max{�RtviR

t+1,�Rtvi+1R
t+1} > π/2, and the resulting

obtuse triangle forces ‖Rt − Rt+1‖ > r, a contradiction. Therefore R cannot cross P by

crossing vivi+1. An identical argument, replacing vi with vi+2, shows that R cannot cross

vi+1vi+2. Therefore, R cannot cross P .

We now prove that if G is a connected geometric graph in R2, then c(G) � 9.

Proof of Theorem 1.3. The proof is a direct adaptation of the Aigner and Fromme

[1] proof of Theorem 1.2. In our proof, we need three cops to patrol a shortest path

of a geometric graph, instead of the single cop required to control a shortest path of

a planar graph. The idea of the proof of Aigner and Fromme is to divide the pursuit

into stages. In stage i, we assign to R a certain subgraph Hi, the robber territory, which

contains all vertices which R may still safely enter, and to show that, after a finite number

of cop-moves, Hi is reduced to Hi+1 � Hi. Eventually, there is no safe vertex left for the

robber. In each iteration, at most two shortest paths in Hi must be controlled. For a

planar graph, this requires one cop per path, and the third cop moves to control another

shortest path in Hi. For geometric graphs, Lemma 3.3 shows that three cops can patrol

any shortest path of a geometric graph. Using that lemma in place of Lemma 3.1, the

proof of Aigner and Fromme for planar graphs with three cops becomes a proof for

geometric graphs with 9 cops. See [1] for the proof details.

It is an open question whether this upper bound on the cop number can be improved

for the class of geometric graphs. Here we construct a geometric graph that requires

three cops, which leaves a considerable gap to our upper bound. Aigner and Fromme [1]
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Figure 3.2. Part of a 3-regular geometric graph G on 1440 vertices with c(G) = 3. The eight circles show the

connectivity neighbourhood for each type of vertex.

proved that any graph with minimum degree δ(G) � 3 and girth g(G) � 5 has c(G) � δ(G).

We describe a geometric graph G on 1440 vertices with unit connectivity radius which

has girth 5 and minimum degree 3, so that c(G) � 3. A representative subgraph of G

appears in Figure 3.2. Start with an annulus having inner radius 55 and outer radius

57. Within the annulus, we create an inner and outer strip of pentagons. Each pentagon

corresponds to a one-degree angle (or π/180 radians), so that there are a total of 720

pentagons. We give the vertex locations in polar coordinates (r : θ) where θ is in degrees.

For integral θ, 1 � θ � 360, place a vertex at (55 : θ) and at (57 : θ + 1/2). The interior

points (separated by half a degree) are chosen in a clockwise repeating pattern (55 : 2θ),

(56.35 : 2θ + 0.5), (55.85 : 2θ + 1) and (56 : 2θ + 1.5) for integral θ, 1 � θ � 180. Simple

calculations show that a unit connectivity radius gives the geometric graph as shown in

Figure 3.2. For example, the law of cosines calculates the lengths of edges on the outer

and inner boundaries as approximately 0.995 and 0.960, respectively.

We must have c(G) = 3 since G is planar. Indeed, there is a simple winning strategy

for three cops. Have cop C1 remain stationary on any interior vertex. Place cops C2, C3

on vertices on the inner and outer boundaries, separated by half a degree. In each step,

one of the boundary cops can take a clockwise step along his boundary while preventing

the robber from crossing the shortest path between C2, C3. Eventually the robber cannot

move anticlockwise because of C2, C3, and cannot move clockwise because of C1.

4. Adapting a grid strategy for G(n, r)

In this section, we prove Theorem 1.4. Our winning two-cop strategy is similar to a

winning strategy on the grid Pn�Pm. One cop catches the robber’s ‘shadow’ in a copy of

Pn, while the other catches the robber’s shadow in a copy of Pm. On subsequent moves,

either the robber moves towards the boundary, or at least one cop decreases his distance

https://doi.org/10.1017/S0963548312000338 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000338


Cops and Robbers on Geometric Graphs 823

from the robber. Eventually, the robber hits the boundary, and the cops close in for the

win. Our cop strategy below follows along similar lines, but accommodates the full range

of robber movement.

It is convenient to split the proof of Theorem 1.4 into two parts, a probabilistic part

and a deterministic part. Let V = {x1, . . . , xn} ⊂ [0, 1]2 and let r � s > 0. Let us say that

the tuple (x1, . . . , xn; r, s) satisfies condition (M) when the following holds.

(M) For every x ∈ [0, 1]2 and every y ∈ B(x, r) ∩ [0, 1]2, we have

V ∩ B(x, r) ∩ B(y, s) 	= ∅.

All the probability theory needed in the proof of Theorem 1.4 is contained in the following

lemma.

Lemma 4.1. Let us set s := 5
√

log n/n. Let x1, . . . , xn ∈ [0, 1]2 be chosen i.i.d. uniformly at

random, and let r � s be arbitrary. Then (x1, . . . , xn; r, s) satisfies condition (M) w.h.p.

Proof. Let us set t := 1/
√
n/2 log n�. Then t = (1 + o(1))

√
2 log n/n, and it is of the

form t = 1/k with k ∈ N an integer. We can thus tile [0, 1]2 into 1/t2 squares of dimension

t × t. Let Z denote the number of these squares that do not contain any point of x1, . . . , xn.

Then

E[Z] = (1/t2) · (1 − t2)n � (1/t2)e−nt2 = (1 + o(1))
n

2 log n
e−(1+o(1))2 log n = o(1).

Thus, w.h.p. each square contains at least one xi.

Now let us assume that each square of our dissection indeed contains a point of x1, . . . , xn
and pick an arbitrary x ∈ [0, 1]2 and y ∈ B(x; r) ∩ [0, 1]2. If ‖x − y‖ < r − t

√
2 then the

square of our dissection that contains y is completely contained in B(x; r) (because the

diameter of a t × t square is t
√

2). Hence any point xi that lies inside this square will clearly

do as ‖y − xi‖ � t
√

2 < s. Let us thus assume r − t
√

2 � ‖x − y‖ � r, and let z ∈ [x, y]

be chosen on the segment between x and y in such a way that ‖z − x‖ = r − t
√

2. Then

the square of our dissection that contains z is contained in B(x; r) and the point xi inside

this square satisfies ‖y − xi‖ � ‖y − z‖ + ‖z − xi‖ � 2t
√

2 � s.

Lemma 4.2. Suppose that (x1, . . . , xn; r, s) with x1, . . . , xn ∈ [0, 1]2 and 0 < s < r2/1010 sat-

isfy condition (M). Then c(G(x1, . . . , xn; r)) � 2.

Proof. We can assume without loss of generality that r �
√

2, because otherwise G is a

clique and a single cop will be able to catch the robber in a single move. We start by

describing the strategy of the cops. The two cops act independently (i.e., the action of C1

does not depend on the position or movement of C2 and vice versa). First, we describe

only the movements of C1. Cop C2 will follow a similar strategy, described below.

We introduce notation for a series of lines and points. Suppose the robber is at point

Rt. Let Lt
1 be the vertical line through Rt. Let P t

1 denote the point on L1 exactly r/3 below

Rt provided this point is above the x-axis. Otherwise P t
1 is the point on the x-axis exactly

below Rt
1. Similarly, we define the horizontal line Lt

2 and the point P t
2 to the left of Rt on
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T1 T2 T3 T4

Figure 4.1. Types of robber moves. In each case the robber will jump into the grey area.

L2. For simplicity, we occasionally refer to L1, L2, P1, P2 (without the superscript) to refer

to these lines and points with respect to the current position of R.

At time t = 0, C1 starts at a vertex C0
1 := xj that is within s of the origin (0, 0)t; such an

xj exists because of (M). In each round, the robber will first choose his new location Rt+1.

The cop then chooses a point y ∈ B(Ct
1, r) ∩ [0, 1]2 and finds an xi ∈ B(Ct

1, r) ∩ B(y, s)

(such an xi exists because of property (M)) and chooses as his new location Ct+1
1 := xi.

The strategy of C1 has three stages.

S1 Cop C1 moves right until he reaches a point within s of L1 and within r/109 of the

x-axis.

S2 While staying within r/107 of L1, cop C1 moves to within s of the point P1.

S3 Cop C1 tries to stay as close to P1 as he can.

Stage S1. During stage S1, cop C1 moves as follows. Let y be the point of B(Ct
1, r) closest

to Lt+1
1 . Then C1 moves to a point xi ∈ B(Ct

1, r) ∩ B(y, s). If y ∈ L1 then stage S1 ends.

Otherwise, the cop travels a horizontal distance of at least r − s. Thus, stage S1 lasts no

more than 1/(r − s)� < 10/r rounds, since he can keep jumping right by at least r − s

and he will reach L1 before he reaches the right boundary of the unit square (note that

the cop starts either to the left of L1 or within s of L1). Observe that, by the end of stage

S1, the y-coordinate of C1 is at most s · 10/r < r/109 (as s < r2/1010).

Stage S2. In this stage, the cop will always stay as close to L1 as he can, and will move

closer to his target point P1 if he can. The round starts with Ct
1 within s of Lt

1 and within

r/109 of the x-axis. If Rt has y-coordinate smaller than r/3 then we are immediately done

with stage S2.

If P t+1
1 ∈ B(Ct

1, r) then we can pick an xi ∈ B(Ct
1, r) ∩ B(P t+1

1 , s) and set Ct+1
1 := xi,

thereby ending stage S2. Otherwise, the cop’s move depends on how the robber moves.

We classify the possible robber moves into four (non-exclusive) types, depending on where

the robber jumps, as shown in Figure 4.1. Writing this displacement in polar coordinates

(d : θ), the four types are as follows.

T1 d � r/2.

T2 r/2 < d � r and 7π/6 � θ � 11π/6.

T3 r/2 < d � r and 2π/3 � θ � 4π/3.

T4 r/2 < d � r and −π/6 � θ � 2π/3.
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R

C1

Figure 4.2. If C1 is within r/107 of the point r/3 below R, then R can no longer make T1 or T2 moves.

If R makes a T1 move, we compute Jt+1 := Rt+1 − Rt. We can write Jt+1 = (� cos α, �

sin α) with � � r/2. Assuming Ct
1 is within r/107 of Lt

1, we can move at most r(cos(α)/2 +

1/107) to the left or right to reach Lt+1
1 . Thus

y :=

(
Rt+1
x , Ct

1 + r

(
1 − 1

2
cos α − 1/107

))T

∈ Lt+1
1 ∩ B(Ct

1, r),

where Rt+1
x is the x-coordinate of Rt+1. We pick xi ∈ B(Ct+1

1 , r) ∩ B(y, s) and set Ct+1
1 := xi.

Observe that xi is within s of Lt+1
1 and that the distance between C1 and R has decreased

by at least r
(
1 − 1

2
sin α − 1

2
cos α − 1/107

)
− s � r

(
1 − 1

2

√
2 − 1/107 − 1/1010

)
> r/4.

If R makes a T2 move, then L1 moves left or right by at most r cos(π/6) =
√

3r/2 and

R moves down by at least r sin(π/6) = r/2. Assuming that Ct
1 is within r/107 of Lt

1, we

can thus move sideways by at most (
√

3/2 + 1/107)r and reach Lt+1
1 . We can therefore

pick a point y ∈ Lt+1
1 ∩ B(Ct

1, r) that is at least ( 3
2

−
√

3/2 − 1/107)r − s > r/2 closer to

Rt+1 than Ct
1 is to Rt. Again we pick xi ∈ B(Ct+1

1 , r) ∩ B(y, s) and set Ct+1
1 := xi.

If R makes a T3 or T4 move, then we compute y := Rt+1 − Rt + Ct
1 (if y 	∈ [0, 1]2, we

take the point y′ on ∂[0, 1]2 with minimum distance to y), we pick xi ∈ B(Ct
1, r) ∩ B(y, s)

and we set Ct+1
1 := xi. Note that this way the distance of C1 to P1 cannot increase by

more than s.

Stage S3. At present it is not yet clear whether stage S2 will ever finish (and also we

may not be able to stay within r/107 of L1 indefinitely). If, however, we do get to stage

S3, we observe that R cannot make a T1 or T2 move without getting caught by the cop

immediately (see Figure 4.2). Therefore, during stage S3, we act exactly as in the case of

stage S2 where R makes a T3 or T4 move. This concludes the description of the first cop’s

movements.

Suppose that during the first T = 1000/r moves of the game the robber does not get

caught. Stage S1 will have finished after at most 10/r moves. Since s · T < r/107, we will

be able to stay within r/107 of L1 for the remaining moves until T , and assuming we

reach stage S3 at some time t < T we will be able to stay within r/107 of P1 for the

remaining moves until T . Thus stage S2 will have finished as soon as we have done at

most 14/r moves of type T1 or T2 (the first 10/r may occur during stage S1 and after
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that we move closer to P1 by at least r/4 in each T1 or T2 move). Thus, out of the first

T moves, at most 14/r robber moves are of type T1 or T2.

Completely analogously we can define a strategy for the second cop C2 that will ensure

that in the first T moves no more than 14/r robber moves are of type T1 or T3. Cop C2

tries to attain position on the horizontal line L2 through R. The stages of his strategy are

as follows.

S′1 Cop C2 moves up until he reaches a point within s of L2 and within r/109 of the

y-axis.

S′2 While staying within r/107 of L2, cop C2 moves to within s of the point P2.

S′3 Cop C2 tries to stay as close to P2 as he can.

Observe that whenever R makes a T4 move, then the sum of his coordinates increases

by at least

min
−π/6�θ� 2π

3

(sin θ + cos θ)
r

2
=

(√
3 − 1

4

)
r.

Meanwhile, if the robber makes a T1, T2 or T3 move, the sum of his coordinates decreases

by at most r
√

2 (achieved at θ = 5π/4). Hence, if the robber did not get caught in the

first T moves, then the sum of robbers coordinates at time T is at least

RT
x + RT

y � (T − 28/r) ·
(√

3 − 1

4

)
r − (28/r) · r

√
2

= 972

(√
3 − 1

4

)
− 28

√
2 > 2.

But this is impossible, since the robber stays inside the unit square. It follows that R gets

caught by the cops within the first T moves.

Proof of Theorem 1.4. The proof follows from Lemmas 4.1 and 4.2 by taking K1 =

3 · 105.

5. A dismantlable G(n, r)

In this section, we prove Theorem 1.5 by showing that when r � K2(log n/n)1/5 the random

geometric graph is dismantlable. We begin by setting some notation. Let c := ( 1
2
, 1

2
) denote

the centre of the unit square [0, 1]2. Let us write

Nc(i) := {1 � j � n : ‖xi − xj‖ � r, and ‖xj − c‖ < ‖xi − c‖}.

In other words, Nc(i) is the set of (indices) of vertices adjacent to xi and closer to the

centre c than xi. We will prove the following lemma.

Lemma 5.1. There is a constant K2 > 0 such that the following holds. Suppose that r �
K2(log n/n)1/5. With high probability the following holds for all 1 � i � n: either ‖xi − c‖ <

r/2, or there is a j ∈ Nc(i) such that Nc(i) ⊆ Nc(j).
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y x

p1

p2

W ′
D′

D

(a) (b)

Figure 5.1. (a) The set W ′ = W ′(x, y; r). (b) When closed discs intersect, the smaller disc D contains the shortest

arc on the bigger disc D′ between the intersection points of the boundaries.

Assuming that Lemma 5.1 holds, the proof of Theorem 1.5 is straightforward dismant-

ling of the random geometric graph.

Proof of Theorem 1.5. We can induce a strict ordering of the vertices according to

their distance from the centre c, in descending order. Indeed, for any vertices x, y,

P(‖x − c‖ = ‖y − c‖) = 0. By Lemma 5.1, the outermost vertex is a pitfall, and can be

removed. We continue to remove vertices until the remaining vertices lie in B(c, r/2).

The graph induced by these remaining vertices forms a clique, which is dismantlable. By

Theorem 1.1, the graph has c(G) = 1.

The remainder of this section is devoted to proving Lemma 5.1, which requires a series

of intermediate geometric lemmas. For x, y ∈ R2, let us write

W (x, y; r) := {z ∈ R2 : B(z, r) ⊇ B(x, r) ∩ B(y, ‖x − y‖)}. (5.1)

Let [x, y] denote the line segment between these two points. Note that

if z ∈ [x, y] then W (x, y; r) ⊆ W (x, z; r). (5.2)

Indeed, we have B(x, r) ∩ B(z, ‖x − z‖) ⊆ B(x, r) ∩ B(y, ‖x − y‖) so that W (x, y; r) ⊇
W (x, z; r). Observe that area(W (x, y; r)) does not depend on the exact locations of x, y,

but only on ‖x − y‖ and r. We can thus denote A(d, r) := area(W (x, y; r)) for an arbitrary

pair x, y with ‖x − y‖ = d. By observation (5.2), the area A(d, r) is non-increasing in d for

a fixed r.

We give a simpler geometric characterization of W (x, y; r) when ‖x − y‖ = d > r. Let

p1, p2 denote the two intersection points of ∂B(x, r) and ∂B(y, d). Denote

W ′(x, y; r) := B(p1, r) ∩ B(p2, r),

as shown in Figure 5.1(a).

Lemma 5.2. If ‖x − y‖ = d > r, then W ′(x, y; r) = W (x, y; r).
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α

y
x

p1

p2

d

h r

W
s

Figure 5.2. Determining the area of W = W (x, y; r).

Proof. Pick any z ∈ W (x, y; r). We must have p1, p2 ∈ B(z, r), which means that z ∈
B(p1, r) ∩ B(p2, r). Therefore W (x, y; r) ⊆ W ′(x, y; r).

Picking any z ∈ W ′(x, y; r), we have p1, p2 ∈ B(z, r). Observe that if a closed disc D

intersects a disc D′ of the same or larger radius then D contains the shortest circular arc

along ∂D′ between the two intersection points of ∂D and ∂D′: see Figure 5.1(b). So B(z, r)

contains the part of ∂B(x, r) between p1 and p2 that lies inside B(y, d). Using that d > r,

B(z, r) also contains the part of ∂B(y, d) between p1 and p2 that falls inside B(x, r). Thus

B(z, r) contains ∂(B(x, r) ∩ B(y, ‖x − y‖)). Because both B(z, r) and B(x, r) ∩ B(y, ‖x − y‖)

are convex, it now also follows that B(x, r) ∩ B(y, d) ⊆ B(z, r). This shows that W ′(x, y; r) ⊆
W (x, y; r).

We now compute a lower bound for A(d, r) for distant vertices x, y.

Lemma 5.3. If d = K · max(r, 1/
√

2), where K > 1 is a sufficiently large constant, then

A(d, r) = Ω(r5).

Proof. Choose x, y ∈ R2 with ‖x − y‖ = d. The geometry of W = W (x, y, r) is shown in

Figure 5.2. We have

area(W ) = 4

(
πr2

(
α

2π

)
− 1

2
r2 cos(α) sin(α)

)

= r2 ·
(
2α − sin(2α)

)
. (5.3)

Indeed, the expression πr2
(

α
2π

)
equals the area of a slice of opening angle α out of a

disc of radius r, and the term 1
2
r2 cos(α) sin(α) equals the area of a triangle with sides

h = r cos(α) and s = r sin(α). Also note that d2 = h2 + (d − s)2 and r2 = h2 + s2, giving

s = r2/2d = min

(
r2

K
√

2
,
r

2K

)
= Ω(r2).
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x

c

c̃

L
d

(0, 0)

(1, 1)

Figure 5.3. Choosing c̃ such that c ∈ [c̃, x].

Thus, sin(α) = s/r = Ω(r), and because sin(x) = x + O(x3), this also gives α = Ω(r). The

approximation x − sin(x) = x3/6 + O(x5), together with (5.3), proves the lemma.

Our next lemma places a lower bound on area(W (x, c; r)), where c = ( 1
2
, 1

2
) is the centre

of the unit square.

Lemma 5.4. For all x ∈ [0, 1]2 with ‖x − c‖ � r/2, we have

area
(
W (x, c; r) ∩ [0, 1]2 ∩ B(c, ‖x − c‖)

)
= Ω(r5).

Proof. Pick the point c̃ on the line L containing x and c, so that c ∈ [c̃, x] and ‖x − c̃‖ =

d = K · max(r, 1/
√

2): see Figure 5.3. By equation (5.2), W (x, c̃; r) ⊆ W (x, c; r). Provided

that K is sufficiently large, we have diam(W (x, c̃; r)) < r/1010. Furthermore, both the

angle between ∂B(p1, r) and the line L at their intersection points and the angle between

∂B(p2, r) and the line L at their intersection points will be less than 1 degree. It follows

directly that W (x, c̃; r) ⊆ [0, 1]2 ∩ B(c, ‖x − c‖) for every x ∈ [0, 1]2 \ B(c, r/2). Applying

Lemma 5.3 completes the proof.

We conclude this section with the proof of our main lemma: that for every vertex xi
such that ‖xi − c‖ > r/2, there is a j ∈ Nc(i) such that Nc(i) ⊆ Nc(j).

Proof of Lemma 5.1. We can assume without loss of generality that r �
√

2 (otherwise

‖xi − c‖ < r/2 holds trivially for all i). Let Z denote the number of indices i such that

‖xi − c‖ � r/2 and there is no j ∈ Nc(i) such that Nc(j) ⊇ Nc(i). Then EZ can be bounded

above by

E[Z] � n

∫
[0,1]2\B(c,r/2)

(
1 − area(W (x, c; r) ∩ [0, 1]2)

)n−1
dx

� n
(
1 − Ω(r5)

)n−1 � n exp
[
−Ω(nr5)

]
.
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B(ci−1, ρ2)

B(ci, ρ2)

B(ci+1, ρ2)

B(xi−1, r) ∩ B(xi+1, r)

xi−1

xi

xi+1

ρ1

r

r

Figure 6.1. For an N-gon with side length ρ1, we want each B(ci, ρ2) to contain a single vertex and we want

each B(xi−1, r) ∩ B(xi+1, r) to contain no additional vertices.

Thus, if we choose K2 sufficiently large, then we have

EZ � exp[log n − Ω(nr5)] = exp[−Ω(log n)] = o(1).

So the assertion of the lemma holds w.h.p.

6. G(n, r) near the connectivity threshold is not cop-win

In this section, we prove that some random geometric graphs require at least two cops.

In particular, when we are near the connectivity threshold, the graph is not dismantlable

w.h.p.

Proof of Theorem 1.6. Without loss of generality we can assume r � 1
2

√
log n/n, because

by a result of Penrose [27] our graph is disconnected w.h.p. for smaller choices of r

(obviously a disconnected graph is not cop-win). We will show that there is a small

constant K3 > 0 such that if r � K3 log n/
√
n then w.h.p. the graph is not dismantlable.

Intuitively, we are hunting for a subset of [0, 1]2 as shown in Figure 6.1. Start with

an N-gon with side length ρ1, slightly smaller than r. Draw a small disc B(ci, ρ2) around

each corner, where ρ1 + 2ρ2 = r. We want each disc B(ci, ρ2) to contain exactly one vertex

of G, say xi. Next, we consider the sets B(xi−1, r) ∩ B(xi+1, r). We want this intersection

to contain no other vertices besides xi. If we can find such a structure, it creates a cycle

{x1, . . . xN} in G such that xi is the only vertex in G that is adjacent to both xi−1, xi+1

(addition modulo N). Therefore G is not dismantlable because none of the xi will ever

become pitfalls.

We now prove the existence of such a structure. Let N denote the number of vertices

of the cycle; we will specify this value later. Set ρ1 = r − r/N2 and ρ2 = r/2N2. Consider

a regular N-gon Γ ⊆ [0, 1]2, whose edges each have length ρ1. (Once we fix our choice
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of N, we shall see later that Γ fits easily inside the unit square [0, 1]2.) Let us label the

corners of Γ as c0, . . . , cN−1 for convenience, where of course ci is next to ci−1 and ci+1

(addition of indices modulo N). We will insist that for each 0 � i � N − 1 there is a point

xji ∈ B(ci, ρ2) with

{x1, . . . , xn} ∩ B(ci, ρ2) = {xji}, (6.1)

and the point xji is also the unique common neighbour of the two points xji−1
and xji+1

,

that is,

{x1, . . . , xn} ∩ B(xji−1
, r) ∩ B(xji+1

, r) = {xji}. (6.2)

Observe that

‖ci+1 − ci−1‖ = 2ρ1 sin

(
π(N − 2)

2N

)
= 2ρ1 cos

(
π

N

)

= 2r(1 − 1/N2)
(
1 − O(1/N2)

)
= 2r − O(r/N2),

using the Taylor approximation cos(x) = 1 − 1
2
x2 + O(x4). Hence, for any x ∈ B(ci+1, ρ2)

and y ∈ B(ci−1, ρ2) we also have ‖x − y‖ = 2r − O(r/N2). Let us write W (x, y) := B(x, r) ∩
B(y, r). By the same computation as equation (5.3),

area(W (x, y)) = r2(2β − sin(2β)) = O(r2β3),

where β is a small angle with cos β = 1
2
‖x − y‖/r = 1 − O(1/N2), so that β = O(1/N)

(again using the Taylor expansion of cosine). Hence

area(W (x, y)) = O(r2/N3). (6.3)

Rather than computing directly in the standard random geometric graph, it helps to

consider a ‘Poissonized’ version. Consider an infinite sequence x1, x2, . . . of random points,

i.i.d. uniformly at random on the unit square. The ordinary random geometric graph,

which we will denote by GO for the rest of the proof, is just G(x1, . . . , xn; r). Now let

Z=d Po(n) be a Poisson random variable of mean n, independent of the points x1, x2, . . .

and consider the random geometric graph G(x1, . . . , xZ ; r) on the points x1, . . . , xZ which

we will denote by GP . Observe that the points x1, . . . , xZ constitute a Poisson process

of intensity n on the unit square, which has the convenient properties that for every

A ⊆ [0, 1]2 the number of points that fall in A is a Poisson random variable with mean

n · area(A), and that for any two disjoint sets A,B the number of points in A is independent

of the number of points in B (cf. [19]). This makes GP slightly easier to handle than GO .

We shall first do our probabilistic computations for the Poissonized version GP and then

we will derive the results for the original model GO from those for the Poissonized one.

Let us say the polygon Γ is good if it satisfies the demands of equations (6.1) and

(6.2) with Z swapped for n. Employing the useful independence properties of the Poisson

process we now see that

P[Γ is good] =
(
P[Po((nπr2/4N4) = 1]

)N · P[Po(n · O(r2/N2)) = 0]

=
(
(nπr2/4N4) exp(−nπr2/4N4)

)N · exp(−O(nr2/N2))

= exp
(
N log(nπr2/4) − 4N logN − O(nr2/N2)

)
.
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Considering the right-hand side of the first inequality, the first term is the probability

that the N discs B(ci, ρ2) contain exactly one random point, and the second term is the

probability that the N sets (B(xi−1, r) ∩ B(xi+1, r))\B(ci, ρ2) contain no random points. We

now choose N = (nπr2)1/4� and choose K3 > 0 to be small enough so that we obtain

P(Γ is good) � exp
(
−O

(√
nr2

))
� exp

(
−1

2
log n

)
= n− 1

2 ,

because r � K3 log n/
√
n by assumption. Also note that, as promised before, the polygon

Γ fits easily inside the unit square as it has diameter O(rN) = O(r(nr2)1/4) = o(1).

Let us now place shifted copies Γ1, . . . ,ΓM of Γ inside the unit square in such a way

that they are contained in [0, 1]2 and their centres are separated by at least

10 diam(Γ) = Θ(rN) = Θ(n1/4r3/2) = n−1/2+o(1).

(Recall that we assumed without loss of generality that r = Ω(
√

log n/n).) Then we can

place M = Ω((1/rN)2) = n1−o(1) such shifted copies, with their centres forming a lattice in

[0, 1]2. Let X denote the number of Γis that are good. Now notice that the events that

the Γi are good are independent of each other as they concern disjoint areas of the plane.

Hence X is distributed like a binomial with parameters M = n1−o(1) and p � n− 1
2 . Thus

P[X = 0] = (1 − p)M � e−Mp � e−n1/2−o(1)

= o(1).

So X > 0 w.h.p.

Consider the original random geometric graph GO again. Let XP denote the number

of good Γis under the Poisson model, and let XO denote the number of good Γis under

the original model. We have, with K > 0 an arbitrary constant,

P[XO = 0|XP > 0] =

∞∑
z=0

P[XO = 0|XP > 0, Z = z]P[XP > 0|Z = z]P[Z = z]

�
∞∑
z=0

P[XO = 0|XP > 0, Z = z]P[Z = z]

(6.4)

�
n+K

√
n∑

z=n−K
√
n

P[XO = 0|XP > 0, Z = z]P[Z = z]

+P[|Z − n| > K
√
n].

By Chebyshev’s inequality we have

P
[
|Z − n| > K

√
n
]

� Var(Z)/(K
√
n)2 = 1/K2.

Now consider the term P[XO = 0|XP > 0, Z = z]. If z = n then it clearly equals 0. Let us

take n − K
√
n � z < n. If we condition on the event that XP > 0, Z = z, then we can fix

a good Γi, say with ‘corners’ (xi1 , . . . , xiN ). If XO = 0 then the set A :=
⋃N

j=1 W (xij−1
, xij+1

)

must contain one of the points xz+1, . . . , xn. By equation (6.3), area(A) = N · O(r2/N3) =

O(r2/N2). Thus, for n − K
√
n < z < n we have
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P[XO = 0|XP > 0, Z = z] � (n − z) · O(r2/N2)

� K
√
n · O(r/

√
n)

= o(1),

using N = (πnr2)1/4�. Observe that the o(1) bound is uniform over all n − K
√
n < z < n.

Similarly, if we condition on the event that XP > 0, Z = z with n < z � n + K
√
n, we

can pick an N-tuple (xi1 , . . . , xiN ) uniformly at random from all N-tuples that are ‘corners’

of a good Γi. The indices i1, . . . , iN are a uniformly random sample (without replacement)

from {1, . . . , z}. Now, if XO = 0, it must hold that one of i1, . . . iN is larger than n. Note

that P(ij > n) = (z − n)/z for j = 1, . . . , N, and so

P[XO = 0|XP > 0, Z = z] � N

(
z − n

z

)
� (πnr2)

1
4

(
K

√
n

n

)
= Kπ

1
4 n− 1

4 r
1
2 = o(1).

Observe that again the o(1) bound is uniform over all z considered. Combining these

bounds with (6.4) we get

P[XO = 0|XP > 0] � 1/K2 +

n+K
√
n∑

z=n−K
√
n

o(1) · P[Z = z]

= 1/K2 + o(1).

By sending K → ∞, we see that P[XO = 0|XP > 0] = o(1), so

P[XO > 0] � P[XO > 0|XP > 0]P[XP > 0] = (1 − o(1))(1 − o(1)) = 1 − o(1),

which concludes the proof.
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