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Abstract

This paper presents the laser beam filamentation at ultra relativistic laser powers, when the paraxial restriction on the beam
is relaxed during the filamentation process. On account of laser beam intensity gradient and background density gradients
in filamentary regions, the electron plasma wave (EPW) at pump wave frequency is generated. This EPW is found to be
highly localized because of the laser beam filaments. The interaction of the incident laser beam with the EPW leads to the
second harmonic generation. The second harmonic spectrum has also been studied in detail, and its correlation with the
filamentation of the laser beam has been established. Starting almost with a monochromatic component of laser beam
propagation, the second harmonic spectrum becomes more complicated, and broadened when the laser beam
propagates further, and filamentation takes place. For the typical laser beam and plasma parameters: laser beam with
wave length of 1064 nm, power flux of 1018 W/cm2, and plasma with temperature 1 KeV, we found that the
conversion efficiency equals about (E2/E0) ¼ 8 � 1023, and the spectrum is quite broad, which depends upon the
laser beam propagation distance. The results (specifically, the second harmonic spectral feature) presented here may be
used for the diagnostics of laser produced plasmas.
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1. INTRODUCTION

Guiding of intense laser pulses in plasma channels (Davis
et al., 2005; Liu et al., 2006) is beneficial to various appli-
cations (Chen et al., 2008; Yu et al., 2007; Neff et al.,
2006), including harmonic generation (Hafeez et al., 2008;
Ozaki et al., 2007, 2008; Liu et al.,1993; Huillier &
Balcou, 1993; Gibbon, 1997), X-ray lasers (Solem
et al.,1989; Amendt et al.,1991; Lemoff et al.,1995; Kuehl
et al., 2007; Neumayer et al., 2005), advanced laser-fusion
schemes (Canaud et al., 2004; Deutsch et al.,1996; Regan
et al., 1999; Hora, 2007; Imasaki & Li, 2008), and plasma-
based accelerators (Tajima & Dawson, 1979; Baiwen et al.,
2004; Giulietti et al., 2005; Kruer, 1988; Shi, 2007;
Karmakar & Pukhov, 2007). The process of harmonic gener-
ation (Nuzzo et al., 2000) has a strong influence on the nature
of laser propagation through the plasma. It allows the pen-
etration of laser power to the overdense region and provides
a valuable diagnostics (Merdji et al., 2000) of various plasma
processes. Second harmonic generation, for instance,

provides information about the linear mode conversion of
the laser into a plasma wave near the critical layer. In most
laser interactions with homogeneous plasma, odd harmonics
of laser frequency are generated (Mori et al., 1993; Zeng
et al., 1996). However, second harmonics have been
observed in the presence of density gradients (Esaray et al.,
1993; Malka et al., 1997). This is due to the laser-induced
quiver motion of the electrons across a density gradient,
which gives rise to a perturbation in the electron density at
the laser frequency. This density perturbation, coupled with
the quiver motion of the electrons, produces a source
current at the second harmonic frequency. Second harmonic
generation has also been related to filamentation (Stamper
et al., 1985; Meyer & Zhu, 1987), so, second harmonic radi-
ation was shown to be emitted in a direction perpendicular to
the laser beam from filamentary structures in the underdense
target corona.

Harmonic generation occurs in the intense short-pulse
relativistic regime (at intensities 3 � 1018 W cm22) as well
as in the long-pulse regime (at intensities 1018–
1017 Wcm22). In the short-pulse regime, the generation of
harmonic radiation via nonlinear mechanism is a topic of
growing interest, both from theoretical and from applicative
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viewpoints. Malka et al. (1997) have observed 0.1% conver-
sion efficiency into the second harmonic in plasma created by
optical field ionization. Schifano et al. (1994) experimentally
investigated the properties of the second harmonic emission
and tested the effectiveness of this emission as a diagnostics
for plasma inhomogenities induced by filamentation. Esarey
et al. (1993) studied the relativistic harmonic generation by
intense lasers. The effect of diffraction on the harmonic gen-
eration in the forward direction was considered. Baton et al.
(1993) observed the second-harmonic generation in the
forward direction in underdense plasma. Brandi et al.
(2006) studied the spectral red shift in the harmonic emis-
sions during the plasma dynamics in the laser focus.
Ganeev et al. (2007) reported about high order harmonic
generation in plasma plumes. Gupta et al. (2007) studied
the third harmonic generation at ultra relativistic laser
powers. Ozaki et al. (2006) studied intense harmonic gener-
ation at silver ablation. Most of the above mentioned works
on harmonic generation deals with the propagation and trans-
mission of laser beams in the paraxial approximation,
because in most cases, the divergence angles of the investi-
gated laser beams are very small, and the beam widths of
the investigated laser beams are far greater than the wave-
length. Therefore, the paraxial wave equation gives an accu-
rate description for wave beams near the axis as long as the
beam width remains larger than the radiation wavelength l

throughout the propagation. However, in some experimental
situations, it is necessary to go beyond the paraxial approxi-
mation, e.g., when working with solid-state lasers or semi-
conductor injection lasers, which generate wide-angle
beams for which the paraxial approximation is not applicable
and some corrections are necessary.

In this paper, by considering nonparaxial propagation of
the Gaussian laser beam in the plasma, we examine the
effect of the relativistic and ponderomotive nonlinearity on
the second-harmonic generation. The laser exerts a radial
ponderomotive force on the electrons and causes a redistribu-
tion of the plasma density. The plasma channel, thus pro-
duced, guides the laser beam. Moreover, these nonlinear
effects will break the laser pulse into small filamentary struc-
tures. As the nonparaxial method has been used here, there-
fore due to the contribution of the off-axial rays, these main
filaments get further divided. Several nonlinear optical pro-
cesses can be induced inside these divided filaments that
affect the process of harmonic generation. Here, we first
studied the filamentation of the laser beam by considering
the nonparaxial propagation, and then investigated the gener-
ation of EPW at pump wave frequency, and the second har-
monic generation, when relativistic and ponderomotive
nonlinearities are operative. We also studied the spectrum
of the second harmonic of the ultra intense laser pulse.
The paper is organized as follows. In Section 2, we derived
the expression for the effective dielectric constant of the
plasma and studied the solution for laser beam propagation.
Numerical results are shown for the laser intensity evolution
in axial and transverse directions, when relativistic and

ponderomotive nonlinearities are operative. In Section 3,
we derived the dynamical equation governing the generation
of the plasma wave at pump wave frequency. Section 4 is
devoted to the study of second harmonic generation, with
the power spectrum of second harmonics on account of local-
ization. In the last section, some conclusive comments are
given.

2. LASER BEAM PROPAGATION

The wave equation governing the electric field of the laser
beam in plasma can be written as

r2 ~E0 ¼
1
c2

@2 ~E0

@t2
þ

4p
c2

@~j

@t
:, (1)

here ~j is the high-frequency total current density. In writing
Eq. (1), we neglected the term r(E.rln1) which is justified
as vp

2/v0
2 1/1 ln 1 ¼ 1. Substituting in Eq. (1) the value of

~j and the variation of the electric field in the form

~E0 ¼ A(x, y, z) exp [i(v0t � k0z)], (2)

one obtains the following relation

�k2
0A� 2ik0

@A

@z
þ

@2

@r2
þ

1
r

@

@r

� �
A ¼ �

v2
0

c2
1A (3)

here 1 is the intensity dependent effective dielectric constant
of the plasma (as given in Eq. (8) below), k0 ¼ (v0/c)10

1/2 is
the wave number, and A is a complex function of space. We
used (following Akhamanov et al., 1968),

A ¼ A0(r, z) exp[� ik0s0(r, z)], (4)

where A0 and s0 are real functions of space, and the dielectric
constant of the plasma is given by

10 ¼ 1�
v2

p0

v2
0

,

where vp0 is the plasma frequency given by vp0
2 ¼ 4pn0e2/

m0g (e is the charge of an electron, m0 its rest mass, and n0 is
the density of the plasma electrons in the absence of the laser
beam). The relativistic factor can be written as

g ¼ 1þ
e2E0E0

�

c2m2
0v

2
0

" #1=2

(5)

Eq. (3) is valid when there is no change in the plasma
density. Following Brandi et al. (1993), the relativistic pon-
deromotive force can be given by

F p ¼ �moc2r(g� 1): (6)
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Using the electron continuity equation and the current
density equation for the second order correction in the elec-
tron density equation (with the help of ponderomotive force),
the total density can be expressed as

n ¼ n0 þ n2 ¼ n0 1þ
c2

v2
p0

r2g�
(rg)2

g

� �" #
: (7)

Therefore, the effective intensity dependent dielectric con-
stant of the plasma at pump frequency v0 is

1 ¼ 10 þ f(E0 � E
�
0 ), (8)

where

f(E0 � E
�
0) ¼

v2
p0

v2
0

1�
n

n0g

� �
: (9)

Expending the dielectric constant in Eq. (8) around r ¼ 0 by
a Taylor expansion, one can write

1 ¼ 1 f þ g(v0)r2, (10)

where

1f ¼ 10 þ
v2

p0

v2
0

� �
1
2

e2E2
00

m2
0v

2
0c2f 2

0

þ
c2

v2
p0

e2E2
00

g2
r¼0m2

0v
2
0c2r2

0 f 4
0

(a00 � 1)

" #
,

and

g(v0) ¼ �
v2

p0

v2
0

e2E2
00k2

0r2
0

2g3
r¼0m2

0v
2
0c2f 2

0

� (a00 � 1)þ
c2

v2
p0r2

0 f 2
0

(4a02 þ a00)

" #
:

Here r0 is the beam radius, and f0 is the dimensionless beam
width parameter given by Eq. (13) below. Substituting Eq.
(4) into Eq. (3) and separating the real and imaginary parts,
we get

2
@S0

@z
þ

@S0

@r

� �2

¼
v2

0

c2k2
0

g(v0)þ
1

k2
0A0

@2A0

@r2
þ

1
r

@A0

@r

� �
, (11a)

@A2
0

@z
þ A2

0
@2S0

@r2
þ

1
r

@S0

@r

� �
þ
@S0

@r

@A2
0

@r
¼ 0, (11b)

To solve the coupled Eqs. (11a) and (11b), we assume

A2
0 ¼ 1þ

a00r2

r2
0 f 2

0

þ
a02r4

r4
0 f 4

0

� �
E2

00

f 2
0

e�r2=r2
0 f 2

0 (12a)

and

S ¼
S00

r2
0

þ
S02r4

r4
0

with S00 ¼
r2

2f0

df0
dz
: (12b)

Further, substituting Eqs. (12a) and (12b) into Eq. (11a),
equating the coefficients of r2 on both sides of the resulting
equation, and introducing the normalization distance j ¼

zc/voro
2, we get the following equation for the beam width

parameter:

d2f0
dj2 ¼

1

f 3
0

�3a2
00 þ 8a02 þ 1� 2a00

� �

�
v2

p0

v2
0

e2E2
00k2

0r2
0

2g3m2
0v

2
0c2f 2

0

� (a00 � 1)þ
c2

v2
p0r2

0 f 2
0

(4a02 þ a00)

" #
:

(13)

Analogously equating the coefficients of r4 on both sides of
the resulting equation, we obtain the following equation

@S02

@z
¼ �

2a02

k2
0r2

0 f 6
0

�
3a02a00

2k2
0r2

0 f 6
0

�
3a2

00

4k2
0r2

0 f 6
0

þ
eE2

00r2
0

m2
0v

2
0c2k2

0g
3f 6

0

�a00 þ 2a02

r4
0 f 4

0

� �

þ
eE2

00

4m2
0v

2
0k2

0c2g2

16a02

r2
0 f 4

0

�
8a00

r2
0 f 4

0

� �
:

(14)

Substituting Eqs. (12a) and (12b) into Eq. (11b) for the ima-
ginary part and finding the coefficients of r2 on both sides of
the resulting equation, we obtain the equation for the coeffi-
cient a00 as

@a00

@z
¼ �

16S02f 2
0

r2
0

, (15a)

Analogously, the coefficient of r4 gives equation for a02

@a02

@z
¼

8S02f 2
0

r2
0

�
24a00S02f 2

0

r2
0

: (15b)

Eqs. (12a) and (12b) describe the intensity profile of the laser
beams in the plasma along the radial direction when relativis-
tic and ponderomotive nonlinearities are operative. The inten-
sity profile of both laser beams depends on the beam width
parameters f0 and the coefficients (a00 and a02) of r2 and r4

in the non-paraxial region. Eq. 13 determines the focusing/
defocusing of the laser beams along the distance of propa-
gation in the plasma. In order to have a numerical evaluation
of the relativistic and ponderomotive filamentation, in this
case, and to evaluate the effect of the change of the parameters
of the plasma and the laser beam in the non-paraxial region,
the numerical computation of Eqs (13), (14), (15a), and
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(15b) has been performed. The coupled equations have been
solved for an initially plain wave front, and the numerical
results are presented in Figures 1 and 2.

When a laser beam propagates through the plasma, then
the density of the plasma will be varying in the channel
due to the occurring ponderomotive force. The ponderomo-
tive force results from the lowering of the channel density,
therefore the refractive index of the plasma increases and
the laser gets focused in the plasma. In Eq. (13), the first
term is responsible for the diffraction, while the second and
third terms (non-linear terms) on the right-hand side of the
equation are responsible for the converging behavior of the
beams during the propagation in the plasma. These three
terms describe the filament formation and the laser beam
propagation in the plasma. Figures 1 and 2 shows the inten-
sity profile in the non-paraxial region. They clearly exhibit
the generated filaments of the laser beam in the presence of
ponderomotive and relativistic nonlinearity. The following
set of laser beam parameters have been used in the numerical
calculation: the vacuum wavelength of the laser beam was
l ¼ 1064 nm, the initial radius of the laser beam was equal
to 30 mm; laser power flux equaled 1018 W/cm2. Further
vp ¼ 0.03v0 and nth ¼ 0.1c were satisfied. For the initial
wave front of the beam, the initial conditions used here
were f0 ¼ 1 and df0/dz ¼ 0 at z- ¼ 0 and S00 ¼ S02 ¼ 0 at
z ¼ 0. We have performed numerical calculation for different
laser and plasma parameters; Figure 2 gives the intensity
profile of the laser beam for different values of the initial
laser beam intensity a E00

2 at a constant value of vp.

Figure 2 gives the intensity profile of the laser beam at differ-
ent values of vp at a constant value of aE00

2 .

3. PLASMA WAVE GENERATION

On account of the change in the background density due to
the ponderomotive force and the relativistic effects, the
laser beam gets filamented as discussed above. In these
filaments, the laser beam intensity is very intense and the
plasma density is also changed due to the ponderomotive
force. Following the standard procedure, the equation
governing the electron plasma wave generation can be
written as

@2N

@t2
� v2

thr
2N þ 2Ge

@N

@t

�
e

m
r � (NE) ¼ r

N

2
r(VV�)� V

@N

@t

� �
, (16a)

where 2Ge is the Landau damping factor, vth
2 is the square

of the electron thermal speed, E is the sum of the electric
vectors of the electromagnetic wave and the self-consistent
field, V is the sum of the drift velocities of the electron in
the electromagnetic field and the self-consistent field, and
m is the relativistic mass of the electrons. The density com-
ponent varying at the pump wave frequency (N1) can be

Fig. 1. Variation of laser beam intensity with normalized distance (j) and radial distance (r), when relativistic and ponderomotive non-
linearities are operative in the non-paraxial region. Keeping vp ¼ 0.03 v0 constant (a) for a E00

2 ¼ 1.0 (b) for a E00
2 ¼ 1.5.
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written as

� v2
0N1 þ 2iv0GeN1 � v2

thr
2N1 þ

v2
p0

g

n

n0

� �
N1 ¼

e

m0g

� nr � E0 þ E0 � rn½ �, (16b)

where n0 is the equilibrium electron density, and V0 is the
oscillation velocity of the electron in the pump wave field,
and n is the time independent component of the electron
density. It is obvious from the source term of Eq. (16b)
that the component of N1 varies when E0 changes.
Therefore N1 can be written as

N1 ¼ N 010(r, z)e�ikz þ N 020(r, z)e�ik0z (17)

where

k2 ¼
v2

0 � v2
p0

v2
th

, k0 ¼
v0

c
1

1=2
0 ,

N010 (r, z) and N020 (r, z) are complex functions of their argu-
ments and satisfy the equations,

� v2
0N 010 þ 2iv0GeN 010 þ

v2
p0

g

n

n0

� �
N 010 � v2

th

�
@2N 010

@r2
þ

1
r

@2N 010

@r2

� �
� 2ik

@N 010

@z
� k2N 010

� �
¼ 0, (18a)

and

� v2
0N 020 þ 2iv0GeN 020 þ k2

0v2
th

þ
v2
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g

n
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N 020 ¼ �
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00

4v2
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0
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� �1=2

exp �
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0 f 2

0

� �

�
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r2
0 f 2

0

þ
2a02r3

r4
0 f 4

0

� �
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0 f 2

0

1þ
a00r2

r2
0 f 2
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þ
a02r4

r4
0 f 4

0

� ��

�
f 2
0 v2
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V2
00

1þ
a00r2

r2
0 f 2

0

þ
a02r4

r4
0 f 4

0

� ��1
 !

�
a00r

r2
0 f 2

0

þ
2a02r3

r4
0 f 4

0

� �
�

r

r2
0 f 2

0

�

(18b)

Let the solution of Eqs (18a) and (18b) be written as N010 ¼

N10(r, z)e-iks and N020 ¼ N20 (r, z)e-ik0s0. Substituting these
N010 and N020 in Eqs. (18a) and (18b), respectively, we
obtain, after separating the real and imaginary parts

@S

@r

� �2

þ2
@S

@z
¼

1
k2N10

@2N10

@r2
þ

1
r

@N10

@r

� �

þ
1

k2v2
th

v2
0 � k2v2

th �
v2

p0

g

n

n0

� � !
, (19a)

Fig. 2. Variation of laser beam intensity with normalized distance (j) and radial distance (r), when relativistic and ponderomotive non-
linearities are operative in the non-paraxial region. Keeping a E00

2 ¼ 1.0 constant (a) for vp ¼ 0.03 v0 (b) for vp ¼ 0.035 v0.
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k
@N2

10

@z
þ N2

10
@2S

@r2
þ

1
r

@S

@r

� �
þ
@S

@r

@N2
10

@r
þ

2Gev0N2
10

v2
th

¼ 0, (19b)

and

N20 � �

N0ee3E3
00 exp (� r2=2r2

0 f 2
0 )

�

(2a00r=r2
0 f 2

0 þ 2a02r3=r4
0 f 4

0 )� 2r=r2
0 f 2

0
(1þ a00r2=r2

0 f 2
0 þ a02r4=r4

0 f 4
0 )

�f 2
0 v2

th=V
2
00

((1þ a00r2=r2
0 f 2

0 þ a02r4=r4
0 f 4

0 )�1)
ða00r=r2

0 f 2
0 þ 2a02r3=r4

0 f 4
0 )� r=r2

0 f 2
0

2
66664

3
77775

4v2
thm3

0gv
2
0f 3

0 [v2
0 � k2

0v2
th � 2iv0Ge � v2

p0n=gn0]
(20)

Following Akhmanov et al. (1968), the solution of Eqs
(19a) and (19b) can be written as

S ¼
S0p

a2
0

þ
S2pr4

a4
0

, with S0p ¼
r2

2f

df

dz
, (21)

N2
10 ¼

B2

f 2
1þ

a00r2

a2
0f 2

0

þ
a02r4

a4
0f 4

0

� �
exp �

r2

a2
0f 2

� �
exp (� kiz), (22)

where ki ¼ 2Gev/kvth
2 , and f is the dimensionless width par-

ameter of the plasma wave governed by

d2f
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0

(4a02 þ a00)

" #
:

(23)

B and a0 are constants to be determined by the boundary
conditions when the amplitude of the generated plasma
wave at z ¼ 0 is zero. Thus

B � �

N0ee3E3
00 exp (�r2=2r2

0)

�

(2a00r=r2
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0)1=2 exp (�r2=2a2
0)

and

a0 ¼ r0: (24)

In a similar way using Eqs (21) and (22) in Eq. (19a) and
equating the coefficients of r4 on both sides of the equation,

we obtain the following equation
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r2
0 f 4

0

� �
:

(25)

By substituting Eqs (21) and (22) into Eq. (19b) and equat-
ing the coefficients of r2 on both sides of the equation, we
obtain the equation for the coefficient a0p as

@a0p

@z
¼ �

16S2pf 2

a2
0

, (26)

In a similar way, the coefficient of r4 gives the a2p equation

@a2p

@z
¼

8S2pf 2

a2
0

�
24a0pS2pf 2

a2
0

: (27)

The initial conditions for f are f ¼ 1 and df/dz ¼ 0 (plane
wave front) at z ¼ 0, and S0p ¼ S2p ¼ 0 at z ¼ 0. Using
Poisson’s Equation 5E1 ¼ 4peN1 one can obtain the
electric field vector (E1) of the plasma wave generated at
the frequency v0

E1 ¼ �
4pei

k
[G1 exp (�kiz=2) exp (�ikz� is0)

� G2 exp (�ik0z� is0)] exp (�r2=2r2
0 f 2

0 ),

(28)

where

G1 ¼ �

N0ee3E3
00

�

(2a00r=r2
0 þ 2a02r3=r4

0)� 2r=r2
0

(1þ a00r2=r2
0 f 2

0 þ a02r4=r4
0 f 4

0 )
�v2

th=V
2
00(1þ a00r2=r2

0 f 2
0 þ a02r4=r4

0 f 4
0 )�1
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0 þ 2a02r3=r4
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2
664

3
775

4v2
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0[v2

0 � k2
0v2

th � v2
p0n=gn0]

(1þ a0pr2=a2
0 þ a2pr4=a4

0)1=2 exp (�r2=2a2
0)

,

and

G2 ¼ �

N0ee3E3
00

�

(2a00r=r2
0 f 2

0 þ 2a02r3=r4
0 f 4

0 )� 2r=r2
0 f 2

0
(1þ a00r2=r2

0 f 2
0 þ a02r4=r4

0 f 4
0 )

�f 2
0 v2

th=V
2
00(1þ a00r2=r2

0 f 2
0 þ a02r4=r4

0 f 4
0 )�1

(a00r=r2
0 f 2

0 þ 2a02r3=r4
0 f 4

0 )� r=r2
0 f 2

0

2
664

3
775

4v2
thm3

0gv
2
0f 3

0 [v2
0 � k2

0v2
th � v2

p0n=gn0]
:

Eq. (28) gives the expression for the electric field of the excited
plasma wave at pump wave frequency (v0) in the non-paraxial
region. We solved Eq. (28) numerically along with the
numerical computation of Eqs (23), (24), (25), (26), (27) to
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obtain the variation in electric field at finite z. For the calcu-
lations, the same set of parameters has been used as was
chosen in Section 2, to study the effect of both nonlinearities
on the EPW in the non-paraxial region. The results are pre-
sented in Figures 3 and 4. Eq. (28) clearly shows that the elec-
tric field of the EPW not only depends on the parameters of the
laser beams and their beam width parameters, but also on the
coefficients of r2 and r4 (a00,a02) and (a0p,a2p). Figure 3 dis-
plays the variation of the electric field of the EPW with the
distance of propagation and the radial distance in the non-
paraxial region with different value of aE00

2 at a constant
value of vp and Figure 4 gives the EPW profile for different
value of vp at a constant value of aE00

2 . It depicts that the
EPW has also a spitted profilewith minimum poweron the axis.

The dependence of E(v0) on the coefficient of r2 and r4

gives the spitted profile of the power of the excited EPW in
the non-paraxial region. Figures 3 and 4 shows the variation
of the electric field of the plasma wave jEj2/jE00j

2 with the
distance of propagation and the radial distance. It is evident
from the figures that the EPW gets excited due to nonlinear
coupling with the high power laser beam because of the pon-
deromotive and relativistic nonlinearity. This coupling is so
strong that the initial plasma wave becomes highly localized
as shown in Figures 3 and 4; it is obvious from Eq. (16b) that
the plasma wave amplitude at pump wave frequency depends
upon (1) the transverse gradient of the pump wave intensity
and (2) the transverse density gradient. For an initially
Gaussian laser beam, the transverse intensity gradient is
negative while, on account of redistribution of electrons by
the ponderomotive force, the density gradient is positive.

When the scale of the transverse density gradient is equal
in magnitude to the scale of the intensity gradient, the
source term of Eq. (16b) becomes zero and one does not
expect any plasma wave generation, as it is clear by Eq.
(22) with the expression of B. When z . 0 is satisfied, the
intensity of the laser beam is changing due to filamentation
and hence, the density gradient also changes when the
laser beam propagates.

4. SECOND HARMONIC GENERATION

Using Eq. (1), one can obtain the second harmonic field by
the laser beam. Eq. (1) may be spitted into formulae for the
vector potentials of the fundamental mode (A0) and the
second harmonic (A2),

r2A0 þ
v2

0

c2
1F(v0)A0 ¼ 0, (29)

and

r2A2 þ
v2

2

c2
12(v2)A2 ¼

v2
p0

c2

N1

n0
A0, (30)

where v2 ¼ 2v0, 1F(v0) and 12(v2) are the effective dielec-
tric constants of the plasma at the fundamental and second
harmonic frequency, respectively. The dielectric constant at
the fundamental mode reads

1F(v0) ¼ 1f (v0)þ g(v0)r2, (31)

Fig. 3. Variation of the electric field of the electron plasma wave Ej j2= E00j j2 with normalized distance (j) and radial distance (r), when
relativistic and ponderomotive nonlinearities are operative in the non-paraxial region. Keeping vp ¼ 0.03 v0 constant (a) for a E00

2 ¼ 1.0
(b) for a E00

2 ¼ 1.5.
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where

1f ¼ 10 þ
v2

p0

v2
0

� �
1
2

e2E2
00

m2
0v

2
0c2f 2

0

þ
c2

v2
p0

e2E2
00

g2
r¼0m2

0v
2
0c2r2

0 f 4
0

(1� a00)

" #
,

and

g(v0) ¼ �
v2

p0

v2
0

e2E2
00 k2

0r2
0

2g3m2
0v

2
0c2f 2

0

� (1� a00)þ
c2

v2
p0r2

0 f 2
0

(4a02 þ a00)

" #
,

The dielectric constant at the generation of the second har-
monic is

12(v2) ¼ 12f (v2)þ g(v2)r2: (32)

Here

1f (v2) ¼ 10 þ
v2

p0

v2
2

�
1
2

e2E2
00

m2
0v

2
0c2f 2

0

�

þ
c2

v2
p0

e2E2
00

g2
r¼0m2

0v
2
0c2r2

0 f 4
0

(1� a00)

#

and

g(v2) ¼ �
v2

p0

v2
2

e2E2
00k2

0r2
0

2g3m2
0v

2
0c2f 2

0

� (1� a00)þ
c2

v2
p0r2

0 f 2
0

(4a02 þ a00)

" #
:

The solution for the fundamental Eq. (29) can be written as
A0 ¼ A0

0

exp (2i(k0z þ S0)),

A020 ¼ 1þ
a00r2

r2
0 f 2

0

þ
a02r4

r4
0 f 4

0

� �
E2

00

f 2
0

e�r2=r2
0 f 2

0 S ¼
S00

r2
0

þ
S02r4

r4
0

with S00 ¼
r2

2f0

df0
dz
:

where f0 is described by Eq (13) with the initial condition
given in Section 2. The solution of Eq. (30) can be
written as

A2 ¼ A020(r, z)e�ik2z þ A021(r, z)e�2ik0z: (33)

Using this, we obtain after separating the real and

Fig. 4. Variation of the electric field of the electron plasma wave Ej j2= E00j j2 with normalized distance (j) and radial distance (r), when
relativistic and ponderomotive nonlinearities are operative in the non-paraxial region. Keeping a E00

2 ¼ 1.0 constant (a) for vp ¼ 0.03 v0

(b) for vp ¼ 0.035 v0.

R.P. Sharma and P. Sharma164

https://doi.org/10.1017/S0263034609000226 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034609000226


imaginary parts

@2A21

@z2
� 4k2

0A21 � 8k0A21
@S0

@z
þ
@2A21

@r2

� 4A21
@S0

@z

� �2

�4A21
@s0

@r

� �2

þ
1
r

@A21

@r
þ
v2

2

c2
1�

v2
p0

v2
2

 !
A21

¼
v2

2

c2

N1

n0
A0

(34a)

and

� 4k0
@A21

@z
� 4

@A21

@z

@S0

@z
� 2A21

@2S0

@z2
� 4

@A21

@r

@S0

@r

� 2A21
@2S0

@r2
� 2A21

@S0

@r
¼ 0, (34b)

It must be mentioned here that in writing Eq. (34b) we
have taken only that component of N1 which arises on
account of the source term of Eq. (16b) because it is
not Landau damped. Furthermore we write

A020 ¼ A20(r, z)e�ik2S2 and A021 ¼ A21(r, z)e�2ik0S0 : (35)

To analyze Eq. (34a), we use Eq. (35), and we get

2k2
@S2

@z

� �
þ

@S2

@r

� �2

¼
1

A20

1
r

@A20

@r
þ
@2A20

@r2

� �

þ
v2

2

c2
1�

v2
p0

v2
2

 !
�
v2

2

c2

N 020

n0

A00

A20
, (36a)

k2
@A2

20

@z
þ A2

20
@2S2

@r2
þ

1
r

@S2

@r

� �
þ
@S2

@r

@A2
20

@r
¼ 0: (36b)

Considering Eq. (34b), using A21
0

¼ A21e22ik0S0, we find

A21 ffi
v2

p0

c2

v2

v0

N 020

n0

� �
E00

f0
1þ

a0hr2

b2
0f 2

2

þ
a2hr4

b4
0 f 4

2

� �

�
exp (�r2=b2

0f 2
2 )

[k2
2 � 4k2

0]
: (36c)

Let the solution of Eqs (36a) and (36b) be

S2 ¼
S0h

b2
0

þ
S2hr4

b4
0

with S0h ¼
r2

2f2

df2
dz
:

A2
20 ¼

(B0)

f 2
2

1þ
a0hr2

b2
0f 2

2

þ
a2hr4

b4
0f 4

2

� �
exp �

r2

b2
0 f 2

2

� �
: (37)

Here b0 is the second harmonic beam width. Further we
use the initial conditions df2/dz ¼ 0, f2 ¼ 1 at z ¼ 0,
and S0h ¼ S2h ¼ 0 at z ¼ 0. f2 is the dimensionless

Fig. 5. Variation of the electric field of the generated second harmonic E2j j
2= E00j j2 with normalized distance (j) and radial distance (r),

when relativistic and ponderomotive nonlinearities are operative in the non-paraxial region. Keeping vp ¼ 0.03 v0 constant (a) for a
E00

2 ¼ 1.0 (b) for a E00
2 ¼ 1.5.
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width parameter of the second harmonic radiation,
given by

d2f2
dj2 ¼

r4
0

b4
0

� �
k2

0

k2
2

� �
1

f 3
2

(�3a2
0h þ 8a2h þ 1þ 2a0h)

� f2
c2

v2
th

k0

k2

� �2 v2
p0

v2
2

e2E2
00k2

0r2
0

2g3m2
0v

2
0c2f 2

0

� (1� a00)þ
c2

v2
p0r2

0 f 2
0

(4a02 þ a00)

" #
:

(38)

Similarly, using Eq. (37) in Eq. (36a) and equating the
coefficients of r4 on both sides of the equation, we
obtain the following equation

@S2h

@z
¼

(�10a0ha2h þ 2a3
0h þ 2a2

0h � 4a2h)

2k2
2b2

0f 6
2

þ
v2

p0

v2
2

e2E2
00r2

0

2g3m2
0v

2
0k2

2c2f 2
0

2a02

r4
0 f 4

0

�
a00

r4
0 f 4

0

� �

þ
eE2

00

m2
0v

2
2c2k2

2g
2

4a02

r2
0 f 4

0

�
2a00

r2
0 f 4

0

� �
:

(38a)

By substituting Eq. (37) into Eq. (36b) and equating the
coefficients of r2 on both sides of equation, we obtain
the equation for the coefficient a0h as

@a0h

@z
¼ �

16S2hf 2
2

b2
0

, (38b)

In a similar way, the coefficient of r4 gives the equation fora2h.

@a2h

@z
¼

8S2pf 2
2

b2
0

�
24a0hS2hf 2

2

b2
0

: (38c)

The constants B
0

and b0 are also determined by the boundary
condition that the second harmonic generation is zero at z ¼ 0

B0 � �

N0ee3E3
00e�r2=2r2

0

�

(2a00r=r2
0 þ 2a02r3=r4

0)� 2r=r2
0
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0 f 2
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0 f 4

0 )
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0)� r=r2
0

2
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3
775

4v2
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0v2
th � 2iv0Ge
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p0n=gn0
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� (1þ a0hr2=b2

0 þ a2hr4=b4
0)1=2e�r2=2b2

0 [k2
2 � 4k2

0]

(39)

and b0 ¼ r0

Using Eqs (36c), (37), (38), and (39) in Eq. (33), we get

A2 ¼ �E00
v2

p0

c2

 !
H1

f2
e�(r2=2b2

0f 2
2 þr2=2r2

0 )e�i(S2þk2z)

�

�
H2

f 3
0

e�(r2=2b2
0 f 2

2þr2=r2
0 f 2

0 )e�2i(k0zþS0)

�
: (40)

Fig. 6. Variation of the electric field of the generated second harmonic E2j j
2= E00j j

2 with normalized distance (j) and radial distance (r),
when relativistic and ponderomotive nonlinearities are operative in the non-paraxial region. Keeping a E00

2 ¼ 1.0 constant (a) for vp ¼

0.03 v0 (b) for vp ¼ 0.035 v0.
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Here
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:

We have developed the theory of second harmonic gener-
ation and derived the expression for the electric field of the
second harmonic when relativistic and ponderomotive nonli-
nearities are operative. Figure 5 shows the variation of the
electric field of the second harmonic with normalized

distance and radial distance for different values of aE00
2 at

a constant value of vp, and Figure 6 gives the second harmo-
nics’ profile with different value of vp at a constant value of
aE00

2 .
We have also studied the spectrum of the second harmonic

generated by the ultra intense laser pulse. This Ekj j
2 versus k

plot clearly shows the broadened spectra of the generated har-
monic. As it is clear from the power spectrum of the second
harmonic, in the initial stages of laser beam propagation a
single line is obtained (Fig. 7a). As expected, the main har-
monic line is at k2 – 2k0. For the typical laser parameters,
a normalized value of k2 – 2k0 comes out to be; 1.24. In
the wave number spectrum (Fig. 7b) this line is clearly
visible. As the wave starts propagating further and filament
formation is taking place, the second harmonic spectrum
starts becoming broadened, which means new k components
are also generated. This is on account of the localization of
the second harmonic. As one can see in the initial stages of
the laser beam propagation, the generated second harmonic
is almost a plane wave but after the filament formation of
the laser beam, the spectrum starts broadening.

6. CONCLUSION

In this work, the theory of filamentation of the high power
laser beam when relativistic and ponderomotive nonlineari-
ties are operative has been developed by considering the

Fig. 7. Power spectrum ( Ekj j
2 vs. k) of the second harmonic generated, when relativistic and ponderomotive nonlinearities are operative in

the non-paraxial region. (a) In early stages of laser beam propagation, i.e., before filament formation (b) after laser beam filament
formation.
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nonparaxial part of the beam. In the presence of these modi-
fied filamentary structures, the plasma wave localization at
pump wave frequency has been studied. In case of an ultra
intense Gaussian laser beam, the plasma gets depleted from
the high field region to the low field region, on account of
the relativistic and ponderomotive nonlinearity, and hence
a transverse (with respect to the direction of propagation)
density gradient is established. When the electric vector of
the laser beam is parallel to this density gradient, an EPW
at pump wave frequency is generated. In addition to this,
the transverse intensity gradient of the laser beam also con-
tributes significantly to the EPW generation. The plasma
wave at pump wave frequency has two components; one
has the propagation vector k0 ¼ v0/c and the second has

its propagation vector k � v2
0 � v2

p0

� 	
=v2

th

h i1=2
, the phase vel-

ocity of the second component depends on vp0/v0; this may
be comparable to the thermal speed of the electron and hence
this component can undergo Landau damping. But the phase
velocity of the first component is the same as that of the pump
wave and hence, its Landau damping is negligible. This com-
ponent contributes significantly to the second harmonic gen-
eration on account of its interaction with the pump laser
beam. Therefore, it is concluded that at those positions,
where the laser beam intensity gradient and the density gra-
dient balance each other, there is no plasma wave generation,
but when the intensity gradient dominates over the density
gradient then the EPW is generated, as it is shown by the
electric field variation of this EPW with normalized distance
and radial distance in Figure 3 and 4. Interaction of this
plasma wave with the incident laser beam leads to second
harmonic generation. We have also studied the spectrum of
second harmonics generated by the ultra intense laser
pulse. It is seen that in the initial stages of the laser beam
propagation, the generated second harmonic is almost a
plane wave, but after the filament formation of the laser
beam, the spectrum of the second harmonics starts broaden-
ing. Therefore, this mechanism may be a good source of
second harmonic generation and the spectral features men-
tioned here may be used for diagnostics of laser produced
plasmas.
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