
Proceedings of the Edinburgh Mathematical Society (2019) 62, 197–210

doi:10.1017/S0013091518000354

LOW GROWTH EQUATIONAL COMPLEXITY

MARCEL JACKSON

Department of Mathematics and Statistics, La Trobe University, Victoria 3086,
Australia (m.g.jackson@latrobe.edu.au)

(Received 26 September 2016; first published online 25 September 2018)

Abstract The equational complexity function βV : N → N of an equational class of algebras V bounds
the size of equation required to determine the membership of n-element algebras in V. Known examples
of finitely generated varieties V with unbounded equational complexity have growth in Ω(nc), usually for
c ≥ (1/2). We show that much slower growth is possible, exhibiting O(log3

2(n)) growth among varieties of
semilattice-ordered inverse semigroups and additive idempotent semirings. We also examine a quasivariety
analogue of equational complexity, and show that a finite group has polylogarithmic quasi-equational
complexity function, bounded if and only if all Sylow subgroups are abelian.
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1. Introduction

In this article, an algebra means a universal algebra, although our primary focus is on
the class of finite groups and finite semilattice-ordered semigroups. For a fixed signature
S of operations, an equation is an expression u ≈ v, where u and v are terms in S. The
equation is satisfied in an algebra in the signature S if all interpretations θ of the variables
into the universe of the algebra results in uθ = vθ.

The class of all S-algebras satisfying some given system of equations is called the
variety defined by the equations. A variety is always closed under homomorphisms (H),
isomorphic copies of subalgebras (S) and direct products (P), and, conversely, every H, S, P
closed class of similar algebras is a variety, definable by the equations holding true in all of
its members; see Birkhoff [3] or a text such as Burris and Sankappanavar [4]. We let V(K)
denote the the variety generated by a class K, and write V(A) to denote V({A}) when
A is a single algebra.

A challenging computational problem arises when one wishes to decide membership of
a finite algebra B in a variety V: even when V = V(A) for a finite algebra A, this problem
can be as hard as 2EXPTIME-complete (Kozik [18]), and even among almost classical alge-
bras, such as semigroups, there are examples for which the problem is NP-hard (Jackson
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and McKenzie [13], Jackson [12]) and co-NP-complete (Kĺıma et al. [16]). For general
varieties V – even recursively axiomatizable varieties – the problem can be undecidable
(see Hirsch and Hodkinson [9], for example). Such membership problems are obviously
fundamental in the general study of varieties, but they are also an important particular
case of the more general situation of deciding membership of finite algebras in ‘pseudova-
rieties’: classes of finite algebras closed under H, S and taking finitary direct products. A
substantial motivation for this more general case is that many questions in formal lan-
guages can be recast in terms of membership problems for semigroup pseudovarieties. See
Almeida [1], Eilenberg [5] or Rhodes and Steinberg [29] for general theory, and Volkov
[30] for some important concrete example cases where the pseudovariety is the finite part
of V(A) for some finite semigroup A.

As every variety V has an equational characterization, a first attempt at decid-
ing membership of a candidate algebra B in V might be to explore satisfaction of
these characterizing equations. Indeed, when V admits a characterization in terms
of finitely many equations, then testing these equations provides a polynomial time
algorithm to decide membership. Even when there is no finite equational character-
ization for V, the equational theory of V may still be well-behaved enough for an
approach in this style. In particular, if B fails some identity of V, it must fail some
identity of V involving at most as many variables as there are generators for B.
When V is locally finite (and, in particular, when V is finitely generated), there
always exists a finite set of equations of V that capture the n-variable equational the-
ory (for any n); this follows from Birkhoff’s finite basis theorem [4, Theorem V.4.2].
When V = V(A) for a finite algebra A, it is possible to calculate a concrete bound on
the size of the required n-variable equations, and thus obtain an in-principle algorithm
for deciding membership. The equational complexity function βV captures exactly these
notions.

The equational complexity function βV : ω → ω of V is defined by letting βV(n) be the
smallest number � such that for every algebra B of size less than n, if B /∈ V then there
is an equation of V failing on B and with length at most �. Equivalently, βV(n) is the
smallest number � such that for algebras of size less than n, lying in V is equivalent to
satisfying the equations true in V of length at most �. If V is the variety generated by a
single finite algebra A, then we also write βA in place of βV.

Obviously, the definition of βV depends on the precise definition of ‘length’. We follow
McNulty et al. [23] and define the length to be the number of symbols in the concatenation
of the bracket-free prefix expressions for the two terms in the equation. Thus, the law
x · (y · y−1) ≈ x becomes ·x·y−1yx of size 7 (noting that the expression ‘−1’ is here a
single operation symbol).

Existing work on equational complexity has had two main focal points. The first was to
identify the limits of fast growth of βA. In Kun and Vértesi [19], it was shown that Θ(nk)
growth is possible (for any k ∈ N), while Kozik [17] showed that at least exponential
growth is possible. McNulty et al. [23] give numerous concrete examples of algebras whose
equational complexity is sandwiched somewhere between linear and quadratic growth,
while Jackson and McNulty [14] give a linear growth rate for the equational complexity
of Lyndon’s algebra.

The second focus of existing work relates to a long-standing open problem due to Eilen-
berg and Schützenberger [6]: if the pseudovariety of A can be defined by finitely many
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equations, is it true that the variety generated by a finite algebra A can be defined by
finitely many equations? It is a straightforward exercise to verify that (for finite signa-
ture), the function βV is bounded above by a constant if and only if V can be defined,
among finite algebras by a finite set of equations. Thus, the Eilenberg–Schützenberger
problem is equivalent to asking: is it true that every finite algebra with bounded equa-
tional complexity has a finite basis for its equations? These connections are explored
in [23] (although there is other work relating to the Eilenberg–Schützenberger conjecture
that avoids discussion of equational complexity).

In Jackson and McNulty [14] it is suggested that as well as finding high growth equa-
tional complexity, there should be equal interest in finding slow but unbounded growth. In
particular, algebras of very slow but unbounded growth appear more likely to be related to
difficult unresolved issues relating to axiomatizability. No contributions have been made
in this direction to date, with all examples known to the author at the time of writing
growing at least at Ω(nc), where c ≥ 1/2 is typical. In the present article, we show that
a finite naturally semilattice-ordered Clifford semigroup always has equational complex-
ity in O(log3

2(n)) (where logk(n) denotes the polylog (log(n))k) and identify those with
β-function in O(1); see Theorem 4.1. The smallest example with non-constant bounded
(but slow) equational complexity has nine elements. To prove this, we begin by introduc-
ing a corresponding theory of quasi-equational complexity, which refers to quasi-equations
and quasivarieties in place of equations and varieties. This concept appears interesting
enough in its own right, but is also integral to our approach. We show in Theorem 3.1
that every finite group has quasi-equational complexity in O(log3

2(n)) and identify pre-
cisely those with growth in O(1). (These ideas appear to have some relationship with the
short presentation conjecture of Babai et al. [2]; see Remark 3.2.) We then apply meth-
ods developed in [11] to obtain corresponding results for the equational complexity of
naturally semilattice-ordered Clifford semigroups and examples from additive idempotent
semirings.

2. Equations, quasi-equations and quasi-equational complexity

Throughout, we use lower case letters (with or without subscripts) for variables and
boldface lower case letters (with or without subscripts) for generic terms and words built
from variables. Thus, u will always denote a word or term in an alphabet of variables,
while u will denote an individual variable. We let Eq(A) denote the set of all equations
true on an algebra A (in some fixed, but otherwise arbitrary countably infinite set of
variables). The notation Eqn(A) will denote the subset of Eq(A) consisting of those
equations of size at most n.

A quasi-equation is an expression of the form(
&

1≤i≤n
ui ≈ vi

)
→ u ≈ v

for some n ≥ 0, where each of the ui and vi are terms, & is logical conjunction and →
is logical implication. A quasi-equation is satisfied by an algebra if every interpretation
of the variables that leads to the premise of the implication being true also leads to the
conclusion being true. Equations correspond to the case of n = 0. The class of algebras
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defined by a system of quasi-equations is known as a quasivariety and is closed under S, P

and ultraproducts Pu. Every S, P, Pu closed class – and indeed any SPPu-closed class – is
a quasivariety, and when A is a finite algebra, then the quasivariety generated by A can
be written as SP(A), without ultraproducts. It is obvious from the syntactic definitions,
and also the semantic equivalent conditions, that every variety is a quasivariety. We
direct the reader to [4, Chapter 5] or Gorbunov [7] for a treatment of quasivarieties and
quasi-equations.

Equational complexity generalizes to quasi-equational complexity in an obvious way: up
to big-O equivalence, again by concatenating all terms in prefix notation. Thus the quasi-
equation x · y ≈ y · x → x ≈ y becomes ·xy·yxxy of length 8. We let βQ denote the quasi-
equational complexity function of the quasivariety Q, also writing βA to denote βSPPu(A).
For a fixed variety V (hence also a quasivariety), the relationship βV(n) ≤ βV(n) for all n
follows immediately from the definitions; by contrast, βA and βA may be quite different
because the classes SPPu(A) and HSP(A) are, in general, quite different.

3. Finite groups with polylog quasi-equational complexity

Ol’shanskĭı [27] has shown that the quasivariety SP(G) of a finite group G has a finite
axiomatization by quasi-equations if and only if all Sylow subgroups of G are abelian.
When G has a finite basis for its quasi-equations, then the quasi-equational complex-
ity of G is bounded by a constant. When G has no finite basis for its quasi-equations
(that is, when it contains a non-abelian Sylow subgroup), then for all n there is a finite
group H such that every n-generated subgroup of H lies in the quasivariety of G, but
H itself does not. This is shown by Ol’shanskĭı in the discussion following the proof of
[27, Lemma 2] (where H is denoted by C). It follows that βG(|H|) > βG(n), so that βG

grows unbounded. The rest of this section is devoted to showing that this growth can be
contained within the class O(log3

2(n)), thus proving the following theorem.

Theorem 3.1. Let G be a finite group. If all Sylow subgroups of G are abelian, then
the quasi-equational complexity function βG is bounded by a constant. If G contains a
non-abelian Sylow subgroup, then βG is unbounded but lies in O(log3

2(n)). This is true
for all subsignatures of {·,−1, 1} containing ·.

We leave discussion of the final sentence to the end of this section (see Remark 3.7).
Observe that to complete the proof of the other statements in Theorem 3.1, it only
remains to show that βG can be found in O(log3

2(n)) (for any finite group G; we will not
need to use the fact that G contains a non-abelian subgroup). To prove this, we begin
by showing that for any fixed finite group G, and H ∈ V(G), then if H /∈ SP(G) there
is a quasi-equation of size O(log3

2(|H|)) satisfied by G and failing on H. In particular,
if G has a non-abelian Sylow subgroup – whence generates a nonfinitely axiomatizable
quasivariety – this shows that membership of finite groups H in the quasivariety SP(G)
can be verified by testing quasi-equations of size only up to O(log3

2(|H|)). We use this
to show that the flat extension of the finite group G exhibits equational complexity
bounded by O(log3

2(|H|)), but (when G has a non-abelian Sylow subgroup) not by any
constant.
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Remark 3.2. The first half of the argument is closely related to the results of Babai
et al. [2], who showed that it is possible to associate with each finite group H a pre-
sentation of short size. The authors of [2] state a short presentation conjecture: that the
presentation of H can be made to be of total size O(log3

2(|H|)).
The short presentation conjecture is not resolved here, but our approach is at least

slightly reminiscent of the methods invoked in [2]. We consider an arbitrary finite group H
in the variety of a fixed finite group G and examine a composition series for H, lifting
presentations for the various simple groups to one for H. The precise description is quite
different to that in [2]. Also, because the simple groups arising from the composition
series also lie in V(G), we have access to the following fact. (This folklore lemma was
pointed out to the author by Mikhail Volkov.)

Lemma 3.3. Let G be a finite group. Up to isomorphism, there are only finitely many
finite simple groups in the variety V(G).

Proof. Neumann [25, Claim 51.22] shows that all simple groups in V(G) have order
at most |G|. �

We examine composition series to lift presentations for these to short presentations
to arbitrary H ∈ V(G). This approach is common to Babai et al., although the precise
construction of the presentation is quite different. In a further deviation from Babai
et al. [2], we will also require the additional property that every element of H can be
written as a short product of generators: O(log3

2(|H|)) would suffice, but O(log2(|H|)) is
shown.

In the following lemma we consider group presentations in the variety of groups, using
the convention that relators are single words. Thus, if w is a relator, we mean that w = 1
in the group.

Lemma 3.4 (The lifting lemma). Let N � M be finite groups and assume that

• N has presentation 〈a1, . . . , ak | {wi : i = 1, . . . , k′}〉 and

• M/N has presentation 〈Nb1, . . . , Nb� | {Nvi : i = 1, . . . , �′}〉,
where wi are some words in the alphabet {a1, . . . , ak}, and vi are some words in the
alphabet {b1, . . . , b�}. Then M is generated by the set {a1, . . . , ak, b1, . . . , b�} and can be
presented by the following words:

(1) wi for i = 1, . . . , k′;

(2) (for each i = 1, . . . , k and j = 1, . . . , �) wi,jbia
−1
j b−1

i , where wi,j is a word in
{a1, . . . , ak} of minimal length such that wi,jbi = biaj (the word wi,j exists as
biaj ∈ biN = Nbi);

(3) (for each i = 1, . . . , �′) u−1
i vi, where ui is a word of minimal length in the alphabet

{a1, . . . , ak} for which vi = ui.

Moreover, every element of M can be written in the form wawb, where wa is a word in
the generators a1, . . . , ak and wb is a word in the generators b1, . . . , b�.
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Proof. First, note that the presentation is well defined and that each of the given words
does equal 1 in M. This is immediate for item (1). For item (2), as biN = Nbi and aj ∈ N ,
we have that biaj ∈ Nbi, showing the existence of wi,j ∈ N with biaj = wi,jbi in M; note
then that wi,jbia

−1
j b−1

i = 1. For item (3), observe that as Nvi is in the presentation of
M/N, we have that vi ∈ N , so that there exists a word ui in the generators {a1, . . . , ak}
with vi = ui and hence u−1

i vi = 1. Thus, each of the relator words is equal to 1 in M as
required. Also, every element h of M lies in a coset of the form Nwb of M, where wb is
a product of the elements bi. Thus, there is an element wa ∈ N such that h = wawb. So
{a1, . . . , ak, b1, . . . , b�} is a set of generators of M. It remains to show that if w is a word
in {a1, . . . , ak, b1, . . . , b�} equal to 1 in M, then this fact can be deduced using the given
list of relators.

Assume that w is a product in the generators that is equal to 1. First, observe that
the laws of the second kind ensure that w can be written in the form vavb, where va is a
product of the elements a1, . . . , ak while vb is a product of the elements b1, . . . , b�. Now,
as w = 1 we have Nvb = N. This may be achieved by use of the laws of the third kind:
invoking laws of the second kind freely to move all generated occurrences of generators
in a1, . . . , ak to the left of any from b1, . . . , b�. Thus eventually we obtain a deduction of
vavb = ua, where ua is a product of a1, . . . , ak that is equal to 1 in M, and hence in N.
This can be established using laws of the first kind. �

Lemma 3.5. There is a constant c such that every finite group H ∈ V(G) has a
presentation 〈C;R〉 of total length at most c log3

2(|H|) such that every element in H can
be written as a product of length at most 2|G| log2(|H|).

Proof. By Lemma 3.3 there are only finitely many finite simple groups in the vari-
ety generated by G, say {S1, . . . ,Sp}. Thus there is a constant bound on the size of
a presentation for the Si. Now consider the composition series {e} = H0 � H1 � H2 �
· · · � Hm = H. Observe that m ≤ log2(|H|), because |Hi| ≤ (|Hi+1|/2), and that each
Hi+1/Hi ∈ I{S1, . . . ,Sp} (the isomorphism closure of {S1, . . . ,Sp}). Now Lemma 3.4
enables the inductive construction of a presentation for H: at the (i + 1)th step, the
group Hi+1 plays the part of M in Lemma 3.4, and the group Hi plays the part of N.
At completion, a set of generators

a1,1, . . . , a1,n1 , . . . , am,1, . . . , am,nm

has been constructed for H, where at the (i + 1)th step of the induction, the ele-
ments a1,1, . . . , ai,ni

played the part of the elements a1, . . . , ak in the lemma, while
ai+1,1, . . . , ai+1,ni+1 played the part of b1, . . . , b�.

(1) Let #gen denote the largest generating set for the fixed selection of presentations
for {S1, . . . ,Sp}. Inductively, let gen(1) denote the number of generators for H1 ∈
{S1, . . . ,Sp} (so gen(1) = n1) and let gen(i + 1) be the number of generators for
Hi+1 as constructed from Hi and the quotient Hi+1/Hi ∈ {S1, . . . ,Sp}. It is routine
to see that gen(i) =

∑i
j=1 nj ≤ i · #gen. We now count the size of this presentation,

and the worst-case upper bound on the length of a product of generators needed
to express elements of H.
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(2) Let # len denote the worst-case minimal length of any product of generators
required to represent elements of {S1, . . . ,Sp}. Inductively, let len(1) be the worst-
case minimal length of a word required to represent elements of H1, and let
len(i + 1) denote the shortest length of a product of generators required to represent
elements in Hi+1 as constructed using Lemma 3.4. Note that by the final statement
of Lemma 3.4 we have len(i + 1) ≤ #len + len(i) so that len(i) ≤ i · #len.

(3) Let # rel denote the largest number of relations used in the fixed selection of pre-
sentations for {S1, . . . ,Sp}. Inductively, let rel(1) denote the number of relations
for H1 ∈ {S1, . . . ,Sp} and let rel(i + 1) be the number of relations constructed for
Hi+1 using Lemma 3.4 from Hi and the quotient Hi+1/Hi ∈ {S1, . . . ,Sp}. Note
that rel(i + 1) ≤ rel(i) + #gen · gen(i) + # rel.

(4) # rellen denotes the maximal length of any relation appearing in the fixed presen-
tations for {S1, . . . ,Sp}. Inductively, rellen(1) denotes the maximal length of any
relation in the presentation for H1, and rellen(i + 1) denotes the maximal length
of any relation in the presentation constructed for Hi+1. Note that

rellen(i + 1) ≤ max{
(1)︷ ︸︸ ︷

rellen(i),

(2)︷ ︸︸ ︷
3 + len(i),

(3)︷ ︸︸ ︷
#rellen + len(i)}

where the numbering states which case of Lemma 3.4 the expression derives from. We have
a system of four simultaneous recurrence relations; however, we have already observed
easy bounds for gen(i) and len(i). These can be substituted into the recurrence relations
for rel(i) and rellen(i). For rel(i) we have, after substituting the bound #gen ·i for gen(i),

rel(i + 1) ≤ rel(i) + i · #gen2 +#rel ≤ i(i + 1)/2 · #gen2 +(i + 1) · #rel .

Thus rel(m) ∈ O(log2
2(|H|)).

Finally, for rellen(i) we observe

rellen(i + 1) ≤ max{rellen(i), 3 + len(i),#len + len(i)}.
Using len(i) ≤ i · #len we obtain a linear bound on the growth of rellen(i), so that
# rellen(m) ∈ O(log2(|H|)).

Combining all this, at completion, we have obtained a presentation for H = Hm in
O(log2(|H|)) generators, with at most O(log2

2 |H|) relations, each of maximal length
O(log2 |H|). Thus, the total length of the presentation is in O(log3

2(|H|)). Also, every ele-
ment of H can be written as an O(log2(|H|)) length product of the constructed generating
set. �

Lemma 3.6. For a finite group G, if H is a finite group and H /∈ Q(G), then there is a
quasi-equation φ satisfied by G and failing on H, and the total length of φ is O(log3

2(|H|)).

Proof. By the theorem of Oates–Powell [26], there is a finite basis for the variety
generated by G. Let us fix such a basis and denote it by Σ. Observe that there is a
constant bound on the size of equations in Σ (because it is finite), so if H /∈ V(G) then
H fails an identity of Σ, and we are done. Now assume that H ∈ V(G). As H /∈ Q(G),
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there is an element h ∈ H\{1} such that every homomorphism from H into G identifies
h with 1. By Lemma 3.5, we may select a presentation 〈C;R〉 for H of total length
O(log3

2(|H|)) and assume that h is written as a product w of generators of length at most
O(log2(|H|)). We now consider the presentation for H as the premise of a quasi-identity.
Let φ be the quasi-identity (

&
u∈R

u ≈ 1
)

→ w ≈ 1. (3.1)

Obviously H fails (3.1); however, G |= φ because any evaluation into G that satisfies the
premise of (3.1) yields a homomorphism from H into G, and all such homomorphisms
identify w and 1. The total length of φ is O(log3

2(|H|)), as required. �

Remark 3.7. Lemma 3.6 remains true in the signatures {·}, {·, 1} and {·,−1}.

Proof. We consider the case of {·}, with the other cases following by using a subset
of the argument. We are given a presentation 〈A | R〉 for a group G, where R is a set of
group words in the alphabet A. To remove −1 from the signature, first let A−1 denote
the set {a−1 | a ∈ A}, which we now treat as an alphabet disjoint to A. Observe that
the law (xy)−1 ≈ y−1x−1 allows us to assume that each w ∈ R is a semigroup word in
the alphabet A ∪ A−1. Then 〈A ∪ A−1 | R ∪ {aa−1 | a ∈ A}〉 is a monoid presentation
for G (in the signature {·, 1}). To remove 1 from the signature, add it as a generator
and add the relators g · 1 = g and 1 · g = g for each generator g ∈ A ∪ A−1 ∪ {1} to R.
It is easy to see that the total length of the presentation is extended by only a constant
factor, while the shortest length of a product to represent an element remains unchanged.
The quasi-equation in equation (3.1) is amended accordingly, with ‘u ∈ R’ replaced by
‘u ≈ 1 ∈ R’. �

Lemma 3.6 completes the proof of Theorem 3.1, except for the statements about
signature. Remark 3.7 shows that the theorem holds in each of the described signatures.

4. Polylog equational complexity for a semilattice-ordered inverse semigroup

Recall that an inverse semigroup is an involuted semigroup satisfying xx−1yy−1 ≈
yy−1xx−1; see a text such as Howie [10], Lawson [20] or Petrich [28]. A naturally
semilattice-ordered inverse semigroup is an inverse semigroup with a second binary oper-
ation ∧ satisfying the usual semilattice axioms, along with left and right distributivity of
· over ∧, and the laws

x ∧ y ≈ x(x ∧ y)−1(x ∧ y) and (x ∧ y)zz−1 = (xzz−1) ∧ (yzz−1)

which tie the usual semilattice order defined by ∧ to the usual inverse semigroup theoretic
order defined by ·,−1. We will make particular use of the property

(x ∧ y)zz−1 = x ∧ (yzz−1),

which is an easy consequence of the above laws. An inverse semigroup is said to be a
Clifford semigroup if the idempotent elements are central: xx−1y ≈ yxx−1.
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Naturally semilattice-ordered Clifford semigroups can be found in the work of
Leech [21,22], as well as in the study of algebras of injective partial maps, such as
Jackson and Stokes [15].

The main result of this section and of the article is the following theorem.

Theorem 4.1. Let C be a finite naturally semilattice-ordered Clifford semigroup. If
all subgroups of C have only abelian Sylow subgroups, then C has a finite basis for its
equational theory and βC is bounded by a constant. Otherwise, βC is unbounded and in
O(log3

2(n)).

We also observe in Remark 4.9 that one may similarly obtain examples of finite additive
idempotent semirings with equational complexity growing within O(log3

2(n)).
The remainder of the section concerns the relevant definitions and proofs required to

arrive at Theorem 4.1. We now employ a method developed in [11] for translating quasi-
equations of partial algebras into equations of some other kind of algebraic structure.
When applied to groups (as partial algebras that happen to be total), one arrives at the
class of semilattice-ordered Clifford semigroups; this tight relationship is developed in
§§ 7.7 and 7.8 of [11].

Definition 4.2. Let G = 〈G; ·,−1〉 be a group and 0 be a symbol not appearing in G.
Define the flat extension of �(G) to be the algebra on the set G ∪ {0} with operations
·,−1,∧, with · and −1 extended by letting 0 be an absorbing element and by

x ∧ y =

{
x if x = y,

0 otherwise.

We also allow the same notation for other signatures, in particular, for {·}.

The flat extension of a group is a naturally semilattice-ordered Clifford semigroup and
is subdirectly irreducible. It follows from Theorems 5.3 and 7.5 of [11] that the class of
subdirectly irreducible naturally semilattice-ordered Clifford semigroups is precisely the
isomorphism closure of the class of flat extensions of groups.

The following lemma is essentially a trivial consequence of §§ 7.7 and 7.8 of [11], along
with the fact a quasivariety generated by a finite set of finite groups is equal to the
quasivariety generated by a single finite group. We sketch a proof for completeness.

Lemma 4.3. The variety generated by a finite naturally semilattice-ordered Clifford
semigroup C is equal to one generated by the flat extension of a finite group G, with G
obtained as the direct product of a family of subgroups of the {·}-reduct of C.

Proof. Let C be a finite naturally semilattice-ordered Clifford semigroup, and let
C1, . . . ,Cn be a complete list of its subdirectly irreducible quotients. By elementary
universal algebraic considerations, the variety V generated by S is equal to the variety
generated by {C1, . . . ,Cn}. By [11, Theorems 7.5 and 5.3], each of the Ci is isomorphic
to the flat extension of some group Gi. Each �(Gi) is a homomorphic image of C, but
by taking ∧-minimal elements of C from each kernel class of this homomorphism (which
exist, as C is finite), we will show that each Gi is in fact isomorphic to a subgroup of C.
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Let φ denote a surjective homomorphism from C onto �(Gi), and for each g ∈ Gi let
g denote a minimal element of φ−1(g). As g ∧ g = g in �(Gi), the set φ−1(g) is a {∧}-
subalgebra of C so that g is the unique minimum of φ−1(g). Let e denote the identity
element of Gi. Then as e = ee−1 we have that φ−1(e) contains an idempotent e · e−1. As
e ≤ e · e−1 and C is an inverse semigroup, it follows that e is itself an idempotent. Next,
for any g ∈ G we have g · e ≥ g by the minimality of g in φ−1(g), giving g = g ∧ (g · e) =
(g ∧ g) · e = g · e, by law (4). In particular, then, we have g−1 · g · e = g−1 · g. However,
g−1 · g ≥ g−1g = e by the minimality of e. Because ≤ is the inverse semigroup order, this
implies g−1 · g · e = e. Thus, we have g−1 · g = e for any g ∈ G.

Finally, for any two elements g, h ∈ G we have g · h ≥ gh, while gh · h−1 ≥ g by min-
imality. Then gh = gh · e = gh · h−1 · h ≥ g · h ≥ gh, giving equality throughout. Hence
the ∧-minimal elements of φ−1(Gi) form a {·}-subalgebra which is obviously isomorphic
to Gi.

Let G be the direct product
∏

i Gi. The quasivariety generated by G is equal to that
generated by {G1, . . . ,Gn}. Hence, by [11, Theorem 5.3], the variety V can equivalently
be generated by �(G). �

In the case of a finite group (or of a finite naturally semilattice-ordered semigroup), it is
not necessary that the operation −1 be included, as it is a term function in multiplication:
by x−1 = xd−1, where d is the period. Notice that xdy is a term function acting as a second
projection. The following lemma summarizes some of the key facts regarding varieties
generated by the flat extensions, in the case where there is a second-projection term. It
is part of Theorems 5.3 and 5.12 of [11].

Lemma 4.4 (Jackson [11]). Let Q be a quasivariety of algebraic structures (of some
fixed finite type) on which there is a two-variable term x � y acting as second projection:
Q |= x � y ≈ y. Then the class of subdirectly irreducible members of V({�(H) | H ∈ Q})
is I({�(H) | H ∈ Q}). Moreover, Q has a finite axiomatization by quasi-equations if and
only if V({�(H) | H ∈ Q}) has a finite axiomatization by equations.

The last sentence in this lemma is proved in [11] using [11, Lemma 5.9], which gives an
explicit translation of quasi-equations in the language of Q to equations in the language
of {�(H) | H ∈ Q}. The translation involves only a linear adjustment in length when � is
a fundamental operation; however, in the present setting we have � only as term function,
which can potentially result in an exponential increase in the length of the expression.
The issue is easily resolved: the following is a slight recasting of a particular case of [11,
Lemma 5.9], that avoids the exponential blowout.

Lemma 4.5. Let &1≤i≤n(ui ≈ vi) → u0 ≈ v0 be a quasi-equation in the language
of a single binary operation and with the property that every variable appearing
in the expression appears somewhere in the premise of the implication. Then the
quasi-equation

ρ := &
1≤i≤n

(ui ≈ vi) → u0 ≈ v0
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holds on a group H of exponent d if and only if the following equation holds on �(H):

ρ� :=
( ∏

1≤i≤n

(ui ∧ vi)
)d

(u0 ∧ v0)d ≈
( ∏

1≤i≤n

(ui ∧ vi)
)d

. (4.1)

Proof. Let 0 denote the bottom element with respect to ∧ in �(H). If ρ fails in H
under some substitution θ of the variables into H, then, considering θ as an substi-
tution into the flat extension �(H), we have the right-hand side of ρ� in (4.1) taking
the value θ((

∏
1≤i≤1(ui ∧ vi))d) = 1, while as θ(u0) �= θ(v0) the left-hand side involves

θ(u0 ∧ v0) = θ(u0) ∧ θ(v0) = 0. So ρ� fails on �(H).
Now assume that ρ holds on H. It is clear that if the right-hand side of ρ� takes the

value 0 under some interpretation of the variables in �(H), then so does the left-hand
side. Let us assume then that

∏
1≤i≤1(ui ∧ vi) does not take the value 0 under some

interpretation θ of the variables of the equation into �(H). Note that all variables in ρ�

appear in
∏

1≤i≤1(ui ∧ vi), so in fact θ is an interpretation into H. Also, as x ∧ y = 0
unless x = y, we must have that θ(ui) = θ(vi) in H (for every i = 1, . . . , n). As H |=
&1≤i≤n(ui ≈ vi) → u0 ≈ v0 it follows that θ(u0) = θ(v0) also, from which it is easily
seen that both the left-hand side and the right-hand side of ρ� take the value 1. �

Note that if G is fixed and H ∈ V(G), then the exponent of H is bounded by that of
G, hence the quasi-equation found in Lemma 3.6 translates via Lemma 4.5 to an equation
of size O(log3

2(|H|)).
Let A be a finite algebra. A jump point of βA is a number n ∈ N such that βA(n − 1) <

βA(n). A βA-critical algebra is a finite algebra B such that

• |B| is a jump point for βA;

• B satisfies all identities of A up to length βA(|B|) − 1;

• B fails some identity of A with length βA(|B|).
In other words, β-critical algebras are the algebras that force an increase in βA.

Lemma 4.6. Every βA-critical algebra is subdirectly irreducible.

Proof. Let B be βA-critical, and let u ≈ v ∈ Eq(A) be an equation of complexity
βA(|B|) failing on B under the assignment φ. If φ(u) and φ(v) can be separated by a
non-trivial congruence θ, then B/θ belongs to the variety (as |B| was a jump point) but
fails u ≈ v, which is a contradiction. Thus, every non-trivial congruence collapses φ(u)
and φ(v) so that B is subdirectly irreducible. �

The βV-critical algebras determine the function βV in the sense that if, in the definition
of βV, the choice of B /∈ V is restricted to the βV-critical algebras, then the function
defined coincides with βV.

Theorem 4.7. Let G be a finite group containing a non-abelian Sylow subgroup. Then
the equational complexity of �(G) is not eventually constant but grows within O(log3

2(n)).
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Proof. By Lemma 4.6 we only need to show that there is a constant c > 0 such that
for n sufficiently large, n-element subdirectly irreducible algebras outside of V(�(G)) fail
an equation in Eq(�(G)) of size at most c log3

2(n).
The Oates–Powell theorem [26] shows that a variety of G can be axiomatized by a

finite system of equations. As this variety is a quasivariety and as equations are quasi-
equations, Lemma 4.4 shows that there is a finite system Σ of equations in the signature
{∧, ·, 1} for which the subdirectly irreducible models are (up to isomorphism) precisely
the algebras �(H), where H ∈ V(G); the same applies in the signature {∧, ·}.

Let m be greater than the size of the longest equation in Σ, and consider a subdirectly
irreducible algebra not in V(�(G)), but satisfying all equations of �(G) up to size < m.
In particular, S satisfies Σ and so is of the form �(H) for some finite group H ∈ V(G). As
�(H) /∈ V(�(G)), Lemma 4.4 shows that H /∈ Q(G), and so Lemma 3.6 shows that there
is a quasi-equation of size O(log3

2(|H|)) failing on H but holding on G. Then Lemma 4.5
shows that there is an equation of size O(log3

2(|H|)) failing on H and holding on �(G). �

Finally, we may complete the proof of the main result.

Proof of Theorem 4.1. Lemma 4.3 implies that V(C) is equal to V(�(G)), where G
is a group. Moreover, C has a subgroup with a non-abelian Sylow subgroup if and only
if G has a non-abelian Sylow subgroup.

By [27], the group G has a finite basis for its quasi-equations if and only if all of its
Sylow subgroups are abelian. Hence, by Lemma 4.3, it follows that V(C) = V(�(G)) has a
finite basis for its equations if and only if C has all of its Sylow subgroups abelian. When
C has a finite equational basis, we obtain βC ∈ O(1). Otherwise, Theorem 4.7 shows that
βC is unbounded but in O(log3

2(n)). �

We now observe a crude lower bound which, when combined with Theorem 4.1,
sandwiches βC(n) between functions of growth rate logΘ(1)(n).

Theorem 4.8. When G is a finite group with a non-abelian Sylow subgroup, the
function β�(G) grows in Ω( 4

√
log(n)).

Proof. Let H = Hn be the group discussed at the start of § 3. Then βG(|Hn|) > n.
We show that there is a constant c (depending on G) such that 2cn4

bounds |H|, from
which the claimed lower bound for β�(G)(n) follows.

Let m := (4
(
n
2

)
+ 4). The group H, as constructed by Ol’shanskĭı [27], lies in the variety

generated by a subgroup G of G that is a nilpotent group of nilpotency class 2. (Note
that the subgroup G is denoted by H in [27], while our H is denoted by C.) The group H
is a quotient of the direct product of s := 2|G| + 1 copies of the m-generated free group F
in the variety generated by G. By Neumann [24] and Higman [8], the logarithm of |F | (as
a function of m) grows within O(m2), so that the same is true of |F s| and therefore |H|
also. Thus, there is a constant c such that 2cn4

bounds |H| as required. �

Remark 4.9. When a finite group G is considered in the signature {·}, then the
algebra �(G) is an example of an additive idempotent semiring, which also has O(log3

2(n))
growth equational complexity provided G has a non-abelian Sylow subgroup.
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The smallest groups with a non-abelian Sylow subgroup are the eight-element non-
abelian groups. Thus, the methods in this section produce nine-element examples
of semilattice-ordered Clifford semigroups and semirings with slow growth equational
complexity.
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