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Abstract

An extended model of order statistics based on possibly different distributions is
introduced and analyzed. In the interpretation of successive failure times in a k-out-
of-n system, say, until each failure, the time periods under previous (increasing) loads
exerted on the remaining components are recorded. Then the lifetime distribution of
the system depends on the complete failure scheme. Thus, order statistics with memory
provide an alternative to the use of sequential order statistics, which form a Markov chain.
The quantities as well as their spacings, the interoccurrence times, can be compared by
means of stochastic ordering.
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1. Introduction

Order statistics (OSs) from independent and identically distributed (i.i.d.) random variables
are applied, e.g. to model successive failures of components in a lifetime experiment and the
lifetime of a k-out-of-n system. In the modeling with identical distributions it is assumed
that there is no influence of failed components on the underlying lifetime distribution of the
remaining ones. In real situations, it may be reasonable to assume that components affect
subsequent failures due to an increased load or stress exerted on the remaining components.
Sequential order statistics (SOSs) have been introduced as a general model in this situation and
are based on possibly different cumulative distribution functions (CDFs) F1, F2, . . . (see Kamps
(1995)); for statistical inference with SOSs, stochastic orderings and further developments, we
refer the reader to, e.g. Bedbur et al. (2015), Burkschat (2009), Burkschat and Navarro (2013),
Beutner (2010), Cramer and Kamps (2001), Khaledi and Kochar (2005), Vuong et al. (2013),
and Xie and Zhuang (2011), or to Deshpande et al. (2010) in a load sharing context.

The model of SOSs can be briefly explained as follows. Assume that a k-out-of-n system
starts working with its n components, the lifetimes of which are described by i.i.d. random
variables with CDF F1. Hence, the time of the first component failure, X

(1)∗ , is defined as
X

(1)∗ := min{Z(1)
1 , . . . , Z

(1)
n }, with Z

(1)
1 , . . . , Z

(1)
n

i.i.d.∼ F1. Then, after the first component
failure time, x

(1)∗ say, it is assumed that the lifetime CDF of the intact n − 1 components
changes from F1 to F2 truncated at the observed failure time x

(1)∗ . The time of the second
component failure, X

(2)∗ , is described by

X(2)∗ := min{Z(2)
1 , . . . , Z

(2)
n−1}, (1)
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with Z
(2)
1 , . . . , Z

(2)
n−1

i.i.d.∼ (F2(·) − F2(x
(1)∗ ))/(1 − F2(x

(1)∗ )). Analogously, for 3 ≤ r ≤ n and

Z
(r)
1 , . . . , Z

(r)
n−r+1

i.i.d.∼ (Fr(·) − Fr(x
(r−1)∗ ))/(1 − Fr(x

(r−1)∗ )), where x
(r−1)∗ is the previously

observed failure time, X(r)∗ is the minimum of the n− r +1 remaining components in a system,
i.e.

X(r)∗ := min{Z(r)
1 , . . . , Z

(r)
n−r+1}. (2)

Based on a formal definition and provided that the CDFs F1, . . . , Fn with F−1
1 (1) ≤ · · · ≤

F−1
n (1) are absolutely continuous with respective probability density functions (PDFs) f1, . . . ,

fn, the joint density of the first r SOSs, X
(1)∗ , . . . , X

(r)∗ , is given by

f (X
(1)∗ ,...,X

(r)∗ )(x1, . . . , xr ) = n!
(n − r)!

r∏
i=1

(
1 − Fi(xi)

1 − Fi(xi−1)

)n−i
fi(xi)

1 − Fi(xi−1)
,

where r ≤ n, x1 < · · · < xr , and x0 = −∞ (see, e.g. Kamps (1995)). The particular setting
F1 = · · · = Fr leads to the joint density of common OSs from F1 (see, e.g. David and Nagaraja
(2003)). Moreover, as known from OSs, SOSs form a Markov chain as well. A common choice
in SOSs is

Fj = 1 − (1 − F)αj , αj > 0, 1 ≤ j ≤ n, (3)

where F is an absolutely continuous CDF with PDF f . In this context, F is called the baseline
CDF and the resulting model of SOSs is known as SOSs with conditionally proportional hazard
rates. Bedbur et al. (2012) pointed out that SOSs with conditional proportional hazard rates
form an exponential family in the model parameters α1, . . . , αr . In the following, the time
between the (j − 1)th and the j th component failure is called level j , 1 ≤ j ≤ n.

As an alternative model to SOSs, we introduce the model of order statistics with memory
(OSs-M), which keep track of the stress of each component until each failure, and, hence, does
not lead to a Markov chain, in general. In the motivation and introduction of the OSs-M model,
we restrict ourselves to the situation of failure time data. In its formal definition, the restriction
on distributions with support on the positive real line is not necessary. It turns out that the OSs-
M model includes, e.g. common order statistics, as well as SOSs based on different underlying
exponential distributions as particular cases.

2. Order statistics with memory

In the following motivation of the OSs-M model, it is assumed that Fr is absolutely contin-
uous, and F−1

r (0+) ≥ 0, 1 ≤ r ≤ n. In the construction of X
(r)∗ , 2 ≤ r ≤ n, in (1) and (2),

the random variables Z
(r)
1 , . . . , Z

(r)
n−r+1 conditioned on X

(r−1)∗ = x
(r−1)∗ are distributed as

Fr(·) − Fr(x
(r−1)∗ )

1 − Fr(x
(r−1)∗ )

,

which is Fr left truncated at x
(r−1)∗ . The conditioning random variable X

(r−1)∗ depends on pos-
sibly different loads previously exerted on the system components, described by F1, . . . , Fr−1.
Hence, in the SOSs model, it is implicitly assumed that the remaining components have lived,
so far, under the stress of level r described by Fr , whereas, actually, they have lived for time
x

(1)∗ under the stress of level 1 and for the interoccurrence time x
(j)∗ − x

(j−1)∗ under the stress
of level j , 2 ≤ j ≤ r − 1. A possible way to incorporate this information into the model and,
therefore, to model the history of the process in detail, is to truncate the underlying CDF at the
quantile with respect to the amount of probability that has already been used. As illustrated in
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Figure 1: Truncation in OSs-M and SOSs models.

Figure 1, it is assumed that the first level is exactly as before, but instead of truncating F2 at
y(1) = x

(1)∗ as in the case of SOSs, it is truncated at F−1
2 (F1(y

(1))). That is, the probability
F1(y

(1)) is determined and F2 is truncated at its F1(y
(1))-quantile.

Hence, the time spent on level 1 is modeled by the random variable X̃(1) := Ỹ (1) := Y (1) :=
X

(1)∗ and the time Ỹ (2) spent on level 2, is modeled via

Y (2) := min{Z(2)
1 , . . . , Z

(2)
n−1},

with

Z
(2)
1 , . . . , Z

(2)
n−1

i.i.d.∼ F2(·) − F2(F
−1
2 (F1(y

(1))))

1 − F2(F
−1
2 (F1(y(1))))

= F2(·) − F1(y
(1))

1 − F1(y(1))
,

and F1(y
(1)) < F2(·) < 1 as Ỹ (2) := Y (2) − F−1

2 (F1(Y
(1))). Hence, the time period until the

second component failure is given by

X̃(2) := Ỹ (1) + Ỹ (2).

Analogously, the time Ỹ (3) spent on the third level is determined by

Ỹ (3) := Y (3) − F−1
3 (F2(Y

(2))),

with
Y (3) := min{Z(3)

1 , . . . , Z
(3)
n−2},

where Z
(3)
1 , . . . , Z

(3)
n−2

i.i.d.∼ (F3(·) − F2(y
(2)))/(1 − F2(y

(2))) and F2(y
(2)) < F3(·) < 1.

Therefore, the failure time of the third component is given by

X̃(3) := Ỹ (1) + Ỹ (2) + Ỹ (3).

So, in general, the time Ỹ (r) spent on level r , is modeled as

Ỹ (r) := Y (r) − F−1
r (Fr−1(Y

(r−1))),
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Figure 2: Visualization of the first three levels of the OSs-M model.

with
Y (r) := min{Z(r)

1 , . . . , Z
(r)
n−r+1},

where

Z
(r)
1 , . . . , Z

(r)
n−r+1

i.i.d.∼ Fr(·) − Fr−1(y
(r−1))

1 − Fr−1(y(r−1))
and Fr−1(y

(r−1)) < Fr(·) < 1, (4)

and the failure time of the rth component is X̃(r) := ∑r
i=1 Ỹ (i), where, as a consequence of

a sound definition (see Definitions 1 and 2), Ỹ (i) ≥ 0 almost surely (a.s.), 1 ≤ i ≤ n. The
value Fr(Y

(r)) is the sum of the amounts of probability that have been used on the first r levels,
1 ≤ r ≤ n. A visualization is given in Figure 2.

In Definition 1, the random variables Y (1), . . . , Y (n) and Ỹ (1), . . . , Ỹ (r) are formally intro-
duced.

Definition 1. Let, for 1 ≤ r ≤ n, Fr be an arbitrary CDF, and let A
(r)
j , 1 ≤ r ≤ n, 1 ≤ j ≤

n − r + 1, be independent random variables with A
(r)
j ∼ Fr , 1 ≤ j ≤ n − r + 1. The random

variables Y (1), . . . , Y (n) are defined by

Y (1) := min{Z(1)
1 , . . . , Z(1)

n },

where Z
(1)
j := A

(1)
j , 1 ≤ j ≤ n, and, for 2 ≤ r ≤ n,

Y (r) := min{Z(r)
1 , . . . , Z

(r)
n−r+1},

where Z
(r)
j := F−1

r {Fr(A
(r)
j )[1 − Fr−1(Y

(r−1))] + Fr−1(Y
(r−1))}, 1 ≤ j ≤ n − r + 1. More-

over, let Ỹ 1 = Y (1) and Ỹ (r) = Y (r) − F−1
r (Fr−1(Y

(r−1))), 2 ≤ r ≤ n.

For continuous distribution functions F1, . . . , Fn, the random variables Y (1), . . . , Y (n) of
Definition 1 reflect the behavior of the respective quantities in the above motivational introduc-
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tion, since

P(Z
(r)
j ≤ x | Y (r−1) = y(r−1)) = P

(
Fr(A

(r)
j )︸ ︷︷ ︸

∼U[0,1]

≤ Fr(x) − Fr−1(y
(r−1))

1 − Fr−1(y(r−1))

)

=
⎧⎨
⎩

Fr(x) − Fr−1(y
(r−1))

1 − Fr−1(y(r−1))
, x ≥ y(r−1),

0, otherwise,

1 ≤ j ≤ n − r + 1, and Z
(r)
1 , . . . , Z

(r)
n−r+1 given Y (r−1) = y(r−1) are independent by construc-

tion, 1 ≤ r ≤ n (see (4)).
Some properties of the random variables Y (1), . . . , Y (n) introduced in Definition 1 are listed

in the following remark.

Remark 1. Let the distribution functions F1, . . . , Fn be continuous. We have the follow-
ing.

(i) Since Fr(A
(r)
j ) ∼ U[0, 1], 1 ≤ j ≤ n − r + 1, Y (r) can be introduced via a common

uniform minimum, i.e.

Y (r) = min{Z(r)
1 , . . . , Z

(r)
n−r+1}

= F−1
r {U1,n−r+1[1 − Fr−1(Y

(r−1))] + Fr−1(Y
(r−1))}

= F−1
r [1 − (1 − U1,n−r+1)(1 − Fr−1(Y

(r−1)))]
= F−1

r [1 − Vr(1 − Fr−1(Y
(r−1)))] with Vr = 1 − U1, n−r+1 ∼ Un−r+1, n−r+1,

where U1,n−r+1 is the minimum and Un−r+1, n−r+1 is the maximum of n − r + 1 i.i.d.
uniform random variables (see David and Nagaraja (2003)) and, thus, Vr follows a power
distribution with parameter n − r + 1, i.e. P(Vr ≤ r) = vn−r+1, v ∈ (0, 1), 1 ≤ r ≤ n.
A similar property is valid for SOSs (see Cramer and Kamps (2003)).

(ii) From (i), we find that

Fr(Y
(r)) = 1 − Vr(1 − Fr−1(Y

(r−1)))

and, thus,
Fr−1(Y

(r−1)) ≤ Fr(Y
(r)) a.s.

It should be noted that Y (r) − Y (r−1) may be positive or negative (see Figure 2). From
the latter inequality, we conclude that

Ỹ (r) = Y (r) − F−1
r (Fr−1(Y

(r−1))) ≥ 0 a.s.

(iii) With V1, . . . , Vn independent and Vi ∼ power(n− i +1), 1 ≤ i ≤ n, from (i), we obtain

Y (r) = F−1
r (1 − Vr(1 − Fr−1(F

−1
r−1(1 − Vr−1(1 − Fr−2(Y

(r−2)))))))

= F−1
r (1 − VrVr−1(1 − Fr−2(Y

(r−2))))

...

= F−1
r

(
1 −

r∏
i=1

Vi

)
, 1 ≤ r ≤ n,
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as well as the joint representation

(Y (1), . . . , Y (n))
d=

(
F−1

1 (1 − V1), . . . , F
−1
n

(
1 −

n∏
i=1

Vi

))
,

where ‘
d=’ denotes equality in distribution.

(iv) Since 1 − ∏j
i=1 Vi

d= Uj,n, the j th common OS of n uniform random variables, it
follows from (iii) that Y (j) d= F−1

j (Uj,n), i.e. Y (j) d= X
(j)
j,n, where X

(j)
j,n is the j th com-

mon OS based on n i.i.d. random variables from Fj , 1 ≤ j ≤ r . Therefore, if
U1,n, . . . , Ur,n denote the first r common OSs based on U1, . . . , Un

i.i.d.∼ U[0, 1], then
(Y (1), . . . , Y (r))

d=(F−1
1 (U1,n), . . . , F

−1
r (Ur,n)), 1 ≤ r ≤ n.

(v) The random variables Y (1), . . . , Y (n) form a Markov chain with transition probabilities

P(Y (r) > t | Y (r−1) = yr−1)
(i)= P

(
Vr ≤ 1 − Fr(t)

1 − Fr−1(yr−1)

)

=
(

1 − Fr(t)

1 − Fr−1(yr−1)

)n−r+1

,

Fr−1(yr−1) < Fr(t) and Fr−1(yr−1) < 1, 2 ≤ r ≤ n.

From the above assertions, the joint PDF of Y (1), . . . , Y (r) can be derived, which may be
done by induction.

Lemma 1. Let F1, . . . , Fr be absolutely continuous with PDFs f1, . . . , fr . Then the PDF of
the vector (Y (1), . . . , Y (r)) is given by

f (Y (1),...,Y (r))(t1, . . . , tr )

=

⎧⎪⎨
⎪⎩

n!
(n − r)! {1 − Fr(tr )}n−r

r∏
j=1

fj (tj ), 0 < F1(t1) < · · · < Fr(tr ) < 1,

0, otherwise.

It should be noted that in the OSs-M model, in contrast to the SOSs, the condition F−1
1 (1) ≤

· · · ≤ F−1
n (1) is not needed, since the truncation method is based on probabilities. Hence, if it

is assumed that, on higher levels, the stress imposed on components increases, then this may be
modeled by using CDFs whose right support end points are in decreasing order, i.e. F−1

1 (1) >

· · · > F−1
n (1), which indicates that under a lower stress level the components have a chance to

reach an age that cannot be reached under a high load.
Based on the random variables Y (1), . . . , Y (n), order statistics with memory are introduced

in Definition 2.

Definition 2. Let the notations of Definition 1 be given, and let the transformation T be
defined by

T (t1, . . . , tn) =
(

t1, t1 + t2 − F−1
2 (F1(t1)), . . . , tn +

n−1∑
i=1

(ti − F−1
i+1(Fi(ti)))

)
,

0 < F1(t1) < · · · < Fn(tn) < 1. Then, (X̃(1), . . . , X̃(n)) = T (Y (1), . . . , Y (n)) is called the
vector of order statistics with memory (OSs-M), and X̃(i) is the ith OS-M, 1 ≤ i ≤ n.
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For 1 ≤ i ≤ r , X̃(i) − X̃(i−1) is called the ith spacing of OSs-M, with X̃(0) = 0 by
convention.

Common OSs based on some distribution function F are seen to be a particular case of
OSs-M by choosing F1 = · · · = Fn = F with T being the identity mapping.

OSs-M could also be introduced by means of Ỹ (1), . . . , Ỹ (n), since

T (Y (1), . . . , Y (n)) =
(

Ỹ (1), . . . ,

n∑
i=1

Ỹ (i)

)
;

hence, for the rth spacing, we find that X̃(r) − X̃(r−1) = Ỹ (r), 1 ≤ r ≤ n.
In the particular situation of ordered distribution functions, i.e. Fi ≤ Fi+1 for all 1 ≤ i ≤

n − 1, we find that ti − F−1
i+1(Fi(ti)) ≥ 0, 1 ≤ i ≤ n − 1, such that transformation T describes

a dilation of the argument vector (t1, . . . , tn).

Remark 2. (i) From Definition 2 and Remark 1, we have

X̃(r) = Y (r) +
r−1∑
i=1

(Y (i) − F−1
i+1(Fi(Y

(i))))

= Y (r) − F−1
r (Fr−1(Y

(r−1))) + X̃(r−1), 2 ≤ r ≤ n.

(ii) For F1, . . . , Fn being continuous, (i) leads to

X̃(r) − X̃(r−1)(= Ỹ (r)) = F−1
r (Ur,n) − F−1

r (Ur−1,n), 2 ≤ r ≤ n.

Hence, the rth spacing of OSs-M coincides with the common rth spacing of the OSs from
distribution function Fr, 2 ≤ r ≤ n.

Moreover, as a sum of spacings, we derive a representation of the rth OS-M by means of
uniform common OSs, U1,n ≤ · · · ≤ Un,n, i.e.

X̃(r) = X̃(1) +
r∑

i=2

(X̃(i) − X̃(i−1))

= F−1
1 (U1,n) +

r∑
i=2

(F−1
i (Ui,n) − F−1

i (Ui−1,n)), 2 ≤ r ≤ n.

For the derivation of the PDFs of (Ỹ (1), . . . , Ỹ (r)) and of the vector (X̃(1), . . . , X̃(r)) of the
first r OSs-M, 1 ≤ r ≤ n, we consider the mappings T and G, where G is given by

G(t1, . . . , tr ) = (t1, t2 − F−1
2 (F1(t1)), . . . , tr − F−1

r (Fr−1(tr−1)))

leading to
G(Y (1), . . . , Y (r)) = (Ỹ (1), . . . , Ỹ (r)), 1 ≤ r ≤ n.

The inverse mappings G−1 and T −1 are given by

G−1(y1, . . . , yr ) =
(

y1︸︷︷︸
=g1

, y2 + F−1
2 (F1(g1))︸ ︷︷ ︸
=g2...

, . . . , yr + F−1
r (Fr−1(gr−1))

)
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and

T −1(x1, . . . , xr ) =
(

x1︸︷︷︸
=t1

, x2 − x1 + F−1
2 (F1(t1))︸ ︷︷ ︸

=t2...

, . . . , xr −xr−1 +F−1
r (Fr−1(tr−1))

)
. (5)

Hence, the functional determinant is equal to 1 in both cases and we obtain the following
representations.

Theorem 1. Let F1, . . . , Fr be absolutely continuous. Then the PDF of the vector (Ỹ (1), . . . ,

Ỹ (r)) is given by

f (Ỹ (1),...,Ỹ (r))(y1, . . . , yr ) = f (Y (1),...,Y (r))(G−1(y1, . . . , yr )),

and the PDF of (X̃(1), . . . , X̃(r)) is given by

f (X̃(1),...,X̃(r))(x1, . . . , xr ) = f (Y (1),...,Y (r))(T −1(x1, . . . , xr )),

where the support M of f (Y (1),...,Y (r)), given by

M = {(t1, . . . , tr ) : 0 < F1(t1) < · · · < Fr(tr ) < 1},
is transformed to

T (M) =
{
(x1, . . . , xr ) : 0 < F1(x1) < F2

(
x2 − x1 + F−1

2 (F1(t1))︸ ︷︷ ︸
=t2...

)
< · · ·

< Fr(xr − xr−1 + F−1
r (Fr−1(tr−1))) < 1

}

= {(x1, . . . , xr ) : F−1
1 (0) < x1 < F−1

1 (1), xj−1 < xj

< xj−1 − F−1
j (Fj−1(tj−1)) + F−1

j (1), 2 ≤ j ≤ r}. (6)

Hence, the support is ordered, but, unless F−1
1 (1) = · · · = F−1

r (1) = ∞, the upper bound
of each xi depends on the previous observation xj−1, on the Fj−1(tj−1)-quantile of Fj , and on
the right endpoint of the support of Fj . Note that F−1

j (1) − F−1
j (Fj−1(tj−1)) is the maximum

time that can be spent on level j given tj−1 has occurred.
By considering the conditional density of X̃(r) given X̃(1), . . . , X̃(r−1), we obtain

f X̃(r) | X̃(1),...,X̃(r−1)

(xr | x1, . . . , xr−1)

= f (X̃(1),...,X̃(r))(x1, . . . , xr )

f (X̃(1),...,X̃(r−1))(x1, . . . , xr−1)

= (n − r + 1)

(
1 − Fr(T

−1
r (x1, . . . , xr ))

1 − Fr−1(T
−1
r−1(x1, . . . , xr ))

)n−r+1
fr(T

−1
r (x1, . . . , xr ))

1 − Fr(T
−1
r (x1, . . . , xr ))

,

and, hence, that the OSs-M model does not fulfill the Markov property, in general. Nevertheless,
conditioning the rth OS-M X̃(r) on the previous one and Y (r−1) as well, gives some insight into
the structure of the model.
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Theorem 2. Let the distribution functions F1, . . . , Fn be continuous. Then

P(X̃(r) > xr | X̃(r−1) = xr−1, Y (r−1) = yr−1)

=
(

1 − Fr(xr − xr−1 + F−1
r (Fr−1(yr−1)))

1 − Fr−1(yr−1)

)n−r+1

, xr−1 < xr, Fr−1(yr−1) < 1,

and, furthermore, the sequence (X̃(r), Y (r))2≤r≤n forms a Markov chain.

Proof. For the conditional survival function, we obtain

P(X̃(r) > xr | X̃(r−1) = xr−1, Y (r−1) = yr−1)

= P(Y (r) + X̃(r−1) − F−1
r (Fr−1(Y

(r−1)) > xr | X̃(r−1) = xr−1, Y (r−1) = yr−1)

= P(F−1
r (1 − Vr(1 − Fr−1(yr−1))) > xr − xr−1 + F−1

r (Fr−1(yr−1)))

= P

(
Vr <

1 − Fr(xr − xr−1 + F−1
r (Fr−1(yr−1)))

1 − Fr−1(yr−1)

)

=
(

1 − Fr(xr − xr−1 + F−1
r (Fr−1(yr−1)))

1 − Fr−1(yr−1)

)n−r+1

.

Moreover, we derive

P(X̃(r) ≤ xr , Y
(r) ≤ yr | X̃(r−1) = xr−1, Y (r−1) = yr−1)

= P

(
Vr ≥ 1 − Fr(xr − xr−1 + F−1

r (Fr−1(yr−1)))

1 − Fr−1(yr−1)
,

F−1
r (1 − Vr(1 − Fr−1(yr−1))) ≤ yr

)

= P

(
Vr ≥ 1 − Fr(xr − xr−1 + F−1

r (Fr−1(yr−1)))

1 − Fr−1(yr−1)
, Vr ≥ 1 − Fr(yr )

1 − Fr−1(yr−1)

)
,

which completes the proof. �
Let F1, . . . , Fn be chosen as in (3), i.e. with conditional proportional hazard rates, then,

in general, (5) and (6) are not simplified, since F−1
j (Fj−1(tj−1)) does not admit a favorable

expression, usually. However, e.g. scale families of distributions or underlying Weibull distri-
butions lead to explicit inverses of T as well as to simple transformed supports T (M).

Corollary 1. (i) Let F be some absolutely continuous and strictly increasing distribution
function on its support with PDF f , and let the model distributions be chosen as

Fi(x) = F(αix), αi > 0, 1 ≤ i ≤ n, (7)

with F−1
i (y) = F−1(y)/αi and F−1

i+1(Fi(x)) = (αi/αi+1)x. Then the joint density function of
Y (1), . . . , Y (r) is given by

f (Y (1),...,Y (r))(t1, . . . , tr ) = n!
(n − r)! (1 − F(αr tr ))

n−r

( r∏
j=1

f (αj tj )

) r∏
j=1

αj ,

F−1(0) < α1t1 < · · · < αrtr < F−1(1), (8)
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and transformation T by

T (t1, . . . , tr ) =
(

t1, t2 +
(

1 − α1

α2

)
t1,

t3 +
(

1 − α2

α3

)
t2 +

(
1 − α1

α2

)
t1, . . . , tr +

r−1∑
i=1

(
1 − αi

αi+1

)
ti

)
. (9)

Hence, the inverse of T takes the explicit form

T −1(x1, . . . , xr ) =
(

x1, x2 + α1 − α2

α2
x1,

x3 + α2 − α3

α3
x2 + α1 − α2

α3
x1, . . . , xr +

r−1∑
i=1

αi − αi+1

αr

xi

)
, (10)

and, thus, the density of (X̃(1), . . . , X̃(r)) is given by

f (X̃(1),...,X̃(r))(x1, . . . , xr )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n!
(n − r)!

( r∏
j=1

αj

)(
1 − F(αrxr +

r−1∑
i=1

(αi − αi+1)xi)

)n−r

×
( r∏

j=1

f (αjxj +
j−1∑
i=1

(αi − αi+1)xi)

)
, (x1, . . . , xr ) ∈ T (M),

0, otherwise,

where

T (M) =
{
(x1, . . . , xr ) : F−1(0)

α1
< x1 <

F−1(1)

α1
,

xj−1 < xj <
F−1(1)

αj

+
j−1∑
i=1

αi+1 − αi

αj

xi, 2 ≤ j ≤ r

}
.

(ii) As a special case of (i), let F1, . . . , Fr be Weibull distribution functions with Fi(x) =
1−exp{−γix

β}, x > 0, γi > 0, 1 ≤ i ≤ r , and some β > 0. Then, with F(x) = 1−exp{−xβ}
and αi := γ

1/β
i , we have Fi(x) = F(αix), 1 ≤ i ≤ r , and

T (M) = {(x1, . . . , xr ) : 0 < x1 < · · · < xr}.

In Example 1, two particular cases are discussed. In the exponential case it turns out that
SOSs with proportional hazard rates and an exponential baseline distribution coincide with
OSs-M. Hence, as usual, there is no memory when modeling with exponential distributions.

Example 1. (i) (Exponential distribution.) Assume that F(x) = 1 − exp(−x). Then, with
the notation of Corollary 1(i), Fi(x) = 1 − exp(−αix), x > 0, 1 ≤ i ≤ n. Note that both

https://doi.org/10.1017/jpr.2016.58 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.58


984 A. KATZUR AND U. KAMPS

approaches (3) and (7) lead to those Fi . Then, we obtain

f (Y (1),...,Y (r))(t1, . . . , tr )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n!
(n − r)! exp(−αr(n − r)tr )

×
(∏r

j=1 exp(−αj tj )

)

×
(∏r

j=1 αj

)
, 0 < exp(−αr tr ) < · · · < exp(−α1t1) < 1,

0, otherwise.

Consequently, with x = (x1, . . . , xr )
′, the PDF of (X̃(1), . . . , X̃(r)) is given by

f (X̃(1),...,X̃(r))(x)

= f (Y (1),...,Y (r))(T −1(x))

= n!
(n − r)!

( r∏
j=1

exp(−αj (n − j + 1)xj )

)( r∏
j=2

exp(αj (n − j + 1)xj−1)

)

×
( r∏

j=1

αj

)
1Rr

<
(x),

with R
r
< := {x ∈ R

r : 0 < x1 < · · · < xr}. This is exactly the same PDF that arises when the
model of SOSs with conditional proportional hazard rates, baseline CDF F(x) = 1−exp(−x),
and parameter vector (α1, . . . , αr) is chosen. Hence, the two models coincide for this specific
baseline distribution.

(ii) (Uniform distribution.) Assume now that, for α1, . . . , αn > 0, we choose

Fi(x) = xαi1(0,1/αi)(x) + 1[1/αi ,∞)(x), 1 ≤ i ≤ n, F (x) = x1(0,1)(x) + 1[1,∞)(x),

where 1(a,b)(x) is the indicator function on the interval (a, b). Then, fi(x) = αi1(0,1/αi)(x).
Hence,

f (Y (1),...,Y (r))(t1, . . . , tr )

=

⎧⎪⎨
⎪⎩

n!
(n − r)! (1 − trαr )

n−r
r∏

j=1

αj , 0 < t1α1 < · · · < trαr < 1,

0, otherwise.

and the transformation T and its inverse are given by (9) and (10), respectively. Therefore, with
x = (x1, . . . , xr )

′,

f (X̃(1),...,X̃(r))(x) = f (Y (1),...,Y (r))(T −1(x))

= n!
(n − r)!

(
1 −

r∑
i=1

xiαi +
r−1∑
i=1

xiαi+1

)n−r( r∏
i=1

αi

)
1T (M)(x),
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where
x ∈ T (M)

=
{
(x1, . . . , xr ) : 0 < x1 <

1

α1
, xj−1 < xj <

1

αj

+
j−1∑
i=1

(
αi+1 − αi

αj

)
xi, 2 ≤ j ≤ r

}
.

In the two components’ r = 2 case, the region T (M) is specified by 0 < x1 < 1/α1 and
x1 < x2 < 1/α2 + (1 − α1/α2)x1. If α1 > α2 then, in terms of hazard rates in a failure time
experiment, the stress under level 1 exceeds the one under level 2. Then, the smaller the first
lifetime x1, the larger the upper bound of x2 (or of x2 − x1).

3. Comparisons of spacings

The construction of the OSs-M in Section 2 reflects that the complete procedure of failures
based on (different) continuous distribution functions F1, . . . , Fr is taken into account. Hence,
a comparison of interoccurrence times of failures within the models of OSs, OSs-M, and SOSs,
i.e. of spacings of the respective quantities, gives some insight into these models.

From Remark 2, we have

X̃(r) − X̃(r−1) = F−1
r (Ur,n) − F−1

r (Ur−1,n),

which is a spacing of common OSs based on Fr .
Thus, being defined by means of the same uniform OSs U1,n, . . . , Un,n from an i.i.d. sample

U1, . . . , Un ∼ U[0, 1], we obtain

X̃(r) − X̃(r−1) ≤ (≥)Xr,n − Xr−1,n (11)

with OSs Xi,n = F−1(Ui,n), 1 ≤ i ≤ n, based on the distribution function F , whenever Fr is
less (more) dispersed than F (in the sense of dispersive ordering of distribution functions; see,
e.g. Shaked and Shanthikumar (2007)).

Moreover, from

X̃(r) =
r∑

i=2

(X̃(i) − X̃(i−1)) + X̃(1), Xr,n =
r∑

i=2

(Xi,n − Xi−1,n) + X1,n,

with

Xi,n = F−1
1 (Ui,n), 1 ≤ i ≤ r, and X1,n = F−1

1 (U1,n) = Y (1) = X̃(1),

we conclude that
X̃(r) ≤ (≥)Xr,n, (12)

whenever F2, . . . , Fr are less (more) dispersed than F1 (in the weak sense, i.e. the distribution
functions may coincide).

When applied to a (n− r +1)-out-of-n system, Xr,n models the system lifetime, when there
is no change of the underlying distribution function F1, say, whereas modeling with X̃(r) takes
possibly different distribution functions F1, . . . , Fr into account.

As an extension of common OSs, SOSs serve as a model for describing, e.g. load sharing
systems or sequential k-out-of-n systems. As stated in Section 2, OSs-M keep track of the
history of failures with respect to different lifetime distributions, whereas SOSs form a Markov
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chain, and, thus, there is a restricted recording of failure history with respect to underlying
distributions.

In order to compare interoccurrence times of failures, we aim at comparing spacings of
OSs-M and of SOSs, where both are constructed via a set of independent random variables.

Remark 3. Let V1, . . . , Vn be independent, power function distributed random variables with
Vi ∼ power(n − i + 1) as in Remark 1. Let both models, OSs-M and SOSs, be based on
distribution functions F1, . . . , Fn given by Fr(x) = 1 − (1 − F(x))αr , αr > 0, 1 ≤ r ≤ n,
with some given continuous baseline distribution function F . Then (see Remarks 1 and 2, and
Cramer and Kamps (2003)), a simultaneous construction of spacings is obtained via

X̃(r) − X̃(r−1) = F−1
(

1 −
r∏

i=1

V
1/αr

i

)
− F−1

(
1 −

r−1∏
i=1

V
1/αr

i

)

and

X(r)∗ − X(r−1)∗ = F−1
(

1 −
r∏

i=1

V
1/αi

i

)
− F−1

(
1 −

r−1∏
i=1

V
1/αi

i

)
, r ≥ 2.

Moreover, X̃(1) = X
(1)∗ = F−1(1 − V

1/α1
1 ).

Theorem 3. Let the distribution function F be absolutely continuous, strictly increasing with
support contained in (0, ∞), and increasing failure rate (IFR) (decreasing failure rate (DFR)).

Let the rth spacings X̃(r) − X̃(r−1) of OSs-M and X
(r)∗ − X

(r−1)∗ of the SOSs be based on
F1, . . . , Fr with Fi(x) = 1 − (1 − F(x))αi , αi > 0, 1 ≤ i ≤ r , and constructed by means of
the same random variables V1, . . . , Vr as in Remark 3. Then we have the following.

(i) If αr = max{α1, . . . , αr} then X̃(r) − X̃(r−1) ≥ (≤)X
(r)∗ − X

(r−1)∗ , and

(ii) if αr = min{α1, . . . , αr} then X̃(r) − X̃(r−1) ≤ (≥)X
(r)∗ − X

(r−1)∗ .

Proof. By utilizing the construction as in Remarks 1 and 2, and with
∏r−1

i=1V
1/αr

i = C and∏r−1
i=1V

1/αi

i = B, say, we have

X̃(r) − X̃(r−1) = F−1(1 − CV
1/αr
r ) − F−1(1 − C),

X(r)∗ − X(r−1)∗ = F−1(1 − BV
1/αr
r ) − F−1(1 − B).

Under the restrictions imposed on F it is known from Unnikrishnan Nair and Vineshkumar
(2011, Proposition 2.1) (see also Unnikrishnan Nair et al. (2013, pp. 114, 123)) that the IFR-
(DFR-) property of F is equivalent to

F−1(1 − xy) − F−1(1 − y) increasing (decreasing) in y ∈ (0, 1) for all x ∈ (0, 1).

If αr = max{α1, . . . , αr} then B ≤ C, and, hence,

X̃(r) − X̃(r−1) ≥ (≤)X(r)∗ − X(r−1)∗ .

If αr = min{α1, . . . , αr} then B ≥ C and the ordering of spacings is vice versa. �
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In the interpretation of successive failures in a k-out-of-n system, an increasing load exerted
on the remaining components is modeled by an increasing sequence α1 ≤ · · · ≤ αr of model
parameters in connection with an IFR-distribution function F , which implies all F1, . . . , Fn to
be IFR too. In this case, previous loads being lower than represented by Fr , the interoccurence
time in the OSs-M model exceeds the respective spacing of SOSs.

For underlying exponential distributions, where F may be chosen as the standard exponential
distribution function, we find equality of spacings; this fact is clear from Example 1.

As a consequence of Theorem 3 and under the additional assumption of ordered model
parameters, system lifetimes X̃(r) and X

(r)∗ can be compared, too.

Corollary 2. Let the situation of Theorem 3 be given, and let the model parameters be ordered.

(i) If 0 < α1 ≤ · · · ≤ αr then X̃(r) ≥ (≤)X
(r)∗ , and

(ii) if α1 ≥ · · · ≥ αr > 0 then X̃(r) ≤ (≥)X
(r)∗ .

Proof. Since

X̃(r) =
r∑

i=2

(X̃(i) − X̃(i−1)) + X̃(1) and X(r)∗ =
r∑

i=2

(X(i)∗ − X(i−1)∗ ) + X(1)∗ ,

the result is an immediate consequence of Theorem 3. �

Remark 4. (i) From (11) and (12), we also derive respective stochastic orderings for the OSs
Zr,n ∼ Xr,n and the OSs-M Z̃(r) ∼ X̃(r), 1 ≤ r ≤ n, without the need of a simultaneous
construction, i.e.

Z̃(r) − Z̃(r−1) ≤st (≥st)Zr,n − Zr−1,n and Z̃(r) ≤st (≥st)Zr,n

(see Shaked and Shanthikumar (2007)).

(ii) Analogously, under the conditions of Theorem 3 and Corollary 2, we derive stochastic
orderings of the OSs-M Z̃(r) ∼ X̃(r) and the SOSs Z

(r)∗ ∼ X
(r)∗ , 1 ≤ r ≤ n, and their spacings

without imposing a simultaneous construction as in Remark 3, i.e.

• if αr = max{α1, . . . , αr} then Z̃(r) − Z̃(r−1) ≥st (≤st)Z
(r)∗ − Zr−1∗ ,

• if αr = min{α1, . . . , αr} then Z̃(r) − Z̃(r−1) ≤st (≥st)Z
(r)∗ − Zr−1∗ , as well as

• if 0 < α1 ≤ · · · ≤ αr then Z̃(r) ≥st (≤st)Z
(r)∗ , and

• if α1 ≥ · · · ≥ αr > 0 then Z̃(r) ≤st (≥st)Z
(r)∗ .
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