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A b s t r a c t . This paper describes early results of a theoretical investigation of the performance of 

an adaptive optics system in which a limited number of Karhunen-Loeve modes of the wavefront 

distortion are corrected. W e have determined the on-axis point spread function for an idealised 

adaptive optics system in Kolmogorov seeing, whose performance is defined in terms of radii of 

included energy and Strehl ratios for a range of examples. W e discuss extensions of the analysis 

for the off-axis point spread function, and for non-Kolmogorov seeing. 

1 . I n t r o d u c t i o n 

In modal adaptive optics, corrections are applied to a finite number o f modes of the 

expansion of the wavefront distortion as a set o f basis functions. A commonly chosen 

basis are the well known Zernike polynomials (Noll, 1976). The effects o f correcting a 

finite number o f Zernike modes have been studied by Roddier (1991), and Nakajima 

(1992), using analytic methods and numerical simulations. The optimal basis for a 

specified instrumental configuration (for which the variance of the wavefront phase 

after correction of a given number of modes is less than for any other possible 

basis) is given by the Karhunen-Loeve (KL) expansion, in which the wavefront is 

decomposed into an orthonormal basis with statistically independent coefficients 

(Fried 1978, Wang and Markey 1978). Wang and Markey showed how to calculate 

the PSF using a KL basis. Here we describe our implementation of these calculations 

and show how astronomically interesting parameters of the PSF can be deduced, 

and indicate the extension to more interesting cases. 

2 . O n - A x i s P o i n t S p r e a d F u n c t i o n 

Let the complex amplitude of the wavefront at our telescope pupil, after correc-

tion o f Ν KL modes be Φ0(ϋ) = e 1 ^ ^ inside the aperture and zero elsewhere, 

where <j>(r) is the corrected phase distribution. In the image plane, the amplitude 

is A(x) = F [ e * ^ ^ ] where F [ ] denotes a Fourier transform. Using the convolution 

theorem, the average intensity in the image plane is: 

(/(*)) = (A(x)A(xY) = (Flexp'+toQe-t+M]) 

= F[f ( e * p { i W ( r f ) - ^ ( r f - r ) ] } l i r > ] (1) 
J aperture 

where φ is the convolution. From the definition of the KL functions as a com-

plete basis set, we can write the wavefront after correction of Ν modes as <f>(r) = 
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i C n t s N a n ^ n ( £ ) > where Kn is the n'th KL mode, and an is the corresponding ex-

pansion coefficient. By construction the an are uncorrected. Assuming Gaussian 

statistics, it follows that they are also independent. The average then reduces to a 

set of simple one parameter averages for each an separately: Hence: 

</ ) = P [ / ( e * p { i [ f > n ( t f n ( r ' ) - Knit! -M))dn 
J aperture n=N 

= F [ / exp{-hf2(al)(Kn(t!)-Ka(r!-r))>Hr] (2) 

•/aperture · n=N 

Hence the point spread function is found numerically by evaluating the integral at 

each point within the aperture, and then performing a discrete Fourier transform. 

The infinite upper limit of the sum is replaced some finite mode number, such 

that the phase variance contributed by higher order modes is negligible. We have 

studied point spread functions for modal correction of a circular aperture for a 

range of values of the ratio of the aperture diameter to Fried's parameter ro. As the 

number of modes removed is increased we see in each case the formation of a sharp 

diffraction limited core in the image, surrounded by a halo with diameter roughly 

equivalent to the width of the uncorrected PSF (this general result is well known). 

Our main interest in these PSF's is to quantify the astronomical usefulness of 

partial correction by adaptive optics. Relevant quantities include photometric per-

formance, possibilities for further deconvolution, and the implied reduction of the 

entrance aperture of spectrometers. We are therefore interested in the degree of 

energy concentration and the extent of the halo of the PSF. Figure 1 is a plot of 

the energy included inside circles of given radii for point spread functions in the 

case D/ro = 20, and shows how the fraction of energy inside the diffraction limited 

core increases with N, with significant gains for low order correction. An often-used 

measure of image quality is the Strehl ratio - the ratio of the intensity of the PSF 

on-axis, to the diffraction limited case. When Ν is large, so that the variance ( σ 2 ) 

of the remaining phase distortion is much less than 2π radians, the value of the 

Strehl ratio is approximated by t~° (Tyson 1991). The value of σ 2 is given by the 

sum of the eigen values of the KL integral equation. In each case we find that the 

measured Strehl ratio is higher than the simple theoretical value, showing that this 

often quoted estimate of the expected Strehl ratio is pessimistic. 

3. E x t e n s i o n s o f t h e A n a l y s i s 

Our objective in this work is to employ it as part of an idealised model of adap-

tive optics systems, which we intend to use for evaluating various options for the 

UK's programme for adaptive optics. We are trying to be both realistic but not too 

specific in our assumptions, particularly about the wavefront sensor and adaptive 

mirror. However we will be including at least the following important effects: (i) 

noise on the estimate of the wavefront, (ii) finite spatial and temporal resolution of 

the wavefront, (iii) finite bandwidth of the control system. These can be included 
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quite easily in the present analysis: Noise equates to imperfect mode subtraction, 

resolution to an alteration of the basis set used, and bandwidth to anisoplanatic 

effects. A major concern for astronomical applications o f adaptive optics is that the 

partially corrected PSF will vary over the field. We are currently engaged in calcu-

lating these off-axis PSF's. The principle is simple; the off-axis wavefront expansion 

is: 

f > „ - a' n)A' n(r) + f ) (a n ) t f n ( r ) (3) 
n = l n=N 

where the a'n are the coefficients for the on-axis expansion. However a complication 

arises because 0 < {ana'n) < 1. Chassât (1989) has shown how these correlation 

coefficients may be calculated. The average in equation 2 then does not reduce to 

a set o f independent univariate expectations; rather a multivariate expectation has 

to be calculated. It is straightforward but tedious to do this analytically, and we 

are engaged in a solution using a computer algebra package. 
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Angular radius (units of 1.22 λ/D) 

F i g u r e 1 : Radii o f included energy for modal correction in the case D/ro = 20. In 

each case the plots are for Ν = 0 (lower curve), 1, 5, 10, 20, 30, 50, 100, and oo 

(upper curve - diffraction limited case). 
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