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STRONGLY MINIMAL STEINER SYSTEMS I: EXISTENCE

JOHN BALDWIN AND GIANLUCA PAOLINI

Abstract. A linear space is a system of points and lines such that any two distinct points determine
a unique line; a Steiner k-system (for k ≥ 2) is a linear space such that each line has size exactly k.
Clearly, as a two-sorted structure, no linear space can be strongly minimal. We formulate linear spaces
in a (bi-interpretable) vocabulary � with a single ternary relation R. We prove that for every integer k
there exist 2ℵ0 -many integer valued functions � such that each � determines a distinct strongly minimal
Steiner k-system G�, whose algebraic closure geometry has all the properties of the ab initio Hrushovski
construction. Thus each is a counterexample to the Zilber Trichotomy Conjecture.

§1. Introduction. Zilber conjectured that every strongly minimal set was (essen-
tially) bi-interpretable either with a strongly minimal set whose associated acl-
geometry was trivial or locally modular, or with an algebraically closed field.
Hrushovski [16] refuted that conjecture by a seminal extension of the Fraı̈ssé
construction of ℵ0-categorical theories as ‘limits’ of finite structures to construct
strongly minimal (and so ℵ1-categorical) theories. In this paper we modify
Hrushovski’s method to construct 2ℵ0 -many strongly minimal Steiner systems
that also violate Zilber’s conjecture. The examples arising from Hrushovski’s
construction have been seen as pathological, and there has been little work exploring
the actual theories. The new examples that we construct here are infinite analogs of
concepts that have been central to combinatorics for 150 years.

Our construction of strongly minimal linear spaces via a Hrushovski construction
might lead in two directions: (i) explore infinite Steiner systems investigating
combinatorial notions appearing in such papers as [5, 6, 11, 24]; (ii) search for
further mathematically interesting strongly minimal sets with exotic geometries. This
paper is an essential prerequisite for the sequel [2], where we address both issues
by showing the examples here admit no parameter-free definable binary function,
expand the techniques used here to construct strongly minimal quasigroups, and
extend the combinatorial analysis of [6] to those quasigroups.

Our construction combines methods from the theory of linear spaces/
combinatorics and model theory. A linear space (Definition 2.2) is a system of
points and lines such that any two points determine a unique line. A Steiner k-system
is a linear space such that all lines have size k. We explain strong minimality below
and explore its connection with Steiner systems in Section 2.2.
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The key ingredient of our construction is the development in [22] of a new model
theoretic rank function inspired by Mason’s α-function [20], which arose in matroid
theory. Using this new rank to produce a strongly minimal set requires a variant
on the Hrushovski construction [16] with several new features. This is the first of a
series of papers exploring these examples. Here are the main results of this paper;
they depend on definitions explained below.

• Theorem 2.5: The one-sorted (Definition 2.1) and two-sorted (Definition 2.2)
notions of linear space are bi-interpretable.

• Theorem 2.9(2): For each k, with 3 ≤ k < �, there are 2ℵ0 -many strongly
minimal theories T� (depending1 on an integer valued function �) of infinite
linear spaces in the one-sorted vocabulary � that are Steiner k-systems.

• Conclusion 5.26: Each theory T� admits weak2 elimination of imaginaries, its
geometry is not locally modular, but it is CM-trivial and so it does not interpret
a field. Thus, it violates Zilber’s conjecture.

The last two results make sense only in the one-sorted vocabulary � (see below for a
more detailed explanation of this). This phenomena is symptomatic of the interplay
among model theory, finite geometries and matroid theory. Notions in these areas
are ‘almost’ the same. Sometimes ‘almost’ is good enough and sometimes not. The
same intuitive structures are formalized in different vocabularies and in different
logics depending on the field. Theorem 2.5 addresses this issue; further refinements
on bi-interpretability appear in Section 2.1 and even more in [2].

Much of the current research on strongly minimal theories (as opposed for
example to the strongly minimal sets discovered in differentially closed fields)
focuses on classifying the attached acl-geometry. Work of Evans, Ferreira, Hasson,
and Mermelstein [9, 10, 14, 21] suggests that up to arity or more precisely,
purity, (and modulo some apparently natural conditions3) any two acl-geometries
associated with strongly minimal Hrushovski constructions are locally isomorphic.
This analysis is orthogonal to our program, which focuses on the particular strongly
minimal theories constructed.

A key difference from the finite situation is that k-Steiner systems of finite
cardinality v occur only under strict number theoretic conditions on v and k.
In contrast, for every k, we construct theories with countably many models in
ℵ0 and one in each uncountable power that are all Steiner k-systems. But the
number theory reappears when we attempt to find algebraic structures associated
with these geometries. One goal is to coordinatize the Steiner systems by nicely
behaved algebras. A substantial literature [25, 24, 11, 12] builds a correspondence
between k-Steiner systems and certain varieties of universal algebras. But while
this correspondence is a bi-interpretation for k = 3, it does not rise to that level in
general. Indeed, for k > 3, we show [2] that none of the strongly minimal Steiner

1The theory of course depends on the line length k; k is coded by � so we suppress the k.
2In view of Lemma 5.25 and Notation 5.24 our argument may, in very special cases, require naming

finitely many constants to guarantee that acl(∅) is infinite.
3In [9, 9], the class of finite structures is restricted only by the dimension function and properties of

�, that satisfy several technical conditions, which don’t hold in some constructions in [2], as opposed to
such axioms as ‘two points determine a line’ here or the existence of a quasigroup structure in [2].
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systems constructed here interpret a quasi-group4. We also prove there that for q
a prime power, and V an appropriate variety, for each of our theories T� there is
a theory T�,V of a strongly minimal quasigroup in V that interprets a q-strongly
minimal Steiner system.

Section 2 provides background on strong minimality and linear spaces, and proves
the bi-interpretability between the one and two-sorted approach. Sections 3 and 4 lay
out the distinctions in the basic theory between the general Hrushovski approach
and the specific dimension function for linear spaces studied here. In Section 5
we prove the main existence theorem for strongly minimal Steiner systems and
discuss the connection with recent work on the model theory of Steiner systems.
For space reasons, this paper has been substantially shortened from a version at
https://arxiv.org/abs/1903.03541 that contains a few proofs hinted at here and
much more extensive discussion of the background for the results. We thank the
referee for a very helpful report.

§2. Linear spaces. In this section firstly we explore the relationships between the
one-sorted approach to linear spaces (Definition 2.1) and the two-sorted approach
(Definition 2.2), and show that the two approaches are bi-interpretable (Theorem
2.5). We then show how the assumption of strong minimality imposes very strong
conditions on a linear space (Fact 2.7): all lines are finite and of bounded length.

2.1. One and two-sorted formalization.

Definition 2.1 (Linear Spaces in �). Let � contain a single ternary relation
symbol R which holds of sets of 3 distinct elements in any order. K∗, the class
of linear spaces, consists of the �-structures that satisfy: any two distinct points
determine a unique line when R is interpreted as collinearity. That is, R(x, y, z) ∧
R(x, y,w) → R(x,w, z). Each pair of elements is regarded as lying on a (trivial)
line; each nontrivial line is a maximal R-clique.
K∗

0 denotes the collection of finite structures in K∗.

Definition 2.2 (Linear Spaces in �+). A linear space is a structure S for a
vocabulary �+ with unary predicates P (points) and L (lines) and a binary relation
I (incidence) satisfying the following properties:

(A) any two distinct points lie on at exactly one line;
(B) each line contains at least two points.

K+ denotes the collection of �+-structures that are linear spaces.

Remark 2.3. We omit in Definition 2.2 the usual nontrivality condition that
there are at least three points not on a common line. It will of course be true of
the infinite structures that we construct, but allowing even the empty structure is
technically convenient.

The switch from a 2-sorted to a 1-sorted formalism leads to some peculiar
notation. In the two-sorted world, a line in (M ;PM,LM ) can gain points when

4A quasigroup is a structure (A, ∗) such that specification of any two of x, y, z in the equation
x ∗ y = z determines the third uniquely. This roughly corresponds to the current usage of groupoid.
But, in the literature mentioned in the paragraph a groupoid is an algebra with a single binary function.
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M is extended. In the one-sorted context a line is a subset of the universe which
is definable from any two points lying on it. But this definition is nonuniform. If
the line is trivial (only two points) the definition is x = a ∨ x = b; if the line is
nontrivial the definition isR(a, b, x). As a model M is extended, not only may a line
gain points, but the correct such definition can change.

In the next definitions, we regard a linear space in the vocabulary �+ (cf. Definition
2.2) as a �-structure (cf. Definition 2.1); this is easily done. Given a �+-structure B
as in Definition 2.2, define a �-structure A by letting A be P(B),the points of B, and
define R(a, b, c) to hold if and only there is line � in B such that each of a, b, c is
on �.

Remark 2.4. We now show that the class K∗ (Definition 2.1) of single-sorted
linear spaces is bi-interpretable with the class K+ of linear spaces in the two-sorted
vocabulary �+ (cf. Definition 2.2). Notice that conditions (A) and (B) of Definition
2.2 imply that every pair of distinct lines intersects in at most one point. Also, recall
that we allow models with no points or lines.

We now define a pair of mutually inverse bijections from the models of a class
of �-structures to a class of �+-structures and back that are uniformly definable,
respect isomorphism, and preserve substructure.

Theorem 2.5. (1) There is an interpretation F ofK+ intoK∗. That is, for every
A ∈ K∗ there is a �+-structure F (A) ∈ K+ definable without parameters in A.

(2) There is an interpretation G ofK∗ intoK+. That is, for everyB ∈ K+ there is a
�-structure G(B) ∈ K∗ definable without parameters in B.

(3) For any A ∈ K∗, G(F (A)) is definably isomorphic to A and for any B ∈ K+,
F (G(B)) is definably isomorphic to B. Thus we have a bi-interpretation.

Proof. We prove (1). LetA ∈ K∗. SetP = {(a, a) : a ∈ A} as the set of points of
the �+-structureF (A). Towards describing the lines, define the following equivalence
relation E onA2 – P by declaring (a, b) E (c, d ) if and only if the following condition
is met:

{a, b} = {c, d} or {a, b} ∪ {c, d} is an R-clique. (�)

We verify that E is transitive. To this end, suppose that (a, b) E (c, d ) and
(c, d ) E (e, f), e 	= f, {a, b} 	= {c, d} and {c, d} 	= {e, f}. Since each pair is of
distinct elements both {a, b, c, d} and {c, d, e, f} are R-cliques and since two points
determine a line {a, b, c, d, e, f} is an R-clique and transitivity is established. Now,
let

L = {[(a, b)]E : (a, b) ∈ A2 such that a 	= b}

be the set of lines of F (A). For (p, p) ∈ P and [(a, b)]E ∈ L define the following
point-line incidence relation:

(p, p) I [(a, b)]E ⇔ ∃(c, d ) ∈ [(a, b)]E such that p ∈ {c, d}.

Clearly,F (A) is definable in the �-structure (A,R). We show thatF (A) ∈ K+, that is,
Definition 2.2 is satisfied. Obviously, Axiom (B) is satisfied. We prove axiom (A).
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Towards this goal, let �1 and �2 be two distinct lines of F (A) that intersect (via the
definition of I) in two distinct points (b1, b1) and (b2, b2). By hypothesis �1 	= �2
and so, we can assume �1 = [(b1, b2)]E and there is (c, d ) ∈ A2 such that c 	= d ,
¬E((b1, b2), (c, d )) and (c, d ) ∈ �2. Note that any E-equivalence class of element
with more than 3 elements consists of an R-clique and distinct R-cliques can intersect
in only one point; so, we finish.

We prove (2). Let B ∈ K+. Define the �-structure G(B) = (A,R) by letting A be
the points of B and defining R(a, b, c) if and only if a, b, c are distinct and there is
a line � in B such that each of a, b, c is on �. Since B is a linear space the axioms of
K∗ are immediate.

We prove (3) by showing that up to definable isomorphism G is F –1. Fix A
and F (A) from (1). We analyze the composition G(F (A)) and show the image is
definably isomorphic to A. The set of points,PF (A), is the diagonal Δ(A2) ofA2. Map
(a, a) to a. The set of lines of F (A) is LF (A) = (A2 – Δ(A2))/E. Let m ∈ LF (A) and
suppose (a0, a0), (a1, a1), (a2, a2) are on m, where theai are distinct. By the definition
of I in F (A), for each i < 3 there exists an a′i such that for i 	= j, [(ai , a′i )]E =
[(aj, a′j)]E . By (∗) this implies the ai , a′i for i < 3 (some may be repeated) form an
R-clique in A. Thus G(F (A)) is definably isomorphic to A. Now we reverse the
procedure and show that for B ∈ K+, F (G(B)) is definably isomorphic to B. This
is even easier. If a, b, c are collinear in B, then G(B) |= R(a, b, c) (Note PB is the
domain ofG(B)). For this, recall the argument in part (1) showingF (A) ∈ K∗ takes
collinear points of A into a clique composed of elements of the diagonal of G(B),
which correspond to a clique in B. Applying this argument to G(B) completes the
proof. Finally, this shows, in the case at hand, the essential point of [19], that F is
onto from K∗ to K+. 

2.2. Strongly minimal linear spaces. Strong minimality imposes significant
restrictions due to the following easy consequence of the compactness theorem:

Fact 2.6. If M is strongly minimal, then for every formula ϕ(x, y), there is
an integer k = kϕ such that for any a ∈M , (∃>kϕx)ϕ(x, a) implies that there are
infinitely many solutions of ϕ(x, a), and thus finitely many solutions of ¬ϕ(x, a).

Fact 2.6 has an immediate consequence for any strongly minimal linear space,
(M,R) ∈ K∗ (cf. Definition 2.1), where all lines have at least 3 points: there can be
no infinite lines. Suppose � is an infinite line. Choose A not on �. For each Bi , Bj on
� the lines ABi and ABj intersect only in A. But each line ABi has a point not on
� and not equal to A. Thus � has an infinite definable complement, contradicting
strong minimality. More strongly, we observe:

Fact 2.7. If (M,R) is a strongly minimal linear space, then there exists an integer
k such that all lines have length at most k.

As, R(x, y, z) means5 x, y, z are collinear, that is, x is on the line determined
by y, z, applying Fact 2.6 we see that there is k = kR such that (∃>kRx)R(x, a, b)

5We require any triple satisfying R to be of distinct points.
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implies the line through a, b is infinite, which contradicts the preceding paragraph.
In particular, there can be no strongly minimal affine or projective plane, since in
such planes the number points on a line must equal the number of lines through a
point (+1 in the finite affine case).

Definition 2.8. Let K ⊆ �. We say that the linear space S is a K-Steiner system
if any line of S is finite and its size is in K. WhenK = {k} we simply write k-Steiner
system instead of {k}-Steiner system.

The main goal of our paper is to prove item (2) of the next theorem, where item
(1) is just a reformulation of Fact 2.7.

Theorem 2.9. (1) A strongly minimal infinite linear space in the vocabulary �
(cf. Definition 2.1) is a K-Steiner system for some finite set K ⊆ �.

(2) For each 3 ≤ k < �, we construct continuum-many strongly minimal infinite
linear spaces in the vocabulary � that are k-Steiner systems.

§3. The specific context. We develop in this section the basic properties of the
essential ingredient in the construction of our strongly minimal Steiner systems, a
new predimension function 	 (cf. Definition 3.3), introduced in [22]. It was inspired
by Mason’s α-function [20], a well-known measure of complexity for matroids. We
define this function explicitly without exploring the α-function. For the connection
see [22, Section 3].

Notation 3.1. (1) For any class L0 of finite structures for a vocabulary 
 that
is closed under substructure, L̂0 denotes the class of all 
-structures M such that
every finite substructure of M is in L0.

(2) Given an arbitrary class of structures L for a vocabulary 
 we denote by L0 the
class of finite structures in L. (For convenience, we allow the empty structure.)

(3) We write � for isomorphism and X ⊆� Y for finite subset.

The following notation will clarify the distinction between 2-element lines (a.k.a.
trivial lines) which are understood to hold of arbitrary pairs of elements from models
in K∗ and lines where the relation symbol R is explicit (cf. Definition 2.1).

Definition 3.2. Let A,B ∈ K∗ (cf. Definition 2.1).

(1) The subspace closure clR(X ) in A, is the smallest subset B of A containing X
such that if a ∈ A satsfies R(b1, b2, a) with the bi ∈ B , then a ∈ B .

(2) A line of A is an R-closed subset X of A such that all the points from X are
collinear. In particular, if two points a 	= b ∈ A and there is no c ∈ A with
R(a, b, c), then {a, b} is a line. We call such lines ‘trivial’.

(3) We denote the cardinality of a line � ⊆ A by |�|, and, for B ⊆ A, we denote
by |�|B the cardinality of � ∩ B .

(4) We say that a line � contained in A is based in B ⊆ A if |� ∩ B | ≥ 2, in this
case we write � ∈ L(B).

(5) The nullity of a line � contained in a structure A ∈ K∗ is:

nA(�) = |�| – 2.
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Note that if B ⊆ A are both inK∗, and � ⊆ A is a line then � ∩ B may be in L(B)
(if it has at least two points) but may not be R-closed in B (i.e.,if � – B 	= ∅). We
introduce the new rank 	 that is central to this paper6. It has two key features: (i) it
is based on the notion of ‘dimension’ of a line; (ii) the associated geometry is flat,
and so we get counterexamples to Zilber’s conjecture.

Definition 3.3. For A ∈ K∗
0 (recall Definitions 2.1 and 3.1(2)), let:

	(A) = |A| –
∑

�∈L(A)

nA(�).

Definition 3.4. (1) Let:

K0 = {A ∈ K∗
0 such that for any A′ ⊆ A, 	(A′) ≥ 0},

and (K0,≤) be as in [3, Definition 3.11], that is,we let A ≤ B if and only if:

A ⊆ B ∧ ∀X (A ⊆ X ⊆ B ⇒ 	(X ) ≥ 	(A)).

(2) We write A < B to mean that A ≤ B and A is a proper subset of B.
(3) For any X, the least subset of A containing X that is strong in A is called the

intrinsic or self-sufficient closure of X in A and denoted by iclA(X ) or X .

Since in the current situation we are dealing with integer coefficients, for our 	 the
intrinsic closure of every finite set is finite. Note that K0 has many fewer structures
that K∗

0 . In particular, no projective plane (except the Fano plane, Example 4.3) or
space A over a finite field is in K0; as, for each such A, 	(A) < 0.

We give a general conceptual analysis for submodularity7 and flatness of 	 that
clarifies the proofs of Lemmas 3.7 and 5.26 (flatness of d).

Definition 3.5. (1) Let f be a function from a set K0 of finite structures to
the non-negative integers. For S with ∅ � S ⊆ {1, ... , s} = I and a sequence
F1, ... , Fs of elements of K0, we let FS =

⋂
i∈S Fi and F∅ =

⋃
1≤i≤s Fi . We

say that f is flat if for all F1, ... , Fs ∈ K0 we have:

(∗) f(
⋃

1≤i≤s
Fi) ≤

∑

∅	=S
(– 1)|S|+1f(FS).

(2) Suppose (A, cl) is a pregeometry on a structure M with dimension function
d and F1, ... , Fs are finite-dimensional d-closed subsets of A. Then (A, cl) is
flat if d satisfies equation (∗).

In the basic Hrushovski case, 	 is flat because it is the difference between
two functions, the cardinality of each set, which satisfies inclusion–exclusion, and
counting the number of occurrences of R in each set, which undercounts. We now
note our 	 is similarly represented and that 	 is modular on the appropriate notion
of free amalgam: A⊕C B in K0.

6Mermelstein [21] has independently studied variants on this rank, but only in the infinite rank case
so the intricate analysis of primitives in this paper did not arise in his work.

7This result is proved by computation in [22].
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Definition 3.6. Let A ∩ B = C with A,B,C ∈ K0. We define D := A⊕C B as
follows:

(1) the domain of D is A ∪ B ;
(2) a pair of points a ∈ A – C and b ∈ B – C are on a nontrivial line � ′ in D if

and only if there is a line � based in C such that a ∈ � (in A) and b ∈ � (in
B). Thus, in this case, � ′ = � (in D).

Lemma 3.7.3 follows from submodularity and the particular definition of free
amalgam which is driven by ‘two points determine a line’.

Lemma 3.7. (1) 	 is flat (Definition 3.5(1)).
(2) Let A,B,C ⊆ D ∈ K∗

0 , with A ∩ C = B . Then:

	(A/B) ≥ 	(A/C ),

which an easy calculation shows is equivalent to submodularity:

	(A ∪ C ) ≤ 	(A) + 	(C ) – 	(B).

(3) IfE ∩ F = D,D ≤ E andE,F,D ∈ K0 thenG = F ⊕D E is inK0. Moreover,
	(F ⊕D E) = 	(F ) + 	(E) – 	(D) and any P with D ⊆ P ⊆ F ⊕D E is also
free. Thus, F ≤ G .

Proof. (1) Recall 	(A) = |A| – Σ�⊆A(|�| – 2). Observe that if A,B are sets and
� is a line in A ∪ B , then:

|�| = |� ∩ A| + |� ∩ B | – |� ∩ (A ∩ B)|.

But in computing 	(
⋃

1≤i≤s Fi) on the right hand of (*) one must sum for each S
only over those lines based in FS . Thus for example, in the case of two sets A,B , if
a line is based in A – B and has a single point in C – B (and none in B) that point
will not be counted on the right-hand-side but will be on the left. So the subtracted
term of 	(FS) is under-counted and 	(FS) is overcounted. This is not corrected at
the next step because no � is based there. Thus, 	 is flat.

(2) Since 	 is a difference of two counting functions, submodularity is just the
notion of flat for two sets.

(3) We need to check that each pair of points a0, a1 determine a unique line
in G. Without loss of generality, one is in F – D and the other in E. Suppose for
contradiction there are two distinct lines on which both of a0, a1 are incident. If both
lines are contained in F, the claim is obvious. But, if not, Definition 3.6 guarantees
that both of a0, a1 are on a unique line based in D.

By the general submodularity argument, 	(F ⊕D E) ≤ 	(F ) + 	(E) – 	(D). But
the definition of the free amalgamation guarantees that each line that intersects
F – D and E – D in based on two points in D. There is no undercount as there may
be in (2) so we have equality. 

Reference [3] provides a set of axioms for strong substructure. These axioms can
be seen to hold in our situation using Lemma 3.7.
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Fact 3.8. (K0,≤) satisfies Axiom A1–A6 from [3, Axioms Group A], that is,

(1) if A ∈ K0, then A ≤ A;
(2) if A ≤ B ∈ K0, then A is a substructure of B;
(3) if A,B,C ∈ K0 and A ≤ B ≤ C , then A ≤ C ;
(4) if A,B,C ∈ K0, A ≤ C , B is a substructure of C, and A is a substructure of B,

then A ≤ B ;
(5) ∅ ∈ K0 and ∅ ≤ A, for all A ∈ K0;
(6) if A,B,C ∈ K0, A ≤ B , and C is a substructure of B, then A ∩ C ≤ C .

We use the following notion of genericity:

Definition 3.9. The countable modelM ∈ K̂0 is (K0,≤)-generic when:

(1) if A ≤M,A ≤ B ∈ K0, then there exists B ′ ≤M such that B �A B ′;
(2) M is a union of finite substructures from K0.

§4. Primitive extensions and good pairs. Using only the 	 function one can build
up models in K0 from well-defined building blocks: primitive extensions and good
pairs (Definition 4.1). This section is an analysis of these foundations. In the next
section we use them to study the complete theories we are constructing.

Definition 4.1. Let A,B ∈ K0.

(1) We say that A is a primitive extension of B if B ≤ A and there is no A0

with B � A0 � A such that B ≤ A0 ≤ A. Equivalently, we may describe a
primitive pair as (B,A) where B and A are disjoint (and so BA is the set in
the initial description).

(2) If 	(A/B) = 0, we write 0-primitive. We stress that in this definition while B
may be empty, A cannot be.

(3) We say that the 0-primitive pair A/B is good if there is no B ′ � B such
that (A/B ′) is 0-primitive. When discussing good pairs, usually A and B are
disjoint; for ease of notation, sometimes A is confused with A ∪ B .

(4) If A is 0-primitive over B and B ′ ⊆ B is such that we have that A/B ′ is good,
then we say that B ′ is a base for A (or sometimes for AB).

(5) If the pair A/B is good, then we also write (B,A) is a good pair.

Remark 4.2. Note that if C is primitive over the empty set then the unique base
for C is ∅. For, if there is B 	= ∅ with B � C with C based on B, then ∅ ≤ B and
B � C contradicting that C is primitive over the empty set. This does not forbid the
existence of C ∈ K0 such that 	(C/∅) = 0 but C is not primitive over ∅; on this see
Lemma 5.25.

Example 4.3. Some sets are based on the empty set. In particular, if C is the
�-structure representing the unique 7 point projective plane (often called the Fano
plane), then 	(C ) = 0. And it is easy to see (∅, C ) is a good pair.

In earlier variants of the Hrushovski’s construction one could prove the existence
of a unique base B ′ for any given 0-primitive extension A/B . Unfortunately, this
assertion is false in the current situation; cf. Example 4.4. We make up for this with
a careful examination of the structure of good pairs that almost regains uniqueness.
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Example 4.4. For A ∈ K0 containing m + 2 points p1, ... , pm+2 on a line � and
for some c such that c 	∈ {p1, ... , pm+2} but c is on � in A ∪ {c}; we have that c is
0-primitive over A, and any pair of points in � ∩ A constitutes a base for c/A.

The following preparatory results allow us to characterize primitive extensions
and eventually prove amalgamation for (K�,≤) (cf. Conclusion 5.13).

Proposition 4.5. Let B ∈ K0 and b ∈ B such that b does not occur in any R-tuple
from B, then 	(B) = 	(B – {b}) + 1.

Proof. As b is on no line based in B – {b} this follows from Definitions 3.2
and 3.3. 

Using the above proposition, we can see:

Proposition 4.6. Let A,B ∈ K0 with A ∩ B = ∅, AB ∈ K0 and B ≤ AB . Then:

(1) if there exists b ∈ B such that b does not occur in any R-tuple from AB , and B ′

denotes B – {b}, then 	(A/B) = 	(A/B ′).
(2) if the 0-primitive pair A/B is good (cf. Definition 4.1(2)), then for every b ∈ B

we have that b occurs in an R-tuple from AB .

Proof. It suffices to prove (1), and (1) is clear by applying Proposition 4.5 to
AB as follows:

	(A/B) = 	(AB) – 	(B) = (	(AB ′) + 1) – (	(B ′) + 1) = 	(AB ′) – 	(B ′). 

We omit the short proof, using Proposition 4.5, of Lemma 4.7.

Lemma 4.7. Suppose C is a primitive extension of B such that |(C – B)| ≥ 2, then
every nontrivial line � with � ∩ C 	= ∅ intersects B in at most one point. Furthermore,
if C is 0-primitive, then any point in (C – B) lies on two lines based in (C – B).

The next lemma is the fundamental tool for our analysis of primitive
extensions.

Lemma 4.8. Let B ≤ C ∈ K0 be a primitive extension. Then there are two cases:

(1) 	(C/B) = 1 and C = B ∪ {c};
(2) 	(C/B) = 0.

(2.1) There is c ∈ (C – B) incident with a line � based in B if and only if
|(C – B)| = 1. In that case, any B ′ ⊆ B with B ′ ⊆ � and such that
|B ′| = 2 yields a good pair (B ′, c). Furthermore, c is in the relation R
with an element b ∈ B if and only if b is on the unique line based in B ′.

(2.2) If |(C – B)| ≥ 2 then there is a unique base B0 in B for C. Moreover,
suppose b ∈ B and c ∈ (C – B). If b and c lie on a nontrivial line, then
b ∈ B0. And every b ∈ B0 lies on such a line, which must be based in
(C – B).
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Proof. We follow the case distinction of the statement of the lemma:

Case 1. Suppose 	(C/B) > 0 and there are distinct elements in (C – B) that are
not on lines based in B, then any one of them gives a proper intermediate
strong extension of B that is strong in C. Thus C must add only one
element to B yielding Case 1.

Case 2. Suppose 	(C/B) = 0.
Case 2.1. Suppose there is an element c ∈ (C – B) which is on a line with

two points in B, say b1, b2, and |(C – B)| ≥ 2. Then clearly Bc
is a primitive extension of B and Bc � BC . Thus, (C – B)
must be {c}. Furthermore, ({b1, b2}, c) is a good pair. So C
is based on {b1, b2} and for any b ∈ B , b is R-related to c if
and if R(b1, b2, b); otherwise c would be on two lines based in
B (contradicting B ≤ C ). Conversely, if |(C – B)| = 1 then c
must be on a line based in B since 	(C/B) = 0.

Case 2.2. |(C – B)| ≥ 2 and 	(C/B) = 0. By Lemma 4.7, each line � ∈
L((C – B)) intersects B in at most one point b� . If there is no
such b� , then there is no R-relation between (C – B) and B, so
by Proposition 4.6(2), B = ∅ and C is based on ∅. As argued
in Remark 4.2, that base must be unique. If there is such a
b� , let B0 be the collection of all the b� , � ∈ L((C – B)). By
Lemma 4.6.(1), 	(C/B0) = 	(C/B), and so (B0, C ) is a good
pair. Further B0 is the unique base for C as these are the only
elements of B on lines that intersect (C – B). 

Omer Mermelstein provided us with an example showing there are infinitely many
primitives based on a single three element set. But the study of (a, b) cycles in [2]
led to stronger and simpler examples over smaller base sets. Recall that any linear
space with 3-point lines is an example of Steiner triple system (Definition 2.8.2). In
the next definition, used to prove Lemma 4.10, we generalize the notion from [6] of
an (a, b)-cycle graph in a Steiner triple system.

Definition 4.9. Fix any two points a, b of a Steiner m-system S = (P,L). An
(a, b)-cycle, Ck is a sequence c1, c2, ... , c4k of length 4k such that R(a, c2n+1, c2n+2)
for 0 ≤ n ≤ 2k, R(b, c2n+2, c2n+3) for 0 ≤ n < 2k, and R(b, c1, c4k).

In the Steiner triple system case a triple a, b, c1 with c1 not on (a, b) determines a
unique cycle as described in Definition 4.9. For m-Steiner systems with m > 3, we
can choose such cycles but not uniquely. Note that the lines determined by the pairs
of points cn, cn+1 in Definition 4.9 must be distinct.

Lemma 4.10. There are infinitely many mutually nonembeddable primitives in K0

over a two-element set. In fact, there are infinitely many mutually nonembeddable
primitives in K0 over the empty set and similarly over a 1-element set.

Proof. Over any a, b for each k build an (a, b)-cycle Ck , as in Definition 4.9. Ck
has 4k points and ({a, b} ∪ Ck) ∈ K0 has 4k 3-element lines. So 	({a, b} ∪ Ck)) =
2 = 	({a, b}). Primitivity easily follows since if the cycle is broken, the 	-rank goes
up. So ({a, b}, Ck)) is a good pair whose isomorphism type we denote by �k .
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To get primitives over ∅, let c be on ab and add the relations R(c, c1, c2k+1) and
R(c, ck+1, c3k+1). Now the entire structure Dk has 4k + 3 points and 4k + 3 lines
and can easily be seen to be 0-primitive over the empty set. (Note that for k = 1,
this is another avatar of the Fano plane.)

Remove one of the last two instances of R and the result is primitive over
a or b. 

§5. The class K�. We now introduce the new classes of structures needed to
obtain strong minimality. Recall that we have two classes: (i) K0 is a class of finite
structures; (ii) K̂0 is the universal class generated by K0. The new class K� ⊆ K0

adds additional restrictions so that the generic model for K� is a strongly minimal
linear space, and, in fact, a Steiner k-system for some k. Using Definition 5.6, we
axiomatize the subclass K�d of K̂� (the universal class generated by K�) of those
models that are elementarily equivalent to the generic for K�.

The following notation singles out the effect of the fact that our rank depends on
line length rather than the number of occurrences of a relation.

Notation 5.1 (Line length). We writeα for the isomorphism type of the good pair
({b1, b2}, a) with R(b1, b2, a) (cf. Lemma 4.8(2.1)).

Definition 5.2. Recall the characterization of primitive extensions from
Lemma 4.8.

(1) Let U be the collection of functions � assigning to every isomorphism type �
of a good pair (B,C ) in K0 (we write �(B,C ) instead of �((B,C ))):
(i) an integer �(�) = �(B,C ) ≥ 	(B), if |C – B | ≥ 2;

(ii) an integer �(�) ≥ 1, if � = α (cf. Notation 5.1).
(2) For any good pair (B,C ) with B ⊆M andM ∈ K̂0, �M (B,C ) denotes the

number of disjoint copies of C over B in M. Of course, �M (B,C ) may be 0.
(3) Let K� be the class of structures M in K0 such that if (B,C ) is a good pair,

then �M (B,C ) ≤ �(B,C ).
(4) K̂� is the universal class generated by K� (cf. Notation 3.1(1)).

In [2], we change the set U in various ways (and explore the combinatorial
consequences of this change in the resulting generic model). In this paper, we assume
� ∈ U unless specified otherwise.

The value of�(α) is a fundamental invariant in determining the possible complete
theories of generic structures; in particular we will see that it determines the length
of every line in the generic and thus in any model elementary equivalent to it.

Remark 5.3. We analyze the structure of extensions governed by good pairs
with isomorphism type α from Notation 5.1. Suppose {b1, b2, a} ⊆ F ∈ K� with
R(b1, b2, a). The 0-primitive extensions C of B = {b1, b2} with |(C – B)| = 1
are exactly the points on the line � through b1, b2. Any pair of points e1, e2
from F that are on � form a base witnessed by ({e1, e2}, a) with R(e1, e2, a) ∧
R(b1, b2, a).

Most arguments for amalgamation in Hrushovski constructions (e.g.,
[1, 15, 16, 26]) depend on a careful analysis of the location of the unique base

https://doi.org/10.1017/jsl.2020.62 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.62


1498 JOHN BALDWIN AND GIANLUCA PAOLINI

of a good pair. Here, when |(C – B)| = 1, the uniqueness disappears and one must
focus on the line rather than a particular base for it.

There are two general approaches to showing existence of complete strongly
minimal theories by the Hrushovki construction. One divides the construction into
two pieces, free and collapsed [13, 26]. The final theory is taken as the sentences true
in the generic model. The second, as the original [16], provides a direct construction
of the strongly minimal set. We choose here to follow Holland’s version of this
approach8. She insightfully emphasised axiomatizing the theory of the class K�d of
d-closed structures [15], which we now define, by clearly identifiable 2-sentences.
This established the model completeness that was left open in [16]. In fact, we
axiomatize the theory T� of the class K�d , prove it is strongly minimal, and then
observe that the generic satisfies T�.

Definition 5.4. Fix the class (K0,≤) of �-structures as defined in Definition 3.4.

(1) For A ∈ K̂0, X ⊆� A and a ∈ A, we let:

dA(X ) = min{	(Y ) : X ⊆ Y ⊆� A},
and

dA(a/X ) = dA(aX ) – dA(X ).

(2) [d-closure] ForM ∈ K̂�, and X ⊆� M :

cldM(X ) = {a ∈M : dM (aX ) = dM (X )}.

For infinite X, a ∈ cldM(X ) if a ∈ cldM(X0) for some X0 ⊆� X .
(3) [d-closed] ForM ∈ K̂� andX ⊆M , X is d-closed in M ifd (a/X ) = 0 implies
a ∈ X (equivalently, for all Y ⊆� M – X , d (Y/X ) > 0).

(4) Let K�d consist of thoseM ∈ K̂� such thatM ≤ N and N ∈ K̂� imply M is
d-closed in N.

The switch from 	 to d is designed to ensure that X ⊆ Y implies d (X ) ≤ d (Y );
the submodularity of d is verified as in, for example, [3, 15, 16, 26], and so the
function d is truly a dimension function, thus inducing a matroid structure.

Fact 5.5. The d-closure operator cldM (cf. Definition 5.4(2)) induces a combinato-
rial pregeometry on anyM ∈ K̂�.

We use good pairs to build our axiomatization, Σ�, of the theory of the class K�d .
We write Σ� as the union of four sets of first-order �-sentences: Σ0

�, Σ1
�, Σ2

� and Σ3
�.

Before listing them, we explain the origin of the third group: Σ2
�. We would like to

just assert the collection of universal-existential sentences: for all good pairs (B,C )
with B ⊆M , �M (B,C ) = �(B,C ). Unfortunately, some good pairs may conflict

8Holland provides a common framework for both ab initio constructions and fusions. The generality
introduces considerations that are not relevant here, and our new predimension and the restriction to
linear spaces introduce complications to her argument. Thus, for the convenience of the reader, we
rephrased the argument for our situation.
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with each others, and so, as far as we know, the equality may fail for some good pairs
when the base B is not strong in the model. Basically, this could happen because if
(P,G) and (Q,F ) are good pairs with QF contained in PG then realizing (P,G)
implies that (Q,F ) is automatically realized. In particular, note that the C of the
good pair (B,C ) of Example 5.7 contains a new good pair (B ′, C ′).

The distinguishing property of models M ∈ K�d is that since every 0-primitive
extension over a finite strong subset of M can be embedded in M, by Lemma 5.17,
no proper 0-primitive extension of M is in K̂�. In fact, this property characterizes
the models that are elementarily equivalent to the generic. A salient point about
the generic for K�, denoted G� (Notation 5.14), is that G� ∈ K�d . This fact is
not used directly in the proof of strong minimality of T�; we will observe it in
Proposition 5.16.

One reason for the difficulty in the axiomatization is that the function �
is defined on arbitrary substructures, not strong substructures. Restricting to
strong substructure would inhibit if not prevent the 2-axiomatization as the strong
substructure relation (A ≤M ) is only type-definable. Thus, in Lemma 5.10, we cannot
assume D is strong in both E and F. In the following definition we rely on the
terminology introduced in Definitions 4.1 and 5.2.

Definition 5.6. Σ� is the union of the following four sets of sentences:

(1) Σ0
� is the collection of universal sentences axiomatizing K0 as in

Definition 3.4.
(2) Σ1

� is the collection of universal sentences that assert:

B ⊆M ⇒ �M (B,C ) ≤ �(B,C ).

(3) Σ2
� is a collection of universal-existential sentences �B,C , depending on the

good pair (B,C ), such that for every occurrence of B ifM |= �B,C then for
some good pair (A,D) with AD ⊆ BC , any structure N containing MC
satisfies �N (A,D) > �(A,D) and so violates Σ1

�. See Lemma 5.18 for the
explicit formulation of these sentences

(4) Σ3
� is the sentence asserting every nontrivial line has length �(α) + 2.

Σ3
� implies that every model is infinite. The argument in Lemma 5.10 that underlies

both the axiomatization ofK�d and the amalgamation for (K�,≤) differs from a mere
amalgamation argument in one significant way: D ⊆ F but D ≤ F is not assumed
(on the other hand, D ≤ E is assumed). We require several technical lemmas to
address the difficulties arising from this fact. We will see that models that satisfy Σ�
are in K�d by showing that if a model M satisfies Σ�, then we can find sentences to
prevent extensions in which M is not d-closed. The following example shows the
necessity for the complications in proving Lemma 5.10: new primitives can occur in
many ways.

Example 5.7. Construct the isomorphism type � of a good pair (B,C ) defined
as follows. Let B be two points d1, d2 and C consists of six points ci for i = 1, ... , 6.
Let the nontrivial lines be {d1, c1, c2, c3}, {d2, c4, c5, c3}, {c4, c1, c6} and {c5, c2, c6}.
So C has 6 points and 4 lines each of nullity 1 so rank 2. And BC has 8 points and
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4 lines, 2 of nullity 1 and 2 of nullity 2 so BC also has rank 2. Check primitivity by
inspection.

Now turn this example on its head. Consider the following example of the
setting of Lemma 5.10. Set �(α) = 4 and �(�) = 2 Let D = {c1, c2}, F = D ∪
{c3, c4, c5, c6, d2} and E = D ∪ {d1}. (D,E) is a good pair. Amalgamating F and E
over D we get a new realization (B ′, C ′) of the isomorphism type � of the good pair
(B,C ), which is not contained in either D or E, but in F ∪ E. This example does
not violate Lemma 5.10 as �(α) = 2 (and has to be since there are 4-element lines
in F).

Remark 5.8. Example 5.7 shows that good pairs can conflict so we don’t know
in general that a model M of T� will satisfy �M (B,C ) = �(B,C ) for all good pairs
(B,C ) that appear in M. We first prove in Lemma 5.10 that each good pair (B,C )
can only conflict with finitely many pairs (B ′, C ′) and that that can happen only
if one pair is included in the other. Following [15], to guarantee thatM ∈ K�d , we
assert by the formula �B,C (cf. Definition 5.6(3)) that each conflicting pair (A,D)
is ‘almost realized’ in M so that adding points from C contradicts Σ1

�.

Lemma 5.9 is a variant on [26, Lemma 5.1] that is proved by replacing the phrase
‘adds a relation to B’ in Ziegler’s proof by careful consideration of the lines involved.
See the archive version for details.

Lemma 5.9. Suppose F ≤ G and F satisfies Σ0
�. Suppose �G(B,C ) ≥ n with

n ≥ 	(B), witnessed by C = 〈C1, ... , Cm〉, for m = �(B,C ) + 1. Then at least one
of the following holds.

1. B ⊆ F.
2. Some Ci ∈ C lies in G – F .

Notice that by Lemma 3.7 in the following lemma we have that F ≤ G .

Lemma 5.10. Let F,E |= Σi�, for i < 2, D ⊆ F , and suppose that (D,E) is a good
pair (and so in particular D ≤ E). Now, if G = E ⊕D F and for some good pair
(B,C ) ⊆ G we have �G(B,C ) > �(B,C ), then:

(A) if |C | = 1, C = {c} and c is on a line based on some B ′ ⊆ D;
(B) if |C | ≥ 2 thenB ⊆ E and there existsC ′ withBC ′ � BC , withC ′ ⊆ (E – D).

Further, if D ≤ F , there is a copy C ′′ of C over B with C ′′ = (E – D), and
B ⊆ D.

Proof. SinceG = E ⊕D F we can use the notation and results of 3.6 and 3.7(3).
Note that F,D,E are in K� by the definition of the axioms Σ�. Let C be a set
of �(B,C ) + 1 disjoint copies of C over B in G, and list C as 〈C1, ... , Cm〉, for
m = �(B,C ) + 1.

Case A. |C | = 1. Then (B,C ) witnesses the isomorphism typeα from Definition
5.1. So, there must be a line � of size �(B,C ) + 3 in G. Since E and
F satisfy Σ1

�, there must be d ∈ F – D and c ∈ E – D that lie on �.
By Definition 3.6(2) of free almalgam � must contain two points (say,
comprising B ′) in D that are connected to c ∈ E – D. Since {c} is then
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primitive over D, E – D must be {c}. We finish the first claim. Note
�F (B ′, C ) = �(B,C ) as � has �(α) + 2 points in F.

Case B. |C | ≥ 2.

Claim 5.11. If some Cj ∈ C satisfies Cj ⊆ E – D is good over B ⊆ F , then
B ⊆ E.

Proof. We show B ⊆ E. If not, there is a b1 ∈ B ∩ (F – E) and since Cj ⊆
(E – D) a line from b1 to some c ∈ Cj . Thus c is on a line based on D and so
Cj = E – D = {c}. This contradicts |Cj | ≥ 2 so B ⊆ E. 

We split into two cases depending on the location of B. Each cases relies on
Lemma 3to show F ≤ G and the second on Lemma 5.9.

Case B.1. Suppose B ⊆ F . Since �F (B,C ) ≤ �(B,C ), there must be a Ci ∈ C
that intersects G – F = E – D. So, since F ≤ G and C/B is primitive,
Ci ⊆ G – F = E – D. But, since E is primitive over D, FE is primitive
over F, so Ci = E – D. By Case 2.2 of Lemma 4.8, B is the only subset
of F on which Ci is based. Hence, as BCi ⊆ E, we finish Case B.1
without using the supplemental hypothesis for the ‘further’ of Case
(B).

Case B.2. Suppose B 	⊆ F . By Lemma 5.9, we have the main claim; some Cj lies
in E – D. We prove the further. There must be a C ′ ∈ C that intersects
F – D, sinceE ∈ K�. ButC ′ cannot split over E since,B ⊆ E by Claim
5.11. As we now assume D ≤ F , E ≤ G ; so C ′ ⊆ (F – D). But then
C ′ is based on a uniqueB ′ ⊆ D sinceD ≤ F . SoB = B ′ ⊆ D. But then
Cj is primitive over D and based onB ⊆ D, and soCj = E – D. Hence,
Cj is the required C ′′.

The argument for Lemma 5.12 differs from the standard only in requiring a special
case for extending a line.

Lemma 5.12. Suppose A and A′ are primitive over Y with 	(A/Y ) = 	(A′/Y ) = 0
and both are based onB ⊆ Y with isomorphic good pairs (B, Â) and (B, Â′), where Â =
A – Y and Â′ = A′ – Y . Then the map fixing Y and taking A toA′ is an isomorphism.

We now show that any element of K̂� (not justK�) can be amalgamated (possibly
with identifications) over a (necessarily finite) strong substructure D of F with a
strong extension of D to a member E of K̂�. Conclusion 5.13 follows from Lemma
5.12, breaking into cases given by Lemma 5.10 A) and B).

Conclusion 5.13. If D ≤ F ∈ K̂� and D ≤ E ∈ K� then there is G ∈ K̂� that
embeds (possibly with identifications) both F and E over D. Moreover, if F ∈ K�d , then
F = G . In particular, (K�,≤) has the amalgamation property, and there is a generic
structure G� ∈ K̂� for (K�,≤).

Notation 5.14. Let G� denote the generic for (K� ≤) (cf. Conclusion 5.13).

Notice that it follows from Corollary 5.13 that every member of K� is strongly
embeddable in G�.
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Definition 5.15. Let (K0,≤) be as in the context of Fact 3.8. The structure M is
rich for the class (K̂0,≤) (or (K̂0,≤)-rich) if for any finite A,B ∈ K0 with A ≤M
and A ≤ B there is a strong embedding of B into M over A.

Clearly, a generic is rich. Even more, since the definition of K�d requires the
embedding only of finite extensions with dimension 0, we have:

Proposition 5.16. Every rich model, and so in particular G�, is in K�d .

Proof. We show that every (K�,≤)-rich model M is in K�d . Suppose for
contradiction that there is an N ∈ K̂� with M ≤ N and there is a C ⊆ (N –M )
such that C is 0-primitive over M. By Lemma 4.8, C is based on some finite B ⊆M .
Since M ≤ N , C is also primitive over B0 = iclM (B). Since M is rich there is a
copy C1 ⊆M of C over B0. Now let B1 = iclM (C1). Applying richness again we
can choose another embedding C2 of C into M over B1. Continuing in this fashion,
after less than �(B,C ) + 1 steps we have contradictedM ∈ K̂�. 

We provide two sufficient condition for�(B,C ) to be realized in a d-closed model.

Corollary 5.17. SupposeM ∈ K�d . If either

1. (B,C ) represents α or
2. (B,C ) is a good pair with |C | > 1 and B ≤M

then

�M (B,C ) = �(B,C ).

In particular, if �(α) = m, then the length of every line in M is m + 2.

Proof. In either case, since M is d-closed,M ⊕B C 	∈ K̂� (Definition 5.4.3). In
the first case this obviously implies the conclusion. In the second, By the ‘further’
of Lemma 5.10(B).2, the violation of Σ1 is given by the new copy of the pair (B,C ),
and so �M (B,C ) = �(B,C ). 

The requirement in (2) that B ≤M guarantees that the obstruction is exactly
the extension we are trying to make. Without that requirement the corollary seems
unlikely.

Now we explain the interaction between the axioms Σ1
� and Σ2

�. No extension of

a model of Σ2
� by a good pair is in K̂�. This will yield the axiomatization of the

theory of the d-closed structures and thus of the generic (by Proposition 5.16). We
proved Lemma 5.10 without assuming D ≤ F (given by a type), precisely so we
could quantifier over a definable set � in equation (3) in the proof of Lemma 5.18.

Lemma 5.18. The family of first-order sentences Σ� (Definition 5.6) defines the
class of d-closed models.

Proof. We use the notation of Lemma 5.10. For M ∈ K̂�, we say M ⊕D E is
bad if for some good pair (B,C ) with BC ⊆ DE, �M⊕DE(B,C ) > �(B,C ).

We first define for each good pair (D,E) the formula�(D,E) described in Definition
5.6. For each duo of good pairs (D,E) and (B,C ) with BC ⊆ DE define the
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formula ϕ(D,E),(B,C ) as follows. Fix a model M0 ∈ K̂�; choose a copy of D ⊆M0

such thatM0 ⊕D E is bad witnessed by (B,C ). If |C | > 1 choose by Lemma 5.10.B
C1, ... , Cr (where r = �(B,C ) + 1) that are disjoint copies of C over B contained
inM0 ⊕D E and let s enumerateH = (

⋃
i Ci) – D) ∩M0. Let �(v, x) be a possible

atomic diagram ofH ∪D ⊆M , where lg(v) = lg(s), for pairs (M0, D) asM0 varies
over K̂� and D varies over possible embeddings intoM0. Let

ϕ(D,E),(B,C ) :
∨

i

(∃v)�i(v, x), (2)

where the �i are the finitely many possible such diagrams �. We have chosen
�(D,E)(B,C ) so that for any M ∈ K̂� if M ⊕D E is a bad extension witnessed by
(B,C ) thenM |= �(D,E)(B,C ).

Let �(x) be the atomic diagram of D. Now we define Σ2
� and Σ3

� to assert a) each
line has cardinality �(α) + 2 and b) each of the following (countable) collection of
sentences (for all good pairs (D,E)), where �(x) is the atomic diagram of D.

�(D,E) : (∀x)[�(x) →
∨

BC⊆DE
ϕ(D,E),(B,C )(x)]. (3)

Now, ifM |= Σ� then M is d-closed. Since if not, there is an N ∈ K̂� such that
for some (D,E),M ⊕D E ⊆ N . If |E| = 1 then condition a) is violated.

SupposeM |= �(D,E) witnessed by (B,C ). If |C | = 1 condition a) is again violated
by Lemma 5.10.A. But, if |C | > 1 some �i from Equation 2 will be satisfied in M.
And, by Definition 3.7. 3, �(v, x) ∪ diagqf(E) |= diagqf(HE) where H is, as before,
the interpretation of v. This implies �M⊕DE(B,C ) ≥ �HE(B,C ) > �(B,C ) and we
finish. 

Recall (Definition 5.4) that a finite set X is d-independent when each x 	∈ cld(X –
{x}), that is, d (X ) > d (X – {x}) for each x ∈ X . It is then easy to establish the
first of the following assertions by induction and the others follow.

Lemma 5.19. LetM ∈ K̂� and let Y be d-independent in M. For every finiteX ⊆ Y
we have:

(i) d (X ) = |X |;
(ii) X ≤M , and so iclM (X ) = X ;

(iii) there are no R-relations among elements of X.

We follow Holland’s proof to show Σ� axiomatizes the complete theory of K�d .

Lemma 5.20. Moreover, Σ� is an axiomatization of the complete theory T� of the
class K�d .

Proof. By Lemma 5.18, it suffices to show K�d is κ-categorical for κ > ℵ0. This
follows by Lemmas 5.19 and 5.13 as each model is the algebraic closure of a basis.
(See Lemma 25 of [15] or the archive version of this article for details.) 

Having followed the outline of her proof, we have the analog to Holland’s result
[15] that the strongly minimal Hrushovski constructions are model complete.
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Remark 5.21. Since the axioms Σ� are universal-existential and T� is ℵ1-
categorical, it is model complete by Lindstroms’s ‘little theorem’: that 2-
axiomatizable theories that are categorical in some infinite power are model
complete [18].

Our theories T� uniformize the result that there are only finitely many finite line
lengths in any strongly minimal linear space (cf. Fact 2.7). We show in Corollary
5.22 using Lemma 4.10 that there are continuum-many strongly minimal theories
T� such that in each of them all lines have fixed length �(α) + 2.

Corollary 5.22. There are continuum-many � ∈ U (cf. Definition 5.2(1)) which
give distinct first-order theories of Steiner systems. That is, there is V ⊆ U such that
|V| = 2ℵ0 and � 	= � ∈ V implies that Th(G�) 	= Th(G�) (recall Notation 5.14).

Proof. For anyX ⊆ �, let �X assert that �(�k) (from the proof of Lemma 4.10)
is 3 if k ∈ X and 2 if not (recall that it must be at least 2). Then, if k ∈ X \ Y , then
T�X 	≡ T�Y (cf. Notation 5.14), since there are three extensions in the isomorphism
type �(�k) of some pairs {a, b} in models of T�X but not in models of T�Y . 

Lemma 5.23. IfM ∈ K�d , then for every X ⊆M , cld(X ) = aclM (X ). Thus, T� is
strongly minimal.

Proof. We first show that forM ∈ K̂�, cld(X ) = aclM (X ). If Y is a finite subset
of M, 	(Y/X ) = 0, Y is a union of a finite chain with length k < � of extensions
by good pairs (Bi , Ci); each is realized by at most �(Bi , Ci) copies, and so:

|Y | ≤
∑

i<k

�(Bi , Ci) × |Ci |.

Thus, Y ⊆ aclM (X ).
Concerning the other containment, let M ∈ K�d , a ∈M and X ⊆� M . If

d (a/X ) > 0 andX0 is a maximal d-independent subset of X, thenX0 ∪ {a} extends
to a d-basis for M. Furthermore, a detailed proof of Lemma 5.20 shows that any
permutation of a d-basis extends to an automorphism of M. Thus, if a /∈ cld(X ),
then a /∈ aclM (X ). Hence, cld(X ) = aclM (X ), as desired.

Strong minimality follows, since for any finite A there is a unique nonalgebraic
1-type over A, namely the type p of a point a such that: (i) a is not on any line based
in A (and so 	(a/A) = 1); (ii) Aa is strong in any model. Clause (ii) is given by the
collection of universal sentences forbidding any B ⊇ Aa with 	(B) < 	(Aa). Thus,
in G� we have that d (a/A) = 1 for any a realizing p. Hence, any two realizations a
and b of p are such that Aa ≤ G� and Ab ≤ G�, and thus they are automorphic by
the genericity of G� (cf. Conclusion 5.13). Hence, p is a complete type. 

Notation 5.24. Let F be the Fano plane and F be the set of � ∈ U such that:

�(∅, F ) > 0.

Lemma 5.25 shows that for any � ∈ F and M |= T�, we have that aclM (∅) is
infinite; by Ryll-Nardjewski, T� is not ℵ0-categorical. In view of Lemma 5.23, the
countable models correspond exactly to the models of dimension α for α ≤ ℵ0.
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Lemma 5.25. Let � ∈ F . Neither the generic, G�, nor any model of T� is locally
finite with respect to cld = acl (cf. Lemma 5.23). Thus, T� is not ℵ0-categorical and
has ℵ0 countable models. Since the generic has infinite dimension, it is �-saturated.

Proof. We show that the algebraic closure of the empty set is infinite. Construct
a sequence (Ai : i < �) in G� by letting A0 to be the Fano plane, which (Example
4.3) is easily seen to be 0- primitive over the empty set. Notice that there can only
be finitely many realizations of the Fano plane in any model of T�, and so A0 is
in the algebraic closure of the empty set. Now let a0, b0, c0 be the vertices of the
triangle in the standard picture of the Fano plane. Choose a1, b1, c1 disjoint fromA0

so that (a0, a1, c1), (b0, b1, c1), and (a1, b1, c0) are triples of collinear points. Then,
letting A1 = {a0, b0, c0, a1, b1, c1}, it is to see that A1 is a primitive extension of
A0. Now build A2 by taking a1, b1, c1 as the base and adding a2, b2, c2 as in the
construction of A1 from A0; and then iterate. Each stage (and hence the union) can
be strongly embedded as A′

i in the generic. But then 	(A′
i+1/A

′
i) = d (Ai+1/Ai) = 0.

By transitivity, with A� denoting
⋃
i<� Ai , we have that for any finite X ⊆ A� ,

d (X/A0) = 0. Since cld = acl (Lemma 5.23), we finish. We constructed this sequence
in the algebraic closure of the empty set, and so it occurs in the prime model of T.
Thus, aclM (∅) is infinite for any model M of T�. By Ryll-Nardjewski, T� is not
ℵ0-categorical. In view of Lemma 5.23, as in any strongly minimal theory, these
models correspond exactly to models of dimension α for α ≤ ℵ0. 

We modify [16, Lemma 15] to show our examples have the characteristic properties
of the ab initio Hrushovski construction.

Conclusion 5.26. For any � ∈ U , the acl-pregeometry associated with T� is flat
(Definition 3.5). Thus, we have:

(1) T� does not interpret an infinite group and T is CM-trivial.
(2) If � ∈ F , T� admits weak elimination of imaginaries.

Proof. FixM |= T�. By Lemma 5.23, acl is the same as cld . We use the notation
of Definition 3.5 and start with acl-closed subsets Ei ≤M of finite dimension for
i in the finite set I. For flatness, for each ∅ 	= S ⊆ I , let ES =

⋂
i∈S Ei ; let ĚS ,

be a finite base for ES . That is, ĚS ≤ ES ≤M and cld (ĚS) = ES . For i ∈ I , let
Fi = icl(

⋃
i∈S⊆I ĚS). Then, as usual, forS ⊆ I letFS =

⋂
i∈S Fi andF∅ =

⋃
i∈I Fi .

Now we have the following

ES =
⋂

i∈S
Ei = acl(ĚS) = acl(FS).

The first two equalities are immediate from the definitions. ĚS is clearly a subset
of FS since i ∈ S implies ĚS ⊆ Fi . Finally examination of the definitions of Fi and
FS shows ES ⊆ acl(FS) for each ∅ 	= S ⊆ I . Since 	(FS) = d (FS) and 	 is flat by
Lemma 3.7.1 applied to the Fi and FS , lifting by d (FS) = d (ES), we have that d is
flat. Finally, (1) follows as in [16], and (2) from [23, Lemma 1.6]. 

We place our work in the context of a number of papers that use model
theoretic techniques and, in at least one case, the Hrushovski construction, to
investigate linear spaces and Steiner systems. Our approach differs by invoking
a predimension function inspired by Mason’s α-function, and focusing on the
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combinatorial consequences of strong minimality by investigating the family of
similar (elementarily equivalent) structures of arbitrary cardinality arising from
a particular strongly minimal k-Steiner system. In contrast, Evans [8] constructs
Steiner triple systems using a variant of the Hrushovski construction without
discussing their stability class. Between these extremes, Hytinnen and Paolini [17]
show that the Hall construction of free projective planes yields a strictly stable
theory. Conant and Kruckman [7] find an existentially closed projective plane and
prove it is NSOP1 but not simple. Their construction involves a generalized Fraı̈ssé
construction for the existential completeness as well as the Hall construction.

Remark 5.27. We compare our examples with the construction by Barbina
and Casanovas in [4] of structures existentially closed for the class of all Steiner
quasigroups. At the opposite end of the stability spectra from our result, Barbina
and Casanovas [4] find existentially closed Steiner triple systems that are TP2 and
NSOP1 by a traditional Fraı̈ssé construction. Note that Steiner quasigroups are the
quasigroups associated with Steiner triple systems in [4].

(i) Their generic, denoted Msq, has continuum many types over the empty set,
satisfies TP2 and NSOP1, and it is locally finite (but not uniformly locally
finite) as a quasigroup. If � ∈ U , then it is obvious that T� fails the first three
of these properties since it is strongly minimal. Furthermore, we showed in
Lemma 5.25 that our examples with � ∈ F are not locally finite for acl = cld.
Strikingly, in Msq, the definable closure is equal to the algebraic closure
(dcl = acl). In [2] we show that this equality fails drastically in any T� with
� ∈ U .

(ii) The structure Msq is the prime model of its theory; our G� is saturated. While
the example in [4] is quantifier eliminable, ours is only model complete. The
first is the model completion of the universal theory of Steiner quasigroups.
Since each M ∈ K� can be extended to N ∈ K�d , the second is the model
completion of the universal theory of K̂� for the relevant �. Quantifier
elimination does not follow since, despite the limited amalgamation in
Conclusion 5.13, K̂� does not have amalgamation.

Thus, there are four techniques that construct infinite linear spaces in a range
of stability classes: taking all extensions in a given universal class but insisting on
finite amalgamation in a standard Fraı̈ssé construction [4], building one chain of
models carefully [17], combining these two methods but allowing the amalgam of
finite structures to be countable [7], and, as here, restricting the amalgamation class
to guarantee a well-behaved acl-geometry.
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