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Abstract Let X be a complex Banach space and denote by L(X) the Banach algebra of all bounded
linear operators on X. We prove that if ϕ : L(X) → L(X) is a linear surjective map such that for each
T ∈ L(X) and x ∈ X the local spectrum of ϕ(T ) at x and the local spectrum of T at x are either both
empty or have at least one common value, then ϕ(T ) = T for all T ∈ L(X). If we suppose that ϕ always
preserves the modulus of at least one element from the local spectrum, then there exists a unimodular
complex constant c such that ϕ(T ) = cT for all T ∈ L(X).
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1. Introduction and statement of the results

Let X be a Banach space over the complex field C. Denote by L (X) the algebra of
all linear bounded operators on X, and let I ∈ L (X) denote the identity operator. For
T ∈ L (X), its local resolvent set ρT (x) at a point x ∈ X is the union of all open subsets
U ⊆ C for which there is an analytic function h : U → X such that (T − λI)h (λ) = x
for each λ ∈ U . The local spectrum σT (x) of T at x is defined by σT (x) := C\ρT (x).
For each x, the local spectrum σT (x) is always a closed (possibly empty) subset of the
classical spectrum σ (T ) of T . The local spectral radius of T at x is defined by

rT (x) := lim sup
k→+∞

∥
∥T k(x)

∥
∥1/k

,

and it coincides with the maximum of modulus of elements from σT (x), for example,
when T has the single-valued extension property (SVEP). An operator T ∈ L (X) is said
to have the SVEP at a point λ0 ∈ C if, for every neighbourhood U of λ0, the only analytic
function h : U → X which satisfies the equation (T − λI)h (λ) = 0 on U is the trivial one.
We say that T has the SVEP if it has the SVEP at every λ ∈ C.
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For T ∈ L (X) and x ∈ X, denote

γT (x) = min{|λ| : λ ∈ σT (x)}

and

ΓT (x) = max{|λ| : λ ∈ σT (x)},

with the convention that γT (x) = +∞ and ΓT (x) = −∞ if σT (x) is empty. Then
σT (x) �= ∅ implies

γT (x) ≤ ΓT (x) ≤ rT (x) ,

while the inequality

rT (x) ≤ r (T )

is always true, where r (T ) is the classical spectral radius of T , that is, the maximum
modulus of σ (T ). (For more background information on general local theory, we refer the
reader to the monographs [1,11].)

It is proved in [5] that the only additive map ϕ : L (X) → L (X) which satisfies

σϕ(T ) (x) = σT (x) (T ∈ L (X) ; x ∈ X) (1.1)

is the identity on L (X). Linear maps on the algebra of n × n complex matrices Mn (C)
preserving the local spectrum at a fixed vector x0 ∈ C

n were characterized in [9], while
linear maps on Mn (C) preserving the local spectral radius at a fixed vector x0 ∈ C

n were
characterized in [4]. In [6], the authors characterized linear and continuous surjective
maps on L (X) which preserve the local spectrum/local spectral radius at a fixed vector
x0 ∈ X, obtaining that they are of a standard form. Those results motivated a number
of authors to consider various linear/nonlinear local spectra preserver problems; see, for
example, the last section of the survey article [3] and the references therein.

The aim of this paper is to prove an analogous result to the one given by [5, Theorem
1.1], by strengthening the additivity assumption to linearity and by supposing also
surjectivity, while (1.1) is relaxed to (1.2).

Theorem 1.1. Let ϕ : L (X) → L (X) be a linear surjective map such that

σϕ(T ) (x) ∩ σT (x) �= ∅ (1.2)

for each T ∈ L(X) and x ∈ X such that at least one of the sets in (1.2) is non-empty.
Then ϕ is the identity of L(X).

We also obtain a corresponding result for maps ϕ for which the minimum modulus of
the local spectrum of ϕ(T ) at x is always less then or equal to the maximum modulus of
the local spectrum of T , and vice versa.
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Theorem 1.2. Let ϕ : L (X) → L (X) be a linear surjective map such that

γϕ(T ) (x) ≤ ΓT (x)

and

γT (x) ≤ Γϕ(T ) (x)

for each T ∈ L(X) and x ∈ X such that at least one of the sets σϕ(T ) (x) and σT (x) is
non-empty. There exists then a unimodular complex constant c such that ϕ (T ) = cT for
every T ∈ L(X).

As a corollary, we obtain the following result for maps which preserve the modulus of
at least one element from the local spectrum. Its proof comes from Theorem 1.2 and the
fact that if α ∈ σT (x), then γT (x) ≤ |α| ≤ ΓT (x).

Theorem 1.3. Let ϕ : L (X) → L (X) be a linear surjective map, and assume that
for each T ∈ L(X) and x ∈ X such that at least one of the sets σϕ(T ) (x) and σT (x)
is non-empty, there exist α ∈ σϕ(T ) (x) and β ∈ σT (x) such that |α| = |β|. There exists
then a unimodular complex constant c such that ϕ (T ) = cT for every T ∈ L(X).

2. Proofs

Directly from the definition of the local spectrum, if x ∈ X is non-zero and T ∈ L (X)
satisfies Tx = λx for some λ ∈ C, then σT (x) ⊆ {λ}. When T has the SVEP, equality
happens.

Lemma 2.1 (see [1, Theorem 2.22]). Suppose that T ∈ L (X) has the SVEP at
λ ∈ C and Tx = λx, where x ∈ X is non-zero. Then

σT (x) = {λ}.

For an operator T ∈ L (X), if its point spectrum σp (T ) has empty interior then T has
the SVEP. The following result also holds.

Lemma 2.2 (see [1, p. 59]). If σp (T ) does not cluster at λ ∈ C, then T has the
SVEP at λ.

Then Lemmas 2.1 and 2.2 imply that if Tx = λx for some x ∈ X\{0} and σp (T ) does
not cluster at λ ∈ C, then σT (x) = {λ}.

The following result deals with the spectrum of rank-one perturbations of operators.
Throughout this paper, by X ′ we shall denote the dual of X. For x ∈ X and f ∈ X ′, we
denote by x ⊗ f the rank-one operator on X sending y into f(y)x.

Lemma 2.3 (see [10, Lemma 4]). Let T ∈ L (X), x ∈ X and f ∈ X ′, and suppose
that λ ∈ C\σ (T ). Then λ ∈ σ(T + x ⊗ f) if and only if f((λ − T )−1x) = 1.

As a corollary, we obtain the following fact.
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Lemma 2.4. Let T ∈ L (X), x ∈ X and f ∈ X ′, and suppose that |λ0| > r (T ) is an
element of the spectrum of T + x ⊗ f . Then σ(T + x ⊗ f) does not cluster at λ0 and, in
particular, σp(T + x ⊗ f) does not cluster at λ0.

Therefore, if |λ0| > r (T ) and (T + x ⊗ f)(x0) = λ0x0 for some non-zero vector x0, we
have that σT+x⊗f (x0) = {λ0}.

Proof of Lemma 2.4. The complex-valued function h (λ) := f((λ − T )−1x) is well
defined and analytic for |λ| > r (T ). By Lemma 2.3, we have h (λ0) = 1. If σ(T + x ⊗ f)
does cluster at λ0, using the same lemma one can find (λn)n≥1 ⊆ C\{λ0} with |λn| > r (T )
for each n such that λn → λ0 and h (λn) = 1 for n ≥ 1. The classical identity theorem
for analytic functions then implies that h ≡ 1 for |λ| > r (T ), which again by Lemma 2.3
means that σ(T + x ⊗ f) contains all complex numbers of modulus strictly greater that
r (T ). Since σ(T + x ⊗ f) is a compact set, we arrive at a contradiction. �

We are now ready for the following result, which is the main ingredient for the proofs
of Theorems 1.1 and 1.2.

Theorem 2.5. Let ϕ : L (X) → L (X) be a linear and surjective map such that

γϕ(T ) (x) ≤ r (T ) (2.1)

for each T ∈ L(X) and x ∈ X such that σϕ(T ) (x) is non-empty. Then

r(ϕ (T )) ≤ r (T ) (T ∈ L(X)). (2.2)

Proof. We shall follow the main idea from [8]. Let λ0 ∈ σ(ϕ (T )) such that |λ0| =
r (ϕ (T )), and consider (λn)n≥1 ⊆ C with |λn| > |λ0| for each n ≥ 1 such that λn → λ0.
Since |λn| > r (ϕ (T )) for each n ≥ 1, we have that (λnI − ϕ(T ))n ⊆ L (X) is a sequence
of invertible operators converging to λ0I − ϕ(T ) ∈ L (X), which is non-invertible. By [2,
Theorem 3.2.11], we have that

∥
∥(λnI − ϕ(T ))−1

∥
∥ → +∞.

Since ((λnI − ϕ(T ))−1)n ⊆ L (X) is unbounded, by the uniform boundedness principle
we find x ∈ X such that ((λnI − ϕ(T ))−1(x))n ⊆ X is an unbounded sequence. Again, by
the uniform boundedness principle we find f ∈ X ′ such that (f((λnI − ϕ(T ))−1(x)))n ⊆
C is unbounded. Then, by passing to a subsequence, denoting

μn = f((λnI − ϕ(T ))−1(x)) (n ≥ 1),

we may and will suppose that (μn)n ⊆ C\{0} and |μn| → +∞.
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Since ϕ is surjective, there exists R ∈ L (X) such that ϕ (R) = x ⊗ f . For each n ≥ 1,
denote

xn = (λnI − ϕ(T ))−1(x) ∈ X.

Then

(λnI − ϕ (T ) − (x ⊗ f)/μn)(xn) = x − x · f(xn)/μn

= 0,

which means that

λn ∈ σp(ϕ (T ) + (x ⊗ f)/μn) (n ≥ 1).

Since |λn| > r (ϕ (T )) for each n, using the remark following Lemma 2.4 we see that

σϕ(T )+(x⊗f)/μn
(xn) = {λn} (n ≥ 1).

Thus

γϕ(T+R/μn)(xn) = |λn|
for all n ≥ 1, and using (2.1) we obtain that

|λn| ≤ r (T + R/μn) (n ≥ 1).

Then

|λ0| = lim
n→∞ |λn| ≤ lim sup

n→∞
r (T + R/μn),

and therefore

r (ϕ (T )) = |λ0| ≤ r (T ) .

(We have used the facts that the spectral radius is upper semicontinuous [2,
Theorem 3.4.2] and |μn| → +∞ to see that lim supn→∞ r (T + R/μn) ≤ r (T ) .) �

Using Theorem 2.5 and the characterization of surjective spectral isometries on L(X),
we obtain Theorem 1.1.

Proof of Theorem 1.1. Using the fact that σT (x) ⊆ σ (T ) for each T and each x, we
see that (1.2) implies (2.1). Then Theorem 2.5 implies that r (ϕ (T )) ≤ r (T ) for each T .
In order to obtain the reverse inequality, it is sufficient to prove that ϕ is injective (and
therefore bijective), and to apply Theorem 2.5 to ϕ−1 instead of ϕ. Indeed, we then have

σϕ−1(T ) (x) ∩ σT (x) �= ∅

for each T ∈ L(X) and x ∈ X such that σϕ−1(T ) (x) or σT (x) is non-empty, and by what
we have just proved this gives r

(
ϕ−1 (T )

) ≤ r (T ) for each T .
Consider T0 ∈ L (X) such that ϕ(T0) = 0 and suppose, for a contradiction, that there

exists x ∈ X such that x and T0 (x) are linearly independent in X. Then let f ∈ X ′

such that f (x) = 1 and f (T0x) = 1, and let T = (x − T0x) ⊗ f . Then T 2 = 0, which
gives r (T ) = 0. Since we know that r (ϕ (T )) ≤ r (T ), then r (ϕ (T )) = 0, which gives
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σ(ϕ (T )) = {0}. Thus ϕ (T ) has the SVEP, and therefore σϕ(T ) (y) = {0} for each non-zero
vector y. In particular, σϕ(T ) (x) = {0} �= ∅ and then, by hypothesis,

σϕ(T ) (x) ∩ σT0+T (x) �= ∅.

Thus 0 ∈ σT0+T (x). Since (T0 + T ) (x) = T0x + x − T0x = x, then σT0+T (x) ⊆ {1}, and
we arrive at a contradiction. Thus x and T0 (x) are always linearly dependent, which
means that T0 = λI for some scalar λ. Since σϕ(T0) (x) = {0} for each non-zero vector x,
(1.2) gives 0 ∈ σT0 (x) for each x ∈ X\{0}, and therefore λ = 0. Thus T0 = 0, as desired.

We have, therefore, r (ϕ (T )) = r (T ) for each T ∈ L (X). By [7], there exists α ∈ C of
modulus one and either A ∈ L (X) bijective such that

ϕ (T ) = αA−1TA (T ∈ L(X)), (2.3)

or B ∈ L (X;X ′) bijective such that

ϕ (T ) = αB−1T ∗B (T ∈ L(X)). (2.4)

(For T ∈ L(X), by T ∗ ∈ L(X ′) we denote its adjoint operator.)
Suppose first that (2.3) holds. Then (1.2) gives (ασT (Ax)) ∩ σT (x) �= ∅ for all T and x

such that at least one of the sets σT (Ax) and σT (x) is non-empty. For T = I and x ∈ X
non-zero, {α} ∩ {1} �= ∅, and therefore α = 1. Thus

σT (Ax) ∩ σT (x) �= ∅ (2.5)

if at least one of the sets from the intersection is non-empty. Suppose, for a contradiction,
that there exists x such that x and Ax are linearly independent. Let f ∈ X ′ such that
f (x) = 0 and f (Ax) = 1, and put T = Ax ⊗ f . We have T (x) = 0 and T (Ax) = Ax,
which gives σT (x) = {0} and σT (Ax) = {1}. This contradicts (2.5). Thus A ∈ CI, and
therefore ϕ (T ) = T for each T .

To finish the proof, we will show that if dim(X) > 1 then (2.4) cannot occur. Indeed,
if (2.4) holds then (ασT∗(Bx)) ∩ σT (x) �= ∅ for all T and x such that at least one of
the sets is non-empty, and by taking T = I and x ∈ X non-zero, we see once more that
α = 1. Thus

σT∗(Bx) ∩ σT (x) �= ∅ (2.6)

for all T and x such that at least one of the sets is non-empty. Let us prove now the
existence of a non-zero x0 ∈ X such that (B(x0))(x0) = 0. Suppose this is not the case,
and consider two linearly independent vectors x, y in X. For each λ ∈ C, we have

(B(x + λy))(x + λy) = B(x)(x) + λ(B(x)(y) + B(y)(x)) + λ2B(y)(y).

Since B(y)(y) is supposed non-zero, there exists λ such that B(x)(x) + λ(B(x)(y) +
B(y)(x)) + λ2B(y)(y) = 0, and therefore (B(x + λy))(x + λy) = 0. Since x and y are
linearly independent, x + λy �= 0, and we arrive at a contradiction.

So, let x0 ∈ X\{0} such that (B(x0))(x0) = 0. Let Y ⊆ X be a closed subspace such
that X = Y ⊕ (Cx0). Let T ∈ L(X) such that T (x0) = 0 and T (y) = y for each y ∈ Y.
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We have σ(T ) = {0, 1} and T (x0) = 0, and therefore σT (x0) = {0}. Let us also observe
that given any x ∈ X, x = y + λx0 for some y ∈ Y and λ ∈ C, we have

(T ∗(B(x0)))(x) = (B (x0))(Tx) = (B (x0))(y) = (B (x0))(y + λx0)

= (B (x0))(x),

and therefore T ∗(B(x0)) = B (x0). Thus σT∗(Bx0) ⊆ {1}, and we contradict (2.6) for
x = x0. �

The proof of Theorem 1.2 is the same as the one for Theorem 1.1, since if σϕ(T ) (x)
is non-empty then γϕ(T ) (x) ≤ ΓT (x) implies that σT (x) is also non-empty and there-
fore γϕ(T ) (x) ≤ r (T ) , while if σT (x) is non-empty then γT (x) ≤ Γϕ(T ) (x) implies that
σϕ(T ) (x) is non-empty and γT (x) ≤ r (ϕ (T )). The only difference is that α given by (2.3)
is of modulus one instead of being equal to one.
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