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Abstract In this paper we study a general eigenvalue problem for the so called (p, 2)-Laplace operator
on a smooth bounded domain Ω ⊂ R

N under a nonlinear Steklov type boundary condition, namely

⎧⎪⎨⎪⎩
−Δpu − Δu = λa(x)u in Ω,

(|∇u|p−2 + 1)
∂u

∂ν
= λb(x)u on ∂Ω.

For positive weight functions a and b satisfying appropriate integrability and boundedness assumptions,
we show that, for all p > 1, the eigenvalue set consists of an isolated null eigenvalue plus a continuous
family of eigenvalues located away from zero.

Keywords: eigenvalue problem; continuous family of eigenvalues; (p, 2)-Laplacian; Steklov boundary
condition; boundary condition with eigenvalue parameter
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1. Introduction and main results

The spectrum of the Laplacian operator under Dirichlet as well as Neumann boundary
conditions has a simple description which mathematicians usually learn at an early stage
of their education. Consider, for instance, the case of Neumann boundary conditions. It
can be inferred from a small amount of spectral theory that the set of all λ ∈ R for which
there exists a non-zero u ∈ W 1,2(Ω) such that

⎧⎨⎩
−Δu = λu in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.1)
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can be arranged in a sequence (λn)n�0 of non-negative real numbers with λ0 = 0 and
λn → ∞. This diagonal structure of the Laplacian seems to be classical and difficult to
attribute, although the use of compactness methods to this end, at least for Dirichlet
boundary conditions, can be traced back to [20]. Moreover, the first positive eigenvalue
can be characterized from a variational point of view as

λN
1 = inf

{∫
Ω
|∇u|2 dx∫
Ω

u2 dx
: u ∈ W 1,2(Ω)\{0},

∫
Ω

u dx = 0
}

.

For this particular result and an in-depth study of eigenvalue problems for the Laplacian
we refer the interested reader to [14].

Nonlinear eigenvalue problems for the p-Laplacian, that is, problems of the form (1.1)
with Δ replaced by the p-Laplace operator Δpu = div (|∇u|p−2∇u), have also been exten-
sively studied over the past decades; see, for example, [4,9,11,13,15,21] and references
therein. Most investigations rely on variational methods which usually provide the exis-
tence of a principal eigenvalue through minimization of suitable functionals. In [15]
eigenvalue problems for the p-Laplacian subjected to different boundary conditions are
studied through a unified treatment. It is shown, in particular, that the existence of a
sequence as above having a principal eigenvalue which is simple and isolated from the
remaining (closed) set of eigenvalues holds for the p-Laplacian under Dirichlet, Neumann,
Robin and Steklov boundary conditions. See also [17, Chapter 9] and the survey article
[8] for further information.

In this paper we consider an eigenvalue problem for the (p, 2)-Laplace operator⎧⎨⎩
− Δpu − Δu = λa(x)u in Ω,

(|∇u|p−2 + 1)
∂u

∂ν
= λb(x)u on ∂Ω,

(1.2)

under a nonlinear Steklov boundary condition, that is, a boundary condition which is
itself an eigenvalue problem, usually known in the linear case as a ‘Steklov eigenvalue
problem’, since its first appearance in [22]. Here, Ω ⊂ R

N is a bounded domain with
smooth boundary and ν stands for the outward unit normal to ∂Ω. Moreover, a and b are
given non-negative functions on Ω and ∂Ω, respectively, satisfying certain integrability
conditions and ∫

Ω

a(x) dx +
∫

∂Ω

b(x) dσ > 0. (1.3)

By reflection, this covers the case where both functions are negative with at least one of
them being strictly negative on a set with positive measure.

The operator −Δp − Δ appears, for example, in quantum field theory [6]. From a
mathematical point of view it presents several difficulties due to its non-homogeneity.
Elliptic equations involving such an operator have been extensively studied in recent
years. For instance, resonance and existence of nodal solutions for such equations are
current research topics; see [3,18,19] and references therein. Problem (1.2) with a ≡ 1
and b ≡ 0 (Neumann boundary condition) has been studied recently in [10] (in the case
1 < p < 2) and [16] (p > 2). Note that condition (1.3) is trivially satisfied in this case.
These authors have shown that the generalized spectrum for this problem is of ‘point
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plus continuum’ type, that is, the eigenvalue set consists of a zero eigenvalue plus an
unbounded open interval with starting point away from zero. In particular, there exists a
principal eigenvalue but the set of eigenvalues is not closed. In this paper we push their
analysis further and show that a ‘point plus continuum’ spectrum still holds in a much
more general setting (though probably not the most general one, something that will be
investigated elsewhere). Many authors have worked on eigenvalue problems for the (p, 2)-
Laplacian (and more generally, for the (p, q)-Laplacian), most of them under Dirichlet
boundary conditions; see, for example, [5,24] and references therein. To the best of our
knowledge, the present work is the first one dealing with the (generalized) spectrum
of the (p, 2)-Laplacian under Steklov type boundary conditions. We also note that the
techniques employed in the proof of Theorem 1.1 do not generalize to the (p, q)-Laplacian.

For each p > 1 define

λ1(p) := inf

{
1
p

∫
Ω
|∇u|p dx + 1

2

∫
Ω
|∇u|2 dx

1
2

∫
Ω

a(x)u2 dx + 1
2

∫
∂Ω

b(x)u2 dσ
: u ∈ W 1,p(Ω)\{0},

∫
Ω

a(x)u dx +
∫

∂Ω

b(x)u dσ = 0

}
, (1.4)

and

μ1(p) := inf

{
1
p

∫
Ω
|∇u|p dx + 1

2

∫
Ω
|∇u|2 dx

1
2

∫
Ω

a(x)u2 dx + 1
2

∫
∂Ω

b(x)u2 dσ
: u ∈ W 1,2(Ω)\{0},

∫
Ω

a(x)u dx +
∫

∂Ω

b(x)u dσ = 0

}
. (1.5)

We can now state our main result.

Theorem 1.1. Let Ω ⊂ R
N be a bounded domain with smooth boundary, N > 2.

Suppose a and b are non-negative measurable functions on Ω and ∂Ω, respectively, sat-
isfying condition (1.3). Let λ1(p) and μ1(p) be the numbers defined in Equations (1.4)
and (1.5), respectively.

(a) If p > 2, a ∈ LN/2(Ω) and b ∈ LN−1(∂Ω) then the set of eigenvalues of Problem
(1.2) equals {0} ∪ (λ1(p),∞).

(b) If 1 < p < 2 and
(i) either 2N/(N + 1)< p < 2, a∈LpN/((p−2)N+2p)(Ω) and b ∈ Lp(N−1)/((p−2)N+p)

(∂Ω),

(ii) or 2N/(N + 2) < p � 2N/(N + 1), a ∈ LpN/((p−2)N+2p)(Ω) and b ∈ L∞(∂Ω),

(iii) or 1 < p � 2N/(N + 2), a ∈ L∞(Ω) and b ∈ L∞(∂Ω),

then the set of eigenvalues of Problem (1.2) equals {0} ∪ (μ1(p),∞).

Later we will be able to find simpler expressions for the numbers λ1(p) and μ1(p) (cf.
Equations (2.7) and (3.1)); from Theorem 1.1(b) and Equation (3.1) we find that the
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spectrum of the (p, 2)-Laplacian under the conditions stated in assertion (iii) above actu-
ally does not depend on p. Assertions (a) and (b) are treated with different methods.
Section 2 is devoted to the proof of Theorem 1.1(a) and is based on a standard proce-
dure of associating a weakly lower semicontinuous functional to Problem (1.2). In § 3 we
carry out the proof of Theorem 1.1(b) based on minimization over the associated Nehari
manifold.

In the following corollary (with a ≡ 1 and b ≡ 0) we recover the mains results in [10,16].

Corollary 1.2. Let Ω ⊂ R
N be a bounded domain with smooth boundary. Suppose

0 � a ∈ L∞(Ω) and 0 � b ∈ L∞(∂Ω) are given functions satisfying condition (1.3).

(a) If p > 2 then the set of eigenvalues of Problem (1.2) is given by {0} ∪ (λ1(p),∞)
where λ1(p) is the number defined in Equation (1.4).

(b) If 1 < p < 2 then the set of eigenvalues of Problem (1.2) is given by {0} ∪ (μ1(p),∞)
where μ1(p) is the number defined in Equation (1.5).

Moreover, the eigenvalue set of Problem (1.2) does not depend on p when 1 < p < 2.

We observe that our Theorem 1.1 is not valid for p = 2; in this case, Problem (1.2)
reduces to ⎧⎪⎪⎨⎪⎪⎩

−Δu =
λ

2
a(x)u in Ω,

∂u

∂ν
=

λ

2
b(x)u on ∂Ω,

which is a Steklov problem for the Laplacian whose spectrum has the well-known structure
described earlier in this introduction. Whether this change in structure as p tends to 2
deserves to be better understood is something that will be considered elsewhere.

Let us finish this introduction by explaining the role of the various integrability
assumptions on a and b. These hypotheses are directly related to the well-known
embeddings W 1,r(Ω) ↪→ Lq(Ω) which hold in the cases: (i) 1 � q � r∗ = rN/(N − r), if
1 � r < N ; (ii) r � q < ∞, if r = N ; (iii) q = ∞, if r > N . Moreover, these embeddings
are compact when 1 � q < r∗ in case (i), all q in case (ii), and when reinterpreted as
W 1,r(Ω) ↪→ C(Ω) in case (iii). We also have trace embeddings W 1,r(Ω) ↪→ Lq(∂Ω) for all
1 � r � q � r(N − 1)/(N − r) if 1 � r < N , and similarly as before in the other ranges
of r. Details can be found in the standard literature; see, for example, [1, Chapter 5] or
[7, Chapter 9].

Remark 1.3. We can take N = 2 in Theorem 1.1. This is clear with regard to item
(b) and requires small modifications in (a). To be precise, we can consider the embedding
W 1,2(Ω) ↪→ Lq(Ω) with any q > 2 and assume that a ∈ Lq/(q−2)(Ω); if we think of large
values of q this means that we can take a ∈ L1+δ(Ω) for any δ > 0. Similar considerations
apply to the trace embedding and the corresponding integrability assumptions on b.

2. Proof of Theorem 1.1(a)

For p > 2 we have W 1,p(Ω) ↪→ W 1,2(Ω) and it is natural to consider solutions in
W 1,p(Ω). For our purposes it will be convenient to consider the embeddings W 1,r(Ω) ↪→
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LrN/(N−r)(Ω) and W 1,r(Ω) ↪→ Lr(N−1)/(N−r)(∂Ω) with r = 2. In this case, if a ∈ LN/2(Ω)
and b ∈ LN−1(∂Ω) then integrals such as

∫
Ω

a(x)u2 dx and
∫

∂Ω
b(x)u2 dσ will be well

defined and good estimates can be obtained. Moreover, we must restrict to dimensions
N > 2, which we assume throughout this section.

In order to find the Euler–Lagrange equation, and the energy functional, associated to
Problem (1.2) we formally multiply it by a smooth function φ to obtain

λ

∫
Ω

a(x)uφ dx

= −
∫

Ω

div (|∇u|p−2∇u)φ dx −
∫

Ω

(Δu)φ dx

=
∫

Ω

|∇u|p−2∇u · ∇φ dx −
∫

∂Ω

|∇u|p−2∂νuφ dσ +
∫

Ω

∇u · ∇φ dx −
∫

∂Ω

∂νuφ dσ

=
∫

Ω

|∇u|p−2∇u · ∇φ dx +
∫

Ω

∇u · ∇φ dx − λ

∫
∂Ω

b(x)φ dσ.

This computation leads us naturally to the following definition.

Definition 2.1. Let p > 2. We call λ ∈ R an eigenvalue of Problem (1.2) if there exists
a non-zero u ∈ W 1,p(Ω) such that∫

Ω

|∇u|p−2∇u · ∇φ dx +
∫

Ω

∇u · ∇φ dx = λ

∫
Ω

a(x)uφ dx + λ

∫
∂Ω

b(x)uφ dσ (2.1)

for all φ ∈ W 1,p(Ω). Such a function u ∈ W 1,p(Ω) will be called an eigenfunction corre-
sponding to the eigenvalue λ. In other words, λ ∈ R is an eigenvalue of Problem (1.2)
with corresponding eigenfunction u ∈ W 1,p(Ω)\{0} if and only if u is a critical point of
the C1 functional

Iλ(u) =
1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx − λ

2

∫
Ω

a(x)u2 dx − λ

2

∫
∂Ω

b(x)u2 dσ. (2.2)

It is well known that the Sobolev space W 1,p(Ω) can be decomposed as a direct sum

W 1,p(Ω) = Vp ⊕ R, (2.3)

where Vp is the closed subspace consisting of all mean-zero elements in W 1,p(Ω), that is,

Vp :=
{

u ∈ W 1,p(Ω) :
∫

Ω

u dx = 0
}

.

One of the main advantages of the decomposition (2.3) relies on the fact that, for elements
in Vp, the Poincaré–Wirtinger inequality takes its simplest form, namely,∫

Ω

|u|p dx � CP
p

∫
Ω

|∇u|p dx (u ∈ Vp).

For our purposes, however, it will be convenient to introduce another decomposition. Let

Wp :=
{

u ∈ W 1,p(Ω) :
∫

Ω

a(x)u dx +
∫

∂Ω

b(x)u dσ = 0
}

.
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Lemma 2.2. If p > 2 then Wp is a closed subspace of W 1,p(Ω) and we have the
decomposition

W 1,p(Ω) = Wp ⊕ R. (2.4)

Proof. Let ϕ : W 1,p(Ω) → R be defined by ϕ(u) =
∫
Ω

a(x)u dx +
∫

∂Ω
b(x)u dσ. Then

|ϕ(u)| �
(∫

Ω

a(x) dx

)1/2 (∫
Ω

a(x)u2 dx

)1/2

+
(∫

∂Ω

b(x) dσ

)1/2 (∫
∂Ω

b(x)u2 dσ

)1/2

� C̃

(∫
Ω

a(x)u2 dx +
∫

∂Ω

b(x)u2 dσ

)1/2

with C̃ =
√

2 max{(∫
Ω

a(x) dx)1/2, (
∫

∂Ω
b(x) dσ)1/2}. We have

∫
Ω

a(x)u2 dx � ‖a‖LN/2(Ω)

[ (∫
Ω

|u|2N/(N−2) dx

)(N−2)/2N ]2

� C1‖a‖LN/2(Ω)‖u‖2
W 1,2(Ω)

and ∫
∂Ω

b(x)u2 dσ � ‖b‖LN−1(∂Ω)

[ (∫
∂Ω

|u|2(N−1)/(N−2) dσ

)(N−2)/2(N−1) ]2

� C2‖b‖LN−1(∂Ω)‖u‖2
W 1,2(Ω).

Here C1 and C2 are the Sobolev and trace constants for the embeddings mentioned at
the beginning of this section. Thus ϕ belongs to (W 1,p(Ω))∗ and then Wp = ker ϕ is a
closed hyperplane. Moreover, condition (1.3) implies that constant functions lie outside
of Wp. This proves the decomposition (2.4). �

Remark 2.3. If u is an eigenfunction corresponding to a non-zero eigenvalue then, by
testing Equation (2.1) against a constant function, we find that u ∈ Wp. This is the main
motivation for introducing the space Wp.

We observe that, with the notation just introduced, the definition of λ1(p) in
Equation (1.4) can be reformulated as

λ1(p) := inf
u∈Wp\{0}

1
p

∫
Ω
|∇u|p dx + 1

2

∫
Ω
|∇u|2 dx

1
2

∫
Ω

a(x)u2 dx + 1
2

∫
∂Ω

b(x)u2 dσ
.

The proof of Theorem 1.1(a) will follow as a consequence of several intermediate results,
most of them being of independent interest. The following elementary result already
establishes almost half of our main result. Although we state it under the assumption
that p > 2, to be consistent with Definition 2.1, the reader will notice that all arguments
would work quite well for all p > 1. We will need this later.
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Lemma 2.4. Let p > 2.

(a) λ = 0 is an eigenvalue of Problem (1.2).

(b) No number λ < 0 is an eigenvalue of Problem (1.2).

Proof. Assertion (a) is immediate since Equation (2.1) is obviously satisfied when
λ = 0 and u is a constant function. To prove assertion (b), suppose λ is a non-zero
eigenvalue with corresponding eigenfunction uλ. Testing Equation (2.1) against φ = uλ

yields ∫
Ω

|∇uλ|p dx +
∫

Ω

|∇uλ|2 dx = λ

(∫
Ω

a(x)u2
λ dx +

∫
∂Ω

b(x)u2
λ dσ

)
,

thus λ > 0. This shows that no eigenvalue can be strictly negative. �

Remark 2.5 (Null eigenvalues versus constant eigenvectors). Let us clarify
the (easy) relation between null eigenvalues and constant eigenvectors, which appears
in the proof above. On the one hand, if Equation (2.1) is satisfied by λ = 0, some u ∈
W 1,p(Ω)\{0} and all φ ∈ W 1,p(Ω) then (by testing φ = u) we find that u is constant (by
the Poincaré inequality). On the other hand, if Equation (2.1) is satisfied by some λ ∈ R

(we can take λ � 0, by Lemma 2.4), some non-zero constant u and all φ ∈ W 1,p(Ω) then
(again by testing φ = u) we find that λ = 0.

Lemma 2.6. λ1(p) > 0 for all p > 2.

Proof. We claim that∫
Ω

a(x)u2 dx +
∫

∂Ω

b(x)u2 dσ �
∫

Ω

a(x)(u − u)2 dx +
∫

∂Ω

b(x)(u − u)2 dσ, (2.5)

for all u ∈ Wp, where u = (1/|Ω|) ∫
Ω

u dx. To see this, write u = (u − u) + u and note that
u2 � (u − u)2 + 2uu, thus by integrating we find∫

Ω

a(x)u2 dx +
∫

∂Ω

b(x)u2 dσ �
∫

Ω

a(x)(u − u)2 dx +
∫

∂Ω

b(x)(u − u)2 dσ

+ 2u
(∫

Ω

a(x)u dx +
∫

∂Ω

b(x)u dσ

)
which gives the estimate, since the last summand vanishes.

It follows from estimate (2.5), in combination with the estimates obtained in the proof
of Lemma 2.2, that∫

Ω

a(x)u2 dx +
∫

∂Ω

b(x)u2 dσ

�
(
C1‖a‖LN/2(Ω) + C2‖b‖LN−1(∂Ω)

)‖u − u‖2
W 1,2(Ω)

�
(
C1‖a‖LN/2(Ω) + C2‖b‖LN−1(∂Ω)

)
(1 + CP

2 )
∫

Ω

|∇u|2 dx
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for all u ∈ Wp, where CP
2 is the constant in the Poincaré-Wirtinger inequality for p = 2.

Thus

1
p

∫
Ω
|∇u|p dx + 1

2

∫
Ω
|∇u|2 dx

1
2

∫
Ω

a(x)u2 dx + 1
2

∫
∂Ω

b(x)u2 dσ
>

1(
C1‖a‖LN/2(Ω) + C2‖b‖LN−1(∂Ω)

)
(1 + CP

2 )

for all u ∈ Wp\{0}. From this it follows immediately that λ1(p) > 0. �

Remark 2.7. The previous proof also gives the estimate

λ1(p) � 1(
C1‖a‖LN/2(Ω) + C2‖b‖LN−1(∂Ω)

)
(1 + CP

2 )
,

which gives a bound from below for λ1(p) in terms of a, b and some Sobolev and trace
embeddings constants that do not depend on p. This should not be surprising, since p > 2.

The following lemma shows, essentially, that the functional defined in Equation (2.2)
is coercive for p > 2, when restricted to the subspace Wp.

Lemma 2.8. Let p > 2. For every λ > 0, we have

lim
‖u‖W1,p(Ω)→∞, u∈Wp

(
1
p

∫
Ω

|∇u|p dx − λ

2

∫
Ω

a(x)u2 dx − λ

2

∫
∂Ω

b(x)u2 dσ

)
= ∞. (2.6)

First we need a technical tool.

Lemma 2.9. For each u ∈ W 1,p(Ω), define u(0) = u − u, where u = (1/|Ω|) ∫
Ω

u dx.

Then, on the subspace Wp, ‖u(0)‖W 1,p(Ω) → ∞ as ‖u‖W 1,p(Ω) → ∞.

Proof. If the conclusion is false then there is a sequence (un) ⊂ Wp such
that ‖un‖W 1,p(Ω) → ∞ for which ‖u(0)

n ‖W 1,p(Ω) � C for some constant C � 0.
Since

∫
Ω
|∇un|p dx =

∫
Ω
|∇u

(0)
n |p dx � Cp we must have ‖un‖Lp(Ω) → ∞. Set vn :=

un/‖un‖Lp(Ω). Then there exists v0 ⊂ Wp such that vn ⇀ v0 in W 1,p(Ω) and vn → v0

in Lp(Ω). But then

∫
Ω

|∇v0|p dx � lim inf
n→∞

∫
Ω

|∇vn|p dx = lim inf
n→∞

1
‖un‖p

Lp(Ω)

∫
Ω

|∇un|p dx = 0,

thus v0 is constant. By Lemma 2.2 this constant is zero, which contradicts the fact that
‖vn‖Lp(Ω) = 1. �
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Proof of Lemma 2.8. For simplicity, let us introduce the notation u(0) = u − u,
where u = (1/|Ω|) ∫

Ω
u dx, so that estimate (2.5) takes the form∫

Ω

a(x)u2 dx +
∫

∂Ω

b(x)u2 dσ �
∫

Ω

a(x)(u(0))2 dx +
∫

∂Ω

b(x)(u(0))2 dσ (u ∈ Wp).

Moreover, ∇u = ∇u(0) and ‖u(0)‖W 1,p(Ω) → ∞ as ‖u‖W 1,p(Ω) → ∞ by Lemma 2.9.
Therefore, it suffices to prove (2.6) when u ∈ Vp, that is,

lim
‖u‖W1,p(Ω)→∞, u∈Vp

(
1
p

∫
Ω

|∇u|p dx − λ

2

∫
Ω

a(x)u2 dx − λ

2

∫
∂Ω

b(x)u2 dσ

)
= ∞.

Now, we have
∫
Ω
|∇u|p dx � (1/(1 + CP

p ))‖u‖p
W 1,p(Ω) by the Poincaré–Wirtinger inequal-

ity and the terms
∫
Ω

a(x)u2 dx and
∫

∂Ω
b(x)u2 dσ can both be estimated (up to a

multiplicative constant) by
∫
Ω
|∇u|2 dx which, in turn, can be estimated (up to a

multiplicative constant) by ‖u‖2
W 1,p(Ω). Thus, up to a multiplicative constant, the expres-

sion in (2.6) can be estimated by ‖u‖p
W 1,p(Ω) − ‖u‖2

W 1,p(Ω). Since p > 2, the conclusion
follows. �

Proposition 2.10. Let p > 2. Every number λ ∈ (λ1(p),∞) is an eigenvalue of
Problem (1.2).

Proof. Fix λ ∈ (λ1(p),∞) and define Iλ : Wp → R by (2.2), that is,

Iλ(u) =
1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx − λ

2

∫
Ω

a(x)u2 dx − λ

2

∫
∂Ω

b(x)u2 dσ (u ∈ Wp).

It is standard to show that Iλ ∈ C1(Wp; R) and that its derivative is given by

〈I ′
λ(u), φ〉 =

∫
Ω

|∇u|p−2∇u · ∇φ dx +
∫

Ω

∇u · ∇φ dx

− λ

∫
Ω

a(x)uφ dx − λ

∫
∂Ω

b(x)uφ dσ.

It is also elementary to check that Iλ is weakly lower semicontinuous on Wp. Moreover,
Lemma 2.8 implies that Iλ is coercive, meaning that

lim
‖u‖W1,p(Ω)→∞, u∈Wp

Iλ(u) = ∞.

Standard results in the calculus of variations (cf. [23, Theorem 1.2]) assure the
existence of a global minimum point uλ ∈ Wp for Iλ. Since λ > λ1(p), it follows
from the very definition of λ1(p) that there is some vλ satisfying Iλ(vλ) < 0. Thus
Iλ(uλ) � Iλ(vλ) < 0 and we can infer that uλ �= 0. Moreover, the obvious identity

〈I ′
λ(uλ), φ〉 = 0 (φ ∈ Wp)

is also satisfied when φ is a constant function. It follows from Lemma 2.2 that this
identity is then satisfied for every φ ∈ W 1,p(Ω). Therefore λ is an eigenvalue according
to Definition 2.1. �
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Proposition 2.11. Let p > 2. No number λ ∈ (0, λ1(p)) is an eigenvalue of Problem
(1.2).

Proof. First, note that

λ1(p) − λ

2

(∫
Ω

a(x)u2 dx +
∫

∂Ω

b(x)u2 dσ

)
� 1

p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx − λ

2

∫
Ω

a(x)u2 dx − λ

2

∫
∂Ω

b(x)u2 dσ,

for every u ∈ Wp\{0} and λ ∈ R. If there were an eigenvalue λ ∈ (0, λ1(p)) with
corresponding eigenfunction uλ ∈ Wp\{0} then the above estimate would imply

0 <
λ1(p) − λ

2

(∫
Ω

a(x)u2
λ dx +

∫
∂Ω

b(x)u2
λ dσ

)
� 1

2

∫
Ω

|∇uλ|p dx +
1
2

∫
Ω

|∇uλ|2 dx − λ

2

∫
Ω

a(x)u2
λ dx − λ

2

∫
∂Ω

b(x)u2
λ dσ = 0,

where the last identity follows by testing Equation (2.1) against φ = uλ. This is obviously
a contradiction. �

Lemma 2.12. Let p > 2. Define

ν1(p) := inf
u∈Wp\{0}

∫
Ω
|∇u|2 dx∫

Ω
a(x)u2 dx +

∫
∂Ω

b(x)u2 dσ
. (2.7)

Then λ1(p) = ν1(p).

Proof. The estimate ν1(p) � λ1(p) is obvious. On the other hand, for each u ∈ Wp\{0}
and t > 0, we have

λ1(p) �
1
p

∫
Ω
|∇(tu)|p dx + 1

2

∫
Ω
|∇(tu)|2 dx

1
2

∫
Ω

a(x)(tu)2 dx + 1
2

∫
∂Ω

b(x)(tu)2 dσ

=
2tp−2

p

∫
Ω
|∇u|p dx∫

Ω
a(x)u2 dx +

∫
∂Ω

b(x)u2 dσ
+

∫
Ω
|∇u|2 dx∫

Ω
a(x)u2 dx +

∫
∂Ω

b(x)u2 dσ
.

By passing to the limit as t → 0 we deduce that λ1(p) � ν1(p). �

Proposition 2.13. λ1(p) is not an eigenvalue of Problem (1.2).
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Proof. Otherwise λ = λ1(p) would be an eigenvalue with corresponding eigenfunction
uλ. By Lemma 2.12,∫

Ω

|∇uλ|p dx + ν1(p)
(∫

Ω

a(x)u2
λ dx +

∫
∂Ω

b(x)u2
λ dσ

)
�

∫
Ω

|∇uλ|p dx +
∫

Ω

|∇uλ|2 dx

= λ1(p)
(∫

Ω

a(x)u2
λ dx +

∫
∂Ω

b(x)u2
λ dσ

)
,

which implies
∫
Ω
|∇uλ|p dx = 0. By the Poincaré-Wirtinger inequality uλ should be

a constant. This, however, is impossible, due to Lemmas 2.2 and 2.6 (see also
Remark 2.3). �

Proof of Theorem 1.1(a). This follows immediately from Lemma 2.4 and Proposi-
tions 2.10, 2.11 and 2.13. �

3. Proof of Theorem 1.1(b)

For 1 < p < 2 we have continuous inclusions W 1,2(Ω) ⊂ W 1,p(Ω), therefore it is natu-
ral to analyse Problem (1.2) in the space W 1,2(Ω). Moreover, we use the embeddings
W 1,r(Ω) ↪→ LrN/(N−r)(Ω) and W 1,r(Ω) ↪→ Lr(N−1)/(N−r)(∂Ω) with r = p. Thus, if a ∈
LpN/((p−2)N+2p)(Ω) and b ∈ Lp(N−1)/((p−2)N+p)(∂Ω) then integrals such as

∫
Ω

a(x)u2 dx
and

∫
∂Ω

b(x)u2 dσ will be well defined and good estimates can be obtained. Clearly, these
conditions are stronger than those in § 2 (and only make sense) for 2N/(N + 1) < p < 2.
The reader must bear in mind that this restriction on p is not necessary under the more
restrictive assumptions a ∈ L∞(Ω) and b ∈ L∞(∂Ω).

Definition 3.1. Let 1 < p < 2. We call λ ∈ R an eigenvalue of Problem (1.2) if
there exists a non-zero u ∈ W 1,2(Ω) such that Equation (2.1) holds for all φ ∈ W 1,2(Ω).
Such a function u ∈ W 1,2(Ω)\{0} will be called an eigenfunction corresponding to the
eigenvalue λ. In other words, λ ∈ R is an eigenvalue of Problem (1.2) with corresponding
eigenfunction u ∈ W 1,2(Ω)\{0} if and only if u is a critical point of the C1 functional
defined in Equation (2.2).

The following result is an immediate consequence of what has been done in the previous
section.

Proposition 3.2. Let 2N/(N + 1) < p < 2 and μ1(p) be defined by (1.5). Then no
number in the set (−∞, 0) ∪ (0, μ1(p)] is an eigenvalue of Problem (1.2).

Actually, as we have mentioned, the hypotheses on a and b here are stronger than
those in § 2, in the sense that a ∈ LpN/((p−2)N+2p)(Ω) implies a ∈ LN/2(Ω) (as far as
1 < p < 2), and similarly for b; thus, the proof of Lemma 2.2 is still valid and gives us the
decomposition W 1,2(Ω) = W2 ⊕ R; this is what we need in the sequel. Lemma 2.4 (and
its proof) also holds without any change. Besides, the same proof in Lemma 2.6 is valid
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and shows that μ1(p) > 0. The proof of Proposition 2.11 does not work as it stands but
can easily be adapted. In fact, if we define

ν1 := inf
u∈W2\{0}

∫
Ω
|∇u|2 dx∫

Ω
a(x)u2 dx +

∫
∂Ω

b(x)u2
(3.1)

then the same proof in Lemma 2.12 (except that we take t → ∞ instead) shows
that μ1(p) = ν1. Thus, if there were an eigenvalue λ ∈ (0, μ1(p)) with corresponding
eigenfunction uλ ∈ W2\{0} then we would have

0 <
μ1(p) − λ

2

(∫
Ω

a(x)u2
λ dx +

∫
∂Ω

b(x)u2
λ dσ

)
� 1

2

∫
Ω

|∇uλ|2 dx − λ

2

∫
Ω

a(x)u2
λ dx − λ

2

∫
∂Ω

b(x)u2
λ dσ

� 1
2

∫
Ω

|∇uλ|p dx +
1
2

∫
Ω

|∇uλ|2 dx − λ

2

∫
Ω

a(x)u2
λ dx − λ

2

∫
∂Ω

b(x)u2
λ dσ = 0,

which is impossible. Finally, the same proof in Proposition 2.13 reveals that μ1(p) is not
an eigenvalue.

It is not clear, however, that the conclusion of Lemma 2.8 holds for 1 < p < 2, since
the functional Iλ given in (2.2) is not coercive in this case. From now on we analyse the
action of Iλ on the so-called Nehari manifold defined, for each λ > μ1(p), by

Nλ := {u ∈ W2\{0} : 〈I ′
λ(u), u〉 = 0}

=
{

u ∈ W2\{0} :
∫

Ω

|∇u|p dx +
∫

Ω

|∇u|2 dx

= λ

∫
Ω

a(x)u2 dx + λ

∫
∂Ω

b(x)u2 dσ

}
.

Note that on Nλ the functional Iλ is given by

Iλ(u) =
1
p

∫
Ω

|∇u|p dx +
1
2

∫
Ω

|∇u|2 dx − λ

2

∫
Ω

a(x)u2 dx − λ

2

∫
∂Ω

b(x)u2 dσ

=
(

1
p
− 1

2

) ∫
Ω

|∇u|p dx. (3.2)

In particular, Iλ is homogeneous of degree p on Nλ in the sense that Iλ(tu) = tpIλ(u)
for all u ∈ Nλ. However, Iλ is not necessarily coercive on Nλ which, otherwise, would
facilitate some of our labour below. As is well known, the Nehari manifold is a natural
constraint for Iλ and we work in the sequel to show that the minimum of Iλ restricted
to Nλ turns out to be a free critical point, that is, a critical point of Iλ considered on
the whole space.

In the rest of this paper recall that μ1(p) equals ν1 (cf. Equation (3.1)). In what
follows, and until further notice, λ > μ1(p) is a fixed real number. First, we observe that
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the Nehari manifold Nλ is non-empty. In fact, from the definition of ν1, there exists
vλ ∈ W2\{0} such that∫

Ω

|∇vλ|2 dx < λ

∫
Ω

a(x)v2
λ dx + λ

∫
∂Ω

b(x)v2
λ dσ,

thus tvλ ∈ Nλ for some t > 0; in fact this is equivalent to the identity

tp
∫

Ω

|∇vλ|p dx + t2
∫

Ω

|∇vλ|2 dx = λt2
∫

Ω

a(x)v2
λ dx + λt2

∫
∂Ω

b(x)v2
λ dσ (3.3)

which can be explicitly solved for t.

Lemma 3.3. Let (un) ⊂ Nλ be such that supn∈N

∫
Ω
|∇un|p dx < ∞. Then (un) is

bounded in W 1,2(Ω).

Proof. Let (un) ⊂ Nλ be as in the statement of Lemma 3.3. In particular,∫
Ω

|∇un|p dx +
∫

Ω

|∇un|2 dx = λ

∫
Ω

a(x)u2
n dx + λ

∫
∂Ω

b(x)u2
n dσ. (3.4)

We split the proof into two steps.

Step 1. Suppose supn∈N ‖un‖L2 < ∞. As in Lemma 2.6 we can estimate∫
Ω

|∇un|2 dx

� λ

(∫
Ω

a(x)u2
n dx +

∫
∂Ω

b(x)u2
n dσ

)
� λ(C3‖a‖LpN/((p−2)N+2p)(Ω) + C4‖b‖Lp(N−1)/((p−2)N+p)(∂Ω))‖un − un‖2

W 1,p(Ω)

� λ(C3‖a‖LpN/((p−2)N+2p)(Ω) + C4‖b‖Lp(N−1)/((p−2)N+p)(∂Ω))(1 + CP
p )

×
(∫

Ω

|∇un|p dx

)2/p

.

It follows that supn∈N

∫
Ω
|∇un|2 dx < ∞, thus (un) is bounded in W 1,2(Ω) in this case.

Step 2. Suppose (after passing to a subsequence if necessary) that ‖un‖L2(Ω) → ∞ as
n → ∞. Put vn := un/‖un‖L2(Ω). As in step 1 above, we can deduce that (vn) ⊂ W2 is
bounded in W 1,2(Ω). Thus there exists a v0 ∈ W2 such that vn ⇀ v0 in W 1,2(Ω) (also in
W 1,p(Ω), by continuous inclusion) and vn → v0 in L2(Ω).

Dividing (3.4) by ‖un‖p
L2(Ω), we find∫

Ω

|∇vn|p dx =
λ

∫
Ω

a(x)u2
n dx + λ

∫
∂Ω

b(x)u2
n dσ − ∫

Ω
|∇un|2 dx

‖un‖p
L2(Ω)

→ 0, as n → ∞.

Since vn ⇀ v0 in W 1,p(Ω) we have∫
Ω

|v0|p dx +
∫

Ω

|∇v0|p dx � lim inf
n→∞

(∫
Ω

|vn|p dx +
∫

Ω

|∇vn|p dx

)
,
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which implies, since vn → v0 in Lp(Ω), that∫
Ω

|∇v0|p dx � lim inf
n→∞

∫
Ω

|∇vn|p dx = 0.

This, in combination with the Poincaré-Wirtinger inequality, implies that v0 is constant.
In view of Lemma 2.2, this constant is zero. Therefore we find that vn → 0 in L2(Ω),
but this contradicts the fact that ‖vn‖L2(Ω) = 1 for all n ∈ N. Therefore (un) must be
bounded in L2(Ω) and we are back to step 1 above. �

Lemma 3.4. m = infw∈Nλ
Iλ(w) > 0 and m = Iλ(u) for some u ∈ Nλ.

Proof. We split the proof into two steps.
Step 1. First we show that m > 0. Otherwise, suppose m = 0 and let (un) ⊂ Nλ be a

minimizing sequence, so that Iλ(un) → 0 as n → ∞. From (3.2) we can infer that

0 � λ

2

∫
Ω

a(x)u2
n dx +

λ

2

∫
∂Ω

b(x)u2
n dσ − 1

2

∫
Ω

|∇un|2 dx

=
1
p

∫
Ω

|∇un|p dx → 0, as n → ∞. (3.5)

By Lemma 3.3, (un) is bounded in W 1,2(Ω), thus un ⇀ u0 in W 1,2(Ω) (and also weakly
in W 1,p(Ω)) and un → u0 in L2(Ω) (and in Lp(Ω)) for some u0 ∈ W2. But then∫

Ω

|∇u0|p dx � lim inf
n→∞

∫
Ω

|∇un|p dx = 0,

and, as in the proof of Lemma 3.3, we can conclude that u0 = 0. Moreover, we can deduce
that, for the sequence vn := un/‖un‖L2(Ω), there exists v0 ∈ W2 such that vn ⇀ v0 in
W 1,2(Ω) and in W 1,p(Ω), and vn → v0 in L2(Ω). Dividing Equation (3.5) by ‖un‖p

L2(Ω),
we find

1
p

∫
Ω

|∇vn|p dx = ‖un‖2−p
L2(Ω)

(
λ

2

∫
Ω

a(x)v2
n dx +

λ

2

∫
∂Ω

b(x)v2
n dσ

−1
2

∫
Ω

|∇vn|2 dx

)
→ 0, as n → ∞,

since the expression in parentheses is bounded. Again we can deduce that v0 = 0, which
is absurd.

Step 2. Now we show that m = Iλ(u) for some u ∈ Nλ. Let (un) ⊂ Nλ be a minimiz-
ing sequence, so that Iλ(un) → m as n → ∞. In particular, the sequence (un) satisfies
Equation (3.4) and is bounded in W 1,2(Ω) by Lemma 3.3, so that un ⇀ u1 in W 1,2(Ω)
(and in W 1,p(Ω)) and un → u1 in L2(Ω) for some element u1 ∈ W2. We claim u1 ∈ Nλ

and Iλ(u1) = m. By passing to limit as n → ∞ in Equation (3.4), we find∫
Ω

|∇u1|p dx +
∫

Ω

|∇u1|2 dx � λ

∫
Ω

a(x)u2
1 dx + λ

∫
∂Ω

b(x)u2
1 dσ.

Moreover, u1 �= 0; otherwise we would have un → 0 in L2(Ω) and Equation (3.4) would
imply

∫
Ω
|∇un|p dx → 0 which, as in step 1, would lead to a contradiction.
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If identity holds in the inequality above (and we claim it does) then we have u1 ∈ Nλ

and the proof is complete. Otherwise, that is, if strict inequality holds in the above
inequality, we have tu1 ∈ Nλ for some t ∈ (0, 1); in fact, such a number can be obtained
by solving Equation (3.3) with vλ replaced by u1 and, from its explicit expression, the
aforementioned strict inequality guarantees that it lies between 0 and 1. But then

0 < m � Iλ(tu1) = tpIλ(u1) � tp lim inf
n→∞ Iλ(un) = tpm < m,

which is a contradiction. �

Proposition 3.5. Every λ ∈ (μ1(p),∞) is an eigenvalue of Problem (1.2).

Proof. Fix λ > μ1(p). Let u ∈ Nλ be such that Iλ(u) = m. In particular,∫
Ω

|∇u|2 dx < λ

∫
Ω

a(x)u2 dx + λ

∫
∂Ω

b(x)u2 dσ.

We claim that, for every v ∈ W2, there exists δ > 0 such that∫
Ω

|∇(u + sv)|2 dx < λ

∫
Ω

a(x)(u + sv)2 dx + λ

∫
∂Ω

b(x)(u + sv)2 dσ

for all s ∈ (−δ, δ). In fact, the inequality holds for s = 0 and both sides above are continu-
ous functions of s. Now, by solving Equation (3.3) with vλ replaced by u + sv, we are able
to find t(s) > 0 satisfying t(s)(u + sv) ∈ Nλ for all s ∈ (−δ, δ). Besides, t(s) is differen-
tiable (this can be seen from the explicit expression for t(s) after solving Equation (3.3))
and t(0) = 1.

Obviously, the map γ : (−δ, δ) → R defined by

γ(s) := Iλ(t(s)(u + sv))

belongs to C1(−δ, δ), satisfies γ(0) � γ(s) for all s ∈ (−δ, δ), and then

0 = γ′(0) = 〈I ′
λ(t(0)u), t′(0)u + t(0)v〉 = 〈Iλ(u), v〉.

Therefore λ is an eigenvalue. �

Proof of Theorem 1.1(i). As has already been pointed out, λ = 0 is an eigenvalue.
Therefore, the conclusion follows immediately from Propositions 3.2 and 3.5. �

We now turn our attention to the proof of assertions (ii) and (iii). Let us start by
observing that as p ↓ 2N/(N + 1) the integrability exponent attached to b blows up. The
same applies to a when p ↓ 2N/(N + 2). An inspection of the proofs in this section reveals
that the only point that needs to be addressed here is step 1 in the proof of Lemma 3.3.
To fine the necessary estimates we use the following well-known result: for all ε > 0, there
exists a constant cε � 0 such that∫

∂Ω

u2 dσ � ε

∫
Ω

|∇u|2 dx + cε

∫
Ω

u2 dx (u ∈ W 1,2(Ω)). (3.6)

This can be proved either indirectly, first for smooth functions u ∈ C1(Ω) (see, for exam-
ple, [12, p. 177]) and then for general elements u ∈ W 1,2(Ω) by approximation, or directly
by invoking the compactness of the trace (see, for example, [2, Lemma 1]).
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Proof of Theorem 1.1(ii). From (3.4) we have∫
Ω

|∇un|2 dx

� λ

(∫
Ω

a(x)u2
n dx +

∫
∂Ω

b(x)u2
n dσ

)

� λ

(
‖a‖LpN/((p−2)N+2p)(Ω)

( ∫
Ω

|un|pN/(N−p) dx

)2(N−p)/pN

+ ‖b‖L∞(∂Ω)

∫
∂Ω

|un|2 dσ

)
.

Since p > 2N/(N + 2), LpN/(N−p)(Ω) embeds into L2(Ω) which, in combination with
estimate (3.6), allows us to estimate

∫
Ω
|∇un|2 dx by

∫
Ω
|un|2 dx. �

Proof of Theorem 1.1(iii). From (3.4) we have∫
Ω

|∇un|2 dx � λ

(
‖a‖L∞(Ω)

∫
Ω

|un|2 dx + ‖b‖L∞(∂Ω)

∫
∂Ω

|un|2 dσ

)
.

Then proceed as in the previous proof. �

We note as a curious fact that the above proofs do not require the hypothesis
supn∈N

∫
Ω
|∇un|p dx < ∞. Actually, the same is true for step 1 in the proof of Lemma 3.3

itself, since Lp(N−1)/(N−p)(∂Ω) embeds into L2(∂Ω) for p > 2N/(N + 1).
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