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A linear stability analysis of the mixing layer in the presence of fibre additives is pre-
sented. Using a formulation based on moments of the probability distribution function
to determine the particle orientation, we extend the classical linear stability theory
and derive a modified Orr–Sommerfeld equation. It is found that, for large Reynolds
numbers, the flow instability is governed by two parameters: a dimensionless group
H , analogous to a reciprocal Reynolds number representing the importance of inertial
forces versus viscous forces associated with the anisotropic elongational viscosity of
the suspension; and a coefficient CI that accounts for inter-particle hydrodynamic in-
teractions. A parametric study reveals that both parameters can induce an important
attenuation of the flow instability. Furthermore, we show that the stabilizing effects
arise from the orientation diffusion due to hydrodynamic interactions, and not from
the anisotropy induced by the presence of fibres in the flow, as speculated before.
The examination of profile contours of different perturbation terms and the analysis
of the rate of production of enstrophy show clearly that the main factor behind the
reduction of the flow instability is associated with the fibre shear stress disturbance.
This disturbance acts as a dissipative term as the fibres, due to the orientational
diffusivity arising from hydrodynamic interactions, deviate from the fully aligned
anisotropic orientation. On the other hand, fibre normal stresses act as a destabilizing
factor and are important only in the absence of hydrodynamic interactions.

1. Introduction
It is well known that small amounts of additives such as polymers, surfactants

and solid or flexible particles can induce spectacular drag reduction effects in many
turbulent flows. Extensive reviews such as those by Hoyt (1972) and Berman (1978)
have documented a large number of experimental observations that provide evidence
of the great potential of such additives in reducing turbulent effects.

Most of the existing literature dealing with drag reduction by additives has mainly
focused on the use of polymer additives, particularly in wall-bounded flows, due to
their importance in many technological processes (see for example Pinho & Whitelaw
1990, and Tiederman 1990). On the other hand, the use of fibre additives as potential
drag-reducing agents remains very limited. Nevertheless, the results of experimental
studies that have investigated pipe flows in the presence of particle additives showed
drag reduction effects of up to 60% (Arranaga 1970). Depending on the flow geometry,
the particles size and the importance of viscous effects versus inertial effects, the
addition of fibres to a flow may be either stabilizing (Vaseleski & Metzner 1974)
or destabilizing (Pilipenko, Kalinichenko & Lemak 1981). In general, where particle
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180 J. Azaiez

additives tend to stabilize the flow, it has been observed that the stabilizing effect
increases with the particle aspect ratio (length to diameter ratio) and with fibre
concentration (Vaseleski & Metzner 1974).

Free shear flows such as mixing layers, jets and wakes differ from the previously
mentioned wall-bounded flows in that they have an inflectional mean velocity profile,
and hence are subject to inviscid instabilities. These flows are encountered in a wide
variety of natural and technological systems and it is important to understand the
mechanisms governing the process of transition to turbulence in order to predict, and
if possible control, the evolution of such flows.

The stability of this class of flows in the presence of additives has been a concern
but not a focus of previous studies, and only limited attention has been devoted to
this problem. Among the few experimental investigations dealing with polymer and
surfactant additives, we should mention the work of Gadd (1965) for the jet flow,
and those of Hibberd, Kwade & Scharf (1982) and Riediger (1989) for the mixing
layer, and Cadot & Lebey (1999) for the wake flow. These studies showed that the
addition of polymers or surfactants leads to a suppression of the flow instability and
an attenuation of small-scale turbulence. Such additives are also responsible for the
delay in the formation of the typical structures of the plane mixing layer, i.e. roll-up
and pairing. On the theoretical side, we mention the linear inertial instability studies
of Azaiez & Homsy (1994a), and Rallison & Hinch (1995), and the full numerical
simulations by Azaiez & Homsy (1994b) and Kumar & Homsy (1999). These studies
allowed a better understanding of the mechanisms of stabilization and shed new light
on the interactions between the flow and viscoelastic polymer additives.

There are much fewer experimental studies devoted to free shear flows of fibre
suspensions. The experimental visualizations of the jet flow by Filipsson, Torgny
Lagerstedt & Bark (1977) represent one of the few experiments devoted to the study
of the stability of free shear flows in the presence of particle additives. The authors
reported that the addition of a small amount of polymer (Polyox WSR-301) or fibres
(asbestos) led to drastic changes in the flow that translated into an enhancement of
large-scale turbulent structures and a modulation of the turbulence by the suppression
of small-scale structures.

All existing experimental investigations of free shear flows with additives, whether
viscoelastic substances or rigid particles, provide evidence of the great potential of
such additives to reduce these flow instabilities. However, in spite of the overwhelming
experimental and theoretical evidence for drag reduction by such additives, the
physical mechanisms responsible for this phenomenon are not completely understood
and remain a subject of debate. Many explanations have been proposed particularly
for the role of polymer additives. The role of stress anisotropy due to polymer
extension versus elasticity in the mechanism of drag reduction is still an ongoing
subject of controversy. De Gennes (1990) and Joseph (1990), among other authors,
suggest that elasticity is the main factor behind drag reduction by polymer additives.
Other authors maintain that the main mechanism is associated with the anisotropy
arising from the particular orientation of the polymer chains once they are fully
stretched (Landahl 1972; Hinch 1977; Draad & Hulsen 1995).

Furthermore, the similarities observed between experimental studies involving poly-
mer or fibre additives, and the fact that polymer chains undergoing strong strains
may act hydrodynamically like solid particles, led many authors to speculate that
these two additives modify flow instabilities in a similar manner. However for many
reasons, we think that such analogies should not be taken too far. First, rigid particles
lack the flexibility that polymer chains usually have and which may have important
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Figure 1. Schematic of the mixing layer.

hydrodynamic effects. Second, it is not obvious that a stretched polymer chain can
retain its conformation without degradation, and therefore behave exactly like a long
rigid particle. Furthermore, it is known that in general, for a given additive concentra-
tion, polymers tend to induce stronger drag reduction effects than their solid particle
counterparts. Finally, experimental results such as those reported by Lee, Vaseleski
& Metzner (1974) for pipe flows, show that the combined use of polymers and fibres
leads to much larger drag reduction effects than usually obtained with either additive
alone.

The objective of the present paper is to examine the linear stability of the mixing
layer in the presence of fibre additives. This study is viewed as a logical extension
to our previous work investigating the stability of the same flow in the presence of
polymer additives (Azaiez & Homsy 1994a). We will focus on high but finite Reynolds
number flows and examine the effects of different parameters such as fibre aspect
ratio and volume fraction, as well as the role of hydrodynamic interactions. We will
attempt to determine the mechanisms of stabilization or destabilization of the flow in
relation to these parameters.

The paper is organized as follows. In the next section we present the equations used
to determine the fibre orientation and the expression for their contribution to the total
stress. The third section deals with the linearized equations describing the stability
of the flow, and the fourth one presents the numerical methods used to solve these
equations. The results of the stability analysis and the mechanisms of stabilization or
destabilization of the flow are discussed in the fifth section.

2. Mathematical model
2.1. Problem definition and Cauchy’s laws of motion

A schematic of the flow under consideration is shown in figure 1, where we have
used the following notation: U1 is the free-stream velocity in the upper flow; U2 is
the free-stream velocity in the lower flow; δ is the initial momentum thickness of the
mixing layer. We assume without loss of generality that U1 is larger than U2 and
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182 J. Azaiez

follow the flow in a Lagrangian reference frame moving with the average velocity
(U1 +U2)/2. In this reference frame, the speed of the free-stream flow is denoted by
uo = (U1 − U2)/2. In all the subsequent analysis we denote by i, j and k the unit
vectors that point in the streamwise (x), transverse (y) and spanwise (z) directions,
respectively and by u = (u, v, w) the velocity vector. The governing equations of the
flow are

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ∇ · τ . (2)

In these equations, ρ is the fluid density, and p the isotropic pressure. The extra stress
tensor τ is decomposed as

τ = τ s + τ f. (3)

The first term τ s corresponds to the contribution of the Newtonian suspending fluid to
the total stress and is proportional to the rate of strain tensor γ̇ = (∇u+∇uT ), through
the viscosity of the suspending fluid η, while the second term τ f represents the fibre
contribution. In order to characterize the flow behaviour of the fibre suspension, we
need to solve the equations for the conservation of mass and momentum, equations
(1) and (2), in conjunction with an equation for the fibre stress τ f . In the following
section we discuss the approach we adopted to determine the expression for the fibre
contribution to the total stress.

2.2. Constitutive equations

For a suspension of non-spherical rigid particles, the expression for the stress tensor in
general depends on the details of the geometry of the particles, their volume fraction
and orientation distribution. The present analysis will be limited to a suspension of
monodisperse, neutrally buoyant rigid particles that are homogeneously distributed
in the flow. In the following two subsections we present the formulations we used to
determine the orientation of the fibres and their contribution to the total stress.

2.2.1. Fibre orientation

For a single particle, the orientation is usually described by a Fokker–Planck
equation for the probability distribution function Γ (p):

∂Γ

∂t
+ ∇ · (ṗΓ − Dr · ∇Γ ) = 0, (4)

where p = (pi) is a unit vector denoting the orientation of the fibre, and Γ (p)dp is the
probability that a fibre be oriented between p and p+dp. In the derivation of the above
equation it is assumed that the suspending fluid is Newtonian and incompressible, and
that particle inertia is negligible. This last assumption is equivalent to requiring that
the Reynolds number based on the particles dimensions be small, i.e. Ref = uol/ν � 1
where l represents a characteristic dimension of the particles and ν is the kinematic
viscosity of the suspending fluid.

The complexity and the usually prohibitively high computational cost associated
with the use of equation (4) to describe particles orientation, have lead to many
alternative approaches. The simplest approach is based on the aligned particle ap-
proximation, where one assumes that all particles align with the local velocity vector.
In this approach, one solves only for the velocity field, which now plays the dual
role of predicting the fluid motion and the particle orientation. This approach is
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Stability of free shear flows of fibre suspensions 183

convenient to describe the flow of slender fibres in the absence of Brownian motion
and fibre–fibre interactions, as the particles tend indeed to align with the streamlines.
We will not adopt this approach in the present study since, as we shall see later, fibres
are not perfectly aligned with the flow and their deviation from full alignment plays
an important role in determining the stability of the flow.

A second approach, that we shall adopt here, uses orientation tensors defined as
dyadic products of the unit vector p averaged over all possible orientations to describe
the orientation of the fibres (Hinch & Leal 1976). In particular, a second-order and
a fourth-order orientation moment 〈pp〉 and 〈pppp〉, are defined as follows:

〈pp〉 =

∮
pipjΓ (p)dp, (5)

〈pppp〉 =

∮
pipjpkplΓ (p)dp. (6)

The equation of change for the second-order tensor 〈pp〉 (Prager 1957; Hinch & Leal
1976) can be formulated as follows:

〈pp〉(1) =
χ− 1

2
[γ̇.〈pp〉+ 〈pp〉.γ̇]− χ[γ̇ : 〈pppp〉] + 2Dr [I − m〈pp〉], (7)

where

〈pp〉(1) =
∂〈pp〉
∂t

+ u · ∇〈pp〉 − ∇uT · 〈pp〉 − 〈pp〉 · ∇u (8)

is the upper-convected derivative of 〈pp〉. In the previous equations, I is the unit
tensor, m is the dimension of the space and χ = (r2 − 1)/(r2 + 1) is a parameter
related to the aspect ratio of the fibre r = L/d = 2l/d, where L and d represent the
fibre characteristic length and thickness, respectively. In what follows we adopt the
following more convenient notation:

a2 (aij) = 〈pp〉,
a4 (aijkl) = 〈pppp〉.

The equation for the development of the second-order orientation tensor a2 contains
the unknown fourth-order orientation tensor a4. In general, the evolution equation
for any order moment of p will involve the next higher-order moment. Therefore,
to obtain a closed set of equations, one needs to determine a4 as a function of
a2. A variety of closure approximations have been proposed to relate the second-
and fourth-order orientation tensors; a4 = C(a2). Among these, we will mention the
quadratic closure approximation which has been extensively used in the literature, and
which, strictly speaking, is valid only for a perfectly aligned orientation distribution.
Most of the available approximations, including the quadratic one, perform well only
for some specific flow fields, and therefore cannot be used for a general complex
flow. In the present study we will use the natural closure approximation that has
been recently developed by Verleye & Dupret (1993). This closure approximation is
based on an analytical solution for the orientation distribution function in the limit
of high-aspect-ratio, non-Brownian fibres. Comparisons with exact results obtained
by solving directly for the orientation distribution function, show that this closure
gives remarkably excellent results for a large variety of flow fields (Cintra & Tucker
1995).

The natural closure approximation is frame invariant and has a simple analytical
form only in the case of a two-dimensional orientation. However, there is no simple
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184 J. Azaiez

formulation for a three-dimensional orientation distribution. For the purpose of the
present study, we will use the analytical form of the closure which is strictly valid
only for two-dimensional orientation, while in reality fibres may have an orientation
component outside of the plane of the flow. We adopt the analytical form mainly for
reasons of simplicity, and we believe that it will capture the essential physics of the
two-dimensional flow investigated here.

For a two-dimensional orientation distribution (m = 2), the relation a4 = C(a2)
based on the natural closure is

aijkl =
det (a2)

6
(δij δkl + δik δjl + δil δjk) + 1

3
(aijakl + aikajl + ailajk), (9)

where δij is the usual Kronecker symbol and det is the determinant. From equation
(9), one gets the following expressions for the term F = (γ̇ : a4) appearing in the
evolution equation for a2:

(γ̇ : a4) = 1
3
[(det (a2) γ̇ + tr (γ̇ · a2) a2 + 2 (a2 · γ̇ · a2)]. (10)

This last expression will be used later in deriving the linearized equations of the flow.
A last word must be said about the diffusion-like term in equation (4) which is

analogous to the rotary motion of small Brownian particles. This term, containing
an orientational diffusivity Dr , accounts for general orientational diffusion resulting
from inter-particle hydrodynamic interactions. In a typical flow of fibre suspensions,
one may have to deal with many types of inter-particle interactions that can influence
the physics of the flow. These interactions can be associated with hydrodynamic or
colloidal forces, excluded volume and friction or direct particle–particle interactions.
Accounting for all these interactions makes the determination of the expression for
Dr a particularly delicate issue.

In the present study, we are interested in studying the role of pure hydrodynamic
interactions, which we believe are the dominant type of interactions in the regime
of concentrations we examine. The relevant previous studies by Rahnama, Koch &
Shaqfeh (1995) and Koch (1995) showed that the orientational diffusivity depends on
the fibre properties (shape and aspect ratio), the flow kinematics and the orientation
distribution of the fibres. For a simple shear flow, Dr is in general not isotropic and
scales like (|γ̇| n l3/(r ln2(r)), where n is the fibre number density, and |γ̇| is the scalar
magnitude of the rate of strain tensor γ̇,

|γ̇| =
√

1
2

tr (γ̇ · γ̇) =
√

1
2
γ̇ij γ̇ji. (11)

We should stress that the term Dr considered here is not associated with Brownian
motion but is a hydrodynamically induced diffusivity that accounts for hydrodynamic
interactions between the fibres.

In an earlier study, Folgar & Tucker (1984) suggested a simple expression where
the diffusivity tensor Dr is assumed to be isotropic and is formulated as CI |γ̇|. The
interaction coefficient CI depends in general on the fibre concentration, shape, and
aspect ratio. In this study we will adopt this last simplified formulation.

It is reasonable to expect that some physical aspects of the flow may be lost by
disregarding the anisotropic nature of the diffusivity and its dependence on the fibre
orientation distribution, and by using the orientation-tensor formulation instead of
solving exactly for the probability distribution function Γ (p). Furthermore, the fibres
may have an orientation component off the plane of the flow that the present model
does not account for. In spite of these simplifications, we believe that the present
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Stability of free shear flows of fibre suspensions 185

formulation incorporates the essential physics and has the advantage of allowing a
qualitative determination of the main effects of fibres on the flow dynamics without
requiring complex and prohibitively expensive calculations.

2.2.2. Fibre stress

Several constitutive models have been developed to determine the expression for
the fibre contribution to the bulk stress tensor τ f . All these models whether derived
from slender-body theory (Batchelor 1970, Hinch & Leal 1975; 1976) or by invoking
continuum mechanics theory (Ericksen 1960), lead to a general expression of the form

τ f = ηφ[A (γ̇ : a4) + B (γ̇ · a2 + a2 · γ̇) + C γ̇ + D a2]. (12)

The material constants A, B, C and D may depend on the fibre properties and volume
fraction, φ. Different models, either for dilute systems where the average fibre spacing
is larger than the fibre length (n l3 � 1), or semi-dilute systems where the average
fibre spacing may vary between the fibre length and diameter (nl3 � 1 and nld2 � 1),
lead to different expressions for the constants. In general, for suspensions that have
weak or no Brownian motion, the fourth term (D a2) can be neglected. Furthermore
for large-aspect-ratio particles, B is much smaller than A and C , and the fibre stress
can be written as

τ f = η φ[A (γ̇ : a4) + C γ̇]. (13)

For slender cylindrical fibres, it was found that C is equal to 2 (Giesekus 1962).
Batchelor (1971) used slender-body theory to determine the expression for A for

the extensional flow of a suspension of rigid particles. In the dilute regime, Batchelor
showed that the parameter A can be determined from the following relation:

Aφ ≡ 2π nl3

3 ln (2r)
f(ε). (14)

The shape factor function f(ε) accounts for the finite aspect ratio of the fibre, and is
equal to 1 for infinitely long fibres. For a finite-aspect-ratio fibre, f(ε) is

f(ε) =
1 + 0.64ε

1− (K + 3
2
)ε

+ [0.699 + 0.64(K + 3
2
)]ε2 + o(ε2),

ε =
1

ln (2r)
.

 (15)

The parameter K is zero for a fibre of circular cross-section. Batchelor (1971) showed
that the previous formulation for A can be extended to the semi-dilute regime, and
suggested the following expression:

Aφ ≡ − 2π nl3

3 ln
(

1
2

√
nld2

) . (16)

Shaqfeh & Frederickson (1990) included inter-particle interactions in the expression
for the viscosity for semi-dilute suspensions, and derived a more accurate expression:

Aφ ≡ 4 π nl3

3[ln (1/φ) + ln (ln (1/φ)) + E(φ)]
, (17)

where E(φ) is of order 1 in the limit φ→ 0. The authors determined limiting values
of E in the two special cases of aligned and random fibres.

Regardless of the expression for A adopted, τ f should be regarded as the anisotropic
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contribution of the particles to the extra-stress tensor. In a general flow, a long thin
particle tends to resist stretching along its axis and the term Aφ represents the
importance of this resistance.

In the remainder, we focus on a suspension of cylindrical particles mainly in the
semi-dilute regime, (1/r2 � φ � 1/r), and use the following equivalent expressions
for (16) and (17):

Batchelor (1971) : A ≡ r2

3 ln (
√

2π/φ)
; (18)

Shaqfeh & Frederickson (1990) : A ≡ 2 r2

3[ln (1/φ) + ln (ln (1/φ)) + E(φ)]
. (19)

For aligned cylindrical particles, Shaqfeh & Frederickson (1990) found that E(φ)
is equal to 0.1585. Since we are dealing with large-aspect-ratio particles that will
be more or less aligned in the direction of the flow, we will adopt this value of E
throughout this analysis.

3. Linearized equations
Using uo and δ as the reference speed and the reference length respectively, the

flow is characterized by the Reynolds number Re = ρδuo/η = δuo/ν, where ν is the
kinematic viscosity of the fluid. The other parameters of interest are the fibre volume
fraction φ, aspect ratio re, and interaction coefficient CI . The dimensionless equations
expressed in terms of the vorticity ω and the second-order orientation tensors a2 are

∂ω

∂t
+ (u · ∇ω) =

1 + Cφ

Re
∇2ω +

Aφ

Re
[k · ∇× (∇ · F )],

a2(1) =
χ− 1

2
(γ̇ · a2 + a2 · γ̇)− χF + 2CI |γ̇|(I − ma2),

F = (γ̇ : a4),

a4 = C(a2).


(20)

By examining the right-hand side terms in the vorticity equation, it becomes clear
that, for large Reynolds numbers, the contribution of the first term responsible for
the diffusion of momentum is negligible compared to that of the second term as long
as the term (Aφ) is at least of the same order as Re. One can see from equation (16)
or equation (17) that this is possible only if one considers high-aspect-ratio fibres.
In this case, the equation for the second-order orientation tensor a2 will not depend
explicitly on the aspect ratio r since the parameter χ = (r2 − 1)/(r2 + 1) is almost
equal to one. As a consequence, for a high Reynolds number flow of a suspension
of high-aspect-ratio fibres, the instability is governed by only two parameters: the
interaction coefficient CI and the parameter Aφ/Re, that we shall refer to as H . This
conclusion will be checked in § 5 where we shall present a physical interpretation of
the dimensionless group H .

We examine the stability of the flow by disturbing the base flow infinitesimally,
and limit the analysis to the case of a two-dimensional flow (m = 2). For the parallel
flow of a Newtonian fluid, the theorem of Squire (1933) states that two-dimensional
disturbances are temporally more unstable than three-dimensional disturbances, and
an investigation of two-dimensional disturbances is sufficient to determine the critical
Reynolds number. It was not possible to derive an equivalent Squire theorem for
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the flow of the fibre suspension examined in this study, and therefore the issue of
three-dimensional linear stability is left an open problem.

For the base state, we assume that the laminar flow is quasi-parallel, i.e. that its
variation is entirely in the direction normal to the flow. The parallel flow assumption
is a satisfactory first approximation for treating the linear stability of viscous flows
at sufficiently high Re (see Ling & Reynolds 1973). In Appendix A, we analyse the
correction to the laminar flow of a Newtonian fluid due to the presence of non-
interacting fibres (CI = 0). In this analysis we show that, using a quadratic closure
(Cintra & Tucker 1995), the expansion leads to an equivalent Blasius problem, and
that the base-state flow profile can be mapped into the Blasius profile. Since solutions
for the mixing layer are known to be closely approximated by the tanh velocity
profile, we conclude that this profile is also satisfactory for the purpose of the present
analysis. With this assumption, we take the base flow as

Uo(y) = tanh (y),

ωo(y) = tanh2(y)− 1, Ψo(y) = ln [cosh (y)],

}
(21)

where Uo(y) is the base-state streamwise velocity, ωo(y) the spanwise vorticity and
Ψo(y) the corresponding streamfunction expressed in dimensionless form. Note that
(21) is a solution of the Cauchy equation provided that there is a dimensionless body
force to balance the contribution of the fibre stress.

The components of the base-state orientation tensor a2o are given by (see Appendix
B):

ao11 =
χ+ 1− β

2χ
, ao22 =

χ− 1 + β

2χ
, ao12 =

2CI (1− β)

χβ
,

β =

√
1− 16CI

2 − χ2 +
√

(16CI
2 + χ2 − 1)2 + 64CI

2

2
,

and the corresponding components of the term Fo = (γ̇o : a4o) giving the-base state
stress are

Fo11 = 2ao12 ao11

dUo

dy
, Fo12 = (ao11 ao22 + a2

o12)
dUo

dy
, Fo22 = 2ao12 ao22

dUo

dy
.

In the special limit of zero orientational diffusivity, CI = 0, the above expressions
reduce to

ao11 =
1

2
+

1−√1− χ2

2χ
, ao22 =

1

2
− 1−√1− χ2

2χ
, ao12 = 0,

and

Fo11 = Fo22 = 0, Fo12 = ao11 ao22

dUo

dy
.

We now assume that the base flow is disturbed such that the vorticity, velocity, and
orientation tensor are represented by the base-state profile plus a small perturbation:

ω(x, y, t) = ωo(y) + ω∗(x, y, t),
u(x, y, t) = Uo(y)i + u∗(x, y, t),
a2(x, y, t) = a2o(y) + a2

∗(x, y, t),
F (x, y, t) = Fo(y) + F ∗(x, y, t),

 (22)
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where the first-order perturbation term F ∗ is:

F ∗ =
det (a2o)

3
γ̇∗ − f∗

12
γ̇o +

tr (γ̇∗ · a2o + γ̇o · a2
∗)

3
a2o +

tr (γ̇o · a2o)

3
a2
∗

+ 2
3
(a2o · γ̇o · a2

∗ + a2o · γ̇∗ · a2o + a2
∗ · γ̇o · a2o),

f∗ = −4(ao11a
∗
22 + ao22a

∗
11 − 2 ao12a

∗
12).

 (23)

The perturbation terms are substituted into the system of equations (20) which are
linearized in the usual way:

∂ω∗

∂t
+Uo

∂ω∗

∂x
+ v∗ω′o =

1 + Cφ

Re
∇2ω∗

+H

[(
∂2

∂x2
− ∂2

∂y2

)
F∗12 +

∂2(F∗22 − F∗11)

∂x∂y

]
, (24a)

∂a∗11

∂t
+Uo

∂a∗11

∂x
+ v∗ a′o11 = −4CIUo

′a∗11 + 2CI |γ̇∗|(1− 2ao11) + 2χ
∂u∗

∂x
ao11

+

[
χ

(
∂u∗

∂y
+
∂v∗

∂x

)
+

(
∂u∗

∂y
− ∂v∗

∂x

)]
ao12

+(1 + χ)U ′oa
∗
12 − χF∗11, (24b)

∂a∗12

∂t
+Uo

∂a∗12

∂x
+ v∗ a′o12 = −4CIU

′
oa
∗
12 − 4CI |γ̇∗|ao12

−
(
∂u∗

∂y
− ∂v∗

∂x

)
ao11 −Uo

′a∗11 +
χ

2

(
∂u∗

∂y
+
∂v∗

∂x

)
+

1

2

(
∂u∗

∂y
− ∂v∗

∂x

)
− χF∗12. (24c)

To derive the previous expressions, we have used the following relations:

ao11 + ao22 = 1, a∗11 + a∗22 = 0. (25)

In the above equations, the prime symbol denotes the derivative with respect to y of
base-state functions i.e. X ′o = DXo = dXo/dy.

Since the base-state depends only on the transverse component y, we can use a
normal mode analysis of the perturbation where the disturbances have the following
form:

ω∗(x, y, t) = ω(y) eiα(x−ct),
a2
∗(x, y, t) = a2(y) eiα(x−ct), etc.

In the present study we focus on the temporal stability and take the wavenumber
α to be real, while c is in general complex. The complex wave speed is written as
c = cr + ici, where cr is the propagation velocity and ci is a measure of the rate of
amplification of the disturbance. The growth rate of the disturbance is then defined
as σ = αci. Using the above equations, we extended the classical linear stability
analysis to include the effects of fibre additives, and obtained the following modified
Orr–Sommerfeld equation (see Appendix C):

4∑
i=0

Ji(y)Diψ = 0 (26)
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with the boundary conditions:

ψ → 0 as y → ±∞
Dψ → 0 as y → ±∞.

}
(27)

4. Solution of the eigenvalue problem
Following the usual Newtonian development, we assume that ψr = Re (ψ) is an

even function of y while ψi = Im (ψ) is an odd function of y. Thus the domain of
integration can be reduced to the upper half of the flow [0,+∞]. Furthermore, we
assume that the instability wave travels with the mean velocity. This assumption was
verified by the finite difference method which makes no a priori assumption about
cr , and which showed that for all the eigenvalue problems we solve, cr = 0 for the
largest ci.

In order to check the validity of the numerical results and to ensure that we obtained
the whole set of solutions, we used three methods to solve the linearized problem
with the appropriate boundary conditions. The first one consists of an iterative
method based on orthogonal shooting which has been described in detail in Azaiez
& Homsy (1994a). The second method is based on a multiple shooting technique
(Ascher, Mattheij & Russel 1988). In this method one divides the whole interval by
a mesh into N sub-intervals and shoots in each interval. The final result is obtained
from the different solutions in the sub-intervals by imposing matching conditions at
the shooting points. This method is very useful when the problem has both rapidly
decaying and rapidly growing solutions. In the third method, we solved the linearized
vorticity and fibre orientation equations using the finite difference method (Azaiez &
Homsy 1994a). The ordinary differential equations are transformed into a set of finite
difference equations and lead to a generalized eigenvalue problem AX = λBX which
was solved using a standard QR algorithm.

For all three methods, the accuracy of the results was tested by refining the mesh
and varying the width of the domain in the transverse direction [0, Y]. At small
wavenumbers, a large shooting distance Y was usually required because of the slow
decay of the eigenfunctions. Furthermore, we used double precision arithmetic which
allowed computation of even weakly amplified unstable modes, and checked that
each method reproduced the well-known calculations for a pure Newtonian fluid
(Michalke 1964).

5. Results
In the previous sections we developed a modified Orr–Sommerfeld equation that

describes the linear stability of the mixing layer in the presence of fibre additives. In
what follows, we will present instability characteristics obtained from the numerical
solution of this equation.

5.1. Instability characteristics

In a first stage we will disregard the effects of the orientational diffusivity, and fix
the value of the interaction coefficient CI to 0.01. In practical terms, it is difficult
to determine experimentally an accurate value of the orientational diffusivity or
equivalently the parameter CI . The value of CI adopted here, though arbitrary due
to the lack of accurate experimental data, falls within the range of values reported
in earlier studies (see for example Folger & Tucker 1984 and Rahnama et al. 1995).
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Figure 2. Instability characteristics for different values of H and CI = 0.01.

Furthermore, unless stated otherwise, we take the Reynolds number equal to 103. This
value is of the same order of magnitude as the values reported in the experimental
study of Filipsson et al. (1977).

We conducted numerical simulations for different values of the fibre volume fraction
and aspect ratio. The results of these simulations showed that fibre additives reduce
the flow instability if the particles are of large aspect ratio, and their volume fraction
is high, while still remaining within the semi-dilute limit for which the model is valid.
As anticipated, it was also found that the flow instability does not depend separately
on the values of r, φ and Re, nor on the exact expression for the parameter A, but
only on the value of the dimensionless group H introduced earlier.

Strictly speaking, this last result is valid as long as the viscous term in the vorticity
equation can be neglected (say Re > 103) and the fibres have a large aspect ratio (say
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Figure 3. Variations of the maximum growth rate and the corresponding wavenumber with H for
CI = 0.01.

r > 102). In the remainder of this study, we shall consider a high Reynolds number
flow in the presence of high-aspect-ratio fibres, and use H as the main parameter to
describe the flow instability.

From our previous interpretation of the term Aφ as the ratio of the extensional
viscosity of the suspension and the shear viscosity, one can regard the parameter H =
Aφ/Re as the inverse of a Reynolds number based on the anisotropic elongational
viscosity of the suspension, i.e. H ≡ 1/Reel ≡ ηel/ρδuo. In the absence of fibres,
H is identically zero, while for fibre-laden flows, H is proportional to the particle
elongational viscosity and reflects the degree of resistance of a fibre to a stretching
flow.

Figure 2 shows the variation of the growth rate of the disturbance σ versus the
wavenumber α for different values of the parameter H and for CI = 0.01. The curve
corresponding to H = 0 represents the Newtonian limit (no fibres) and reproduces
previous results with the maximum growth rate occurring at a wavelength α ∼ 0.44
(Azaiez 1993). As H is increased, the flow instability is substantially modified. The
region of unstable wavenumbers is reduced from that of the pure Newtonian flow, and
the entire unstable spectrum is shifted towards longer waves. Furthermore, the largest
growth rate that governs the instability of the flow is substantially reduced. This result
suggesting that fibres tend to stabilize the shortest waves is in agreement with the
observations of Filipsson et al. (1977) who reported an increase in the wavelength of
the flow turbulent structures. This attenuation of the instability suggests the presence
of a mechanism of stabilization that we shall discuss later.

The previous results show conclusively that fibre additives reduce considerably the
flow instability when the parameter H becomes large. However, one may ask if the
flow can be totally stabilized for large enough values of H . Since it was not possible
to conduct an asymptotic analysis for large H , we have simply plotted the variation
of the maximum growth rate σmax and the corresponding wavenumber ασmax

versus
the parameter H . Using a logarithmic scale, we show in figure 3 the variations of
σmax and ασmax

versus H . From this figure one can see that, for large values of H , the
decay of both σmax and ασmax

with H can be closely described by a power law. An
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Figure 4. Instability characteristics as a function of CI : H = 3.31.

interpolation of the numerical data shows that the maximum growth rate decays like
H−1.42. This last result indicates that the addition of fibres reduces the flow instability
without completely suppressing it, which is similar to what we have reported for the
viscoelastic mixing layer (Azaiez & Homsy 1994a).

5.2. Role of fibre–fibre interactions

An important question that arises in the study of flows of fibre suspensions is related
to the interactions between the disturbance fields of the different particles, i.e. the
problem of hydrodynamic interactions. In this section, we will investigate this question
by fixing all parameters except CI .

Figure 4 depicts instability characteristics for H = 3.31 and various values of CI .
It is clear from this figure that, for large interaction coefficients, an increase in CI
reduces the instability of the flow in a similar way to what was reported in the
previous section when H is increased. There is however a fundamental difference for
small values of the interaction coefficient. Indeed, for very small but non-zero values
of CI , the fibre suspension flow is, strictly speaking, less unstable than its Newtonian
counterpart since the maximum growth rate has decreased. However, the spectrum
of unstable wavenumbers is much larger than in the Newtonian case. Furthermore,
when hydrodynamic interactions are disregarded (CI = 0), the maximum growth rate
becomes slightly larger than for the Newtonian fluid and the spectrum of unstable
wavenumbers is almost doubled. From this last result, one should expect a fibre-laden
flow to be unstable to higher frequency disturbances than its Newtonian counterpart.
This means that such flows will show a stronger presence of fine turbulent structures
when no or very weak hydrodynamic interactions are present in the flow. However,
the experimental results of Filipsson et al. (1977) for the jet flow of fibre suspensions
show just the opposite. This suggests that hydrodynamic interactions are not only
important in the flow and therefore cannot be omitted in the analysis, but most
importantly they are a key factor in the reduction of the flow instability. As we
have mentioned earlier, exact values of the orientational diffusivity are not easy to
determine. However, the present study suggests that, with the model adopted here,
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values of the order of 0.01 or larger lead to predictions that are in better qualitative
agreement with the experimental observations.

A final important question that may arise from the previous observations, is how
does the present model behave in the dilute regime where hydrodynamic interactions
can be neglected. We ran a few simulations using equation (14) valid in the dilute
regime, for Re = 103, r = 103, φ = 10−6 which correspond to H ≈ 5 × 10−5, and
examined the effects of varying CI between 0.1 and zero. Even though a value of CI
of the order of 0.1 is unrealistically high for a dilute solution, it was found that, for all
the values of CI examined, the instability characteristics were virtually identical to that
of the Newtonian fluid. This can be explained by the fact that H is extremely small,
and therefore the effects of fibres on the flow will not be significant. Furthermore,
this result shows that the present model does indeed reflect the real behaviour of the
fluid, and that the effects of hydrodynamic interactions on the flow instability are
noticeable only in the semi-dilute regime.

5.3. Mechanisms of stabilization

In this section we will attempt to determine the mechanisms responsible for the
reduction of the flow instability reported earlier. We present results based on the
eigenfunctions obtained from the solution of the modified Orr–Sommerfeld equation.
From the unstable eigenvalues, we select the one corresponding to the largest growth
rate and normalize the corresponding eigenfunction such that ψr(0) = 1. All other
disturbance functions ω, F , a2, etc. can then be easily determined.

Figure 5 depicts the variations of the real and imaginary parts of the eigenfunction
ψ for different values of the parameter H . For illustrative purposes, we plot as a
thick solid line a function proportional to the base-state velocity Uo = tanh (y) to
show the extent of the shear layer. Furthermore, to present clearly the behaviour of
the disturbance function close to the shear layer, we show the variation over only a
fraction of the extent of the computational domain in the transverse direction.

For the Newtonian fluid (H = 0), most of the contribution of the eigenfunction
lies within the shear layer region and decreases rapidly outside this region. As H
is increased, the eigenfunction for interacting fibres (CI = 0.01) extends beyond the
shear layer and shows a slower decay with the transverse position y. Furthermore,
the transverse location at which the eigenfunction reaches its maximum shifts away
from the shear layer. When the effects of hydrodynamic interactions are ignored, the
eigenfunction shows a very sharp increase, reaches its maximum within the shear
layer, and then decays rapidly outside the shear layer. Note that the results described
above are valid for both the real and imaginary parts of the eigenfunction.

A physical interpretation of these results can be obtained by recalling the relation-
ship between the velocity vector and the streamfunction. The transverse component
of the velocity disturbance, which is a key indicator of the strength of the subsequent
roll-up of the flow, is related to the streamfunction through the relation v = −iαψ.
From the previous remarks, we conclude that in the cases of the Newtonian fluid
and the non-interacting fibres, the contribution of v is mainly concentrated within the
shear layer where the base-state velocity Uo is very small. This is indicative of a po-
tentially strong effect of the transverse velocity disturbance on the flow. Furthermore,
the sharp gradient within the shear layer of the eigenfunction for CI = 0 suggests a
strong contribution of the streamwise velocity disturbance u = ∂ψ/∂y in this region
of the flow. On the other hand, for interacting fibres with large H , the maximum of v
lies outside the shear layer. This contribution of the transverse velocity disturbance,
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Figure 5. Variation of the real and imaginary parts of the eigenfunction.

in a region of the flow where the fluid moves at the free-stream velocity, probably
will not have important effects on the flow instability.

Figure 6 shows the variations of the real parts of the two components of the
orientation tensor disturbance, a2. A look at the figure for the component a11,
representing the effects on the degree of alignment with the flow, reveals that this
component decreases sharply with H when CI = 0.01. Furthermore, the disturbance
decay is slower, and its contribution extends far beyond the shear layer for larger H .
In the case where hydrodynamic interactions are not considered, the contribution of
the disturbance a11 is mainly restricted to the shear layer and decays rapidly outside
of this region. Similar qualitative results are obtained for a12 with the important
exception that the a12 perturbation is almost two order of magnitudes larger than
that of a11.
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Figure 6. Variation of the two components of the disturbance of the
second-order orientation tensor.

To understand the role of the interaction coefficient, let us examine the special case
of infinitely long fibres (re → ∞, χ = 1), and consider a flow where hydrodynamic
interactions are very weak. In this case, it is possible to get an expansion for the
components of the base-state orientation tensor in terms of CI :

ao11 = 1− CI1/2 + CI
3/2 + o(CI

3/2),

ao12 = CI
1/2 − 2CI + CI

3/2 + o(CI
3/2).

We should stress that the above expansions are strictly valid only when χ = 1. From
these expressions, it is easy to see that the two components of the base-state stress,
Fo11 and Fo12, are O(CI

1/2) while Fo22 is O(CI ). When these terms are incorporated in
the linearized equations of Appendix C, one can show that the two components of
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(b)(a)

Figure 7. Distribution of the fibre orientation in the flow: (a) CI = 0; (b) CI = 0.01.

the second-order orientation tensor perturbation are

a11 ∼ −2CI
ψ
′′

+ α2ψ

iαUo + σ
, a12 ∼ α2ψ

iαUo + σ
.

These expressions show that, for very small or zero orientational diffusivity, a fibre
will be simply rotated to align with the displaced streamline. The angle of rotation is
given by a12, which in the shear layer where Uo is very small, is given by α2ψ/σ. Far
from the shear layer, the rotation decays rapidly.

The previous results can be further understood by comparing the final orientation
with the base-state orientation. For this purpose, we examine the spatial orientation
distribution of the fibres for CI = 0.01 and CI = 0, and for H = 3.31. For a given
second-order orientation tensor a2, we determine its eigenvectors and eigenvalues,
which indicate the orientation directions in the plane of the flow and the degree of
alignment with respect to these directions. Hence, we can represent the orientation
of a fibre by an ellipse whose major axes are determined by the eigenvectors and the
eigenvalues of a2, giving the direction and size of each axis, respectively.

Figures 7(a) and 7(b) show the base-state orientation of the fibres as dotted
lines and the final orientation resulting from the perturbation as solid lines. The
final orientation has been defined here arbitrarily as the base state augmented with
10% of the perturbation a2. Therefore it is not possible to draw any quantitative
conclusions from these figures. However, one can get some general qualitative trends
that indicate how the fibre orientation is changed in the flow. Given the high aspect
ratio considered in this analysis, the fibres are initially aligned with the flow when
hydrodynamic interactions are ignored (dotted lines in figure 7a). In the presence
of the perturbation (solid lines), we see that only particles within the shear layer
experience a strong misalignment while those in the quiescent flow outside the shear
layer remain aligned in the streamwise direction. In the case where CI is non zero,
the base-state orientation shows some misalignment from the streamwise direction.
Then the perturbation induces a change in the particle orientation that propagates
far beyond the shear layer and affects the orientation of the particles everywhere in
the flow (figure 7b).

From the previous observations about the streamfunction and the orientation tensor
disturbances, we conclude that, due to inter-particle hydrodynamic interactions, the
orientation disturbance is not limited to the shear layer, but propagates outside this
region. As a consequence, the velocity perturbation is more diffuse and spreads outside
the shear layer. As we discussed earlier, such spatial distribution tends to weaken the
flow instability. On the other hand, when hydrodynamic interactions are disregarded,
the orientation disturbance is confined within the shear layer where the fibres are
aligned with the streamlines. This leads to a stronger velocity field disturbance in
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Figure 8. Contours of rate of production of vorticity disturbance at the maximum growth
rate. (a) Newtonian fluid (H = 0); (b) H = 3.31, CI = 0.01; (c) H = 6.61, CI = 0.01; (d) H = 3.31,
CI = 0.

a region where the base-state velocity Uo = tanh (y) is almost zero, and therefore
enhances the instability of the flow.

5.3.1. Vorticity production

More insight into the effects of the presence of fibres on the flow instability can
be gained by examining the spatial distribution of different disturbance quantities.
The most important physical quantity to study in this type of flow is the vorticity.
Therefore, we will examine in detail the different terms appearing in the vorticity
equation:(
∂

∂t
+Uo

∂

∂x

)
ω = −vω′o +

1 + Cφ

Re
∇2ω +H

[(
∂2

∂x2
− ∂2

∂y2

)
F12 +

∂2

∂x∂y
(F22 − F11)

]
.

(28)

In what follows we show contours of different terms involved in the production of the
vorticity disturbance. Values of the global minimum are indicated and will be used to
determine the relative importance of each term for a given type of fluid. For brevity
we will not present results for the term (1 +Cφ)∇2ω/Re, since its contribution to the
vorticity production is negligible and can be ignored.

The results are presented for one wavelength λ = 2π/α in the streamwise direction,
while the extent of the domain in the transverse direction has been limited to
−60 6 Y 6 60, even though the numerical solutions of the eigenvalue problems
have been carried out for larger values of Y . For easy comparisons, eight solid-line
contours are used to represent positive values of a disturbance function F between
its (positive) maximum F+

max, and 20% of F+
max. Similarly, eight dotted-line contours

are used to represent negative values of F .
Figure 8 shows the rate of accumulation of the vorticity for four types of fluid.

We see that in the limit of a Newtonian fluid, there are two distinct regions. First in
the downstream half-wavelength, the rate of production of vorticity is negative in the
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Figure 9. Contours of −vω′o at the maximum growth rate. (a) Newtonian fluid (H = 0);
(b) H = 3.31, CI = 0.01; (c) H = 6.61, CI = 0.01; (d) H = 3.31, CI = 0.

lower part of the flow and positive in the upper one. This corresponds to a depletion
of vorticity in the upper flow and an increase in the lower flow. Keeping in mind
that the base-state vorticity is negative, we conclude that the upper flow has a higher
vorticity than the lower one and tends to roll into the lower part. The opposite trend
is taking place in the upstream half-wavelength where the lower part of the flow tends
to roll into the upper part. This distribution of the vorticity disturbance sets the stage
for the beginning of a roll-up of the upper stream around the lower one.

The addition of fibres with hydrodynamic interactions (CI = 0.01) leads to a spatial
phase shift that reduces the extent of the region where there is a superposition of
vorticity production and depletion, therefore weakening the starting of any roll-up.
The phase shift is most noticeable in the case H = 6.61, where the positive contours
in the upper and lower parts of the flow are almost superposed. This phase shift,
similar to the one reported for the viscoelastic mixing layer (Azaiez & Homsy 1994a),
suggests that the mechanisms of reduction of the flow instability by high-aspect-ratio
fibres bear some similarities with that of highly viscoelastic polymers. In the case
where fibre–fibre interactions are ignored (CI = 0), the presence of fibres in the flow
does not lead to any noticeable spatial phase shift.

Figure 9 depicts contours of the convective term −vω′o. In the case of the Newtonian
fluid, since the contribution of the viscous term to the flow is negligible, the contours
are basically identical to those we showed previously for the rate of production of
vorticity. The presence in the flow of fibres with non-zero orientational diffusivity
induces a phase shift that increases with increasing H , but which is opposite in sign
to the one reported earlier for the rate of production of vorticity. On the other hand,
when CI = 0, the phase shift is of the same sign as the one observed for the rate of
production of vorticity. Based on these observations and our previous interpretation
of the role of the phase shift observed in the vorticity production (Azaiez & Homsy
1994a), we conclude that the convective term (−vω′o) plays a destabilizing role when
hydrodynamic interactions are important, while it is less destabilizing in the case of
non-interacting fibres.
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(α=0.150, r=0.030)
Global Minimum= –0.162

(α=0.750, r=0.188)
Global Minimum= –8.772×10–2

(a) (b)

(c) (d )

(α=0.050, r=0.010)
Global Minimum= –4.036×10–2

Figure 10. Contours of the shear stress contribution to the vorticity production at the maximum
growth rate. (a) Newtonian fluid (H = 0); (b) H = 3.31, CI = 0.01; (c) H = 6.61, CI = 0.01; (d)
H = 3.31, CI = 0.

The third term representing the contribution of the shear component of the pertur-
bation stress, H(∂2/∂x2 − ∂2/∂y2)F12, is identically zero in the case of the Newtonian
fluid (blank box in figure 10). A close examination of the distribution of the contours
in the two cases where interacting fibres are present in the flow reveals an interesting
result when these contours are contrasted with the previous ones for the term (−vω′o)
(see figure 9). In the case of interacting fibres (CI = 0.01), the contours are quali-
tatively and quantitatively similar to the corresponding contours of (−vω′o) (see the
general shape of the contours and the values of the global minima). However, there
is a major difference in the spatial distribution of the negative and positive contours
that suggests that two terms are acting in an opposite way. This result is more clear
for H = 6.61 where, from the superposition of the positive and negative contours and
the values of the minima, one may speculate that the contribution of the fibre shear
stress almost cancels out that of the convective term (−vω′o). For non-interacting
fibres, the contribution of the shear stress disturbance is very small and is mainly
confined within the shear layer.

Figure 11 depicts contours of the first normal stress difference perturbation
H(∂2/∂x∂y)(F22 − F11), which is identically zero for the Newtonian fluid. In the
two cases where CI 6= 0, the normal stress contribution to the vorticity production
shows an alternation of positive and negative values in the lower and upper parts of
the flow. By comparing values of the global minima, we notice that the contribution
of this term is always smaller than that of the shear stress component. The general
shape of the contours is drastically changed when hydrodynamic interactions are
ignored. In this case, the normal stress disturbance extends far beyond the shear layer
and shows an alternation of positive and negative values in the lower and upper parts
of the flow. Furthermore, its contribution to the vorticity production is much more
important than that of the shear stress disturbance, and is of the same order as the
contribution of the convective term (−vω′o).
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(α=0.150, r=0.030)
Global Minimum= –6.499×10–2

(α=0.050, r=0.010)
Global Minimum= –7.802×10–3

(α=0.750, r=0.188)
Global Minimum= –0.903

(a) (b)

(c) (d )

Figure 11. Contours of the normal stress contribution to the vorticity production at the maximum
growth rate. (a) Newtonian fluid (H = 0); (b) H = 3.31, CI = 0.01; (c) H = 6.61, CI = 0.01; (d)
H = 3.31, CI = 0.

5.3.2. Energy analysis

Valuable information about the mechanisms behind the attenuation of the flow
instability can be obtained by examining the energy equation for the disturbance.
The most common approach consists of using the kinetic energy obtained by taking
the scalar product of the linearized momentum equation with the velocity vector,
and integrating over the whole domain. Here, we will adopt a different approach
based on the enstrophy, defined as the integral of the square of the vorticity. Since
the production of vorticity is the key element behind the instability of the flow, we
believe that enstrophy is the basic energy quantity for this type of flow. Other forms
of disturbance energy such as the kinetic energy must adjust to it.

The equation for the enstrophy balance is obtained by taking the scalar product of
the linearized vorticity equation with the vorticity disturbance ω, and integrating over
one wavelength and the domain transverse extent [−∞,+∞], using the appropriate
boundary conditions. This leads to the following equation:

1

2

d

dt

∫ λ

0

∫ +∞

−∞
ω2 dy dx︸ ︷︷ ︸

ENS

=

∫ λ

0

∫ +∞

−∞
−vωω′o dy dx︸ ︷︷ ︸
REW

−
∫ λ

0

∫ +∞

−∞
(1 + Cφ)||∇ω||2

Re
dy dx︸ ︷︷ ︸

VIS

+H

∫ λ

0

∫ +∞

−∞
ω

(
∂2

∂x2
− ∂2

∂y2

)
F12 dy dx︸ ︷︷ ︸

SHE

+H

∫ λ

0

∫ +∞

−∞
ω

∂2

∂x∂y
(F22 − F11) dy dx︸ ︷︷ ︸

NOR

. (29)

The physical meaning of the different terms in equation (29) can be interpreted as
follows. The term ENS represents the rate of change of enstrophy of the disturbance
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and is proportional to the growth rate of the disturbance σ. The first term on the
right-hand side REW , analogous to the rate of transfer of energy through Reynolds
stresses in the kinetic energy equation, is always an energy source. The second term
VIS , on the other hand, acts always as an energy sink and represents the rate of
dissipation of enstrophy by viscous forces. The last two terms, SHE and NOR,
represent the rate of work by the shear and normal stress disturbances, respectively.

The various terms in the equation for the enstrophy have been obtained from the
eigenfunction solutions as follows:

ENS = πcie
2σt

∫ +∞

−∞
[(α2ψr − ψ′′r )2 + (α2ψi − ψ′′i )2] dy,

REW = πe2σt

∫ +∞

−∞
[ψi(α

2ψr − ψ′′r )− ψr(α2ψi − ψ′′i )]U ′′o dy,

VIS = − (1 + Cφ)

Re

πe2σt

α

∫ +∞

−∞
[α2((α2ψr − ψ′′r )2 + (α2ψi − ψ′′i )2)

+(α2ψ′r − ψ′′′r )2 + (α2ψ′i − ψ′′′i )2] dy,

SHE = H
πe2σt

α

∫ +∞

−∞
[Z12r(α

2ψr − ψ′′r ) + Z12i(α
2ψi − ψ′′i )] dy,

NOR = H
πe2σt

α

∫ +∞

−∞
[Z11r(α

2ψr − ψ′′r ) + Z11i(α
2ψi − ψ′′i )] dy,

where

Z12r = L2ψ
′′
r − α(L1iψ

′
r + L1rψ

′
i) + α2(L0rψr − L0iψi),

Z12i = L2ψ
′′
i + α(L1rψ

′
r − L1iψ

′
i) + α2(L0iψr + L0rψi),

Z11r = K2ψ
′′
r − α(K1iψ

′
r +K1rψ

′
i) + α2(K0rψr −K0iψi),

Z11i = K2ψ
′′
i + α(K1rψ

′
r −K1iψ

′
i) + α2(K0iψr +K0rψi).

Expressions for the functionsK0, K1, K2, L0, L1 and L2 have already been determined
in Appendix C. The above integrals have been evaluated at the wavenumber α leading
to the maximum growth rate, and are determined at a time t = 0.5. In a first stage,
we focus on the case of interacting fibres. The role of fibre–fibre interaction will be
analysed later.

The variations of the different terms with the parameter H for CI = 0.01 are
shown in figure 12. For a pure Newtonian fluid (H = 0), the rate of change of
the enstrophy production corresponds to the rate of transport of the base-state
vorticity by the velocity disturbance and the rate of viscous dissipation, the latter
being negligible. When interacting fibres are added to the flow (H 6= 0), the picture
changes significantly with the presence of two new competing terms associated with
the fibre stress disturbance. For these flows, the negative rate of work by shear
stresses is opposing the positive contributions from the normal stress difference and
the term REW . As H increases and the flow instability is reduced, the rate of
enstrophy production starts decreasing. This decrease which is accompanied by a
similar, though slower, decay in the energy source term REW , is mainly driven by
a sharp increase in the energy sink term SHE. Up to a limiting value HL ∼ 2.8, the
increase in H induces an increase in the energy source and energy sink associated
with the work of the normal and shear stress components respectively. Beyond this
value, both contributions start decaying. At large values of H , the main competing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

71
7X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211209900717X


202 J. Azaiez

3

2

1

0

–1

–2

–3

REW

ENS

NOR

VIS

SHE

Pe
rt

ur
ba

ti
on

 e
ne

rg
y

0 2 4 6 8 10

H

Figure 12. Variation of the different terms in the enstrophy equation (CI = 0.01).

REW/ENS VIS/ENS NOR/ENS SHE/ENS
Fluid (α, σ) % % % %

Newtonian α = 0.440, σ = 0.188 102.5 −2.5 0 0
Fibres (CI = 0.00) α = 0.750, σ = 0.187 35.6 −6.2 67.2 3.3
Fibres (CI = 0.01) α = 0.150, σ = 0.030 692.6 −5.6 311.7 −898.8

Table 1. Relative values of different terms in the equation for the rate of change of enstrophy:
H = 3.31, Re = 103

terms that are left are those associated with the shear stress work and the transport
of enstrophy by the velocity disturbance, with the former showing a dissipating effect
that attenuates the growth of the rate of enstrophy production, while the latter still
plays a destabilizing role. This last conclusion confirms our previous interpretation
of the role of the different terms involved in the production of vorticity.

In what follows, we turn our attention to the role of hydrodynamic interactions,
and present values of the different terms in the enstrophy equation for CI = 0.01
and CI = 0, and for H = 3.31. To discuss the effects of CI , it may be more
convenient to present the relative contribution as the percentage of each term of
the total rate of production of enstrophy. From table 1, it is evident that when no
hydrodynamic interactions are included and the fibres are almost aligned with the
flow, the rate of change of production of enstrophy is basically reduced to the sum
(REW +NOR) where both terms are positive, and therefore play a destabilizing role.
The relative contributions of the two terms SHE and VIS are negligible. The above
conclusions clearly support our previous analysis of the contours of the different
terms contributing to the production of vorticity. In the absence of orientational
diffusivity, the instability is mainly fed by the convection of the base-state vorticity
and the growth of fibre normal stresses. The result changes completely when one
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takes into account the role of fibre–fibre interactions. In this case, the rate of work by
shear stresses which is always negative, becomes the dominant term in the equation
for the enstrophy budget. This sink term balances the positive contributions from the
normal stress difference and the REW term.

6. Conclusion
We present the results of an investigation of the effects of fibre additives on

the temporal instability of the mixing layer. The main assumptions used in the
derivation of the equations are that the mean flow is parallel and steady, and
that the orientational diffusivity arising from hydrodynamic interactions is isotropic.
Furthermore, we have used a natural closure approximation that is valid for a planar
orientation and have ignored the possibility of off-plane orientation. A modified Orr–
Sommerfeld equation was derived and solved numerically. The major findings of the
present analysis are summarized as follows.

First, it was found that for large Reynolds numbers, the flow instability is deter-
mined by two parameters: a coefficient CI that accounts for orientational diffusion
arising from inter-particle hydrodynamic interactions; and a dimensionless group
H = Aφ/Re, where φ is the fibre volume fraction, and A a parameter that depends
on the fibre properties. The parameter H which accounts for the fibre resistance
to stretching along its axis, can be regarded as the inverse of a Reynolds number
representing the ratio of the fluid inertial forces and the viscous forces associated
with the anisotropic elongational viscosity of the suspension.

Second, a parametric study showed that variation of both parameters can lead
to a spectacular reduction of the flow instability, without suppressing it completely.
Furthermore, it was shown that it is important to include hydrodynamic interactions
in order to see a decrease in the flow instability. This result suggests that the drag
reduction effects observed in fibre-laden free shear flows cannot be solely attributed
to the anisotropy introduced by the long fibres, as has been speculated before. It
also shows that the re-orientation of the fibres induced by hydrodynamic interaction
between the particles is the key factor behind the observed attenuation of the flow
instability.

Third, it was observed that the different disturbance quantities are mainly localized
within the shear layer when hydrodynamic interactions are ignored. On the other hand,
accounting for the re-orientation of fibres resulting from hydrodynamic interactions
leads to more diffuse profiles in which the disturbances are no longer confined within
the shear layer. These disturbances extending beyond the shear layer have negligible
contribution to the flow instability.

Fourth, an analysis of contours of different perturbation terms involved in the
production of vorticity, and an examination of the budget equation for the rate
of production of enstrophy, revealed that the main factor behind the reduction
of the flow instability is associated with the fibre shear stress disturbance. This
disturbance is important when hydrodynamic interactions are included in the flow,
and acts as a dissipative term as the fibres tend to deviate from the fully aligned
anisotropic orientation. On the other hand, fibre normal stress disturbances always
play a destabilizing role, and dominate the flow in the absence of hydrodynamic
interactions. However, their contribution becomes negligible compared to that of the
shear stress disturbance when hydrodynamic interactions are accounted for.

Finally, it was concluded that fibre models based on the assumption that particles
are fully aligned with the flow and therefore ignore any misalignment induced by hy-
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drodynamic interaction, will fail to capture the main physics of the flow. Furthermore
the important role of hydrodynamic interactions discovered, leads us to speculate that
an anisotropic diffusivity will have even more pronounced effects on the stability of
the flow. This issue will be examined in a future study involving numerical simulations
of the full nonlinear problem.

Appendix A. Correction to the laminar Newtonian flow for non-interacting
fibres

The two-dimensional form of the equations of motion, continuity and the consti-
tutive equations for the second-order orientation tensor are respectively

D(u) = −px +
(1 + Cφ)

Re
(uxx + uyy ) + H(F11,x + F12,y ),

D(v) = −py +
(1 + Cφ)

Re
(vxx + vyy ) + H(F12,x + F22,y ),

ux + vy = 0,

D(a) = −4CI |γ̇|a + 2a11ux + 2a12uy + 2CI |γ̇| − χF11

+(χ− 1)[2a11ux + a12(uy + vx)],

D(a12) = −4CI |γ̇|a12 + a11vx + a22uy − χF12 + (χ− 1)
(uy + vx )

2
,

a11 + a22 = 1,

F = γ̇ : α4.



(A 1)

In the above equations we used the subscripts t, x and y to denote differentiation with
respect to time and the two space variables, respectively, and the symbol D represents
the convective operator (u∂x + v∂y ). The variables in the above equations are already
dimensionless. Let us consider the special limit χ = 1, CI = 0, and use the quadratic
closure to get the fourth-order orientation tensor α4 (Cintra & Tucker 1995):

aijkl = aij akl .

This leads to

F = tr (γ̇ · α2)α2 = 2λα2,

where λ = [a11ux + a12(uy + vx ) + a22vy ]. In this case we get

D(u) = −px +
(1 + Cφ)

Re
(uxx + uyy ) + 2H[λxa11 + λa11,x + λya12 + λa12,y ],

D(v ) = −py +
(1 + Cφ)

Re
(vxx + vyy ) + 2H[λxa12 + λa12,x + λya22 + λa22,y ],

ux + vy = 0,

D(a11) = 2(a11ux + a12uy )(1− a11)− 2(a12vx + a22vy )a11,

D(a12) = a11vx + a22uy − 2(a11ux + a12(uy + vx ) + a22vy )a12,

a11 + a22 = 1.


(A 2)

In the mixing layer, we use the following scaling:

ε =
1√
Re
, x = x, y = εy, u = u, v = εv, p = ε2p,

a11 = a11, a12 = εa12, a22 = ε2a22.

 (A 3)
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With the above scaling, λ can be written as

λ = (uxa11 + uya12) + ε2(vxa12 + vya22) = λ0 + ε2λ2.

The previous equations are recast in the form

uux + vuy = −ε2px + (1 + Cφ)ε2
(
uxx +

uyy

ε2

)
+2H[λ0,xa11 + λ0,ya12 + λ0(a11,x + a12,y)]

+2ε2H[λ2,xa11 + (λ2,ya12λ2(a11,x + a12,y)],

ε2(uvx + vvy) = −ε2py + (1 + Cφ)ε4
(
vxx +

vyy

ε2

)
+2Hε2[λ0,xa12 + λ0,ya22 + λ0(a12,x + a22,y)]

+2ε4H[λ2,xa12 + λ2,ya22 + λ2(a12,x + a22,y)],

ux + vy = 0,

ua11,x + va11,y = 2(a11ux + a12uy)(1− a11)− 2ε2(a12vx + a22vy)a11,

ua12,x + va12,y = a11vx + a22uy − 2(a11ux + a12uy)a12

−2ε2(a12vx + a22vy)a12,

a11 + ε2a22 = 1.



(A 4)

We use the similarity variable, η = y/
√
x, and take the streamfunction, to the first

order, equal to ψo = ε
√
x f(η). The corresponding streamwise and transverse velocities

are

uo = f′(η), vo =
(η f′(η)− f(η))

2
√
x

. (A 5)

The next step is the usual tentative expansion of the variables.

u = uo + ε2A(η)

x
+ o(ε2), v = vo + ε2 B(η)

x
√
x

+ o(ε2),

a11 = h(η)− ε2H(η)

x
+ o(ε2), a22 =

H(η)

x
+ ε2L(η)

x2
+ o(ε2),

a12 =
g(η)

2
√
x

+ ε2 G(η)

x
√
x

+ o(ε2).


(A 6)

H , h, g and f satisfy the following equations:

ff′′ + 2(1 + Cφ)f′′′ = 0, (A 7a)

(ηh− g)[(ηh− g)f′′′ + (2(ηh− g)′ + h)f′′] = 0, (A 7b)

fh′ − 2(1− h)(ηh− g)f′′ = 0, (A 7c)

(2g − f′)(ηh− g) + f(g′ − h) + (4H − η2h) = 0, (A 7d)

h = 1, (A 7e)

with the boundary conditions: f(0) = 0, f′(+∞) = 1, f′(−∞) = −1.

Equations (A 7a) and (A 7b) are obtained from the x-component of the momentum
equation, while equations (A 7c–e) are from the evolution equations for the three
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components of the second-order orientation tensor. The solution of the above system
is given by

2(1 + Cφ)f′′′ + ff′′ = 0, h = 1, g = η, H =
η2

4
. (A 8)

The Newtonian limit is accessible by setting φ = 0 (no fibres) and it is easy to verify
that this limit gives the Blasius equation.

If we define g such that f(η) = g((1 + Cφ)η), then g satisfies the Blasius equation
and the solution of the differential equation for f can be mapped to the Blasius
solution.

Appendix B. Base-state orientation tensor
The equations for the second-order orientation tensor using the two-dimensional

natural closure approximation are

4CIa11 = (1 + χ− 2χa11)a12 + 2CI, (B 1a)

4CIa12 =
1 + χ

2
− a11 − χ(a11a22 + a2

12), (B 1b)

where χ = (r2 − 1)/(r2 + 1). Equation (B 1a) leads to the relation

a12 =
2CI (2a11 − 1)

1 + χ− 2χa11

.

Let β = 1 + χ− 2χa11 which is equivalent to

a11 =
χ+ 1− β

2χ
, a22 =

χ− 1 + β

2χ
, a12 =

2CI (1− β)

χβ
.

When we substitute the above expressions in (B 1b) we get the following quartic
equation for β:

β4 + (16CI
2 + χ2 − 1)β2 − 16CI

2 = 0.

The solution is

β2 =
1− 16C2

I − χ2 +
√
∆

2
, ∆ = (16C2

I + χ2 − 1)2 + 64C2
I .

Since β = 1 +χ−2χa11 must be always positive, the only acceptable root is β =
√
β2.

In summary the components of the base-state second-order orientation tensor are

a11 =
χ+ 1− β

2χ
, a22 =

χ− 1 + β

2χ
, a12 =

2CI (1− β)

χβ
,

β2 =
1− 16C2

I − χ2 +
√
∆

2
, ∆ = (16C2

I + χ2 − 1)2 + 64C2
I .

In the special limit of zero orientational diffusivity, CI = 0, the above expressions
reduce to

a11 =
1

2
+

1−√1− χ2

2χ
, a22 =

1

2
− 1−√1− χ2

2χ
, a12 = 0.
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Appendix C. Derivation of stability equations for the mixing layer of fibre
suspension

The linearized equations for the components of the second-order orientation tensor
and the vorticity disturbances are

iα[Vo(D
2 − α2) + ω′o]ψ =

1 + Cφ

Re
(D2 − α2)2ψ +H[(D2 + α2)F12

+iαD(F11 − F22)],

C11a11 − C12a12 = (iαC1D + α2C0)ψ,

E12a12 − E11a11 = (iαE1D + α2E0)ψ,

a11 + a22 = 0,


(C 1)

where

H =
Aφ

Re
, Vo = Uo − c,

C11 = E12 = iαVo + 4CIU
′
o + 2U ′oao12,

C12 = −E11 = [1 + χ(1− 2ao11)]U
′
o,

C1 = 2ao11(1− ao11) + 2a2
o12 ,

C0 = −2ao12 , E1 = 2χao12(1− 2ao11), E0 = 2ao11 − 1,


(C 2)

and D = d/dy. Solving for a11 and a12 leads to the following equations:

a11 = (iαN1D + α2N0)ψ, a12 = (iαM1D + α2M0)ψ,

where

N1 =
C11E1 + E11C1

CE
, N0 =

C11E0 + E11C0

CE
,

M1 =
C12E1 + E12C1

CE
, M0 =

C12E0 + E12C0

CE
,

CE = C11E12 − E11C12.

 (C 3)

From the expression for F in equation (23) we have

F11 = 2ao11ao12(D
2 + α2)ψ + 2(a2

o11 − a2
012)iαDψ

+2U ′oao11a12 + 2U ′oao12a11,

F22 = 2ao22ao12(D
2 + α2)ψ + 2(a2

o12 − a2
022)iαDψ

+2U ′oao22a12 − 2U ′oao12a11,

F12 = (ao11ao22 + a2
o12)(D

2 + α2)ψ + 2ao12(2ao11 − 1)iαDψ

+2U ′oao12a12 +U ′o(2ao11 − 1)a11.


(C 4)

Substituting in the expressions of a11 and a12, we get

F11 − F22 = (K2D
2 + iαK1D + α2K0)ψ, F12 = (L2D

2 + iαL1D + α2L0)ψ,
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where

K2 = 2ao12(2ao11 − 1),

K1 = 2(a2
o11 + a2

o22 − 2a2
o12) +U ′o[knN1 + kmM1],

K0 = 2ao12(2ao11 − 1) +U ′o[knN0 + kmM0],

L2 = ao11ao22 + a2
o12, L1 = 2ao12(2ao11 − 1) +U ′o[lnN1 + lmM1],

L0 = ao11ao22 + a2
o12 +U ′o[lnN0 + lmM0],

kn = 2(2ao11 − 1), km = 4ao12, ln = 2ao12, lm = (1− 2ao11).


(C 5)

Using the above expressions in the linearized vorticity equation leads to the following
modified Orr–Sommerfeld equation:

4∑
i=0

JiD
iψ = 0, (C 6)

J0 = H[α2L′′0 + iα3K ′0 + α4L0] + iα3Vo + iαU ′′o + α4 1 + Cφ

Re
,

J1 = H[iαL′′1 + α2(2L′0 −K ′1) + iα3(L1 +K0)],

J2 = H[iα(2L′1 +K ′2) + α2(L0 + L2 −K1) + L′′2]− iαVo − 2α2 1 + Cφ

Re
,

J3 = H[2L′2 + iα(L1 +K2)],

J4 = HL2 +
1 + Cφ

Re
.
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