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Abstract
There has been a lot of recent interest in the natural language processing (NLP) community in the com-
putational processing of language varieties and dialects, with the aim to improve the performance of
applications such as machine translation, speech recognition, and dialogue systems. Here, we attempt to
survey this growing field of research, with focus on computational methods for processing similar lan-
guages, varieties, and dialects. In particular, we discuss the most important challenges when dealing with
diatopic language variation, and we present some of the available datasets, the process of data collection,
and the most common data collection strategies used to compile datasets for similar languages, varieties,
and dialects.We further present a number of studies on computational methods developed and/or adapted
for preprocessing, normalization, part-of-speech tagging, and parsing similar languages, language vari-
eties, and dialects. Finally, we discuss relevant applications such as language and dialect identification and
machine translation for closely related languages, language varieties, and dialects.
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1. Introduction
Variation is intrinsic to human language and it is manifested in different ways. There are four
generally accepted dimensions of language variation, namely diaphasic, diastratic, diachronic, and
diatopic. Diaphasic variation is related to the setting or the medium of communication, for exam-
ple, different levels of style and register, oral versus written language.Diastratic variation is related
to language variation in different social groups (e.g., age, gender), whereas diachronic is language
variation across time. Finally, diatopic variation is language variation in space such as different
dialects or national varieties of the same languages (e.g., British and American English). All these
dimensions of language variation pose challenges for Natural Language Processing (NLP) appli-
cations developed to process text and speech. As a result, there has been a growing interest in
language variation in the NLP community, as evidenced by a large number of publications and
events, for example, conferences, shared tasks, tutorials, and workshops on the topic, some of
which we cover in this survey.

One of these initiatives is the series of workshops on NLP for Similar Languages, Language
Varieties, and Dialects (VarDial), a workshop series with a special focus on diatopic language vari-
ation. VarDial started in 2014, and since then it has become an important venue for work on the
study of language variation from a computational perspective, co-located with international NLP
conferences such as COLING, EACL, and NAACL. Past editions of the workshop included papers
on machine translation (MT) (Shapiro and Duh 2019; Myint Oo, Kyaw Thu, and Mar Soe 2019;
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Popović et al. 2020), part-of-speech tagging (Huck, Dutka, and Fraser 2019; AlGhamdi and
Diab 2019), text normalization (Lusetti et al. 2018), and many other relevant topics applied to
the computational processing of similar languages, varieties, and dialects. The workshop also
featured evaluation campaigns with multiple shared tasks on a number of topics such as cross-
lingual morphological analysis, cross-lingual parsing, language and dialect identification, and
morphosyntactic tagging (Zampieri et al. 2018, 2019; Găman et al. 2020). These shared tasks have
provided important datasets for the community, and we will present some of them in Section 2.

Below, we will use the terms varieties and language varieties interchangeably as synonyms for
(standard) national language varieties of pluricentric languages, that is, languages with multiple
interacting standard forms in different countries. Examples of pluricentric languages include
English, French, Portuguese, and Spanish; see Clyne (1992) for a discussion on the status of
national language varieties and pluricentric languages. Furthermore, in this survey, we do not
draw a clear separating line between languages, language varieties, and dialects. This is on pur-
pose, as in many cases this is a political rather than a linguistic distinction. From a computational
perspective, problems faced by systems processing, for example, Croatian and Serbian are very
similar to those that occur when dealing with Dutch and Flemish, with Brazilian and European
Portuguese, or with the various dialects of Arabic.

Our focus below is on the computational processing of diatopic language variation. Section 2
describes the process of data collection and presents some available corpora. Section 3 discusses
some part-of-speech tagging and parsing methods that have been successful for processing similar
languages, varieties, and dialects. Section 4 focuses on relevant applications such as language and
dialect identification, and MT. Finally, Section 5 concludes this survey, and Section 6 presents
some avenues for future work.

2. Available corpora and data collection
It is well-known that the performance of NLP systems degrades when faced with language vari-
ation and ideally, applications should be trained on data that enables it to model the different
dimensions of variation discussed in the introduction of this article: spoken vs. written language,
different registers and genres, and regional variation, etc. Thus, it is somewhat simplistic to assume
that corpora could fully represent a language without considering variation. In corpus linguistics,
researchers have tried to address variation and represent it in corpora. One such example is the
Brown corpus for English (Francis and Kucera 1979).

A well-known early attempt to represent diatopic language variation in corpora is the
International Corpus of English (Greenbaum 1991), which follows sampling methods similar
to those used for the Brown corpus, and includes multiple varieties of English with texts from
thirteen countries including Canada, Great Britain, Ireland, Jamaica, and the USA.

One of the main challenges when dealing with diatopic variation for low-resource languages is
finding suitable resources and tools. Acquiring text corpora for dialects is particularly challenging
as dialects are typically vastly underrepresented in written text. Thus, the typical solution is to
produce text corpora by transcribing speech, as it is much easier to obtain spoken dialectal data.
The transcription can be done automatically, for example, using Automatic Speech Recognition,
which was used to produce Arabic dialectal text corpora (Ali et al. 2016), or manually, which
was used to build the ArchiMob corpus for (Swiss) German dialects (Scherrer, Samardžić, and
Glaser 2019) used in past editions of the German Dialect Identification shared tasks at VarDial.
Alternative approaches to dialectal data collection include social media, for example, Twitter,
(Cotterell and Callison-Burch 2014) and translations (Bouamor et al. 2018) as in the case of
the MADAR corpus used in the MADAR shared task (Bouamor, Hassan, and Habash 2019) on
fine-grained identification of Arabic dialects.

The case of national language varieties is generally less challenging. Each such variety (e.g.,
British vs. American English) has its ownwritten standard, which often differs from other varieties
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of the same language in several aspects. This includes spelling, for example, favour in the UK ver-
sus favor in the USA and lexical preferences for example, rubbish in the UK versus garbage in the
USA. Most books, magazines, and newspapers reflect these differences, which makes them suit-
able training resources for most language varieties. One example of a corpus collected for language
varieties is the Discriminating between Similar Language (DSL) Corpus Collection (DSLCC)a
(Tan et al. 2014), which contains short excerpts of texts (from 20 to 100 tokens each), collected
from multiple newspapers per country.

The DSLCC was created to serve as a dataset for discriminating between similar languages and
language varieties for the DSL shared tasks, organized annually within the scope of the VarDial
workshop (Zampieri et al. 2014, 2015, 2017; Malmasi et al. 2016). The texts in DSLCC were
compiled from existing corpora such as HC Corpora (Christensen 2014), the SETimes Corpus
(Tyers and Alperen 2010), and the Leipzig Corpora Collection (Biemann et al. 2007). Five versions
including 20,000–22,000 texts per language or language variety have been released with data from
several pairs or groups of similar languages such as Bulgarian andMacedonian, Czech and Slovak,
Bosnian, Croatian, and Serbian, Malay and Indonesian, and pairs or groups of language varieties
such as Brazilian and European Portuguese, British and American English, and several varieties
of Spanish for example, Argentinian and Peninsular Spanish. The languages and the language
varieties included in all versions of the corpus collection are presented in Table 1.

The DSLCC features journalistic texts collected frommultiple newspapers in each target coun-
try in order to alleviate potential topical and stylistic biases, which are intrinsic to any newspaper,
that is, in order to prevent systems from learning a specific newspaper’s writing style as opposed
to learning the language variety it represents. Newspaper texts were chosen with the assumption
that they are the most accurate representation of the contemporary written standard of a language
in a given country and therefore could be used to represent national language varieties.

We should note that other popular data sources, which have been used in a variety of NLP tasks,
for example, Wikipedia, are not suited to serve as training data for modeling diatopic variation in
language as they disregard language varieties. Wikipedia is a collaborative resource, which allows
speakers ofmultiple language varieties and non-native speakers to contribute to the same article(s)
available in a single English, Portuguese, or Spanish Wikipedia. Notable exceptions are the Simple
English Wikipedia, which, as the name suggests, contains simplified English, and a few (small)
dialect Wikipedias.

Finally, movie and TV subtitles have also been used as data sources for Dutch and Flemish
(van der Lee and van den Bosch 2017), as well as in related NLP applications such as MT between
Brazilian and European Portuguese (Costa-jussà, Zampieri, and Pal 2018).

3. POS tagging and parsing
Part-of-speech tagging and parsing are two core morphosyntactic annotation tasks. Their output
often serves as a pre-annotation for downstream applications such as information retrieval or nat-
ural language understanding, but morphosyntactic annotation is also useful for corpus linguistics
research as it enables search queries that are independent of the lexical forms. This is especially
practical for nonstandardized language varieties such as dialects.

Recent research on tagging and parsing similar languages, varieties, and dialects typically
assumes that the availability of linguistic resources is asymmetric, in the sense that some varieties
have more resources than other ones, and that low-resource language varieties can benefit from
resources for high-resource ones. In such a scenario, a tagger or a parser for a new language variety
can be produced using cross-lingual transfer learning (Tiedemann and Agić 2016). The general
goal of cross-lingual transfer learning is to create tools for a low-resource language (LRL) when
training data are only available for a (not necessarily related) high-resource language (HRL). In this

ahttp://ttg.uni-saarland.de/resources/DSLCC/.

https://doi.org/10.1017/S1351324920000492 Published online by Cambridge University Press

http://ttg.uni-saarland.de/resources/DSLCC/
https://doi.org/10.1017/S1351324920000492


598 M. Zampieri et al.

Table 1. Languages and language varieties used in the five versions of the DSLCC, grouped by language
similarity. The checkboxes show which language variety was present in a particular version of the corpus

Language/Variety v1.0 v2.0 v2.1 v3.0 v4.0

Bosnian X X X X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Croatian X X X X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Serbian X X X X X

Czech X X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Slovak X X X

Indonesian X X X X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Malay X X X X X

Brazilian Portuguese X X X X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

European Portuguese X X X X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Macanese Portuguese X

Argentine Spanish X X X X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mexican Spanish X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Peninsular Spanish X X X X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Peruvian Spanish X

Bulgarian X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Macedonian X X

Canadian French X X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hexagonal French X X

American English X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

British English X

Persian X
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dari X

context, the high-resource language is also referred to as a donor language or a source language and
the low-resource language as the recipient language or the target language. While transfer learning
as such is not restricted to similar language varieties, the common assumption is that the closer
the HRL and the LRL are, the simpler the transfer would be.

A straightforward cross-lingual transfer learning technique is plain model transfer, or using a
more recent name, zero-shot learning. It assumes that the HRL and the LRL are the same, and
that a model trained on HRL data can be applied directly and without any modification to LRL
data. While this assumption is too naïve in most cases, plain model transfer results are often pre-
sented as simple baselines to which more sophisticated approaches are compared. For instance,
Scherrer (2014) reported baseline tagging results for various related languages, and Huck et al.
(2019) used zero-shot learning as a baseline for more sophisticated experiments of Russian →
Ukrainian tagging transfer. Zampieri et al. (2017) trained dependency cross-lingual dependency
parsing baselines for pairs like Slovenian → Croatian, Danish/Swedish → Norwegian, and Czech
→ Slovak.
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Zero-shot learning can be extended to multi-source scenarios, where there is a clearly defined
low-resource variety, but several related high-resource varieties, all of which are expected to con-
tribute to various extent to the analysis of the low-resource variety. Scherrer and Rabus (2017,
2019) trained a tagger on the concatenation of Slovak, Ukrainian, Polish, and Russian data and
applied it directly to Rusyn (a Slavic variety spoken predominantly in Transcarpathian Ukraine,
Eastern Slovakia, and Southeastern Poland). The only preprocessing consists in transliterating all
data into a common script, in the present case Cyrillic. Likewise, Zampieri et al. (2017) showed
that dependency parsing for Norwegian works best with a model trained on both Danish and
Swedish data, rather than on just one of the source languages.

Another popular cross-lingual transfer learning technique is annotation projection (Yarowsky
and Ngai 2001), which crucially requires a parallel corpus relating the HRL and the LRL. The HRL
side of the parallel corpus is annotated using an existing model, and the labels are projected to the
LRL side along the word alignment links. The annotated LRL side can then serve as a training cor-
pus. A multilingual variant of annotation projection was introduced in Agić, Hovy, and Søgaard
(2015). They projected annotations from all available source languages and used simple majority
voting to resolve the ambiguities. A similar approach was proposed in Aepli, vonWaldenfels, and
Samardžić (2014). They created a tagger for Macedonian using majority voting from related lan-
guages such as Bulgarian, Czech, Slovene, and Serbian, as well as from English. Their full setup
is somewhat more complicated and allows different morphological features to be inferred from
different sets of source languages. In the cross-lingual dependency parsing task at VarDial 2017
(Zampieri et al. 2017), all participants opted for some variant of annotation projection. In par-
ticular, two teams relied on word-by-word translation models inferred from the provided parallel
data (Rosa et al. 2017; Çöltekin and Rama 2017).

Despite these examples, annotation projection is often not a particularly popular choice for
configurations involving closely related varieties because large parallel corpora can be hard to
find. For example, parallel corpora involving a dialect and its corresponding standard variety are
not naturally available, as dialects do not have an official status and speakers are generally fluent
in both varieties, which obviates the need for translations.

Delexicalization is an alternative transfer learning technique that attempts to create models
that do not rely on language-specific information, but rather on language-independent fea-
tures and representations. It was first proposed for dependency parsing (Zeman and Resnik
2008; McDonald, Petrov, and Hall 2011), where the (language-dependent) word forms were
replaced as input features by (language-independent) part-of-speech tags. For tagging, Täckström,
McDonald, and Uszkoreit (2012) proposed to replace the (language-dependent) word forms by
(language-independent) cluster ids obtained by clustering together all words with the same distri-
butional properties. More recently, clusters were superseded by cross-lingual word embeddings as
language-independent input features. However, a bottleneck of this approach is that the embed-
dings have to be trained on large amounts of raw data, typically in the order of millions of words.
For low-resource varieties such as dialects or similar varieties, this requirement is unrealistic. For
example, Magistry, Ligozat, and Rosset (2019) trained cross-lingual word embeddings for three
French regional languages – Alsatian, Occitan, and Picard – in view of using them for part-of-
speech tagging. They showed that embeddings trained on corpora containing one to two million
words were not sufficient to train taggers that would be competitive to much simpler adaptation
strategies.

Relexicalization is a variant of delexicalization in which the HRL input features are replaced
by LRL features within the model. For example, the HRL word forms of the original models can
be replaced by LRL word forms extracted from a bilingual dictionary (Feldman, Hana, and Brew
2006). This approach was adapted to closely related language varieties by Scherrer (2014), who
built the bilingual dictionary in an unsupervised way, taking advantage of the prevalence of cog-
nates, similar word forms and phrases. Following the success of cross-lingual word embeddings,
relexicalization became less popular in recent years.
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The cross-lingual transfer techniques presented above assume that no annotated training data
are available for the target variety, but that other types of data can be obtained, for example, raw
text for training word embeddings, parallel corpora, bilingual dictionaries, etc. However, in many
cases, at least small amounts of annotated data of the target variety can be made available. In
this situation, the domain adaptation problem – where the annotated training data have different
properties than the data the trained model is supposed to be applied to – can be reformulated as a
language adaptation problem. The resulting approaches are typically subsumed as multilingual or
multi-lectal models.

For example, Jørgensen, Hovy, and Søgaard (2016) created a tagger for African American
Vernacular English (AAVE) tweets by first training amodel on a large, non-AAVE-specific Twitter
corpus and then added variety-specific information into the model. Similarly, in a range of experi-
ments on tagging Ukrainian, Huck et al. (2019) obtained the best results with amultilingual model
trained on a large corpus of Russian and a small corpus of Ukrainian. In earlier work, Cotterell and
Heigold (2017) used several related resource-rich source languages to improve the performance
of their taggers.

Multilingual models can be trained in a completely language-agnostic way, that is, by making
the model believe that all training instances stem from the same language, but they generally work
better if they are given information about the language variety of each training instance. One way
of doing so is to use multi-task learning (Ruder 2017), where the task of detecting the language
variety is introduced as an auxiliary task on top of the main task, for example, tagging or parsing
(Cotterell and Heigold 2017; Scherrer and Rabus 2019).

All approaches discussed above rely on two crucial assumptions: (1) that there is significant
overlap of the input features (which, in most cases, are word forms) across the languages or
that the model is able to share information across similar but non-identical input features and
(2) that the output labels (part-of-speech tags, dependency labels, constituent names, etc.) are
unified across the languages or the varieties.

Let us first discuss assumption 2, that is, that the output labels (part-of-speech tags, dependency
labels, constituent names, etc.) are unified across the languages or the varieties. For decades, the
exact task definitions and annotation conventions have been determined more or less indepen-
dently for each language, which made the generalization across languages difficult, both when
creating models and when evaluating them (Scherrer 2014). It is only in recent years that this
situation has improved through the development of a language-independent universal part-of-
speech tag set (Petrov, Das, and McDonald 2012), a language-independent universal dependency
annotation scheme (McDonald et al. 2013), a unified feature-value inventory for morphological
features (Zeman 2008), and the subsequent merging of the three schemes within the Universal
Dependencies project (Nivre et al. 2016). However, despite these huge harmonization efforts, dif-
ferent annotation traditions still shine in the currently available corpora (Zupan, Ljubešić, and
Erjavec 2019), and as a result even recent research sometimes resorts to some kind of ad hoc label
normalization (Rosa et al. 2017).

Regarding assumption 1, that is, that there is significant overlap of the input features (which,
in most cases, are word forms) across the languages or that the model is able to share information
across similar but non-identical input features, there have been essentially two extreme strategies:
either one aggressively normalizes and standardizes the data, so that related words or word forms
from different varieties are made to look the same, or one avoids all types of normalization and
makes sure to choose amodel architecture that is still capable of generalizing from variation within
the data.

In NLP for historical language varieties, this question has largely been answered in favor of
the first approach: namely, the massive amounts of variation occurring in the original data are
normalized to some canonical spelling, which usually coincides with the modern-day standard-
ized spelling (Tjong Kim Sang et al. 2017). While the normalization approach has been applied
to dialectal varieties (Samardžić, Scherrer, and Glaser 2016), recent work (Scherrer, Rabus, and
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Mocken 2018) suggested that neural networks can actually extract sufficient information from
raw (non-normalized) data, provided that the words are represented as character sequences rather
than as atomic units. In this case, information can be shared across similarly spelled words both
within the same language variety (e.g., if there is no orthographic standard) as well as across lan-
guage varieties (e.g, in a multilingual model). For example, Scherrer and Rabus (2019) represented
the input words using a bidirectional character-level long short-term memory (LSTM) recurrent
neural network and obtained up to 13% absolute boost in terms of F1-score compared to using
atomic word-level representations. Zupan et al. (2019) also stressed the importance of character-
level input representations. In high-resource settings, character-level input representations, which
are computationally costly, have lately been replaced by fixed-size vocabularies obtained by unsu-
pervised subword segmentation methods such as byte-pair encodings and word-pieces (Sennrich,
Haddow, and Birch 2016; Kudo and Richardson 2018); however, for the moment this change
appears to be less relevant in low-resource tagging and parsing settings.

4. Applications
In this section, we describe studies addressing diatopic language variation on two relevant NLP
applications: language and dialect identification and MT. Language and dialect identification is
an important part of many NLP pipelines. For example, it can be used to help collecting suitable
language-specific training data (Bergsma et al. 2012), or to aid geolocation prediction systems
(Han, Cook, and Baldwin 2012). MT can address diatopic variation when translating between
pairs of closely related languages (Nakov and Tiedemann 2012; Lakew, Cettolo, and Federico
2018), language varieties (Costa-jussà et al. 2018), and dialects (Zbib et al. 2012), or when using
similar language data to augment the training data for low-resource languages, that is, by merging
datasets from closely related languages to form larger parallel corpora (Nakov and Ng 2009, 2012).

4.1. Language and dialect identification
Language identification is a well-known research topic in NLP, and it represents an important
part of many NLP applications. Language identification has been applied to speech (Zissman
and Berkling 2001), to sign language (Gebre, Wittenburg, and Heskes 2013), and to written texts
(Jauhiainen et al. 2019b), as we will see below. When applied to texts, language identification
systems are trained to identify the language a document or a part of a document is written in.

Language identification is most commonly modeled as a supervised multi-class single-label
document classification task, where each document is assigned one class from a small inventory of
classes (languages, dialects, varieties). Given a set of n documents, a language identification system
will typically implement the following four major steps (Lui 2014):

1. Represent the texts using characters, words, linguistically motivated features such as POS
tags, or a combination of multiple features;

2. Train a model or build a language profile from documents known to be written in each of
the target languages;

3. Define a classification function that best represents the similarity between a document and
each language model or language profile;

4. Compute the probability of each class using the models to determine the most likely
language for a given test document.

While most work has addressed language identification in sentences, paragraphs, or full texts,
for example, newspaper articles, including the work we discuss in this section, some papers have
focused at the word level (Nguyen and Dogruoz 2014).
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As discussed in a recent survey (Jauhiainen et al. 2019b), in the early 2000s, language iden-
tification was widely considered to be a solved task as n-gram methods performed very well at
discriminating between unrelated languages in standard contemporary texts (McNamee 2005).
There are, however, several challenging scenarios that have been explored in recent years, where
the performance of language identification systems is far from perfect.

This is the case of multilingual documents (Lui, Lau, and Baldwin 2014), of short and noisy
texts (Vogel and Tresner-Kirsch 2012) (such as user-generated content, e.g., microblogs and social
media posts), of data containing code-switching, or code-mixing (Solorio et al. 2014), and finally,
of similar languages, language varieties, and dialects, which we address in this section.

There have been a number of studies discussing methods to discriminate between similar lan-
guages. The study by Suzuki et al. (2002), for example, addressed the identification of language,
script, and text encoding and showed that closely related language pairs that also share a common
script and text encoding (e.g., Hindi and Marathi) are most difficult to discriminate between.
Other studies have investigated the limitations of the use of general-purpose n-gram language
identificationmethods, which are commonly trained using character trigrams. Some of these stud-
ies have proposed solutions tailored to particular pairs or groups of languages. Ranaivo-Malançon
(2006) added a list of words exclusive to one of the languages to help a language identification
system discriminate between Malay and Indonesian. In the same vein, Tiedemann and Ljubešić
(2012) improved the performance of a baseline language identification system and reported 98%
accuracy for discriminating between Bosnian, Croatian, and Serbian by applying a blacklist, that
is, a list of words that do not appear in one of the three languages.

Previous research on the topic, including the aforementioned VarDial shared tasks, has shown
that high-performing approaches to the task of discriminating between related languages, lan-
guage varieties, and dialects tend to use word-based representations or character n-gram models
of higher order (4-, 5-, or 6-grams), which can also cover entire words (Goutte et al. 2016).
There have been studies that went beyond lexical features in an attempt to capture some of the
abstract systemic differences between similar languages using linguistically motivated features.
This includes the use of semi-delexicalized text representations in which named entities or con-
tent words are replaced by placeholders, or fully de-lexicalized representations using POS tags
and other morphosyntactic information (Zampieri, Gebre, and Diwersy 2013; Diwersy, Evert, and
Neumann 2014; Lui et al. 2014; Bestgen 2017).

In terms of computational methods, the bulk of research on this topic and the systems sub-
mitted to the DSL shared tasks at VarDial have shown that traditional machine learning classifiers
such as support vector machines (Cortes and Vapnik 1995) tend to outperform dense neural net-
work approaches for similar languages and language varieties (Bestgen 2017; Medvedeva, Kroon,
and Plank 2017). The best system (Bernier-Colborne, Goutte, and Léger 2019) submitted to the
VarDial 2019 Cuneiform Language Identification (CLI) shared task (Zampieri et al. 2019), how-
ever, has outperformed traditional machine learning methods using a BERT-based (Devlin et al.
2019) system to discriminating between Sumerian and Akkadian historical dialects in Cuneiform
script (Jauhiainen et al. 2019a). BERT and other Transformer-based contextual representations
have been recently applied to various NLP tasks achieving state-of-the-art results. The results by
Bernier-Colborne et al. (2019) in the CLI shared task seem to indicate that recent developments
in contextual embedding representations may also yield performance improvement in language
identification applied to similar languages, varieties, and dialects.

Language identification was studied for closely related languages such as Malay–Indonesian
(Ranaivo-Malançon 2006), South Slavic languages (Ljubešić, Mikelić, and Boras 2007; Tiedemann
and Ljubešić 2012), and languages of the Iberian Peninsula (Zubiaga et al. 2014). It was also
applied to national varieties of English (Lui and Cook 2013; Simaki et al. 2017), French (Mokhov
2010; Diwersy et al. 2014), Chinese (Huang and Lee 2008), and Portuguese (Zampieri and Gebre
2012; Zampieri et al. 2016), as well as to dialects of Romanian (Ciobanu and Dinu 2016),
Arabic (Elfardy and Diab 2013; Zaidan and Callison-Burch 2014; Tillmann, Al-Onaizan, and
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Mansour 2014; Sadat, Kazemi, and Farzindar 2014; Wray 2018), and German (Hollenstein and
Aepli 2015). The VarDial shared tasks included the languages in the DSLCC, as well as Chinese
varieties, Dutch and Flemish, dialects of Arabic, Romanian, and German, and many others.

Arabic is particularly interesting as its standard form coexists with several regional dialects
in a large dialect continuum. This has motivated the bulk of recent work on processing Arabic
dialects including a number of studies on the identification of Arabic dialects (Elfardy and Diab
2013; Zaidan and Callison-Burch 2014). Tillmann et al. (2014) used a linear-kernel SVM to dis-
tinguish between MSA and Egyptian Arabic in the Arabic online commentary dataset (Zaidan
and Callison-Burch 2011). Salloum et al. (2014) carried out an extrinsic evaluation of an Arabic
dialect identification used as part of the preprocessing steps of a MT system. Salloum et al. (2014)
reported improvements in terms of BLEU score compared to a baseline that did not differentiate
between dialects. Moreover, shared tasks on Arabic dialect identification were organized in recent
years providing participants with annotated dialectal data from various genres and domains.
This includes the Arabic Dialect Identification (ADI) task at the VarDial workshop (Malmasi
et al. 2016) and the Multi-Genre Broadcast (MGB) challenge (Ali, Vogel, and Renals 2017),
which included broadcast speech, and the MADAR shared task (Bouamor et al. 2019), which
included translations of tourism-related texts. There have been also a number of other multi-
dialectal corpora compiled for Arabic including a parallel corpus of 2000 sentences in English,
MSA, and multiple Arabic dialects (Bouamor, Habash, and Oflazer 2014); a corpus from web
forums with data from eighteen Arabic-speaking countries (Sadat et al. 2014); as well as some
multi-dialect corpora consisting of Twitter posts (Elgabou and Kazakov 2017; Alshutayri and
Atwell 2017).

4.2. Machine translation
Early work on machine translation between closely related languages and dialects used word-
for-word translation and manual language-specific rules to handle morphological and syntactic
transformations. This was tried for a number of language pairs such as Czech–Slovak (Hajič,
Hric, and Kuboň 2000), Czech–Russian (Bemova, Oliva, and Panevova 1988), Turkish–Crimean
Tatar (Altintas and Cicekli 2002), Irish–Scottish Gaelic (Scannell 2006), Punjabi–Hindi (Josan
and Lehal 2008), Levantine/Egyptian/Iraqi/Gulf–Standard Arabic (Salloum and Habash 2012),
and Cantonese–Mandarin (Zhang 1998).

The Apertium MT platform (Corbí-Bellot et al. 2005) used bilingual dictionaries and man-
ual rules to translate between a number of related Romance languages such as Spanish–Catalan,
Spanish–Galician, Occitan–Catalan, and Portuguese–Spanish (Armentano-Oller et al. 2006), and
it also supports some very small languages such as the Aranese variety of Occitan (Forcada
2006). There has also been work on rule-based MT using related language pairs, for example,
improving Norwegian–English using Danish–English (Bick and Nygaard 2007). Finally, there
have been rule-based MT systems for translating from English to American sign language (Zhao
et al. 2000).

A special case is the translation between different dialects of the same language, for exam-
ple, between Cantonese and Mandarin Chinese (Zhang 1998), or between a dialect of a language
and a standard version of that language, for example, between Arabic dialects (Bakr, Shaalan, and
Ziedan 2008; Sawaf 2010; Salloum and Habash 2011; Sajjad, Darwish, and Belinkov 2013). Here
again, manual rules and/or language-specific tools and resources are typically used. In the case of
Arabic dialects, a further complication arises due to their informal status, which means that they
are primarily used in spoken interactions, or in informal text, for example, in social media, chats,
forums, and SMS messages; this also causes mismatches in domain and genre. Thus, translating
fromArabic dialects toModern Standard Arabic requires, among other things, normalizing infor-
mal text to a formal form. For example, Sajjad et al. (2013) first normalized a dialectal Egyptian
Arabic to look like MSA, and then translated the transformed text to English. In fact, this kind of
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adaptation is a more general problem, which arises with informal sources such as SMS messages
and tweets for just any language (Aw et al. 2006; Han and Baldwin 2011; Wang and Ng 2013;
Bojja, Nedunchezhian, and Wang 2015). Here the main focus is on coping with spelling errors,
abbreviations, and slang, which are typically addressed using string edit distance, while also taking
pronunciation into account.

Another line of research is on language adaptation and normalization, when done specif-
ically for improving MT into another language. For example, Marujo et al. (2011) built a
rule-based system for adapting Brazilian Portuguese (BP) to European Portuguese (EP), which
they used to adapt BP–English bitexts to EP–English. They reported small improvements in
BLEU for EP–English translation when training on the adapted “EP”–English bitext compared
to using the unadapted BP–English, or when an EP–English bitext is used in addition to the
adapted/unadapted one.

For closely related languages and dialects, especially when they use the same writing script,
many differences might occur at the spelling/morphological level. Thus, there have been
many successful attempts at performing translation using character-level representations, espe-
cially with phrase-based statistical machine translation (PBSMT) (Vilar, Peter, and Ney 2007;
Tiedemann 2012; Nakov and Tiedemann 2012). As switching to characters as the basic unit of
representation yields a severely reduced vocabulary, this causes a problem for word alignment,
which is an essential step for PBSMT; one solution is to align character n-grams instead of single
characters (Nakov and Tiedemann 2012; Tiedemann 2012; Tiedemann and Nakov 2013).

A third line of research is on reusing bitexts between related languages without or with very
little adaptation. For example, Nakov and Ng (2009, 2012) experimented with various techniques
to combine a small bitext for a resource-poor language, for example, Indonesian–English, with a
much larger bitext for a related resource-rich language, for example, Malay–English. It has been
further shown that it makes sense to combine the two ideas, that is, to adapt the resource-rich
training bitext to look more similar to the resource-poor one, while also applying certain smart
text combination techniques (Wang, Nakov, and Ng 2012, 2016).

A further idea is to use cascaded translation using a resource-rich language as a pivot, for exam-
ple, translating from Macedonian to English by pivoting over Bulgarian (Tiedemann and Nakov
2013). The closer the pivot and the source, the better the results, that is, for Macedonian to English
translation it is better to pivot over Bulgarian than over Slovenian or Czech, which are less related
Slavic languages.

Most of the above work relates to rule-based or statistical MT, which has now become some-
what obsolete, as a result of the ongoing neural networks revolution in the field. The rise of word
embeddings in 2013 had an immediate impact on MT, as word embeddings proved helpful for
translating between related languages (Mikolov, Le, and Sutskever 2013). The subsequent Neural
MT revolution of 2014 (Cho et al. 2014; Sutskever, Vinyals, and Le 2014; Bahdanau, Cho, and
Bengio 2015) yielded LSTM-based recurrent neural language models with attention, known as
seq2seq, which enabled easy translation between multiple languages, including many-to-many
and zero-shot translation (Johnson et al. 2017; Aharoni, Johnson, and Firat 2019), and proved to
be especially effective for related languages. It has been further shown that neural MT outperforms
phrase-based statistical MT for closely related language varieties such as European–Brazilian
Portuguese (Costa-jussà, Zampieri, and Pal 2018).

Neural MT also allows for an easy transfer from a resource-rich “parent”–target language pair
such as Uzbek–English to a related resource-poor “child”–target language pair such as Uyghur–
English (Nguyen and Chiang 2017) by simply pre-training on the “parent”–target language pair
and then training on the “child”–target pair, using a form of transfer learning, originally proposed
in Zoph et al. (2016). In 2017, along came the Transformer variant (Vaswani et al. 2017) of neural
MT, which yielded improvements over RNN-based seq2seq, for example, for Romanian–Italian
and Dutch–German in bilingual, multilingual and zero-shot setups (Lakew et al. 2018).
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Neural MT also makes it very easy to train multilingual models with multiple languages on
the source side, on the target side, or on both sides (Johnson et al. 2017; Lakew et al. 2018;
Aharoni et al. 2019). This is especially useful for closely related languages and language variants,
as the model can learn from many languages simultaneously, but it has been shown that even
distant languages can help in this setup. Part of the benefit comes from sharing subword-level
vocabularies with tied embeddings, which allowsmodels to learn some spelling andmorphological
variations between related languages.

Last but not least, there has been a lot of recent research interest in building cross-language
word embeddings (Lample et al. 2018) or sentence representations without the need for parallel
training bitexts or using both parallel and non-parallel data (Joty et al. 2017; Artetxe and Schwenk
2019; Conneau and Lample 2019; Søgaard et al. 2019; Guzmán et al. 2019; Cao, Kitaev, and Klein
2020), which can be quite helpful in a low-resource setting.

5. Conclusion
We have presented a survey of the growing field of research that focuses on computational meth-
ods for processing similar languages, language varieties, and dialects, with focus on diatopic
language variation and integration in NLP applications. We have described some of the available
datasets and the most common strategies used to create datasets for similar languages, language
varieties, and dialects. We further noted that popular data sources used in NLP such asWikipedia
are not suited for language varieties and dialects, which motivated researchers to look for alter-
native data sources such as social media posts and speech transcripts. We further presented a
number of studies describing methods for preprocessing, normalization, part-of-speech tagging,
and parsing applied to similar languages, language varieties, and dialects. Finally, we discussed
how closely related languages, language varieties, and dialects are handled in two prominent NLP
applications: language and dialect identification, and MT.

6. Future perspectives
Given our discussion above, it is clear that more and more NLP applications developed in indus-
try and in academia are addressing issues related to closely related languages, language variants,
and dialects, with specific emphasis on diatopic variation. In recent years, we have seen a substan-
tial increase in the number of resources such as corpora and tools created for similar languages,
language varieties, and dialects, and we have described some of them in this survey. We have also
seen an increase in the number of publications on these topics in scientific journals as well as in
the main international conferences in Computational Linguistics such as ACL, EMNLP, NAACL,
EACL, COLING, and LREC. The success of recent initiatives such as the aforementioned annual
VarDial workshop series and the associated VarDial evaluation campaigns, which keep attracting
a large number of participants, are another indication of the importance of these topics.

Finally, another recent evidence of the interest of the community in the computational pro-
cessing of diatopic variation is the special issue of the Journal of Natural Language Engineering
(NLE) on NLP for Similar Languages, Varieties and, Dialects, where this survey appears.b

The special issue received a record number of submissions for an NLE special issue and it was
eventually split into two parts. The articles published in Part 1 (NLE 25:5) have demonstrated the
vibrancy of research on the topic, covering a number of applications areas such as morphosyntac-
tic tagging (Scherrer and Rabus 2019), text normalization (Martinc and Pollak 2019), and language
identification (Jauhiainen, Lindén, and Jauhiainen 2019).

bhttp://sites.google.com/view/nledialects.
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Zupan K., Ljubešić N. and Erjavec T. (2019). How to tag non-standard language: Normalisation versus domain adaptation
for slovene historical and user-generated texts. Natural Language Engineering 25(5), 651–674.

Cite this article: Zampieri M, Nakov P and Scherrer Y (2020). Natural language processing for similar languages, varieties,
and dialects: A survey. Natural Language Engineering 26, 595–612. https://doi.org/10.1017/S1351324920000492

https://doi.org/10.1017/S1351324920000492 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000492
https://doi.org/10.1017/S1351324920000492

	Introduction
	Available corpora and data collection
	POS tagging and parsing
	Applications
	Language and dialect identification
	Machine translation
	Conclusion
	Future perspectives

